
6th International Conference on Applied Informatics

Eger, Hungary, January 27–31, 2004.

Verifying invariants of abstract functional
objects—a case study∗

Zolt án Horváth, Tamás Kozsik, Máté Tejfel

Department of Programming Languages and Compilers
Eötvös Loŕand University, Budapest

e-mail: hz@inf.elte.hu, kto@elte.hu, matej@inf.elte.hu

Abstract

In a pure functional language like Clean the values of the functional variables are con-
stants; variables of functional programs do not change in time. Hence it seems that tempo-
rality has no meaning in functional programs. However, in certain cases (e.g. in interactive
or distributed programs, or in ones that use IO) we would like to consider a series of values
computed from each other as different states of the same “abstract object”. For this abstract
object we can already prove temporal properties (e.g. invariants). In this paper we present a
case study: our example is an interactive database with some simple operations like updating,
sorting, querying records. We specify an invariant property of our program and we show how
to prove this property. We utilize Sparkle, a theorem prover designed for the Clean language.
Since Sparkle is not capable of handling temporal logical properties, the application of certain
rules of the proof system are performed by hand. This way we simulate the behaviour of a
more sophisticated theorem prover, which is currently under development.

Categories and Subject Descriptors:D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; F.3.1 [Logics and meanings of programs]: Specifying and Verifying
and Reasoning about Programs -invariants;

Key Words and Phrases:Verification, invariant properties, abstract functional object, Clean,
Sparkle

1 Introduction

Temporal logical operators (such as “nexttime”, “sometimes”, “always” and “invariant”) are
very useful for proving correctness of (sequential or parallel) imperative programs. All these
operators can be expressed based on the “weakest precondition” operator [9, 10].

The temporal logical operators describe how the values of the program variables (which
constitute the so-called program state) vary in time. For example, the weakest precondition of a
program statement with respect to a postcondition holds for a state “a” if and only if the statement
starting from “a” always terminates in a state for which the postcondition holds. The weakest
precondition of a statement is possible to compute in an automated way: one has to rewrite the

∗Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr.T037742 and by Bolyai Research
Scholarship of Hungarian Academy of Sciences.

1

Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects 2

postcondition according to the substitution rules defined by the statement. The details of this
technique can be found in e.g. [5].

Temporal properties are not really used when reasoning about functional programs (among
the few exceptions are e.g. [8, 11, 3, 12]). In a pure functional programming language a variable
is a value, like in mathematics, and not an “object” that can change its value in time, viz. during
program execution. Due to referential transparency, reasoning about functional programs can be
accomplished with a fairly simple mathematical machinery, using, for example, classical logic
and induction (see e.g. [4]). This fact is one of the basic advantages of functional programs over
imperative ones.

In our opinion, however, in certain cases it is natural to express our knowledge about the
behaviour of a functional program (or, we had better say, our knowledge about the values the
program computes) in terms of temporal logical operators. Moreover, in the case of parallel or
distributed functional programs, temporal properties are exactly as useful as they are in the case
of imperative programs. For example, those invariants which are preserved by all components of
a distributed or parallel program, are also preserved by the compound program.

According to our approach, certain values computed during the evaluation of a functional
program can be regarded as successive values of the same “abstract object”. This corresponds
directly to the view which certain object-oriented functional languages hold.

This paper aims to show a simple example how to interpret and prove temporal properties of
functional programs using the object abstraction method. We inspect a special temporal property,
an invariant. A propertyP is an invariant with respect to a program and an initial condition if
P holds initially (namely it is implied by the initial condition) and all the atomic statements of
the program preserveP. Note that the second part of this requirement can be expressed with
the weakest precondition operator: for all atomic statements, the weakest precondition of the
statement with respect toP must follow fromP.

We have chosen Clean [14], a lazy, pure functional language for our research. An important
factor in our choice was that a theorem prover, Sparkle [4] is already built in the integrated
development environment of Clean. Sparkle supports reasoning about Clean programs almost
directly. We would like to extend the first-order logic used by Sparkle with temporal operators,
thus making semi-automated reasoning about parallel, interactive or distributed Clean programs
easier.

2 The program to reason about

In this case study we use a very simple example program modelling a database of financial
transactions. In this example a transaction is made up of two integer numbers; the first one
represents the date when the transaction occured, and the other one stores the amount of money
transfered in the transaction. The database contains a list of transactions and the overall sum of
the amounts transfered in the transactions.

The types involved in this example can be specified in a functional language (e.g. in Clean)
in the following way.

:: Transaction :== (Int, Int) // a pair of date and amount
:: DB :== (Int, [Transaction]) // sum and list of transactions

Strict data structures and strict function arguments make reasoning simpler. Furthermore, for
some irrelevant technical reasons, in this example we have not used the built-in polymorphic

Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects 3

list datatype, and we have defined the list of transactions without the using the synonym type
Transaction. Hence our type definitions are as follows:

:: Transaction :== (!Int, !Int) // date and amount
:: List = Nil | Cons !(!Int,!Int) !List // list of transactions
:: DB :== (!Int, !List) // sum and transactions

One can develop some basic operations for manipulating the database. A new (empty) data-
base can be created by invoking the functionnewDB. FunctionsinsertDB, remove-First and
sortDB can be regarded as state transition functions, which describe how the state of a database
will change. In the FP terminology, these functions compute the “new value” of the database from
the “old value”. FunctioninsertDB extends the database with a new transaction,removeFirst
removes the first transaction from the list of transactions, andsortDB sorts the transactions by
date. (In this simple example program we might, but not obliged to, assume that the date is a
primary key.)

newDB:: -> !DB
newDB = (0, Nil)

insertDB:: !(!Int,!Int) !DB -> DB
insertDB t=:(date,amount) (sum,list) = (sum+amount, Cons t list)

removeFirst:: !DB -> DB
removeFirst (sum,Nil) = (sum,Nil) // nothing to remove, skipping
removeFirst (sum, Cons (date,amount) list) = (sum-amount, list)

sortDB:: !DB -> DB
sortDB (sum,list) = (sum, sort_ins list)

The definition ofsortDB applies functionsort_ins, which implements an insertion sort
algorithm. Functioninsrt (invoked bysort_ins) requires that the operation< be defined for
typeTransaction. In our example< compares the first field of transactions, namely date.

sort_ins:: !List -> List
sort_ins Nil = Nil
sort_ins (Cons x xs) = insrt x (sort_ins xs)

insrt:: !Transaction !List -> List
insrt e Nil = Cons e Nil
insrt e ls=:(Cons x xs) = if (x<e) (Cons x (insrt e xs)) (Cons e ls)

instance < Transaction where (<) a b = (fst a) < (fst b)

Now we can develop a simple “scenario” application, which is built upon the basic opera-
tions. One can imagine that this scenario simulates an interactive session between a database
management application and an end-user. The input to this scenario is a database and a transac-
tion. First we insert the transaction into the database, then we sort the resulting database, finally
we remove the first transaction stored in the (sorted) database.

scenario :: !DB !(!Int,!Int) -> DB

Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects 4

scenario db t
db = insertDB t db
db = sortDB db
db = removeFirst db
= db

3 Object abstraction

Before formulating and proving temporal properties of our program, we have to define “abstract
objects”, that is we have to specify which functional (mathematical) values correspond to differ-
ent states of the same abstract object. Here we will introduce a single abstract object, a database,
whose consecutive states will be the value given as argument toscenario, and the values com-
puted by functionsinsertDB, sortDB andremoveFirst, respectively. Note that the program
text has also suggested the very same abstraction: the programmer chose the same name, viz.db,
to different functional values. This was possible due to the scoping rules of Clean with respect
to the “let-before” (#) construct. Thescenario function could have been equivalently defined
without hiding of variables in this way:

scenario :: !DB !(!Int,!Int) -> DB
scenario db t

db1 = insertDB t db
db2 = sortDB db1
db3 = removeFirst db2
= db3

The names of the functional variables that constitute the object abstraction aredb, db1, db2 and
db3. Note that the choice of the values for the states of the abstract object also determines the
state transitions we have to deal with during the proof of temporal properties.

How can a programmer supply this information? In our framework an integrated program-
ming environment (similar to the one currently available for Clean, [16]) will help the program-
mer develop, and reason about, programs. This IDE will store various data about a program in
a relational data base. This data base contains different sorts of compile time information (e.g.
symbol table, syntax tree) which enable Model-View-Controller based refactoring tools to oper-
ate on these data [17]. One of the views is the “source code view”, another view may contain
the properties of the program and the proof of these properties. Certain views will be human
readable, other views will be processed by different programs. For example, it will be possible
to create a view in a format in which Sparkle internally represents Clean programs.

Among the controllers there will be one which allows the programmer to select—e.g. in a
graphical user interface, by mouse-clicking on the source code—the variables, or expressions
that belong to the state transition tree of an abstract object. Another controller will make it
possible to enter temporal logical properties of the abstract object. Then these temporal logical
properties can be proven by an appropriate theorem prover. To accomplish this goal, the current
theorem prover for Clean (Sparkle) has to be altered: we will extend it with tactics (elementary
proof steps) to handle certain temporal logical operators. Since this enhanced theorem prover
is not yet implemented, in this case study will use Sparkle where possible, and simulate the
application of the lacking (temporal logical) tactics by hand.

Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects 5

4 An invariant of the abstract object

The invariant property of the abstract object chosen in the previous section will be the following:
if we sum up the amounts of money appearing in the transactions stored in the second part of
the database, we get the first (”sum”) part of the database. In the current version of Sparkle, the
definitions (functions and predicates) required to formulate a theorem should be given in Clean.
We will make use of a function that sums up the amounts appearing in a list of transactions.

sumUp:: !List -> Int
sumUp Nil = 0
sumUp (Cons (date,amount) list) = amount + sumUp list

Let us denote the abstract object “database” bydb . At first glance, we could formulate an

invariant property of db in the following way:

fst db = sumUp
(

snd db
)

When reasoning about programs, one must always take undefined results into account. For ex-
ample, in a functional language like Clean it is possible to apply partial functions, or to work with
lazy or even infinite data structures. Certain use of partial functions and lazy data structures can
lead to run-time errors or infinite computations. In a theorem prover such “undefined results” can
be modelled by a special⊥ (undefined) value. In Sparkle the predefined predicateeval is used
to express that an expression does not contain undefined parts, that is the “complete evaluation”
of the expression is possible. For the user-defined data types the programmer should provide the
appropriate definitions ofeval.

instance eval Transaction
where eval (date,amount) = eval date && eval amount

instance eval List
where eval Nil = True

eval (Cons t ts) = eval t && eval ts

instance eval DB
where eval (sum,list) = eval sum && eval list

Now it is possible to put down the required invariant property ofdb :

I
(

db
)

: fst db = sumUp
(

snd db
)

∧ eval db (1)

Next we will formulate an initial propertyQ(db, t) of scenario.

Q(db, t) : evaldb ∧ evalt ∧ fst db = sumUp(snddb) (2)

Finally we will formulate thatI
(

db
)

is an invariant property ofscenario with respect to the

initial propertyQ(db, t).

I
(

db
)
∈ invscenario

(
Q(db, t)

)
(3)

Besides the Clean definitions and the description of the abstract objectdb , definitions (1,2)
and statement (3) will be the input to the theorem prover.

Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects 6

5 The proof of the invariant property

The theorem prover for Clean which contains temporal logical tactics is not yet implemented.
Hence the first step of the proof discussed in this section was performed by hand. This first
step is the application of the not yet implemented tactic “inv” on our goal, namely statement
(3), which results in subgoals (4–7). For the sake of readability we will use that definition of

scenario which does not contain hiding of variables. Subgoal (4) describes thatI
(

db
)

holds

initially, and subgoals (5–7) describe thatI
(

db
)

is preserved by each state transitions ofdb .

None of the four subgoals contain temporal logical operators, so we can prove all of them with
Sparkle. The details of these proofs can be found in [15].

The first resulting subgoal, subgoal (4), describes thatI
(

db
)

holds initially: precondition

Q(db, p) guarantees that the first (initial) state ofdb , namelydb, satisfiesI . Formally, we
require thatQ(db, p)⇒ I(db). If we unfold the definitions forQ andI , we obtain the following
theorem.

(evaldb)∧ (evalt)∧
(

(fst db) =
(
sumUp(snddb)

))
⇒

(evaldb)∧
(

(fst db) =
(
sumUp(snddb)

))
(4)

This theorem is easy to prove. In Sparkle it takes 5 proof steps to complete this proof.
The state transitions for our abstract database objectdb correspond to the application of

functionsinsertDB, sortDB andremoveFirst. Subgoals (5–7) describe thatI
(

db
)

is pre-

served by each of the three state transitions. We can express this with the help of the weakest
precondition operator [9],wp. For each state transitions, the following should hold:

I
(

db
)
⇒ wp

(
s, I

(
db

))
Refer to [5] to see howwp can be interpreted in this context. In subgoals (5–7) the temporal
logical operatorwphas already been eliminated.

The first state transition ofdb corresponds to the following computation of the valuedb1
from db: db1 = insertDB db t. Note that this computation is parametrized by another value,
t, which is an argument of functionscenario. In such a case we can introduce a hypothesis
aboutt, based on the initial conditionQ(db, t) of the invariant property we are currently prov-
ing. This hypothesis tells us thatt does not contain undefined parts:eval t. If t were not an
argument ofscenario, but a value defined insidescenario, we could introduce a hypothesis
based on its definition. This case study, however, is lacking such an example.

(evalt)∧ I(db)∧ (db1 = insertDB db t) ⇒ I(db1) (5)

I(db1)∧ (db2 = sortDB db1) ⇒ I(db2) (6)

I(db2)∧ (db3 = removeFirst db2) ⇒ I(db3) (7)

The proofs of goals (5–7) requires about 4000 proof steps in Sparkle.

Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects 7

6 Conclusions and future work

In this paper we have studied a method that allows the definition and proof of temporal proper-
ties (namely invariants) in pure functional languages. We have presented the concept of object
abstraction, which is based on contracting functional variables into objects with dynamic (tem-
poral) behaviour. We have introduced a notion of state transitions and we have illustrated on a
very simple example how an invariant of an abstract object over a set of atomic state transitions
can be proved. The proof was constructed in a theorem prover (Sparkle) except for a single proof
step. The missing step applied a tactic (inv) that is not yet implemented in the theorem prover.
The case study identified the method of producing subgoals during the application of this tactic.
The implementation of this tactic will be based on this result.

The proof we have constructed in this case study is represented in a completely machine
processable form. As a consequence, not only the program, but also its proved invariant property
and the proof itself can be stored, transmitted or checked by a computer.

The case study in this paper does not address some issues which may be important for more
sophisticated examples. We have considered a situation where the atomic state transitions of
an abstract object were not distributed in more than one function definition. We will have to
develop further case studies in which the analyzed function (likescenario in our example)
contains “compound state transitions”, namely it invokes other functions that contain more than
one atomic state transitions themselves. The solution to this problem will be useful to handle
recursive functions.

Our approach defines an alternative semantics of Clean programs. According to this alterna-
tive semantics, some evaluation steps correspond to state transitions over an abstract state space.
The abstract state space is created by the object abstraction, where series of pure functional val-
ues are associated to an abstract objects. This methodology will be supported by an extension
to Sparkle [4], the theorem prover tool for Clean, to make reasoning about temporal properties
of interactive, parallel or distributed Clean programs possible. We plan to integrate the extended
theorem prover into a program development and code manipulation/refactoring environment.
Programs containing abstract objects will be presented to the theorem prover in a format similar
to the one Sparkle currently uses to represent Clean programs and proofs, but extended with a
representation of abstract object.

Our model is straightforward to extend to a full temporal logic. We can prove all temporal
properties which are based on the ”nexttime” operation, i.e. on the calculation of the weakest pre-
condition [2, 10]. We intend to prove general safety properties (unless), and progress properties
(leads-to, ensures) for Clean programs in the future.

References

[1] Achten, P., Plasmeijer, R.: Interactive Objects in Clean.Proceedings of Implementation of Functional
Languages, 9th International Workshop, IFL’97(K. Hammond et al (eds)), St Andrews, Scotland, UK,
September 1997, LNCS 1467, pp. 304–321.

[2] Chandy, K. M., Misra, J.:Parallel program design: a foundation. Addison-Wesley, 1989.
[3] Horváth Z., Achten, P., Kozsik T., Plasmeijer, R.: Verification of the Temporal Properties of Dy-

namic Clean Processes.Proceedings of Implementation of Functional Languages, IFL’99, Lochem,
The Netherlands, Sept. 7–10, 1999. pp. 203–218.

[4] de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional Programmers, Sparkle:
A Functional Theorem Prover. Springer Verlag, LNCS 2312, p. 55 ff., 2001.

Horváth, Z., Kozsik, T., Tejfel, M.: Verifying invariants of abstract functional objects 8

[5] Horváth Z., Kozsik T., Tejfel M.: Proving Invariants of Functional Programs.Proceedings of Eighth
Symposium on Programming Languages and Software Tools, Kuopio, Finland, June 17–18, 2003., pp.
115–126.

[6] Kozsik T.: Reasoning with Sparkle: a case study.Technical Report, Faculty of Informatics, Ëotvös
Loránd University, Budapest, Hungary. (in preparation)

[7] Butterfield, A., Dowse, M., Strong, G.: Proving Make Correct: IO Proofs in Haskell and Clean.Pro-
ceedings of Implementation of Functional Programming Languages, Madrid, 2002. pp. 330–339.

[8] Dam, M., Fredlund, L., Gurov, D.: Toward Parametric Verification of Open Distributed Systems.Com-
positionality: The Significant Difference(H. Langmaack, A. Pnueli, W.-P. De Roever (eds)), Springer-
Verlag 1998.

[9] Dijkstra, E. W.:A Discipline of Programming. Prentice-Hall Inc., Englewood Cliffs (N.Y.), 1976.
[10] Horváth Z.: The Formal Specification of a Problem Solved by a Parallel Program—a Relational

Model. Annales Uni. Sci. Bp. de R. Eötvös Nom. Sectio Computatorica, Tom. XVII. (1998) pp. 173–
191.

[11] Horváth Z., Achten, P., Kozsik T., Plasmeijer, R.: Proving the Temporal Properties of the Unique
World. Proceedings of the Sixth Symposium on Programming Languages and Software Tools, Tallin,
Estonia, August 1999. pp. 113–125.

[12] Kozsik T., van Arkel, D., Plasmeijer, R.: Subtyping with Strengthening Type Invariants.Proceed-
ings of the 12th International Workshop on Implementation of Functional Languages(M. Mohnen, P.
Koopman (eds)), Aachener Informatik-Berichte, Aachen, Germany, September 2000. pp. 315–330.

[13] Peyton Jones, S., Hughes, J., et al.Report on the Programming Language Haskell 98, A Non-strict,
Purely Functional Language, February 1999.

[14] Plasmeijer, R., van Eekelen, M.:Concurrent Clean Version 2.0 Language Report, 2001.
http://www.cs.kun.nl/˜clean/Manuals/manuals.html

[15] Tejfel M.: The Problem of Proof Reuse in Sparkle: a case study.Technical Report, Faculty of Infor-
matics, Ëotvös Loŕand University, Budapest, Hungary. (in preparation)

[16] Home of Clean. http://www.cs.kun.nl/˜clean/
[17] Divi ánszky P., Szab́o-Nacsa R., Horv́ath Z.: Refactoring via Database Representation.Proceedings of

6th International Conference on Applied Informatics, ICAI 2004, January 27–31, Eger, Hungary, 2004.

