
Data access optimization on grid systems
László Csaba Lőrincz, Tamás Kozsik, Attila Ulbert and Zoltán Horváth

Department of Programming Languages and Compilers
Eötvös Lor ánd University

Budapest, Hungary
e-mail: {lesliel|kto|mormota|hz}@inf.elte.hu

Abstract— The execution of data intensive grid applications
still raises several questions regarding job scheduling, data
migration and replication. The optimization techniques applied
by these services significantly determine how fast a job can be
executed and how early the user can get the execution results.

In this paper we present strategies for scheduling the execution
of data intensive applications. We deem that by taking into
account the way applications access their data, the grid mid-
dleware can achieve lower response times and earlier execution
results. Therefore, we (1) monitor the execution of jobs and
gather the necessary resource access information, (2) analyze the
compiled information and generate a description of the behavior
of the job, and (3) use the generated behavior description to
implement optimized scheduling algorithms. This technique can
be extremely useful in the case of parameter-sweep applications.

I. INTRODUCTION

Grid applications need different types of resources, such
as CPU, memory, network bandwidth and secondary storage.
The grid middleware tries to allocate these resources to the
applications in a way the execution can be as fast and as
efficient as possible.

The main focus in this paper is on the secondary storage, on
data access. Many applications read and write large data files
during their operations. Often these files are not available on
the computing element where the application runs. The optimal
strategy for accessing these files depends on the kind of
the application: computation-intensive applications may spend
long periods of time between successive data accesses, while
data-intensive applications may need to access large chunks of
data very frequently. Consequently either a small buffer may
be enough for storing a local copy of the data needed in the
next step of computation, or a complete copy of a huge file
may be necessary in advance. The access method as well as
the granularity of the read/write operations may vary with each
input and output file used. Therefore the optimal data access
may require the copying of some files as a whole, as well as
accessing other files in parts.

In order to optimize the resource allocations and consump-
tion of a job, information about the way it accesses data is
required. This information can be specified by the programmer
or can be derived from data collected by a monitoring tool.
Our approach can support monitoring.

In our conception (see Figure 1) in a GRID system there
would be many users, who would run parameter-sweep ap-
plications. These applications are executed not only once but

several times for similar input values on the same or similar
data files. Our goal is to add support to the GRID middleware
for collecting data about the execution of such jobs, and to
optimize the running process of these applications based on
the accumulated information.

Analyzelog

description

jobMonitor Schedule

Fig. 1. The Optimization Process

During the first execution of a parameter sweep application
(this can be just a test run) a monitoring tool will accumulate
the information about the resource usage (and especially about
the data access) of the job. The collected data will be processed
then by a special tool and the result will be added to the job
descriptor file of the application. This includes the extension
of the Job Description Language (JDL) [2] and the insertion
of the additional data in the current job descriptor files.

Using this extended job descriptor file we can implement
new schedulers that would benefit from this new information.
Besides choosing the best Computing Element [1] for the next
execution of the job, the new scheduler should also be able to
send commands to the Replica Manager [1]. These commands
would specify the files that must be copied to or in the vicinity
of selected Computing Element.

II. USED RESOURCES

The Grid Information System (GIS) [1] can store various
information that can be used by the Resource Broker through
the scheduling process. The middleware provided by the
Hungarian ClusterGrid [6] does not provide us all of the
required data.

The presently available description of the grid resources
contains the type and number of processors in a cluster, the
operating system running on it as well as the list of the pre-
installed softwares / packages available.

The additional information we would need are:
• The read and write speed of the (local) secondary storage

of each grid component.
• The average network bandwidth between two different

grid component.
• Besides the number of jobs waiting for execution and the

job-queue of a Computing Element (this information is
already available) we also require the estimated running
time of every single job in the queue as well as the

estimated time the given Computing Element will finish
the execution of the current job.

After processing and analyzing the data collected through
job execution monitoring, we will acquire some further infor-
mation about the input and output file usage of the job. We
will call this the Data Access Pattern of the application, and
it is composed of:

• Type of the file (input or output).
• Which part of the file is used (access ratio).
• The file usage redundancy (intersection ratio). This value

will describe the average overlapping that exists between
the data accessed by a predefined (and configurable)
number of consecutive read or write operations on this
file.

• A list of the datablock information. Each datablock
contains:

– The file access method (sequential or random) used
in the section

– The starting and ending positions defining the current
datablock through four values (two of them repre-
senting the absolute and two of them the relative file
positions)

– The distance (step) between starting position of two
successive data access operations (in case of sequen-
tial file access). This number can be also negative if
the job steps backward between these operations.

– The size (in bytes) of the data processed in a single
operation

– The frequency of the data access operations: the min-
imum and the average system time (in milliseconds)
and CPU time (in mips) between two consecutive
operation.

The following example depicts the data access pattern
generated for an application that reads file ”test1”:

<file_in name="test1" size="100000">
<sequential>
<datablock min_pos_absolute="0"

max_pos_absolute="24000" step="2000"
size="1000" />

<timing average_mips="3" />
</sequential>
<sequential>
<datablock min_pos_absolute="25000"

max_pos_absolute="49000" step="2000"
size="2000" />

<timing average_mips="19" />
</sequential>
<random>
<area lower_bound_absolute="50000"

upper_bound_absolute="100000"
avg_size="3300" />

<timing average_mips="2" />
</random>

</file_in>

According to the data access pattern the application pro-
cesses file ”test1” in the following way:

• In the first part the application reads sequentially blocks
of 1000 bytes (skipping the next 1000 bytes)

• In the second part the application reads sequentially
blocks of 2000 bytes

• In the third part the application reads the blocks randomly

III. MONITORING

In cases when the application developer is not able to
specify the required data access patterns or when the exact
behavior and source code of the application is not known, we
should use monitoring to gather this information.

The monitoring of jobs can be done in the following ways:
• Altering the source code of the application
• Altering the compiler
• Altering the run-time system
• Altering the operating system.
The software provided by the Hungarian Clustergrid cur-

rently is based on the Red Hat Linux 6.2 platform. So in
the following the possibilities to merge monitoring code with
the code of an application will be discussed focusing on the
programming language C (other languages should be handled
in a similar way).

From the possibilities listed above, we have chosen to
extend the jobs with monitoring code by altering the run-
time system by interfering during run-time, when the shared
libraries are linked to the application. It is possible to hack
the run-time system on a Computing Element node in a way
that certain IO function calls are not dispatched to the default
IO libraries, but to a custom shared library which performs
monitoring as well as executing the actual IO functions.

The advantage of this approach is that the source code of
the original application is not needed, since no recompilation
is necessary. Only a special shared library must be available on
the Computing Element nodes, and an environment variable
must be set, in order the data accesses of the job to be
monitored or not. This kind of monitoring is completely
hidden by the Grid middleware, and is transparent to the
scientist who executes the application.

However, this approach is platform-dependent: the tech-
niques presented above can be used on Linux and Solaris
systems, porting them to other operating systems require
further investigations.

The monitored resources can be divided into two groups:
• CPU and memory,
• Network bandwidth and secondary storage - data access

related resources.
Data access monitoring is based on the logging of standard

file handling operations defined in the stdio.h, fcntl.h and
unistd.h libraries. The information collected for these functions
are the name of the operation, the file or stream descriptor, the
name of the file and the opening mode flags, the amount of
data read or written, or the new position in the stream.

CPU usage monitoring is also bound to the data access.
From the optimization point of view it is enough to collect the

CPU usage information between two consecutive file access
operations. In order to have a system-independent value we
are using the CPU usage percentage and the CPU usage time
as a source for this information. These values along with
the performance descriptors of the monitoring and the target
systems (specified in BogoMips) can be used to estimate the
execution time of the given code fragment on a given target
system. The performance descriptor (in BogoMips) of the
system that is tracking the job execution, will also be stored
in the output file of the monitoring (it can be retrieved from
the /proc/cpuinfo file).

Monitoring CPU and memory consumption is not possible
by overriding some system functions. Instead, the /proc -
process information pseudo-filesystem [5] - can be used for
accessing the kernel data structures containing the required
information. There is a individual subdirectory for every
running process named by the process ID. Every directory
contains pseudo-files and directories storing data concerning:
the currently mapped memory regions, the status information
about the process (state, CPU time, virtual memory size), the
free and used memory (both physical and swap).

Tracking of CPU usage is done in a similar way that the
Linux program called ”top” works.

In the current implementation the monitoring (the logging
of the resource usage) and the analysis of the collected data
(the creation of the job descriptor extension) are separated.
But in the future it would be possible to merge these actions.
Based on the previous measurements the analysis and the
generation of the job descriptor extension takes less then 1%
of the running time of the whole application.

IV. THE ANALYZER

The data collected by monitoring must be further processed
in order to get the desired compact XML description of the
data access patterns. The resulting (behavioral) descriptions
are used to extend the (static) job descriptions (using an
extension of the JDL language), which in turn can be utilized
by the grid middleware services to perform the optimization.

...

StrategyDetector

FileAccessDescription

FileAreaAccessDescription

FileAreaAccessDescription

JobResourceAccessDescription
...

file1 file2

Parse

read

read

write

write

write

write

log

Job description

Fig. 2. The Analyzer

The input of our prototype analyzer (see Figure 2) is the
log file returned by the monitoring component. Although job
monitoring and behavior analyzing are separated processes in
our prototype system, the analyzer was designed to allow us
to invert the two processes into a united algorithm, which
would generate the job behavior description parallel with its
execution. Therefore, the analyzer processes the input file

sequentially, does not look into the ”future”, and looks into
the ”past” only with limitations.

For each file accessed by the job the analyzer builds a file
access description, which consists of one or more file area
access description(s). A file area access description describes
the file access strategy applied by the job when accessing
a specific part of a file. During the processing of the log
file, the analyzer continuously keeps track of the file area
access strategies used by the job. The analyzer recognizes two
kinds of file area access strategies: random and sequential
(increasing or decreasing) strategies.

Each kind of strategy is associated with certain behavior
characteristics. The strategies are characterized by the follow-
ing behavior parameters:

• the average size of the blocks accessed by the individual
file operations,

• the average time elapsed between two subsequent file
operations working on the given file,

• the minimum and maximum file position accessed by the
job, and the number the job changes these positions.

When the analyzer processes the next log entry, it refines
the corresponding file access description by either refining the
latest file area access description of the file access description
or adding a new file area access description. The changes in
the applied file access strategy is detected by re-calculating
the behavior parameters and comparing the new values with
the previous ones. If a parameter change were larger than
a specified threshold value, the yet actual file area access
description will be closed and a new one will be added to
the file access description. For example, if the maximum
file position were needed to be updated in the case of a
decreasing sequential strategy, the analyzer will decide that
the job stopped using the decreasing sequential strategy, and
it will try to determine the new strategy.

The detection of the behavior changes is based on the
access log the analyzer maintains for each file accessed by
the job. An access log entry holds the position and size of
the datablock accessed by the job, and the time elapsed since
the last file access. The size of the access log(s) is limited
allowing the analyzer to detect and determine the file access
strategy changes in O(1) time.

In order to determine the new file access strategy, the
analyzer resets all behavior characterization parameters and
the access log. At this point, the file access strategy is
undetermined. After the analyzer processes enough file access
operations and fills the access log, it determines the new
strategy. Please note that the analyzer actually detects changes
of file access behavior. This means that the new strategy is
not necessarily a different kind of strategy, but a file access
strategy having different behavior parameters. For example, it
the job processes a file sequentially, but from a certain point it
will take much more (or less) time to process a data block, the
analyzer will decide that the strategy has been changed, and
the new strategy is still sequential increasing, but its timing
characteristics are different.

The file access strategy is determined in the following way:

• the strategy is increasing sequential if the maximum
position is changed more times than a threshold value
(e.g. if the access log size is 10, and the threshold is 7,
the maximum position has to be updated 8 times after
processing 10 file operations related to the given file)

• the strategy is decreasing sequential if the minimum
position is changed more times than a threshold value

• otherwise the strategy is random

After the strategy is determined, whenever a new file
operation is processed, the analyzer updates the access log
and the characteristics parameters and checks if the actual file
access strategy has changed.

The analyzer algorithm has several parameters, which de-
termine how detailed the resulting file access description will
be:

• access log size: Specifies how deep the analyzer can look
into the past. The larger this parameter the less detailed
the description is.

• progress detection threshold: Specifies how many times
the maximum (minimum) position has bo be changed
in order to detect the increasing (decreasing) sequential
access.

• behavior parameter variation: Determines the scale the
behavior parameters can change.

• datablock log size: Determines how precise the access
and intersection ratio will be. The access and intersection
rations are calculated by registering (per file) the past few
datablocks accessed by the job.

The goal of the analyzer algorithm is to provide a ”good”
description of the job behavior. Unfortunately, currently we
cannot give an exact definition of the goodness of descriptions.
The description cannot be too detailed that could hide the
intrinsical file access behavior, but it cannot also leave out of
consideration the real behavior changes. In order to obtain the
desired ”good” descriptions we run the algorithm with several
actual log files and fine-tune the parameter values.

V. SCHEDULING STRATEGIES

In this section we will present the proposed scheduling
strategies, their output, and the possible fields of application.
The first one is a basic, prototype strategy, while the second
one is a proposal that is not supported yet by the grid
middleware, and it would mostly present recommendations
for the future grid developments towards optimized scheduling
and resource usage and the introduction of grid accounting.

Using the additional information provided by the GIS and
the extended job descriptor we can implement new scheduler
strategies that besides choosing the most suitable Computing
Element for the execution of the job, could also generate
file replication commands for the Replica Manager [1]. These
commands would specify the files that need to be copied to
or in the vicinity of the grid element the job will run on.

During the design phase of the strategy, we have made a
few assumptions. The first one is that only one job is running

at a given time on a Computing Element (the job is utilizing
100% of the resources available on the Computing Element).
The second one is that the jobs will open all of their input
and output files at the beginning of their running process and
will close them at the end of the execution. We also assume
the worst case while estimating times: the input files can be
transferred only when all of the preceding jobs have finished
their execution.

Job description

Job

SE1
file1

file2

CE1

SE3
file4

SE2
file3

CE2

Scheduler

GIS

replicate

10Mbit

1Gbit

100Mbit

100Mbit

100Mbit

Replica Manager

schedule

Fig. 3. Scheduling of Jobs

Based on the data access patterns we would predict the
processing rate of the input data and the generating rate of the
output data (see Figure 3). If the job accesses large chunks
of data it is most likely a good idea to schedule it to the
Computing Element (or in its neighborhood) where the input
files are available. However if the job would have to wait
too long before it can be started on the chosen Computing
Element, than it would be worth copying the input files to
another grid component where the job can be executed earlier.
In case of jobs that are less data intensive (use less and smaller
input files), the nearness of the files is not so important, as the
cost of the replication is very low. If the size of the output files
is big, and if they should be copied to a predefined target after
the job is finished, than this aspect should be also considered
during scheduling process.

A. Static data feeder strategy

Draft: This strategy we will walk through the suitable
Computing Elements and will estimate the time the job would
finish its execution if it would run on the selected grid
component (termination time). The decision is based on the
extended job descriptor, and on the information collected from
the GIS and the Replica Manager. The output of this strategy is
a list of the Computing Elements the job can be run on ordered
by the estimated termination time of the job, and optional
commands for the Replica Manager that should be executed
before the job can be started. In this case the execution of
the job is composed from three steps: the input files are
copied to the chosen Storage Elements, the job is executed,
the output files are copied to the destination specified in the
job descriptor.

In the first step, the strategy will select from all of the
Computing Elements, those, the job can be run on. The second
step is responsible for sorting these Computing Elements, for
estimating the termination time of the job on every one of

them and for determining the commands the Replica Manager
should execute before the job can be started.

In order to finish the execution of a job on a Computing
Element the following steps should be taken:

1) All of the jobs waiting in the queue of the Computing
Element should be finished. The duration of the phase
can be calculated as the sum of the estimated running
time of the jobs.

2) The input files should be copied to the Computing
Element. The duration for this can be estimated from
the size of the files and the average network bandwidth.

3) The job will be executed. This time can be estimated
based on the extended job description, and it is com-
posed from the file access durations and the time of the
computation. The first one can be calculated from the
amount of data accessed and the speed of the secondary
storage, while the second one can be estimated with the
help of the monitored CPU time.

4) The output files should be copied to the destination
specified by the user. The duration should be calculated
similarly to phase two.

Adding the time values calculated above to the (estimated)
time the Computing Element can start the job we will obtain
the estimated termination time of the job.

The ordered list of Computing Elements will be created
using the sum of the time values calculated above and the
estimated duration of the commands for the Replica Manager.

This strategy will try to schedule the jobs in a way they
would be finished as early as possible.

B. Dynamic data feeder strategy

During the monitoring and the analysis we are collecting
more information than the first strategy needs for the opti-
mization. This excess data can be used in this second strategy.
The base idea is to download during runtime relevant and
sequentially accessed part of the input files and to upload at the
same time the output of the job to the specified destination. So
we are not dividing the execution of the jobs in three separate
phases (download, execution, upload), instead we are trying
to execute all of them at the same time: we are not providing
the input data statically but dynamically.

The advantage of this approach is that the Computing
Element can take different actions during the running process
(e.g. download and upload data to and from the local storage).
This leads to improved utilization of the grid resources.

The target of this strategy is to predict which part of the
input files will be used by the job, and to download only
these parts. This can improve the download speed as well as
the overall execution time of the job. This strategy should not
be confused with the usage of a network file system, that in
certain situations can dramatically decrease the performance
of a Computing Element. Instead it should be considered a
cache-ing strategy: the predicted parts of the input files are
copied to the local storage of the Computing Element during
the job execution, but before the job wants to access this data.

In order to implement this strategy, an improved grid
middleware is required. It is not enough any more the collab-
oration between the scheduler and the Replica Manager; we
would need a grid-level file system, that has a cache handler
component collaborating with the scheduler. This middleware
is not available yet, so the algorithm presented above is only
in the proposal phase.

VI. SIMULATION RESULTS

The current version of the Hungarian grid is very limited,
due to its under development stage. Therefore we performed
simulations to be able to evaluate the efficiency of our
approach. We extended OptorSim v2.0 [11] with our static
data feeder based scheduler implementation, and allowed to
configure the performance of the Computing Elements.

We configured OptorSim to use the EDG topology specified
by the configuration file shipped with the simulator. We set
different MIPS values of the computers comprising the ‘Imp
Coll’, ‘UK’ and ‘Swed’ CEs, while the rest of the CEs had
been set to the same MIPS value. The group of jobs the
submitted to the Grid was extended with our job: the gzip
program compressing a specific file. Before we performed the
simulation we supplied OptorSim the necessary job descrip-
tion, which was generated after monitoring the execution of
gzip.

Fig. 4. Mean Job Times

The preliminary simulation results show the major chara-
teristics of or scheduler (see Figure 4). Using our scheduler
(Static DF) the mean job time of all jobs on Grid is about
29% lower than in the case we were using the scheduler that
considered file access cost and job queue access cost (FAC +
JQAC).

The lower mean job time is accompanied by higher effec-
tive network usage (ENU), which means that our scheduler
requires more file transfers than the other schedulers imple-
mented by OptorSim (see Figure 5). However the dynamic data
feeder based scheduler requires less file transfers, therefore the
ENU characteristics of the full scheduler and replica manager
implementation will be lower. Besides we optimize to the job
ending time, and from this point of view the the higher ENU
has only limited significance.

Fig. 5. Effective Network Usage

VII. FUTURE WORK

We are planing to improve the generated job descriptor
extension by monitoring further the jobs of a parameter-sweep
application.

The monitoring and the analysis of the collected data should
also be merged into a single action. This would avoid the
creation of the (large) log files.

Similarly to the generation of data access patterns we
would like to create communication patterns for applications
composed of parallel processes (e.g. PVM tasks).

In order to get a more detailed view of the efficiency of
our architecture, we will perform more thorough simulations
inlcuding wide range of grid topologies and jobs. As part of
the simulation we are planning to extend OptorSim.

We are also planning to transfer the solutions presented in
this paper from the currently used EDG middleware to the one
used by EGEE [7] in the LCG-2 project [8], and then also to
members of the next generation of grid middleware, like gLite
[9].

VIII. RELATED WORK

Many different scheduling and data replication algorithms
exist, and many can be adapted on GRID systems. Some
of them opt for simplicity, others—like [12]—make use of
more sophisticated decision algorithms. Our approach belongs
to the second category. A good summary about relevant
research can be found in [13]. In contrast to [13], we prefer
centralized scheduling decisions. We feel that such decisions
can make better use of the information collected about the
resources of the grid system. One approach that is probably
the closest to ours is introduced in [14]. It also addresses
scheduling parameter sweep applications; it focuses on the
efficient co-location of data and programs using them, and on
adaptive scheduling. The novelty of our approach is to build
a middleware component that would be able to move data
in pieces to the programs that request them, thus making the
replication of whole data files unnecessary.

IX. CONCLUSION

We have presented a new approach in job scheduling op-

timization on grid systems. Our goal is to optimize the ending
(and not the execution) time of the job. The basic idea is
to improve mainly the data accessing performance. This can
be done either by choosing the correct node for running
the job complemented with possible file replications or by
dynamically downloading and uploading only the processed
data during runtime.

Both solutions depend heavily on the way the job access its
input and output files.

The additional information required for the scheduler can
be specified by the developer of the job or can be collected
through monitoring and then processed by an analyzer tool.
The second case solution be used especially in the case of
parameter-sweep applications.

Currently, the presented architecture is being implemented
on the Hungarian Clustergrid. However, due to its early
stage, the efficiency of the designed scheduling strategies are
exclusively evaulated through simulations. Although the first
results are promising, we need to perform more simulations
with different Grid topologies and Job characteristics to get a
detailed picture of the designed strategies.

ACKNOWLEDGMENT

This work was supported by IKTA 64/2003 and the Bolyai
Research Fellowship.

REFERENCES

[1] Foster, I.: The Grid: Blueprint for a New Computing Infrastructure. July
1998, Morgan-Kaufmann.

[2] Job Description Language Attributes.
http://auger.jlab.org/jdl/PPDG JDL.htm

[3] Szalai, F.: ClusterGrid Br óker rendszer kiterjeszthető erőforr ás
ütemezőj ének specifik áci ója. (in Hungarian)

http://www.clustergrid.niif.hu/project en/docs.html
[4] Condor project: Classified Advertisements.

http://www.cs.wisc.edu/condor/classad/
[5] LinuxForum: Linux Filesystem Hierarchy, 1.10. /proc.

http://www.linuxforum.com/linux-filesystem/proc.html
[6] NIIF Supercomputing Center: The Hungarian ClusterGrid Infrastructure

Project. http://www.clustergrid.niif.hu/
[7] EGEE: Enabling Grids for E-sience. http://public.eu-egee.org/
[8] LHC Computing Grid Project. http://lcg.web.cern.ch/LCG/
[9] gLite: Lightweight Middleware for Grid Computing.

http://glite.web.cern.ch/glite/
[10] M áray, T., Stef án, P., Szalai, F., Vit éz, G.: The Hungarian ClusterGrid

Project: Challanges of a Production Grid.
http://www.clustergrid.niif.hu/project en/docs.html

[11] Simulating data access optimization algorithms - OptorSim.
http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html

[12] William H. Bell, David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul
Millar, Kurt Stockinger, Floriano Zini: Evaluation of an Economy-Based
File Replication Strategy for a Data Grid. In: International Workshop on
Agent based Cluster and Grid Computing at CCGrid 2003, Tokyo, Japan,
May 2003. IEEE Computer Society Press.

[13] Kaviatha Ranganathan, Ian Foster: Computation Scheduling and Data
Replication Algorithms for Data Grids. In: ‘Grid Resource Management:
State of the Art and Future Trends’, J. Nabrzyski, J. Schopf, and J.
Weglarz, eds. Kluwer Academic Publishers, 2003.

[14] H. Casanova, G. Obertelli, F. Berman, R. Wolski: The AppLeS parameter
sweep template: User-level middleware for the grid. In: Proceedings of
Supercomputing’00, Denver, 2000.

