Defining and Proving Invariants
in Clean

Zoltan Horvath, hz@inf.elte.hu
Tamas Kozsik, kto @inf.elte.hu
Maté Tejfel, matej @inf.elte.hu

Department of Programming Languages and Compilers
Faculty of Informatics
Eotvos Lorand University

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Content

* Temporal properties in imperative programs.

* Why would we like to use temporal properties
in functional programs ?

* How can we do this ?
* How can we prove them ?

* Examples ...

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Temporal logic

* Language for specifying properties of reactive

and
distributive systems.

* Widely used for reasoning about
sequential and parallel imperative programs.

* Describe how the values of the program variables
(the so-called program state) vary in time.

* Complex temporal logical operators can be

29 66

Supported BY(PFEKS tqgl}@at@@s Bé;a‘i &lew ay@hipi S Ometime S = °

Temporality

(Imperative view)

Time (program execution)

q ﬁ

state transition state transition

(step) (step)
Properties
X<Y Y <X X<Y
X>7Z X>7Z X>7Z

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Temporal properties
(Unity)

Unity: Chandy, K. M., Misra, J.:
Parallel program design: a foundation. Addison-Wesley, 1989.

* P, Q are properties and prog is a program.

Invariant Unless
P INYV prog Q P UNLESS prog Q
Ensures Leads-to

P ENSURES prog Q P LEADSTO prog Q

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Invariant

P INV prog Q : P holds during the program execution,

if iitially Q holds.
_ / prog {
X >Z INV prog (X=5/N\7Z=2) Xo=X46;
Y:=7*Y }

Time (program execution)

X:=X+6 Y.=7%Y

X>Z X>7Z X>Z

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Unless

P UNLESS prog Q : during the execution of the program if once
P holds, 1t remains to hold at least until Q holds.

Y=8) UNLESS prog (Y>10 prog {
() NS e X:=X+6;

Y:=7*Y }

Time (program execution)

X:=X+6 Y.=7%Y

Y=8 Y=8 Y >10

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Unless
P UNLESS prog Q

Correct execution (the property holds) :

P Q not (PV Q) P Q

not P not P not P not P not P

Incorrect execution (the property doesn’t hold) :

——

P P P not(PVQ) R

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Parallel execution

o * We don't know the executive order.
X:=X+6 Y:=7*¥Y } * We have to analyse all possible sequence.

Y:=7*Y |

Time (program execution)

X:=X+6 |

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Weakest precondition operator

wp(s,R) : -1t is a condition.
- 1f 1t holds 1n a state, then after the execution of s R will
hold.

X:=X+6

X=5 X>10
wp(X:=X+6, X>10) = (X >10) = (X+6>10) = X >4

X=5=>X>4

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Weakest precondition operator

*PINVprogQ: (Q=P)A (Vs eprog:P= wp(s,P))

for all state transitions of the prog program

* PUNLESS progQ: Vs e prog:PA—-Q = wp(s, Pv Q)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Basic problem

* In a functional language (like Clean) the values of
the variables are constants.

* Don’t vary 1n time.

* It seems that temporality has no meaning.

* Why do we use temporal properties ?7?

BUT...

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Temporal logic in FP

* We have unigness type

* We have Object 10, where

* we have reactive programs

* with States

* It is very similar as the imperative case

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Temporal logic in FP

* We calculate this values from each other

o

* After we calculated the new one we ‘“‘throw’
the old one

* We can create an abstract object
and consider this values as different
values of this object

* It is very similar as the imperative case

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Abstract objects

* Object abstraction

- we consider a series of values computed from
each other as different states of the same abstract

object

* For this abstract object we can already define
and prove temporal properties

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Modified Clean source

* Two additional syntax element to Clean:

- #." for steps (with similar syntax
as # 1n Clean)

- ".|.- for objects (with syntax :

|. object_identifier original_identifier)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Abstract objects

* execl x y z
X = X + 6
*y = T*y

= (Zr Xy Y)

e execl x, y, 2z,
x, = x, + 6
* ¥ = 1*y,

= (er Xor yZ)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Abstract objects

e execl x, y, 2z,
¥ x, = x, + 6
Y, = T*Y,

= (z,y X,y ¥,)

e execl (.|
.#. (.]. Obj_x x,) = (.|. Obj_x x,)
y, =

Va (er (.1. Obj_x x,) , Yz)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Abstract objects

* execl x, y, z,
x, = x, + 6
#y, = T*y,;

i (le le Y2)

* execl (.|]. Obj_x x;) (.|. Obj_y v;) (.|. Obj_z z,)

|
#. (.. Obj_x x,) = (.]. Obj_x x,) + 6
H. (.. Obj_y y,) = 7*(.|. Obj_y vy,)
= ((.]. Obj_z z,), (.|. Obj_x x,), (.|. Obj_y ¥,))

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Sparkle

* theorem prover
* specially constructed for Clean

* properties are expressed 1n a basic logic:

equality (on expressions), negation, implication,
conjunction, disjunction, equivalence (iff), universal
quantification and existential quantification

* reasoning in Sparkle takes place on Core
language (Core-Clean)

- subset of Clean

- application, sharing and case distinction
- semantics based on lazy graph rewriting

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The modifications in Sparkle

* Modified scanner, parser

* New syntax element in Core language
- CObj_Var
- CStep

* Modified definition of functions

* New tactics for objects (ongoing work)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

source /

7
Modified

Clean source

Modiftied

lean source
\

Extended
Core

S ; language

Invariant Example

The proved property:

(obj_x >o0bj_z) INV (execl xyz) (z=2/A\x=)5)

 execl (.]|]. Obj_x x;) (.|. Obj_y y;) (.]. Obj_z z))
H#. (.]. Obj_x x,) = (.|. Obj_x x,) + 6
.#. (.|l. Obj_y y,) = 7*(.|. Obj_y vy,)
= ((.]. Obj_z z,), (.]l. Obj_x x,), (.|. Obj_y vy,))

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The weakest precondition in
functional case

* Calculating the weakest precondition 1n a
functional environment 1s a simple rewrite
rule (rewriting the postcondition according
to the substitution defined by the step)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The proof
* Initially it holds:

(z=2AX=))
— (obj_x_var_0=x A obj_y_var 0=y Aobj_z var 0=7z)
— (obj_x_var_0 > obj_z_var_0)

we replaced the objects (obj_x, obj_y and obj_z) with
variables (obj_x_var0, obj_y_var0O and obj_z_var0)

execl (.|]. obj_x x1) (.|. obj_y y1l) (.|. obj_z zl)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The proof
* The first step preserves it:

(obj_x_varl_old > obj_z_varl_old)
— (obj_x_varl = obj_x_varl_old + 6)
— (obj_y_varl = obj_y_varl_old)
— (obj_z_varl = obj_z_varl_old)
— (obj_x_varl > obj_z_varl)

#. (.]. obj_x x2) = (.]. obj_x x1) + 6

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The proof
* The second step preserves it:

(obj_x_var2_old > obj_z_var2_old)
— (obj_y_var2 =7 * obj_y_var2_old)
— (obj_x_var2 = obj_x_var2_old)
— (obj_z_var2 = obj_z_var2_old)
— (obj_x_var2 > obj_z_var2)

H#. (.]. obj_y y2) = 7*(.|. obj_y yl)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Invariant Example 2.

* Simple database of financial transactions

* Transaction abstraction
the date and the sum of the financial transaction

::ListData :== (!Int, !'Int)

date sum

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Invariant Example 2.

* Database abstraction
the total sum of the sum of the transactions and

the list of the transactions
3 DB {1==" (VA apy iV
List = Nil | Cons !(!Int, !Int) !List

/ date sum

total sum date sum

date sum

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The operations of the example

* Creating a new database from the old one inserting
a new transaction to it
insertDB:: ! (!Int, !Int) !DB —-> DB

insertDB (x1,x2) (sum,list) =
(sum + x2, Cons (x1,x2) 1list)

* Computing the sorted version of the database (by
date)

sortDB:: !DB —> DB
sortDB (x,1list) = (x, sort _ins 1list)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The operations of the example

* Creating a new database from the old one by
removing the first transaction

removeFirst:: !DB —-> DB
removeFirst (x,Nil) = (x,Nil)
removeFirst (x, Cons (yl,y2) ys) = (x — y2, yS)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Object abstraction

* The original function:

exl :: !'DB !(!Int,!'Int) —> DB
ex]l db p

dbl = insertDB p db

db2 = sortDB dbl

db3 = removeFirst db2

= db3

* The object abstraction:

exl o (.|. db_o db) p
H#. (.]. db_o dbl) = insertDB p
H#. (.|]. db_o db2) = sortDB (.].
H#. (.|]. db_o db3) = removeFirst

= (.]|. db_o db3)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

(.

| . db_o db)
db_o dbl)
(.]. db_o db2)

Proved property

* Our invariant property for function ex1_o:
the sum field of the database always contains
the total sum of the sum of transactions and the

database 1s evaluable

* Initial condition for function ex1_o :
in our special example it 1s the same as the
previous property and additionally the second
parameter 1s also evaluable

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Proved property

P 1v (S, O)
where

P = (fst db o = sumList (snd db o)
A eval db o)

;S= exl o db_o p

()= (fst db_o = sumList (snd db_o) A
eval db_o A eval p)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Proved property

The sumL i st function calculates the sum of the

second components of the elements of the list

sumlList:: !List —-> Int
sumList N1l = 0

sumList (Cons (x1,x2) Nil) = x2

sumList (Cons (x1,x2) xs) = x2 + sumlLilist xs

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The steps of the proof

* Invariant tactic determine the steps, which have to
prove by Sparkle

* In current example:

- initially the property holds

fst db = sumList (snd db) A eval db A eval p

—> fst db = sumlList (snd db) A eval db

which 1s trivial (5 lines 1in Sparkle)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The steps of the proof

- the atomic steps keep the property

- the first step

fst db = sumList (snd db) A eval p
A eval db A dbl = i1nsertDB p db —

fst dbl = sumList (snd dbl) A eval dbl

(114 lines and 2 additional theorem =~ 130 lines 1n
Sparkle)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The steps of the proof

- the second step

fst dbl = sumlList (snd dbl) A
eval dbl A db2 = sortDB dbl —

fst db2 = sumList (snd db2) A eval db?Z2

(54 lines and 40 additional theorem =~ 3100 lines in
Sparkle)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

The steps of the proof

- the third step

fst db2 = sumlList (snd db2) A
eval db2 A db3 = removeFirst db2z2 —

fst db3 = sumList (snd db3) A eval db3

(155 lines and 7 additional theorem = 200 lines 1n
Sparkle)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

///// e

M Sparkle

Theorem sections loaded: Showing: all tac

StdArray ain 0} named: *

S5tdBool Ahsurd

StdChar AhsurdEquality

StdCharList Apply

S5tdClass Assume ==_tuplel 0000
StdEnum Case Start

StdEmv Cases eval List
SidFile Choose Case eval tuplel 0000
StdFraction Compare eval tuplel 0000
StdFunc Coniradiction exl

SidInt Cut exl o

StdList
Stdhisc

St OrdList
StdOverloaded
StdReal #
StdSparkle = First db

StdString newDB

StdTuple C A ICT:01 HFDICTIONARIES:O0 HALTING:LO perm

M ex1_o inmodule prbcurrent

'i'Int, !List) !'{'Int, !Int) ->» [!Int, 'List)

_SysiemArray Injective removeFirst

_SystemEnum Iniroduce remove OriSkip
o prhcurrent IntArith soriDB
sort_ins

bad saction sorted

changs fittar

_—
:f.".' Start & ~ ™ 7 | = Total Com... SUMMMEr_Uj Bl splst03slides =g surnmer & Cleanide M Sparkle HL QJ i

9, AM 1746

CPPCC overview

The Certified Proved-Property-Carrying Code (CPPCC):
three main components.

1. Producer of the mobile code adds properties of the code
and their proofs.

2. Code receiver will execute the code only after all the
checks have been done.

3. Certitying authority reduces the work-load of the receiver.

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

. cPrcCardhitecture.

? Producer of mobile code Prover

/|

7 Library of certified code s Source code
/ Code

/ // 7 / Properties
Code Proof
Properties / e
Certificate

Certifier Checker

i
g Receiver of mobile code
/// i

Ve avd

/ Operational definition Properties

//«

/ Abstract Source Properties Proofs
machlne code code (in a coded form)

" Checker / certifier component
Wi s o
RSN
machine code code (in a coded form)
e /.

v

/ “/
Compilation checker | Correctness checker
Certifier
/
Abstract Properties Certificate

machine code (in a coded form)

7

//

Abstract Certificate Properties
machine code (in a coded form)

Receiving Authentitication A
A

program

Dynamic linker Authorization

Require-
ments

%

Application

Summary

* Temporal logical operators are useful in proving
properties of functional programs.

* Object abstraction 1s introduced for representing
state as series of values.

* Temporal properties can be expressed and easy to
calculate based on wp.

* Dedicated theorem prover Sparkle 1s applicable.

* Invariant tactic 1s implemented.

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

Some future work ...
* other temporal properties (progress)

* extension of Sparkle with some new
tactics for proot of temporal properties

(1mplementation)

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

For Lab...

* Download the following stuffs:
- Sections directory
- Sparkle_obj.exe
- inv_lab.icl

from http://plc.inf.elte.hu

to c:\Clean 2.1.1\Tools\Sparkle

Supported by OTKA T037742 and Janos Bolyai Research Scholarship.

