
Eötvös Loránd University

Thesis for Master of Science

The optimization of data access on clusters and
data grids

Strategy, aspect, extension of JDL

 László Csaba L

�
rincz

 Supervisor:
 Zoltán Horváth

Budapest
2003

The optimization of data access on data grids László Csaba L � rincz

 2

Table of contents

Table of contents...2
Abstract ...3
Introduction...4

Technical challenges..5
The European DataGrid Project ...8

Definitions...9
The architecture...9

Workload Management System (WMS)...14
Job Description Language (JDL)..15
Data Management System (DMS)..15
Grid Monitoring and Information Systems.....................................16
Fabric Installation and Job Management Tools...............................16
The Storage Element..17

Data Access...18
Data Access Patterns..18
Operation patterns..19
Extending the JDL ...20

The Job Description Language...20
The extension...21

Implementation..23
Definition of Data Access Patterns...23

Monitoring data access...24
Altering the source code...27
Altering the compiler ...29
Altering the run-time system..29
Altering at the operating system level...30

Generating the description of the resources..31
Gathering the data..31
Processing the gathered data..31

Conclusions...35
Bibliography..36

The optimization of data access on data grids László Csaba L � rincz

 3

Abstract

Applications on the grid need different types of resources. Such resources
are CPU, memory, network bandwidth and secondary storage. The grid
middleware tries to allocate resources to applications in a way that results can be
computed as fast and as efficiently as possible.

The main focus in this thesis is on the secondary storage, on data access.
Many applications read and write large data files during their operations. Often
these files are not available on the computing element where the application runs.
The optimal strategy for accessing these files depends on the kind of the
application: computation-intensive applications may spend long periods of time
between successive data accesses, while data-intensive applications may need to
access large fi les very frequently. Consequently a small puffer may be enough for
storing a local copy of the data needed in the next step of computation or a
complete copy of a huge file may be necessary in advance. The access method as
well as the granularity of the read/write operations may vary with each input and
output file used. Therefore the optimal data access may require the copying of
some files as a whole, as well as accessing other files in parts.

This thesis is organized as follows:

- First it is presented the nature of data grids in general showing the
arising technical challenges.

- Than a short description of the architecture and main services of the
European DataGrid (EDG) is given.

- Than comes the designing of a strategy for optimizing the data
access.

The techniques and results presented in this thesis were designed to be

used in the EDG project too1.

1 This paper was created as part of the IKTA 89/2002 project.

The optimization of data access on data grids László Csaba L � rincz

 4

Introduction

High performance computing has become a key technology for many
scientific and engineering activities. Supercomputers are increasingly used by
scientists to study complex phenomena through the use of computer simulation.
This use of computers adds an important new method for scientific and
engineering research, one that is complementary to theory and experiment.
Computer models can be used to simulate phenomena that cannot be measured
with experiments or can be studied only through computer simulation, or they can
simply provide a less costly means for studying phenomena.

Present supercomputers are powerful enough to predict complex
nonlinear phenomena, developing engineering prototypes, exploring the physical
parameter space prior to doing experiments, and even simulating events occurring
in the real world. Yet, despite continued increases in supercomputer capabilities,
there remain many applications whose computational requirements exceed the
resources available at even the largest supercomputer centers. For these
applications, computational grids offer the promise of access to increased
computational capacity through the simultaneous, coordinated use of
geographically separated large-scale computers linked by networks. Through this
technique, the “size” of an application can be extended beyond the resources
available at a particular location — indeed, potentially beyond the capacity of any
one computing site anywhere [FK01].

The distributed supercomputing applications represent a class of

applications whose computational requirements are so demanding that they can
be met only by combining multiple high-capacity resources on a computational
grid into a single, virtual distributed supercomputer.

Typical distributed supercomputer applications are the large-scale science
and engineering applications, as the following:

- traditional batch physical simulations, multidisciplinary simulations,
and coupled models

- distributed interactive simulations, which include dynamic terrain,
weather and high-fidelity simulation of specific objects

- applications that occasionally require much more computing power
for some phase of the computation (medical and numerical
solvers) or realtime applications that sometime have
computationally intensive components (rendering, signal
processing)

- complex analyses on data from large, distributed data archives
(astronomy data analysis — Digital Sky project —, radar data
analysis).

Distributed supercomputing applications are distinguished by the scale of

their resource requirements like peak computing speed, memory size, and
communication volume, unlike high-throughput applications which are driven by
aggregate performance requirements. Moreover distributed supercomputing

The optimization of data access on data grids László Csaba L � rincz

 5

applications frequently require access to large data archives or digital libraries
(for input and output).

While the primary motivation for distributed supercomputing is access to
increased capacity, additional benefits can be achieved by the heterogeneity of
the underlying resources. Many applications have several phases using different
algorithms. Every algorithm may run more efficiently on an architecture which
satisfies its special needs (some algorithms may require more memory, some may
prefer parallel systems, while others may run better on systems with special
processors designed for vector related computations). By executing each phase of
an application on the node with the most suitable architecture and configuration,
the overall application may run in much less time than on a homogeneous system
of the same aggregate power.

The real and specific problem that triggers the Grid concept is

coordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations. The sharing is not primarily file exchange but rather direct
access to computers, software, data, and other resources, as it is required by a
range of collaborative problem-solving and resource-brokering strategies. This
sharing is, necessarily, highly controlled, with resource providers and consumers
defining clearly and carefully just what is shared, who is allowed to share, and
the conditions under which sharing occurs.

Technical challenges

Taking advantage of the potential benefits of distributed supercomputing
requires solving a variety of technical challenges.

Network bandwidth and latency
The grid can be viewed as a large distributed-memory parallel computer

consisting of multiple processors exchanging data across communication links. In
parallel computers, the interconnection network is provided by the vendor. In
clusters of workstations or PCs the links may be commodity networks such as
Ethernet or higher-performance, lower-latency networks such as Myrinet. In
distributed supercomputing the communication links are provided by wide area
networks. Thus a distributed supercomputer can be viewed as a metacomputer, a
parallel computer with few very large heterogeneous nodes, connected by a
relatively slow, high-latency communication networks.

Starting from this perspective there are a set of basic templates for
constructing distributed supercomputing applications (called decomposition
techniques):

- pipeline or dataflow decomposition, used in applications, where a
sequence of complex operations is applied to a series of data
elements

- functional decomposition, used in multidisciplinary simulation and
coupled models, where the functions of the application can be
distributed across grid resources

The optimization of data access on data grids László Csaba L � rincz

 6

- data-parallel decomposition, used in applications, where the same
algorithm is applied to every data element, and there is loose
coupling between the elements.

In every case the central issue is how to manage the potentially large
communication latency and limited bandwidth between the components of the
application. These problems are complicated by the fact that the performance of
the underlying network can vary significantly during the execution of an
application, and the use of tightly coupled computations, which require efficient
synchronizations and well balanced loads.

Supercomputing applications also can require voluminous input, output
and interprocessor communication. The data transfers can have highly variable
periods and durations in both directions. Consequently, the effects of limited or
highly variable bandwidth can also have dramatic impact on application
performance.

The development and use of more flexible algorithms (new latency-
tolerant algorithms such as loosely synchronous algorithms, or algorithms which
can adjust to time-varying resource availability), using specialized networks
protocols or overlapping communication with computation can solve the
bandwidth and latency issues (future very high performance computers may
require similar innovations in latency tolerant algorithms, as computer speeds
increase faster than memory speeds and as memory hierarchies get deeper).

Scheduling
Scheduling and application configuration are also significant challenges

to distributed supercomputing applications. Obtaining peak application
performance can depend on carefully selecting the type and number of processors
used, base on application characteristics, the available network bandwidth and
latency, and the location and volume of input and output data, and tuning the
behavior of the application to the resources available.

Recalculating a data value depending on, for example, the amount of local
memory, the location and volume of the remote data, can yield to faster execution
than writing the result to disk and than reading it back into the memory, when it
is needed. Balancing the number of nodes used against the network bandwidth
and the ability to overlap computation and communication can also increase the
performance of the application.

In the future, scheduling and tuning the applications should be done
automatically, unlike today, when it is done by hand.

Fault recovery
Compute intensive applications often require many hours, days or even

weeks of execution to solve a single problem. On traditional supercomputers runs
of a few hours are submitted and intermediate results saved to be used as the
starting point for the next run. Saving the state of the computation on secondary
storage (called checkpointing) is also used to avoid having to rerun the entire
problem in the event of system failures. Checkpointing a parallel application is
complicated, while difficulties arise in determining a consistent application state.
Generating a checkpoint in distributed supercomputing applications is

The optimization of data access on data grids László Csaba L � rincz

 7

complicated by the size of the application, the looser coupling of computational
resources, and the fact that most wide area networks do not guarantee reliable or
ordered delivery.

An alternate to checkpointing is to exploit the distributed nature of the

grid. While in a single supercomputer application, the entire application fails if
any node of the machine fails, in distributed supercomputing applications fault-
tolerant computational algorithms used with group communication protocols
could reduce or completely eliminate the need of checkpointing.

Grid development tools
Computational grids present extremely complex execution environments.

Just as a programmer would not think of hand-optimizing assembly code for a
modern multi-issue microprocessor, it can not be expected from the developers of
distributed supercomputing applications to hand-optimize their code for the grid
environment. Consequently, bringing distributed supercomputing into widespread
use will require advances in grid-specific compilation systems, component
composition systems and application level tools.

Interaction between application, middleware and network
Application-level scheduling techniques, requires greater interaction

between an application, grid middleware (i.e., Globus, Legion), and underlying
network. Fundamental to this interaction is determining what type of information
and control needs to be passed between layers, how information about lower
layers can be used to modify application behavior, and how information about the
application can be used to control the underlying infrastructure. Examples of such
information flow are: support for co-allocation, application-specific networking
protocols, and network quality of service.

The optimization of data access on data grids László Csaba L � rincz

 8

The European DataGrid Project

DataGrid is a project funded by European Union. The objective is to build
the next generation computing infrastructure providing intensive computation and
analysis of shared large-scale databases, from hundreds of TeraBytes to
PetaBytes, across widely distributed scientific communities [EDG]. Such
capabilities are required in many scientific disciplines, including particle physics,
biology, and earth sciences.

Building on emerging computational Grid technologies the main purpose

is to establish a research network that is developing the technology components
essential for the implementation of a world-wide data and computational Grid on
a scale not previously attempted. An essential part of this project is the phased
development and deployment of a large-scale Grid testbed.

The primary goals of the first phase of the EDG testbed were:
- to demonstrate that the EDG software components could be

integrated into a production-quality computational Grid;
- to allow the middleware developers to evaluate the design and

performance of their software;
- to expose the technology to end-users to give them hands-on

experience;
- to facilitate interaction and feedback between endusers and

developers.

This first testbed deployment was achieved towards the end of 2001.

[EDGGJRB]

The work of the project is divided into functional areas:

- workload management,
- data management,
- grid monitoring and information systems,
- fabric management,
- mass data storage,
- testbed operation,
- network monitoring.

The optimization of data access on data grids László Csaba L � rincz

 9

Definitions

Virtual organizations (VO) are dynamic collections of individuals,
institutions, and resources defined by the sharing rules of the Grid concept. They
enable distinct groups of organizations and/or individuals to share resources in a
controlled fashion, so that members may collaborate to achieve a shared goal.

Generally, in advanced networks, middleware consists of services and
other resources located between both the applications and the underlying packet
forwarding and routing infrastructure [RCCFLMMST].

Logical file names (LFN) are the generic name of a file, while physical
file names (PFN) gives the physical location and name of a particular file
replica.

Condor-G is a Condor-Globus joint project, which combines the inter-
domain resource management protocols of the Globus Toolkit with the intra-
domain resource and job management methods of Condor to allow high
throughput computing in multi-domain environments [CP].

The Input Sandbox is a set of files transferred to a Worker Node by
means of GridFTP by the Resource Broker, so that any fi le required for the job to
be executed (including the executable itself if necessary) can be sent to the local
disk of the machine where the job will run. Similarly the Output Sandbox is a set
of fi les to be retrieved from the Worker Node after the job finishes (other files are
deleted). The files in the Output Sandbox are stored on the RB node until the user
requests them to be transferred back to a UI machine.

The architecture

The EDG architecture is based on the Grid architecture proposed by Ian
Foster and Carl Kesselman [FK01], with a reduced number of implemented
services.

The components of the architecture are organized in layers. Components
within each layer share common characteristics but can build on capabilities and
behaviors provided by any lower layer.

The Grid architecture is based on the “hourglass model” [RTIF]. The neck
of the hourglass defines a fundamental set of core abstractions and protocols,
onto which many different high-level services can be mapped (the top of the
hourglass), and which themselves can be mapped onto many different underlying
technologies (the base of the hourglass) [GGTKCG].

The optimization of data access on data grids László Csaba L � rincz

 10

Figure 1. A four-layer model

The neck must consist of a small number of protocols. These are the

Resource and Connectivity protocols, which facilitate the sharing of individual
resources. These protocols are designed so that they can be implemented on top
of a diverse range of resource types, defined at the Fabric layer, and can in turn
be used to construct a wide range of global services and application-specific
behaviors at the Collective layer.

The optimization of data access on data grids László Csaba L � rincz

 11

The layered Grid architecture is based on the Internet Protocol
Architecture, and has the following structure:

Application

 Collective

 Resource

Application

 Transport

 Connectivity

Internet

 G
ri

d
P

ro
to

co
l A

rc
hi

te
ct

ur
e

Fabric Link In
te

rn
et

 P
ro

to
co

l A
rc

hi
te

ct
ur

e

Figure 2. The layered Grid architecture and its relationship to the Internet protocol
architecture.

The Fabric layer provides the resources which are shared among the Grid

protocols (i.e. computational resources, storage systems, catalogs, network
resources, and sensors. A “ resource” may be a logical entity, such as a distributed
file system, computer cluster, or distributed computer pool; in such cases, a
resource implementation may involve internal protocols (e.g., the NFS storage
access protocol or a cluster resource management system’s process management
protocol), but these are not the concern of Grid architecture.

The Globus Toolkit has been designed to use (primarily) existing fabric
components, including vendor-supplied protocols and interfaces. If the necessary
Fabric-level behavior is not provided by a vendor, however, the Globus Toolkit
includes the missing functionality. For example, enquiry software is provided for
discovering structure and state information for various common resource types,
such as computers (e.g., OS version, hardware configuration, load, scheduler
queue status), storage systems (e.g., available space), and networks (e.g., current
and predicted future load), and for packaging this information in a form that
facilitates the implementation of higher-level protocols, specifically at the
Resource layer. Resource management, on the other hand, is generally assumed
to be the domain of local resource managers.

The Connectivity layer defines core communication and authentication

protocols required for Grid-specific network transactions. Communication
protocols enable the exchange of data between Fabric layer resources while
authentication protocols cryptographically secure mechanisms for verifying the
identity of users and resources. Communication requirements include transport,
routing, and naming.

In the Globus Toolkit the Internet protocols are used for communication;
the public-key based Grid Security Infrastructure (GSI) protocols are used for
authentication, communication protection, and authorization. GSI builds on and
extends the Transport Layer Security (TLS) protocols to address single sign-on,

The optimization of data access on data grids László Csaba L � rincz

 12

delegation, integration with various local security solutions (including Kerberos),
and user-based trust relationships. X.509-format certificates are used. Stakeholder
control of authorization is supported via an authorization toolkit that allows
resource owners to integrate local policies via a Generic Authorization and
Access (GAA) control interface.

The Resource layer building on the communication and authentication

protocols of the Connectivity layer defines protocols (and APIs and SDKs) for
the secure initiation, monitoring, and control of sharing operations on individual
resources. Resource layer implementations of these protocols call Fabric layer
functions to access and control local resources.

The Globus Toolkit defines client-side C and Java APIs and SDKs for a
small and mostly standards-based set of protocols such as: Lightweight Directory
Access Protocol (LDAP), HTTP-based Grid Resource Access and Management
(GRAM) protocol, and an extended version of the File Transfer Protocol, the
GridFTP. Server-side SDKs and servers are also provided for each protocol, to
facilitate the integration of various resources (computational, storage, network)
into the Grid.

The Collective layer contains global protocols and services (and APIs and

SDKs) that ensure interactions between collections of resources. Because its
components build on the narrow Resource and Connectivity layer “neck” in the
protocol hourglass, they can implement a wide variety of sharing behaviors
without placing new requirements on the resources being shared. For example:
Directory services, Co-allocation, scheduling, and brokering services, Monitoring
and diagnostics services, Data replication services, Grid-enabled programming
systems, Software discovery services, Community authorization servers,
Collaboratory services.

Many of the listed services build on Globus Connectivity and Resource
protocols. Besides these the Meta Directory Service introduces Grid Information
Index Servers (GIISs) to support arbitrary views on resource subsets, with the
LDAP information protocol used to access resource-specific GRISs to obtain
resource state and Grid Resource Registration Protocol (GRRP) used for resource
registration.

The Application layer represents the final layer of the Grid architecture

and consists of the user applications running within a Virtual Organization
environment.

The optimization of data access on data grids László Csaba L � rincz

 13

A sketch of the essential EDG architecture showing the relationship with
the Operating System and the applications is shown in the following figure:

Application layer

VO common application layer

High level Grid middleware
Basic Services (Globus 2.0)

OS & Net Services

Figure 3. The schematic layered EDG architecture

The EDG architecture is a multi-layered architecture. At the lowest level

is the operating system. Globus provides the basic services for secure and
authenticated use of both operating system and network connections to safely
transfer files and data and allow interoperation of distributed services. These
services will be user by the user applications running on the Grid.

Grid Application Layer

Job Management Data Management
Metadata

Management
Object to File

Mapping

Collective Layer

Grid Scheduler Replica Manager Information Monitoring

Underlying Layer

SQL
Database
Server

Computation
Element
Services

Storage
Element
Services

Replica
Catalog

Authorization
Authentication

and Access

Service
Index

Fabric Layer

Resource
Manager

Configuration
Manager

Monitoring
and Fault
Tolerance

Node
Installation and
Management

Fabric
Storage

Management

Figure 4. The multilayered EDG Grid architecture

The optimization of data access on data grids László Csaba L � rincz

 14

There are sixteen services implemented in the EDG middleware. Most of
them are based on the Globus 2 Toolkit (i.e. authentication (GSI), secure file
transfer (GridFTP), information systems (MDS), job submission (GRAM) and
the Globus Replica Catalogue), but the job submission system uses software from
the Condor-G project [CP], and general open source software such as OpenLDAP
is used too.

The service architecture of the EDG Grid is presented in the following
figure:

Application Areas Applications

Data Grid
Services

Workload

Management

 Data Management
Monitoring

Services

Core Middleware Globus Middleware Servces

Physical Fabric
Fabric

Management
Networking

Mass Storage
Management

Figure 5. The EDG service architecture

Workload Management System (WMS)
The Workload Management System provides the architecture for

distributed scheduling and resource management. It is composed from the
following components:

- User Interface (UI), which represents the access point for the Grid
user, allowing him to submit a job to the Resource Broker, and
to retrieve the information about it and its output

- Resource Broker (RB), which performs match-making between the
requirements of a job and the available resources, and attempts
to schedule the jobs in an optimal way, taking into account the
data location and the requirements specified by the user. The
information about available resources is read dynamically from
the Information and Monitoring System, while for resolving
logical file names in physical file names the Replica Catalogue
is used.

The optimization of data access on data grids László Csaba L � rincz

 15

- Job Submission System (JSS), which is a wrapper for Condor-G
[CP], an interface between the Grid and a Local Resource
Management System (LRMS), usually a batch system like PBS,
LSF or BQS.

- Information Index (I I), which is a Globus MDS index that collects
information from the Globus GRIS information servers running
on the various Grid resources, published using LDAP, and read
by the RB to perform the match-making.

- Logging and Bookkeeping (LB), which stores a variety of
information about the status and history of submitted jobs using
a MySQL database.

Job Description Language (JDL)
The JDL allows the various components of the Grid Scheduler to

communicate requirements concerning the job execution. Examples of such
requirements are:

- specification of the executable program or script to be run and
arguments to be passed to it, and files to be used for the standard
input, output and error streams

- specification of files that should be shipped with the job via Input
and Output Sandboxes

- a list of input files and the access protocols the job is prepared to
use to read them

- specification of the Replica Catalogue to be searched for physical
instances of the requested input files

- requirements on the computing environment (OS, memory, free
disk space, software environment etc) in which the job will run

- expected resource consumption (CPU time, output file sizes etc)
- a ranking expression used to decide between resources which match

the other requirements
The Classified advertisements (ClassAds) language defined by the

Condor project has been adopted for the Job Description Language because it has
all the required properties.

Data Management System (DMS)
The goal of the Data Management System is to specify, develop, integrate

and test tools and middleware to coherently manage and share petabyte-scale
information volumes in high-throughput production-quality grid environments.
The emphasis is on automation, ease of use, scalability, uniformity, transparency
and heterogeneity. Its components are:

- Replica Manager, which is still under development, but it will
manage the creation of file replicas between different Storage
Elements, simultaneously updating the Replica Catalogue, and
optimizing the creation of file replicas by using network
performance information and cost functions, according to the
file location and size. different instances of the Replica Manager
will be running on different sites, and will be synchronized to

The optimization of data access on data grids László Csaba L � rincz

 16

local Replica Catalogues, which will be interconnected by the
Replica Location Index.

- Replica Catalogue, which is used to resolve Logical File Names
(LFN) into a set of corresponding Physical File Names (PFN)
which locate each replica of a fi le providing a Grid-wide file
catalogue for the members of a given Virtual Organization.

- GRID Data Mirroring Package (GDMP), which is a generic file
replication tool used to automatically mirror file replicas
securely and efficiently from one Storage Element to a set of
other subscribed sites using several Globus Grid tools. It also
supports pre- and post-processing plugins. It is also currently
used as a prototype of the general Replica Manager service.

- Spitfire, which provides a secure, Grid-enabled interface for access
to relational databases using Globus GSI authentication.

Grid Monitoring and Information Systems
The goal of the Grid Monitoring and Information Systems is to provide

easy access to current and archived information about the Grid itself (information
about resources - Computing Elements, Storage Elements and the Network) using
Globus MDS, about job status (as implemented by the WMS Logging and
Bookkeeping service) and about user applications running on the Grid, for
performance monitoring. This permits job performance optimization as well as
allowing for problem tracing, and is crucial to facilitating high performance Grid
computing. The main components are as follows:

- MDS (Globus Monitoring and Discovery Service), which is a
monitoring service based on soft-state registration protocols and
LDAP, collecting its information from GIISs (Grid Information
Index Servers), which aggregate the information from the
GRISs (Grid Resource Information Servers) running on each
resource.

- Ftree, which is an EDG-developed alternative to the Globus LDAP
with improved caching.

- R-GMA (Relational Grid Monitoring Architecture), which makes
information from producers available to consumers as relations
(tables).

- GRM/PROVE, which is an application monitoring and visualization
tool of the P-GRADE graphical parallel programming
environment, modified for application monitoring in the
DataGrid environment.

Fabric Installation and Job Management Tools
The EDG collaboration has developed a complete set of tools for the

management of PC farms (fabrics), in order to make the installation and
configuration of the various nodes automatic and easy for the site managers, and
for the control of jobs on the Worker Nodes.

The fabric installation and configuration management tools are based on a
remote install and configuration tool called LCFG (Local Configurator), which,

The optimization of data access on data grids László Csaba L � rincz

 17

by means of a server, installs and configures remote clients, starting from scratch,
using a network connection to download the required RPM files for the
installation, after using a disk to load a boot kernel on the client machines.

The Storage Element
The Storage Element has an important role in the storage of data and the

management of files in the Grid domain.
A Storage Element is a complete Grid-enabled interface to a Mass Storage

Management System, tape or disk based, so that mass storage of files can be
almost completely transparent to Grid users. A user should not need to know
anything about the particular storage system available locally to a given Grid
resource, and should only be required to request that fi les should be read or
written using a common interface. All existing mass storage systems used at
testbed sites will be interfaced to the Grid, so that their use will be completely
transparent and the authorization of users to use the system will be in terms of
general quantities like space used or storage duration.

Initially the supported storage interfaces will be UNIX disk systems,
HPSS (High Performance Storage System), CASTOR (through RFIO), and
remote access via the Globus GridFTP protocol. Local fi le access within a site
will also be available using Unix file access, e.g. with NFS or AFS. EDG are also
developing a grid-aware Unix fi ling system with ownership and access control
based on Grid certificates rather than local Unix accounts.

The optimization of data access on data grids László Csaba L � rincz

 18

Data Access

Grid applications need different types of resources, such as CPU,
memory, network bandwidth and secondary storage. The grid middleware tries to
allocate these resources to the applications in a way the execution can be as fast
and as efficiently as possible.

Many applications read and write large data files during their operations.
Often these files are not available on the computing element where the
application runs. The optimal strategy for accessing these fi les depends on the
kind of the application: computation-intensive applications may spend long
periods of time between successive data accesses, while data-intensive
applications may need to access large files very frequently. Consequently a small
puffer may be enough for storing a local copy of the data needed in the next step
of computation or a complete copy of a huge file may be necessary in advance.
The access method as well as the granularity of the read/write operations may
vary with each input and output file used. Therefore the optimal data access may
require the coping of some files as a whole, as well as accessing other files in
parts.

In the EDG architecture three services must be mentioned regarding the

data access:
- the Resource Broker, which is responsible for scheduling,
- the Replica Catalogue, the data files are access trough, and
- the Replica Manager, which manages the creation of file replicas on

different Storage Elements.

The scheduling and match-making algorithms used by the RB are the key

to making efficient use of Grid resources. The job can then be sent to the site
which minimizes the cost of network bandwidth to access the files.

Data Access Patterns

Both logical and physical fi les can carry additional metadata in the form
of "attributes". Logical file attributes may include items such as file size, CRC
check sum, fi le type and file creation timestamps.

In order to optimize the resource allocations of the different jobs

additional information is required. The introduction of the data access patterns
[HKU] may represent the source for this information. They will store the name of
the files that are accessed by the application, the type of the operation
(read/write/append), the amount of data accessed in one step and the frequency
and type (sequential or irregular order) of data access operations.

To provide a simple and powerful interface for the caching of data fi les
and for the scheduling the description of file accesses is block-based. In the case
of read and write operations the data access pattern contains the following
information:

The optimization of data access on data grids László Csaba L � rincz

 19

- offset – the beginning of the first block to be accessed
- length – the length of one block
- stride – the distance between two consecutive blocks
- ratio – the ration of the amount of data accessed in one block and

the block length
- method – the way the job will access the input blocks, specified by

the keywords: seq in case of sequential processing and rand in
case of undefined access.

In the possession of this block-based description of the file accesses the

Resource Broker can optimize the overall performance of the grid by the sending
and retrieving only the required file data blocks to and from the Storage
Elements. Obviously this optimization is based also on the information about the
other resources, but without the ability to partition the data fi les in a correct
manner only the complete replication of files can be used for speeding up the job
executions.

The information stored in these data access patterns may be different

according to the type of the operations executed on the data files.

Every input file is associated with a data access pattern, witch will store

the fields presented lately.
In the case of the output files there are two kinds of write methods:

- modify, which means that the job changes data in the file
- append, which shows that the job will add data to the end of the

output file.
In the first case the data access pattern associated with the output file will

store the same fields as in the case of the input files, while when the write method
is append, the data access pattern associated with the output file will store only
the length field, specifying the amount of data to be written.

Operation patterns

Similarly to the data access patterns can be introduced the operation
patterns. These will store information about the operations executed in a job in
the following fields:

- fixed – the number of fixed point basic operations completed by the
operation (i.e. fixed point addition)

- floating – the number of floating point basic operations completed
by the operation (i.e. floating point division)

- fi le:amount – the input file and the amount of data that will be
processed by the operation (multiple file:amount descriptions
are allowed).

The optimization of data access on data grids László Csaba L � rincz

 20

Extending the JDL

A job is defined using the JDL language, which specifies the input data
files, the code to execute, the required software environment, and lists of input
and output files to be transferred with the job. The user can also control the way
in which the broker chooses the best-matching resource.

The Job Description Language
The JDL is a fully extensible language, hence it is allowed to use

whatever attribute for the description of a job. Anyway only a certain set of
attributes that we will refer as “supported attributes” from now on, is taken into
account by the Workload Management System components in order to schedule a
submitted job.

The supported attributes can be grouped into two main categories:
- resources attributes, which are used to build the expressions of the

Requirements and Rank attributes in the job class-ad and which
have to be effective, i.e. to be actually used for selecting a
resource, and have to belong to the set of characteristics of the
resources that are published in the Grid Monitoring and
Information Service (MDS) (such as the operating system
required, the amount of memory required, the amount of time
required, etc.)

- job attributes, which represent instead job specific information and
specify in some way actions that have to be performed by the
RB to schedule the job (such as the job name, command to
execute, command line options, etc.). Some of these attributes
are provided by the user by editing the job description file while
others (needed by the RB) are inserted by the User Interface
(UI) before submitting the job.

A small subset of the attributes that are inserted by the user are
mandatory, i.e. necessary for the RB to work correctly and can be split in two
categories:

- mandatory: the lack of these attributes does not allow the
submission of the job

- mandatory with default value: the UI provides default value for
these attributes if they are missing in the job description
[JDL01].

The resources attributes include the Computing Element, Close Storage

Element, Storage Element and Storage Element Protocol entities attributes.
Anyway some of the attributes published in the MDS shall not be used by the
user to build the Requirements and Rank expressions since they are
automatically taken into account by the RB for carrying out the match-making
algorithm.

The Resource Broker is sensitive to upper/lower case of attribute names,
so the requirements and rank attributes are always passed lower case by the UI

The optimization of data access on data grids László Csaba L � rincz

 21

while other JDL attributes are passed so as they are written by the user in the job
description.

The Requirements attribute is a boolean ClassAd expression that using C-

like operators represents job requirements on resources. In order for a job to run
on a given queue, this Requirements expression must evaluate to true on it.

The Rank attribute is a floating-point ClassAd expression that defines
preference, a higher numeric value meaning better rank. The RB will give to the
job the Compute Element (CE) queue with the highest rank.

The format of the JDL must be human readable, relatively easy to

understand and create with a simple line editor, and easily parsed.

The extension
In order to optimize job scheduling and file access the JDL must be

extended. The extended JDL description should be able to specify the amount of
computing and secondary storage resources required by a job. Moreover, this
description should enable the scheduling service to calculate the required network
bandwidth. The description should be able to specify the secondary storage
access method as well, allowing the Replica Manager (or the future EDG Grid FS
implementation) to optimize file access parallel to the job execution.

The JDL extension is based on a simplified job model. According to this
model, the jobs consist of processing steps. During a processing step, the job
opens its input files, reads the input data, completes operations on the input data,
and writes the result of processing operations. The JDL extension will describe
the resource (computing and secondary storage) consumption of the processing
steps. [HKU]

The optimal data access strategy can be determined only if the Resource

Broker and the Replica Manager gets sufficient amount and quality of
information about the data access patterns of the application. To communicate
this information the following job attributes were introduced:

- InputPattern – a list of the input files and the block-based
description of the read operations executed on each of them

- OutputModifyPattern – a list of the output files and the block-based
description of the write operations executed on each of them

- OutputAppendPattern. – a list of the output files and the amount of
data written to each of them.

- OperationPattern – a list of the operation descriptions of the given
job

The block-based description of the read and write operations contain the
same information as in the case of the data access patterns mentioned above:

- offset
- length
- stride
- ratio
- method.

The optimization of data access on data grids László Csaba L � rincz

 22

The description of the operations is also identical with the one of the
operation patterns:

- fixed
- floating
- fi le:amount.

The elements of the lists have the following form:

(“ f i l e name” , of f set , l engt h, st r i de, r at i o, met hod)

in the case of InputPattern and OutputModifyPattern,
(“ f i l e name” , l engt h)

in the case of the OutputAppendPattern and

(f i xed, f l oat , f i l es1: amount 1, f i l e2: amount 2, …)

in the case of the OperationPattern.

Examples:

I nput Pat t er n = { (" exampl e1. dat " , 0, 40000, 0, 1, seq) }

The example specifies a description of a simple input file access: the job
sequentially reads the whole "example1.dat" file (the size of the file is 40000
byte).

Analyzing this description, the Replica Manager can decide on not to
replicate the whole input file on the Compute Element that runs the job, but to
pre-fetch the beginning of the file and read the rest into a relatively small buffer
parallel with the job execution. This strategy can minimize the time from job
submission to job termination.

Out put AppendPat t er n = { (" exampl e2. dat " , 4000) }

According to the example, the results will be appended to the output file
"example2.dat" (the amount of data to be written is 4000 bytes long).

Oper at i onPat t er n = { (100, 0, " exampl e1. dat " : 40000) }

The example shows that the job reads the "example1.dat" input file. In
each processing step 100 fixed point basic operations are completed, and 40000
bytes are processed.

The whole example is the following:

I nput Pat t er n = { (" exampl e1. dat " , 0, 40000, 0, 1, seq) }
Out put AppendPat t er n = { (" exampl e2. dat " , 4000) }
Oper at i onPat t er n = { (100, 0, " exampl e1. dat " : 40000) }

The example JDL fragment specifies a job that sequentially reads
"example1.dat" into a 40000 bytes long buffers, calculating for example in each
processing step the sum of 100 bytes (integers) stored in the buffer, and writing
out these sums into "example2.dat".

The optimization of data access on data grids László Csaba L � rincz

 23

Implementation

Concerning grid application development the extension of the JDL has
two major goals:

- make the work of the specialists (physicist, biologists, etc.)
developing applications for Grid easier,

- enable Grid services to apply further optimization techniques in
order to achieve shorter job execution times.

Each grid application has to solve two very different problems:

- it has to provide the results required by the scientists
- it has to be able to efficiently use and interact with the grid services.

Today, these aspects of grid application are not separated. For example,
the MPI2 communication codes are mixed with the "real" application code
computing the required scientific results. In addition, scientists have to deal with
the problems of parallel and distributed computing, and the communication
between distributed processes.

In the future the grid interaction has to be separated from the scientific
calculations. So the scientists should concentrate on the implementation of
scientific calculations, and use pre-implemented grid interaction. Consequently, a
future grid application will have two major modules:

- the grid interaction code module and
- the problem code module.

The final code of the application will be generated from these modules by
a weaver. The created code can be compiled than with the chosen compiler.

The grid interaction code modules may form an extensible library. As a
result scientists will not have to deal with this aspect of their applications but
choose the appropriate interaction code to be woven with their application code.

The grid interaction code of a given application could produce the
information required for optimization. This information will be used to generate
the extended JDL description for the job, which will contain:

- the JDL description provided by the user and
- the JDL extension generated automatically.

Definition of Data Access Patterns

The definition of data access patterns can be accomplished in different
ways:

- can be specified by the programmer or
- can be derived from data collected by a monitoring tool.

Those applications which have meta-descriptor fi les attached to them can

be included in the first case too. These descriptor files were written by the
programmers. The information required for creating the data access patterns can
be achieved than from these files with a suitable tool (the tool has to know both
the form of the meta-descriptor fi les and the data access patterns).

The optimization of data access on data grids László Csaba L � rincz

 24

Monitoring data access
In many cases data access patterns for an application will not be specified.

One possible reason is that the author of the application is not able to specify
them. Another possible reason is that the exact behavior and source code of the
application are not known to the scientist who wants to execute the application on
the grid. In such cases monitoring can still be used to define data access patterns.

Many applications are executed not only once but several times, for
different input values. Parameter sweep applications are a good example. Jobs
originating from the same application are likely to share data access patterns. If
such jobs can be identified, monitoring the first few executions of the application
can provide information to the grid middleware to optimize resource allocation
for any subsequent execution. Middleware products supporting parameter sweep
applications already exist for the grid. Using such a middleware can make the
identification of jobs originating from the same application transparent to the
scientists.

The monitoring of jobs can be done in the following ways:

- altering the source code of the application
- altering the compiler
- altering the run-time system
- altering the operating system.

There are a number of possibilities to merge monitoring code with the

code of an application.
The software provided by the EDG collaboration currently is based on the

Linux Red Hat 6.2 platform. So in the following these possibilities will be
discussed focusing on the programming language C (other languages should be
handled in a similar way).

Monitoring the data access is based on monitoring standard file handling
operations defined in the stdio, fcntl and unistd libraries.

The IO functions of the stdio library [STDIO] that need monitoring are (a
short description of the given functions is also presented):

- tmpfile – creates a temporary file
- fclose – closes a stream
- fcloseall – closes all the opened streams
- fopen – opens the file whose name is pointed by a string and

associates a stream with it
- freopen – opens the file whose name is pointed by a string and

associates a stream with it; the original stream (if it exists) is
closed

- fdopen – creates a new stream that refers to an existing system file
descriptor

- fopencookie – creates a new stream that refers to the given magic
cookie, and uses the given functions for input and output

- fprintf – writes formatted output to a stream
- vfprintf – writes formatted output to a stream from the given

argumentum list

The optimization of data access on data grids László Csaba L � rincz

 25

- vdprintf – writes formatted output to a fi le descriptor from the given
argumentum list

- dprintf – writes formatted output to a file descriptor
- fscanf – reads formatted input from a stream
- vfscanf – reads formatted input from a stream into an argument list
- fgetc – reads a character from a stream
- getchar – reads a character from stdin
- _IO_getc – reads a character from a stream
- getc_unlocked – is equivalent with fgetc_unlocked
- getchar_unlocked – reads a character from stdin without locking the

stream
- fgetc_unlocked – reads a character from a stream without locking

the stream
- fputc – writes a character to a stream
- putchar – writes a character to stdout
- _IO_putc – writes a character to a stream
- fputc_unlocked – writes a character to a stream without locking the

stream
- putc_unlocked – is equivalent with fputc_unlocked
- putchar_unlocked – writes a character to stdout without locking the

stream
- getw – reads a word (int) from a stream
- putw – writes a word (int) to a stream
- fgets – reads a newline-terminated string of finite length from a

stream
- fgets_unlocked – reads a newline-terminated string of finite length

from a stream without locking the stream
- gets – reads a newline-terminated string from stdio
- __getdelim – is equivalent with getdelim
- getdelim – reads up to (and including) a delimiter from a stream

into a string pointer
- getline – reads up to (and including) a newline from a stream into a

string pointer
- fputs – writes a string to a stream
- fputs_unlocked – writes a string to a stream without locking the

stream
- puts – writes a string, followed by a newline, to stdout
- ungetc – pushes a character back onto the input buffer of a stream
- fread – reads elements of data from a stream
- fwrite – writes elements of data to a stream
- fread_unlocked – reads elements of data from a stream without

locking the stream
- fwrite_unlocked – writes elements of data to a stream without

locking the stream
- fseek – seeks to a certain position on a stream
- rewind – rewinds to the beginning of a stream
- fseeko – seeks to a certain position on a stream

The optimization of data access on data grids László Csaba L � rincz

 26

- fsetpos – sets a stream’s position
- popen – creates a new stream connected to a pipe running the given

command
- pclose – closes a stream opened by popen

The monitoring of the “_unlocked” version of the functions is also very

important, while these functions are faster compared to the normal ones, due to
fact that in these cases no fi le locking is performed.

Though the _IO_getc and _IO_putc functions are defined in the libio

library, they should be monitored as well, since the C standard explicitly says that
the getc and putc functions defined in the stdio library can be macros, and their
current implementation calls directly the _IO_getc and _IO_putc functions.

The information gathered from the monitored functions may be different

form function to function. They are:
- the stream id for the tmpfile function
- the stream id and the result code for the fclose and pclose functions
- the result code for the fcloseall function
- the stream id, the filename, the opening mode and the fi le size for

the fopen and freopen functions
- the stream id and the amount of the bytes written for the fprintf,

vfprintf, fputc, putchar, _IO_putc, fputc_unlocked,
putc_unlocked, putchar_unlocked, putw, fputs, fputs_unlocked,
puts, ungetc, fwrite and fwrite_unlocked functions

- the file descriptor and the amount of the bytes written for the dprintf
and vdprintf functions

- the stream id and the amount of the bytes read for the fscanf,
vfscanf, fgetc, getchar, _IO_getc, getc_unlocked,
getchar_unlocked, fgetc_unlocked, getw, fgets, fgets_unlocked,
gets, __getdelim, getdelim, getline, fread and fread_unlocked
functions

- the stream id, the offset and the position whence the offset is
measured for the fseek, rewind, fseeko and fsetpos functions

- the stream id, the command and the opening mode for the popen
function.

The IO functions of the fcntl library [FCNTL] that need monitoring are (a

short description of the given functions is also presented):
- open – opens a file and returns a new file descriptor for it
- creat – creates and opens a file and returns a new file descriptor for

it

The information gathered for these functions are the file descriptor, the

filename and the opening mode flags.

The optimization of data access on data grids László Csaba L � rincz

 27

The IO functions of the unistd library [UNISTD] that need monitoring are
(a short description of the given functions is also presented):

- lseek – seeks to a certain position on a file descriptor
- close – closes a given file descriptor
- read – reads data from a file descriptor
- write – writes data to a file descriptor
- pread – reads data from a file descriptor from a given offset
- pwrite – writes data to a file descriptor at a given offset
- pipe – creates a pair of fi le descriptors, pointing to a pipe inode
- dup – create a copy of the given file descriptor
- dup2 – makes the new file descriptor be the copy of the old file

descriptor, closing the new file descriptor first if necessary
- truncate – truncates a file given by its name to the given length
- ftruncate – truncates a file given by its file descriptor to the given

length

The information gathered for these functions are:

- the file descriptor, the offset and the position whence the offset is
measured for the lseek function

- the file descriptor and the result code for the close function
- the fi le descriptor and the amount of the bytes read for the read

function
- the file descriptor and the amount of the bytes written for the write

function
- the file descriptor, the offset and the amount of the bytes read for

the pread function
- the file descriptor, the offset and the amount of the bytes written for

the pwrite function
- the file descriptors for the pipe, dup and dup2 functions
- the filename and the length for the truncate function
- the file descriptor and the length for the ftruncate function.

The data collected by monitoring the jobs must be further processed in

order to get the required definition of the data access patterns. These definitions
can be used than to extend the descriptor of the job (using an extension of the
JDL language), which in turn can be used by the grid middleware services to
perform the optimization.

For processing the collected data I have written a special parser tool,
which analyzes the monitored data and generates the extensions for the current
JDL description of the application.

Altering the source code
A possibility to extend an application with monitoring code is to ask the

author of the application to modify the original source code. Obviously this
modification should not be subtle, otherwise a scientist will not be able to
perform it. Fortunately, with an appropriate set of C macros much of the
necessary code transformations can be performed. Using such a set of macros and

The optimization of data access on data grids László Csaba L � rincz

 28

a set of new, monitored libraries the required modification would be to replace
some include statements with other ones.

In many cases this little modification of the source code is affordable –
though, in many other cases it is not. For example, if the scientist who wants to
run the application on the Grid has limited programming skills, he might not be
able to perform even such a simple modification. Despite this, the major
drawback of this approach is the requisiteness that the source code of the original
application has to be available. Finally, the expressive power of C macros might
not be sufficient for inserting certain kinds of monitoring code into the code of
the application.

During the research phase of the current paper I have written the

following monitored libraries: mon_stdio, mon_fcntl and mon_unistd. Every
function mentioned above (that needs monitoring) has a correspondent in these
libraries. The name of these functions is composed from the name of the original
function and the “_mon_” prefix. To preserve full compatibility with the original
libraries the monitored functions are only defined if the correspondent functions
are defined too — this depends on the definition of a set of macros, using the
#define directive in the source code or preprocessor options during compilation
(e.g. -Dmacro in case of gcc); for example:

#i f ndef __USE_FI LE_OFFSET64
/ * Open a f i l e and cr eat e a new st r eam f or i t . * /
FI LE * _mon_f open (__const char * __r est r i ct __f i l ename,
 __const char * __r est r i ct __modes) __THROW;
/ * Open a f i l e, r epl aci ng an exi st i ng st r eam wi t h i t . * /
FI LE * _mon_f r eopen (__const char * __r est r i ct __f i l ename,
 __const char * __r est r i ct __modes,
 FI LE * __r est r i ct __st r eam) __THROW;
#endi f
#i f def __USE_LARGEFI LE64
FI LE * _mon_f open64 (__const char * __r est r i ct __f i l ename,
 __const char * __r est r i ct __modes) __THROW;
FI LE * _mon_f r eopen64 (__const char * __r est r i ct __f i l ename,
 __const char * __r est r i ct __modes,
 FI LE * __r est r i ct __st r eam) __THROW;
#endi f

The information collected by the functions is written in a log file. The
body of the new functions consists of the following steps:

- execute the original function
- open the log file
- write the name of the function and the gathered information to the

log fi le
- close the log fi le
- return the result obtained in the first step.

Beside the libraries I have also created three header files: monstdio.h,
monfcntl.h and monunistd.h. They contain the macro definition to transfer calls
to the stdio, fcntl and unistd functions to the corresponding monitoring functions;
for example:

The optimization of data access on data grids László Csaba L � rincz

 29

#i f ndef __USE_FI LE_OFFSET64
#def i ne open _mon_open
#endi f
#i f def __USE_LARGEFI LE64
#def i ne open64 _mon_open64
#endi f

In order to create a monitored version of the given application the source
files must include monstdio.h instead of stdio.h, monfcntl.h instead of fcntl.h
and monunistd.h instead of unistd.h, and the monitoring libraries must be linked
with the application too.

Altering the compiler
Another possibility is to leave the source code untouched, but intervene

during the compilation process. The source code of the application can be altered
by a special phase during the execution of the compiler.

This kind of code transformation probably has more expressive power
than the previous approach. Another advantage is that it does not require the
scientist to make any changes to the source code of the application. To obtain a
monitored version of his application he only needs to compile the application
with an appropriate compiler. It is the task of the site administrator, a person with
suitable skills, to provide the necessary compiler or makefile settings.

The drawback of this approach is that the source code of the application
should still be available and that the recompilation must be done on a suitably
configured computer.

Many tools exists that enable parsing and transforming C source code.
Using a wide-spread tool, like javacc can be achieved the same functionality as
that presented in the previous section.

Altering the run-time system
The third possibility is to interfere during run-time, when shared libraries

are linked to the application. It is possible to hack the run-time system on a
Computing Element node in a way that certain IO function calls are not
dispatched to the default IO libraries, but to a custom shared library which
performs monitoring as well as executing the actual IO functions.

This is a very flexible solution. Only an environment variable has to be
modified in the run-time system from non-monitored to monitored applications.
Another advantage is that the source code of the original application is not
needed, since no recompilation is necessary. A special shared library must be
available on the Computing Element nodes, and an environment variable must be
set (according e.g. to the job description), in order the data accesses of the job to
be monitored or not. This kind of monitoring is completely hidden in the Grid
middleware, and is transparent to the scientist who executes the application.

A disadvantage of this approach is that it is platform-dependent. The
techniques required by this approach can be used on Linux and Solaris machines;
other operating systems require further investigations.

Using the same technique as the fakeroot tool of Debian Linux systems
[FAKEROOT], the shared libraries containing the monitoring versions of the file

The optimization of data access on data grids László Csaba L � rincz

 30

manipulation functions are preloaded during the run-time linking of the Grid job
on a Computing Element node. As result the application calls to standard IO
functions will be dispatched to these shared libraries, which at there turn will
dynamically load and execute the appropriate IO functions using the same API as
used by ld.so, the dynamic linker.

Altering at the operating system level
Changing the operating system slightly also offers a solution. This can be

done by extending the grid filesystem, which is a part of the operating system of
the Computing Element nodes, with the possibility of monitoring file accesses. A
drawback of this approach is that only the fi le accesses performed through the
grid filesystem (namely remote fi le accesses) could be monitored this way.

The optimization of data access on data grids László Csaba L � rincz

 31

Generating the description of the resources

Gathering the data

During the execution of a job the written monitored libraries (mon_stdio,
mon_fcntl and mon_unistd) will generate a logfile. The lines of this logfile have
the following form:

<f unct i on_name par am_name1=” val ue1” par am_name2=” val ue2” … >

where:
- function_name is the name of the monitored function
- param_name1, param_name2, … are the names of the monitored

information
- value1, value2, … are the values of the monitored information.

Processing the gathered data

The logfile generated in the previous phase is processed here by parsing it
line by line. During this procedure two lists are generated for every file:

- one for the read and
- one for the written data.

The program detects if one or more streams and / or one or more file
descriptors refer to the same file (the logged read, write, seek, etc. operations are
always linked to streams or file descriptors) and treats these references as one. It
also tracks the multiple open-close cycles performed on the same file.

These lists are composed from data blocks. Every block stores the

following information:
- the starting position of the block in the file
- the ending position of the block in the file
- the amount of bytes being accessed in the current block
- the type of the access (sequential or random)

The parser tool has to main parts:

- first it parses the logfile and generates the two lists mentioned above
for every accessed file,

- than a special algorithm analyses these lists and generates the
extensions for the current JDL description of the monitored
application.

The optimization of data access on data grids László Csaba L � rincz

 32

The algorithm used in the first phase starts parsing the logfile and:
- i f the function in the current line is a file open related function then

it links to the file the current stream or file descriptor specified
as parameter for the current function and creates two empty
block-lists registering them to the current file if no lists were
registered for the file yet, or it sets the status of the file to
“opened status” if there are lists already registered to the fi le;

- i f the function in the current l ine is a file close related function then
it sets the status of the file to “closed status” and unlinks the
streams and file descriptors associated with the file if the
parameter stream or file descriptor links to a file or does nothing
if it don’ t;

- i f the function in the current line is a file seek related function then
it updates the current file position pointer of the file linked to the
stream or file descriptor parameter of the current line, if such
link exists, or does nothing if it don’ t;

- i f the function in the current line is a file read / write related
function and the stream or file descriptor parameter of the
current line links to a file then it creates a new sequential block
in the correspondent block-list if the range of the current
operation does not intersect with another block already defined
or it updates the range and the type of the intersected block (or
eventually merges multiple blocks) if such intersection occurs.

The algorithm does not contain any error checking for detecting the
wrong order of the operations (close before open, read after close, etc.), however
if this would be needed the required error detections and error feedbacks could be
added very easily to the parsing tool.

After finishing the parsing every list will contain the final set of blocks,

having these properties:
- every block is separated from the others in the aspect of access time
- i f i < j then block[i] is accessed none but before block[j]

The second phase a special algorithm examines every generated block-

list, determining the data access pattern for every fi le and for every operation.
The definition of data access patterns divides the files in data blocks. The nth
block starts at offset+(n-1)*(length+stride) and ends at length+ the starting
position. Every valid data access pattern must correspond to the followings:

- every data block should contain valid data (I will call valid data the
data the application access through read or write operations)

- no valid data should be found outside the blocks
The optimal data access pattern must also have the smallest block length

out of the definable data access pattern.

The algorithm tries to found the offset, length and stride that will define

this optimal data access pattern. This is based on the sequential structure of the
file (block[i] is accessed none but before block[j] if i < j).

The optimization of data access on data grids László Csaba L � rincz

 33

A new block concept is introduced here. This block has neither
necessarily fixed size, nor necessarily fixed starting offset. It is describe using
four fields:

- blockMin – the minimal size of the
- blockSize – the current size of the block
- minExt – the minimal possible extension of the current block
- maxExt – the maximal possible extension of the current block

The (possible) extension of a block affects both the size of the block and
its starting offset.

The algorithm is given by a depth first search. For every sub-tree a new

block is created (n is the number of the sub-tree):
- blockMin – is initialized with the difference between the ending

position of the nth block in the list and the value of firstPos
- blockSize – is initialized with the difference between the starting

position of the block after the nth block in the list and the value
of firstPos

- minExt – is initialized with 0
- maxExt – is initialized with value of firstPos;

where firstPos is the starting position of the first block in the list.

The program then tries to fit the current block to the whole file (the rest of

the list). The starting and ending positions of the nth occurrence of this block are
given by the formulas:

st ar t [n] = f i r st Pos - mi nExt + (n- 1) * bl ockSi ze

end[n] = st ar t [n] + bl ockSi ze + maxExt

If the nth occurrence of the current block does not contain any valid data
(i.e. a block from the list), the blockSize is wrong and the algorithm must step
back.

If this occurrence intersects with one or more blocks from the list, the
current block is split into multiple parts or its fields are changed depending on the
type of the intersection, and the algorithm continues with the modified block or it
will fork according the new blocks.

The program runs until the first block is found that can be fitted to the

whole file. Then it calculates the minimal distance between the ending position
of the nth occurrence of the result block and the ending position of the last block
element from the list that intersects with the current occurrence.

The optimization of data access on data grids László Csaba L � rincz

 34

The data access pattern for the current file has the following parameters:

of f set = f i r st Pos – ext Mi n

st r i de = di st ance

l engt h = bl ockSi ze – st r i de

r at i o = t he r at i o bet ween t he maxmi mum amount of dat a accessed
i n any of t he occur r ences of t he r esul t bl ock and t he val ue of
t he l engt h par amt er

met hod = seq i f al l of t he bl ocks i n t he l i st wher e accessed
sequent i al l y or r and ot her wi se

When all the data access patterns are calculated they are transformed in

the form of an extension for the JDL, and this JDL extension is written to the
standard output of the tool.

The optimization of data access on data grids László Csaba L � rincz

 35

Conclusions

The grid middleware (the Resource Broker and the Replica Manager)
should ensure that applications are executed on the grid as efficiently as possible.
Optimizing data access is an important aspect in this respect.

The introduction and the specification of data access patterns for
applications should provide sufficient amount and quality of information for both
the Resource Broker and the Replica Manager to determine and use the optimal
data access strategy for the applications.

The extension of the Job Description Language with the proposed
attributes as well as the solutions for gathering this information (through the
presented monitoring methods) and transforming it in a useable form (either with
the written tool or with other special tools) can be used to communicate the
required data in the grid system.

However it should be further investigated what kind of information about

data access patterns would be best to use for the optimization by the grid
middleware. The usefulness of different kinds of information could be measured
through simulations (e.g. OptorSim is a simulation package for Optor, the
optimizer component of the Reptor replica manager). According to the results the
created extension of the JDL should be redefined and the written monitoring
libraries should be also extended to collect the necessary information to
incrementally build JDL files for parameter-sweep applications.

The program designer may help also to determine the data/resource access
pattern of an application by annotations, which could be used than to create the
JDL specification.

And finally the use of small filtering agents in the case of applications
which access huge remote files in an irregular way, should be also a good
solution for optimizing the data access.

The optimization of data access on data grids László Csaba L � rincz

 36

Bibliography

[BAL01] Balaton Z., Kacsuk P., Podhorszki N.: From Cluster Monitoring to
Grid Monitoring Based on GRM and PROVE. Report of the
Laboratory of Parallel and Distributed Systems, LPDS – 1/2000.

[CP] Condor Project
http://www.cs.wisc.edu/condor/

[EDG] The DataGrid Project
http://eu-datagrid.web.cern.ch/

[EDGGJRB] European DataGrid Project: Experiences of deploying a large
scale Testbed for e-Science applications
http://hep-proj-grid-tutorials.web.cern.ch/hep-proj-grid-
tutorials/presentations/Perf2002Paper.pdf

[FAKEROOT]fakeroot, Debian GNU/Linux manual
http://www.clc.unibe.ch/cgi-bin/man2html?fakeroot+1

[FCNTL] fcntl – manipulate fi le descriptor, Linux manual
http://www.clc.unibe.ch/cgi-
bin/man2html/usr/share/man/man2/fcntl.2.gz

[FK01] I. Foster, C. Kesselman: The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann; 1999
ISBN: 1558604758

[FK02] I. Foster, C. Kesselman: The Anatomy of the Grid
Technical Report, Global Grid Forum, 2001
http://www.globus.org/research/papers/anatomy.pdf

[GGTKCG] The Grid, Globus Tool Kit, Condor – G and What?
http://charm.cs.uiuc.edu/users/mani/globus.ppt

[GUY01] Guy, L. at al: Replica Management in Data Grids, 2002.

[HKU] Horváth Z. - Kozsik T. - Ulbert A.: Towards a better optimization of
resource allocation in Grid
Technical Report, 2002
http://aszt.inf.elte.hu/~grid/publ/proposals.ps

[JDL01] Fabrizio Pacini (fpacini@datamat.it): JDL Attributes – Note
http://server11.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-
0_6-Note.pdf

The optimization of data access on data grids László Csaba L � rincz

 37

[LIV01] Livny, M. High-Throughput Resource Management. In Foster, I. and
Kesselman, C. eds. The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999, 311-337.

[RCCFLMMST] Aiken, R., Carey, M., Carpenter, B., Foster, I., Lynch, C.,
Mambretti, J., Moore, R., Strasnner, J. and Teitelbaum, B. Network
Policy and Services: A Report of a Workshop on Middleware, IETF,
RFC 2768, 2000.
http://www.ietf.org/rfc/rfc2768.txt.

[RTIF] Realizing the Information Future: The Internet and Beyond. National
Academy Press, 1994
ISBN: 0309050448

[STDIO] stdio – standard input/output library functions, Linux manual
http://www.clc.unibe.ch/cgi-bin/man2html?stdio+1

[STO01] Stockinger, H. et al.: File and Object Replication in Data Grids. HPDC
2001.

[UNISTD] unistd, Linux manual
http://www.clc.unibe.ch/cgi-bin/man2html?lseek+2
http://www.clc.unibe.ch/cgi-bin/man2html?close+2
http://www.clc.unibe.ch/cgi-bin/man2html?read+2
http://www.clc.unibe.ch/cgi-bin/man2html?write+2
http://www.clc.unibe.ch/cgi-bin/man2html?pread
http://www.clc.unibe.ch/cgi-bin/man2html?pipe
http://www.clc.unibe.ch/cgi-bin/man2html?dup
http://www.clc.unibe.ch/cgi-bin/man2html?truncate

