
Preface

The hungry sheep look up, and are not fed...

—John Milton,Lycidas

[This document consists of the text of the Preface ofSoftware Portability with imake, by Paul
DuBois. Copyright © 1996 O’Reilly and Associates, Inc.All rights reserved. Permissionis
granted to copy this document for personal use only. This copyright notice must be retained
in all copies.]

This handbook is aboutimake, a UNIX tool that helps you write portable programs.

Most program development under UNIX is done withmake, using aMakefile to direct the
build and install processes.But Makefiles aren’t portable, and it’s often difficult to rewrite
them by hand to accommodate machine dependencies for different systems.imake provides
an alternative based on a simple idea: describe the dependencies for various systems in a set
of configuration files and let a program generate theMakefile for you after selecting the
dependencies appropriate for your machine.This frees you from writing and rewriting Make-
files by hand and helps you produce portable software that can be built and installed easily on
any of the systems described in the configuration files.

imake has been used successfully to configure software such as the X Window System (Ver-
sion 11), Motif, and the Khoros software development environment. X11in particular is a
large project that, despite its size and complexity, is remarkable in its portability. Much of
this portability is due to the use ofimake, which is thus arguably one of the reasons X11 has
been so successful.

Nevertheless, despite the fact that it’s freely available and runs on a variety of systems,imake
isn’t as widely exploited as it could be.There are at least two reasons for this:

• imake itself is a simple program, but the configuration files it uses sometimes are not.In
particular, most people first encounterimake through the configuration files distributed

0-xvii

4 September 1996 17:18

0-xviii

with X. The X11 files are powerful and flexible, but they’re also complicated and forbid-
ding, and don’t provide a very accessible entry point into the world of imake.

• imake documentation has been sparse.Normally when you don’t understand how to use a
program, you turn to the documentation.But for imake there hasn’t been much available,
which compounds the difficulty of learning it. Consequently, imake remains a mystery,
leaving potentialimake users in the predicament of Milton’s sheep — seekinghelp in vain.

I f reely acknowledge thatimake can be difficult to make sense of.But it doesn’t needto be
so, nor should you have to become an initiate into the Eleusinian mysteries to be granted an
understanding of how imakeworks.

Why Read This Handbook?
The goal of this handbook is to show how imake can help you write portable software and to
make it easier for you to useimake on a daily basis.Then you’ll be able to see it as a tool to
be used, not a stumbling block to trip over.

If you don’t know how to use imake at all, this handbook will teach you.If you already use
imake, you’ll learn how to use it more effectively. The handbook provides assistance on a
number of levels, and you’ll find it useful if you’re in any of the situations below:

• You wonder whatimake is and how it works.

• You couldn’t care less whatimake is or how it works. (Asin, “I just got this program off
the Net. What do I do with thisImakefilething? I’mnot interested inimake, I just want to
get the program built!”)

• You’re curious about the relationship between anImakefileand aMakefile.

• You’re faced with the task of usingimake for the first time and are finding it less than
obvious.

• You’re trying to useimake but you need help diagnosing problems that occur. For exam-
ple: “I just generated myMakefile, but make says it contains a syntax error; what do I do
now?”

• You’re tired of editing your Makefiles every time you move your programs from one
machine to another.

• You’ve inherited projects that were developed usingimake and you need to understand
how they’re configured so you can maintain them.

• You’ve been able to useimake to configure, build, and install the X Window System on
your workstation using the instructions provided with the X11 source distribution, but it
all seemed like magic. You want to better understand what goes on during that process.

• You’re planning to write X-based software. It’s best to do this using anImakefile (since
X11 itself isimake-configured), and you’ll be required to provide one anyway if you plan
to submit your software to the X Consortium for inclusion in the X11contrib distribution.

4 September 1996 17:18

chapter 0: Preface 0-xix

• You admire the portability of X11 and want to achieve the same for your own software,
but you’ve found it difficult to useimake without a copy of X11 nearby. You suspect it’s
possible forimake to stand on its own, but you’re not sure how.

• You’re looking for a general-purpose tool for long-term software development and are
considering usingimake to that end.

Scope of This Handbook
This handbook is divided into three parts.Part I provides an overview of imake and how to
use it, a basic description of the operation of configuration files, and how to write and trou-
bleshoot Imakefiles. Part II describes how to write your own configuration files.Part III con-
sists of appendices containing reference material or covering special topics.Each chapter and
appendix is described briefly below: use this information to navigate to those of most interest
to you.

Part I
Chapter 1,Introduction, describes whatimake is and what it does.It also discusses why make
is inadequate for achieving software portability. Read this to find out what problemsimake
attempts to solve.

Chapter 2,A Tour of imake, is an imake tutorial. In this chapter, I assume that you’re not par-
ticularly interested in details about how imake works, you just want to know how to use it to
do specific things: how to write a simpleImakefile to specify programs you want to build, how
to generate theMakefilefrom theImakefile, etc. Insteadof starting from “first principles,” you
useimake to run through some basic exercises to get a feel for what it does and how to make
it do what you want.

Chapter 3,Understanding Configuration Files, describes the principles governing the design
of configuration files that you need to know to understand their structure and content—what’s
in them and how they work together. You don’t need to read this chapter if you’re a casual
imake user, but you should if you want to employ imake more effectively or if you plan on
writing your own configuration files.In this chapter I assume you want to understandimake’s
workings in more detail—not just what it does, but how and why.

Chapter 4,Writing Comments, describes how to write comments in configuration files and

4 September 1996 17:18

0-xx

Imakefiles, and how to deal with problems that arise in connection with commenting.The
issue here, as in Chapter 3, is how to write down information about project configuration, so
that it is useful to people rather than to programs.

Chapter 5,The X11 Configuration Files, discusses the configuration files from the X Window
System, relating them to the general principles described in Chapter 3 and pointing out some
of their unique features.This isn’t an X book, but the X11 configuration files are the best-
known instance of the use ofimake to date.As such, they provide a fertile source of examples
and discussion.It would be unwise not to take advantage of the lessons they provide.

Chapter 6,Writing Imakefiles, describes how to write Imakefiles for programs configured with
the X11 configuration files.This chapter provides simple examples that require little or no
knowledge of the X11 files, as well as detailed discussion to increase your practical under-
standing of how the X11 files work.

Chapter 7,Imakefile Troubleshooting, discusses things that can go wrong when you write
Imakefiles and how to fix them.

Part II
Chapter 8,A Closer Look at Makefile Generation, examines the process by whichimake
builds Makefiles, including a discussion of how theMakefile andMakefiles target entries
work.

Chapter 9,A Configuration Starter Project, shows how to convert the X11 configuration files
into a starter project you can use as a jumping-off point for developing new projects or new
sets of configuration files.

Chapter 10,Coordinating Sets of Configuration Files, discusses the problems that arise in a
world populated by multiple sets of configuration files and how to solve the problems so you
can manage those files easily. This chapter traces the design ofimboot, a general-purpose
Makefilebootstrapper, and shows how to use it with various sets of configuration files, such as
those from X11, Motif, and OpenWindows. The chapter also develops an alternative
approach to generating theMakefile target entry.

Chapter 11,Introduction to Configuration File Writing, shows by example how to write a set
of configuration files.It provides a general description of the various ways you can specify
the contents of configuration files.

Chapter 12,Writing Rule Macros, continues the discussion begun in Chapter 11, focusing on
the design and implementation ofimake rules.

4 September 1996 17:18

chapter 0: Preface 0-xxi

Chapter 13,Configuration Problems and Solutions, discusses several configuration problems
and shows how to solve them using the principles and techniques described in Chapters 11
and 12.

Chapter 14,Tr oubleshooting Configuration Files, discusses things that can go wrong when
you write configuration files and how to fix them. Itcomplements Chapter 7,Imakefile Trou-
bleshooting.

Chapter 15,Designing Extensible Configuration Files, discusses how to design configuration
files to be shared easily among projects, while allowing individual projects to specify their
own particular requirements by extending or overriding the information in the shared files.
This extensible architecture reduces the need to write new configuration files for a project
when existing files don’t quite match a project’s configuration requirements.

Chapter 16,Creating Extensible Configuration Files, describes a procedure you can use to
convert existing project-specific configuration files to the extensible architecture.

Chapter 17,Using Extensible Configuration Files, shows how to dev elop new projects that
take advantage of the flexibility afforded by the extensible architecture.

Chapter 18,Using imake on Non-UNIX Systems, covers some of the issues you must address
if you’re trying to portimake to a non-UNIX system.It also discusses writing Imakefiles and
configuration files to be less UNIXcentric and so is useful even if your own interest is primar-
ily in UNIX but you wish to make it easier for your projects to be ported to non-UNIX sys-
tems by others.

Part III
Appendix A,Obtaining Configuration Software, describes how to get the software described
in this handbook.imake isn’t always included as part of the software distributed with the
UNIX operating system, but anyone with World Wide Web or FTP access on the Internet can
get it. imake is also available by electronic mail.

Appendix B, Installing Configuration Software, discusses how to build and install the soft-
ware described in this handbook.

Appendix C,Configuration Programs: A Quick Reference, documents the software described
in this handbook, using an abbreviated manpage format.

Appendix D, Generating Makefiles: A Quick Reference, briefly describes how to build a
Makefilefrom anImakefile.

Appendix E,Writing Imakefiles: A Quick Reference, briefly describes how to write anImake-
file.

Appendix F, Writing Configuration Files: A Quick Reference, briefly describes how to write
configuration files.

4 September 1996 17:18

0-xxii

Appendix G,Basics of make and cpp, provides brief overviews ofmake andcpp. Since imake
produces Makefiles, you need to understand a little aboutmake. You should also understand
something aboutcpp, becauseimakeusescppto do most of its work.

Appendix H,A Little History, describes how imakecame into being.

Appendix I,Other Sources of Information, lists some other references onimake, make, and
cpp. It also provides instructions for getting on theimakemailing list.

Appendix J,Using imake with OpenWindows, describes some special problems with using
imakeunder OpenWindows, and how to handle them.

imake and the X Window System
imake is part of the distribution of the X Window System, Version 11, a product of X Consor-
tium, Inc. X11 (and henceimake) is owned and copyrighted by X Consortium, Inc., but is
freely available. For more information, the X Consortium is reachable on the World Wide
Web at:

http://www.x.org
ftp://ftp.x.org

Or by surface mail at:

X Consortium, Inc.
201 Broadway
Cambridge, MA 02139-1955
USA

You don’t need to have or use X11 to useimake. Nev ertheless, X11 has a strong presence in
the imake world. In particular, the X11 configuration files are very popular, and I refer to
them often.When the first edition of this handbook was published, the current release of the
X Window System was Version 11, Release 5 (denoted as X11R5, or just R5).For the second
edition, Release 6 (X11R6) was current during most of the revision period and Release 6.1
(X11R6.1) was issued shortly before publication.

R6.1 is used as the reference release for most of the discussion in this handbook, but R5 and
R6 are mentioned on occasion as well.The default pathnames for program and configuration
file installation directories are shown for each release in Table 1. You can use these path-
names to recognize on sight which release particular examples refer to.

4 September 1996 17:18

chapter 0: Preface 0-xxiii

Table 0−1: Default X11 Program and Configuration File Installation Directories

X11 Release Program Directory Configuration File Directory

X11R5 /usr/bin/X11 /usr/lib/X11/config
X11R6 /usr/X11R6/bin /usr/X11R6/lib/X11/config
X11R6.1 /usr/X11R6.1/bin /usr/X11R6.1/lib/X11/config

Conventions Used in This Handbook
The following typographical conventions are used in this handbook:

Italic
is used for file and directory names when they appear in the body of a paragraph, for pro-
gram and command names, and for options to commands.

Constant Width
is used in examples to show the contents of files or the output from commands; and to
indicate environment variables, rules, entries, and targets.

Constant Bold
is used in examples to show commands or other text that should be typed literally by the
user. For example,rm myfile means to type “rm myfile” exactly as it appears in the text
or example.

Constant Italic
is used in code fragments and examples to show variables for which a context-specific
substitution should be made. The variablefilename, for example, would be replaced by
some actual filename.

Acknowledgments
Many people contributed in various ways to both editions of this handbook; those listed here
were especially helpful.

Thanks are due to Todd Brunhoff, Jim Fulton, Bob Scheifler, Stephen Gildea, and Kaleb
Keithley for their willingness to answer my myriad questions aboutimake and the X11 config-
uration files.

David Brooks, Steve Dennis, Gary Keim, Jim Kohli, Steve Kroeker, David Lewis, Miles
O’Neal, Andy Oram, and Tom Sauer provided helpful review comments.

Mary Kay Sherer waded through early drafts and refused to be nice to them.But faithful are
the wounds of a friend; her criticisms helped weed out many incomprehensiblenesses.

4 September 1996 17:18

0-xxiv

The staff of O’Reilly & Associates was a pleasure to work with. Adrian Nye provided edito-
rial guidance and oversight and is really the one to whomSoftware Portability with imake
owes its existence (the book was his idea; I just wrote it).

For the first edition, Laura Parker Roerden copyedited what must have seemed an intractable
thicket of words and managed final production with the indispensable help of Clairemarie
Fisher O’Leary. Lenny Muellner fielded a constant stream oftroff questions. Ellie Cutler
wrote the index. Jennifer Niederst provided design support. Jeff Robbins produced the figures.
And Edie Freedman designed the book and the cover with that marvelous snake. For the
reprint of this handbook, Nicole Gipson entered new edits, Chris Reilley designed the figure
for the new appendix, and Chris Tong prepared the index.

For the second edition, Gigi Estabrook pulled the various pieces together, and Clairemarie
Fisher O’Leary coordinated the production.David Sewell copyedited the manuscript, and
Nancy Kotary and Evan Garcia made the edits. Seth Maislin helped to update the index.
Lenny Muellner fielded yet moretroff questions, and Chris Reilley did the figures.

Most of all I’d like to thank my wife Karen, who endured author’s-widow tribulations with
considerable grace and understanding. And patience; she listened while I rehearsed often and
at length my thoughts about the topics in this book, even though she “cared for none of those
things.” This was invaluable in helping me sort out what I was trying to write. Her contribu-
tion was significant, and greatly appreciated.

We’d Like To Hear from You
We hav etested and verified all of the information in this handbook to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!). Please let
us know about any errors you find, as well as your suggestions for future editions, by writing:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a cata-
log, send email to:

info@ora.com

4 September 1996 17:18

chapter 0: Preface 0-xxv

To ask technical questions or comment on the handbook, send email to:

bookquestions@ora.com

To correspond directly with the author, send email to:

dubois@primate.wisc.edu

4 September 1996 17:18

