Compiling P-GRADE programs for the JGrid
architecture

Lészl6 Lovei

June, 2003

P-GRADE]J1] is an interactive, graphical software development tool, de-
signed to build parallel programs using message passing for communication. It
supports the graphical construction of the communication topology of the pro-
gram by defining processes, communication ports and channels between them.
The main algorithmical structures of the processes can be defined graphically
based on communication actions, and details can be given by arbitrary tex-
tual code fragments. This technique hides the underlying communication in-
frastructure, while it allows the programmer to get the full power of the used
programming language.

JGrid[2] is a Grid infrastructure built on the Java-based Jini[3] technology. It
defines a so-called Compute Service, which can be used to execute arbitrary Java,
code wrapped in a special Java object, and a management infrastructure, which
simplifies the usage of Compute Services by caching and by providing search
facilities. It also provides methods for communication between the running
tasks, supporting distributed programs this way.

One of the JGrid projects’ goals is to make the P-GRADE development en-
vironment available on the JGrid platform, with full support of the monitoring
and debugging capabilities. The key task to achieve this is to develop a com-
piler, which translates GRAPNEL, the language of the P-GRADE environment,
into Java code, using the JGrid platform for program running, communication,
monitoring and debugging.

The first important thing about the generated code is that large portions
of it can be generalized and written as a support library. This approach gives
opportunity to generate Java code that is independent of the target platform.
The other role of the library is to provide an interface that makes code generation
easier and cleaner.

An other classification of the code can be based on the distributed nature of
the program. In a JGrid system, the programs are Java objects; they correspond
to P-GRADE processes. These object communicate with each other, based on
a communication topology, which is defined by ports, channels, communication
groups etc. The topology provides information on where each message should
be sent; this information can be attached to the ports, and must be available
to the running process. The other parts of the topology are only needed for the



initialization of the program, and need not be present in a running process.

The generated code of the initialization part can be reduced to a declarative
listing of the topology: each process ang group has a class, which lists the
ports, channels, subgroups and subprocesses. The details of the initialization
can be hidden in the library, which creates serializable process objects with the
knowledge of their communication connections. These object are sent into the
Grid, and are run by Compute Services.

Special support is needed for the communication templates. These are
special, scalable process groups with predefined communication topology (eg.
pipeline). The group classes defined for the templates handle the process in-
stantiations and build the communication structures themselves.

The actually running codes of the processes are generated into special Java
methods of the process classes. There are basically three kinds of generated
instructions: control constructs, which are primitive Java elements; textual code
fragments, which are copied verbatim into the final code; and communication
actions, which are the most complex parts of the system.

There are three types of communication actions: output, input, and alterna-
tive input. The first two can be point-to-point or group communication, the last
is only meaningful with groups; besides, the output action may have synchron
or asynchron semantics. After handling these properties, the message data must
be interpreted according to the so-called protocols given in the P-GRADE pro-
gram; these are the descriptions of the message format. The generic properties
can be handled by the library, but each of the protocols must have specially
generated insertion and extraction code, which is handled by message buffers
and packing and unpacking primitive functions.

The last topic which the compiler must deal with is the support of the exter-
nal tools, the monitor and the debugger. The monitoring is done by instrumen-
tating the code: every graphically defined program step calls the corresponding
instrumentation function, which handles the monitoring. The debugger requires
even less support, only a cross reference file need to be created, which contains
the positions of the graphically defined steps in the Java source files.

References

[1] P-GRADE User’s Manual
http://www.lpds.sztaki.hu/pgrade/p_grade/manual.html

[2] JGrid: Grid system based on Jini
http://pds.irt.vein.hu/jgrid

[3] Jini Network Technology
http://www jini.org



