
-- --

Configuration Management in the X Window System

Jim Fulton

X Consortium
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA02139

ABSTRACT

The X Window System† has become an industry standard for network window
technology in part because of the portability of the sample implementation from MIT.
Although many systems are designed to reuse source code across different platforms, X is
unusual in its portability across software build environments. Thispaper describes sev-
eral mechanisms used in the MIT release of the X Window System to obtain such flexibil-
ity, and summarizes some of the lessons learned in trying to support X on a number of
different platforms.

1. Intr oduction

The X Window System† is a portable, network transparent window system originally developed at MIT. It
is intended for use on raster display devices ranging from simple monochrome frame buffers to deep, true
color graphics processors.Because of its client/server architecture, the non-proprietary nature of its back-
ground, and the portability of the sample implementation from MIT, the X Window System has rapidly
grown to become an industry standard.This portability is the result of several factors: a system architecture
that isolates operating system and device-specifics at several levels; a slow, but machine-independent,
graphics package that may be used for an initial port and to handle cases that the underlying graphics hard-
ware does not support; and the use of a few, higher-level tools for managing the build process itself.

1.1. Summaryof X Window System Architecture

The X Window System is the result of a combined effort between MIT Project Athena and the MIT Labora-
tory for Computer Science.Since its inception in 1984, X has been redesigned three times, culminating in
Version 11 which has since become an industry standard (see [Scheifler 88] for a more detailed history).X
uses the client/server model of limiting interactions with the physical display hardware to a single program
(theserver) and providing a way for applications (theclients) to send messages (known asrequests) to the
server to ask it to perform graphics operations on the client’s behalf. Thesemessages are sent along a reli-
able, sequenced, duplex byte stream using whatever underlying transport mechanisms the operating system
provides. If connections using network virtual circuits (such as TCP/IP or DECnet) are supported, clients
may be run on any remote machine (including ones of differing architectures) while still displaying on the

† X Window System is a trademark of MIT; DECnet is a trademark of Digital Equipment Corporation; UNIX is a regis-
tered trademark of AT&T.

Copyright © 1989 by the Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this document for any purpose and without fee is hereby granted, provided
that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission.M.I.T. makes no representations about the suitability of the soft-
ware described herein for any purpose. Itis provided "as is" without express or implied warranty.



-- --

local server.

The details of how the client establishes and maintains connections with the server are typically hidden in a
subroutine package (known as alanguage binding) which provides a function call interface to the X proto-
col. Higher level toolkits and user interface management systems are then built on top of the binding
library, as shown in Figure 1 for the C programming language.Since only the underlying operating system
networking interface of the binding (shown in italics) need be changed when porting to a new platform,
well-written applications can simply be recompiled.

application
UIMS

widgets
toolkit

Xlib
os

Figure 1: architecture of a typical C language client program

The server takes care of clipping of graphics output and routing keyboard and pointer input to the appropri-
ate applications.Unlike many previous window systems, moving and resizing of windows are handled out-
side the server by special X applications calledwindow managers. Different user interface policies can be
selected simply by running a different window manager.

The MIT sample server can be divided into three sections: a device-independent layer calleddiX for man-
aging the various shared resources (windows, pixmaps, colormaps, fonts, cursors, etc.), an operating system
layer calledos for performing machine-specific operations (managing connections to clients, dealing with
timers, reading color and font name databases, and memory allocation), and a device-specific layer called
ddX for drawing on the display and getting input from the keyboard and pointer. Only theosandddXpor-
tions of the server need to be changed when porting X to a new device.

Although this is still a substantial amount of work, a collection of pixel-oriented drawing packages that
only require device-specific routines (refered to asspans) to read and write rows of pixels are provided to
allow initial ports of X to be done in a very short time.A server developer can then concentrate on replac-
ing those operations that can be implemented more efficiently by the hardware. Figure2 shows the relative
layering of the various packages within the sample server from MIT. The mi library provides highly
portable, machine-independent routines that may be used on a wide variety of displays.The mfb andcfb
libraries contain versions of the graphics routines for monochrome and color frame buffers, respectively.
Finally, the snf library can be used to read fonts stored in Server Natural Format. Typically, only the sec-
tions printed initalics need be changed when moving to a new platform.

diX
ddX

mi mfb cfb snf
spans

os

Figure 2: architecture of the MIT sample server

By splitting out the device-specific code (by separating clients from servers anddiX from ddX) and then
providing portable utility libraries (mi, mfb, cfb, and cfb) that may be used to implement the non-portable
portions of the system, much of the code can be reused across many platforms, ranging from personal



-- --

computers to supercomputers.

2. Configuring the Software Build Process

In practice, porting X to a new platform typically requires adding support in the operating system-specific
networking routines and mixing together pieces of machine-independent and device-specific code to access
the input and output hardware. Althoughthis approach is very portable, it increases the complexity of the
build process as different implementations require different subsets.One solution is to litter the source
code with machine-specific compiler directives controlling which modules areas get built on a given plat-
form. However, this rapidly leads to sources that are hard to understand and even harder to maintain.

A more serious problem with this approach is that it requires configuration information to be replicated in
almost every module. In addition to being highly prone to error, modifying or adding a new configuration
becomes extremely difficult. In contrast, collecting the various options and parameters in a single location
makes it possible for someone to reconfigure the system without having to understand how all of the mod-
ules fit together.

Although sophisticated software management systems are very useful, they tend to be found only on spe-
cific platforms. Since the configuration system must be working before a build can begin, the MIT releases
try to adhere to the following principles:

• Use existing tools to do the build (e.g.make) where possible; writing complicated new tools sim-
ply adds to the amount of software that has to be bootstrapped.

• Keep it simple.Every platform has a different set of extensions and bugs. Planfor the least com-
mon denominator by only using the core features of known tools; don’t rely on vendor-specific
features.

• Providing sample implementations of simple tools that are not available on all platforms (e.g. a
BSD-compatibleinstall script for System V) is very useful.

• Machine-dependencies should be centralized to make reconfiguration easy.

• Site-wide options (e.g. default parameters such as directory names, file permissions, and enabling
particular features) should be stored in only one location.

• Rebuilding within the source tree without losing any of the configuration information must be
simple.

• It should be possible to configure external software without requiring access to the source tree.

One approach is to add certain programming constructs (particularly conditionals and iterators) to the util-
ity used to actually build the software (usuallymake; see [Lord 88]). Although this an attractive solution,
limits on time and personnel made implementing and maintaining such a system impractical for X.

The MIT releases of X employ a less ambitious approach that uses existing tools (particularlymake and
cpp). Makefilesare generated automatically by a small, very simple program namedimake (written by
Todd Brunhoff of Tektronix) that combines a template listing variables and rules that are common to all
Makefiles, a machine- and a site-specific configuration file, a set of rule functions written ascpp macros,
and simple specifications of targets and sources calledImakefiles. Since the descriptions of the inputs and
outputs of the build are separated from the commands that implement them, machine dependencies such as
the following can be controlled from a single location:

• Some versions ofmake require that the variable SHELL to be set to the name of the shell that
should be used to executemakecommands.

• The names of various specialmake variables (e.g. MFLAGS vs. MAKEFLAGS) differ between
versions.

• Special directives to control interaction with source code maintenance systems are required by
some versions ofmake.

• Rules for building targets (e.g.ranlib, lint options, executable shell scripts, selecting alternate
compilers) differ among platforms.



-- --

• Some systems require special compiler options (e.g. increased internal table sizes, floating point
options) for even simple programs.

• Some systems require extra libraries when linking programs.

• Not all systems need to compile all sources.

• Configuration parameters may need to be passed to some (such as -DDNETCONN to compile in
DECnet support) or all (such as -DSYSV to select System V code) programs as preprocessor
symbols.

• Almost all systems organize header files differently, making static dependencies inMakefiles
impossible to generate.

By using the C preprocessor, imake provides a familiar set of interfaces to conditionals, macros, and sym-
bolic constants.Common operations, such as compiling programs, creating libraries,creating shell
scripts, and managing subdirectories, can be described in a concise, simple way. Figure 3 shows theImake-
file used to build a manual page browser namedxman(written by Chris Peterson program of the MIT X
Consortium, based on an implementation for X10 by Barry Shein):

DEFINES = -DHELPFILE=\"$(LIBDIR)$(PATHSEP)xman.help\"
LOCAL_LIBRARIES = $(XAWLIB) $(XMULIB) $(XTOOLLIB) $(XLIB)
SRCS = ScrollByL.c handler.c man.c pages.c buttons.c help.c menu.c search.c \

globals.c main.c misc.c tkfuncs.c
OBJS = ScrollByL.o handler.o man.o pages.o buttons.o help.o menu.o search.o \

globals.o main.o misc.o tkfuncs.o
INCLUDES = -I$(TOOLKITSRC) -I$(TOP)

ComplexProgramTarget (xman)
InstallNonExec (xman.help, $(LIBDIR))

Figure 3: Imakefileused by a typical client program

This application requires the name of the directory in which its help file is installed (which is a configura-
tion parameter), several libraries, and various X header files.The macroComplexProgramTarget generates
the appropriate rules to build the program, install it, compute dependencies, and remove old versions of the
program and its object files.The InstallNonExecmacro generates rules to installxman’s help file with
appropriate permissions.

3. GeneratingMakefiles

Although imake is a fairly powerful tool, it is a very simple program.All of the real work is performed by
the template, rule, and configuration files.The version currently used at MIT (which differs somewhat
from the version supplied in the last release of X) uses symbolic constants for all configuration parameters
so that they may be overridden or used by other parameters.General build issues (such as the command to
execute to run the compiler) are isolated from X issues (such as where should application default files be
installed) by splitting the template as shown in Figure 4.

This template instructsimake to perform the following steps when creating aMakefile:

1. Usingconditionals,Imake.tmpl determines the machine for which the build is being configured
and includes a machine-specific configuration file (usually namedmachine.cf). Using the C
preprocessor to define various symbols, this configuration file sets the major and minor version
numbers of the operating system, the names of any servers to build, and any special programs
(such as alternate compilers) or options (usually to increase internal table sizes) that need to be
used during the build. Defaults are provided for all parameters, so .cf files need only describe
how this particular platform differs from ‘‘generic’’ UNIX System V or BSD UNIX. Unlike
previous versions of theimake configuration files, when new parameters are added, only the



-- --

Imake.tmpl

#include "machine.cf"

#include "site.def"

#include "Project.tmpl"

#include "Imake.rules"

#include "./Imakefile"

Figure 4: structure ofimake template used by X

systems which are effected by them need to be updated.

2. Next, a site-specific file (namedsite.def) is included so that parameters from the .cf files may
be overridden or defaults for other options provided. Thisis typically used by a site adminis-
trator to set the names of the various directories into which the software should be installed.
Again, all of the standardcppconstructs may be used.

3. A project-specific file (namedProject.tmpl) is included to set various parameters used by the
particular software package being configured.By separating the project parameters (such as
directories, options, etc.)from build parameters (such as compilers, utilities, etc.), the master
template and the .cf files can be shared among various development efforts.

4. A file containing the set ofcpp rules (namedImake.rules) is included. Thisis where the vari-
ous macro functions used in the master template and the per-directory description files (named
Imakefile) are defined. These rules typically make very heavy use of themake variables
defined inImake.tmpl so that a build’s configuration may be changed without having to edit
this file.

5. TheImakefiledescribing the input files and output targets for the current directory is included.
This file is supplied by the programmer instead of aMakefile. The functions that it invokes are
translated bycpp into series ofmake rules and targets.

6. Finally, make rules for recreating theMakefileand managing subdirectories are appended, and
the result is written out as the new Makefile.

Imake, along with a separate tool (namedmakedepend, also written by Brunhoff) that generatesMakefile
dependencies between object files and the source files used to build them, allows properly configured
Makefiles to be regenerated quickly and correctly. By isolating the machine- and site-specifics from the
programmer, imake is much like a well-developed text formatter: both allow the writer to concentrate on the
content, rather than the production, of a document.

4. How X usesimake

Development of X at MIT is currently done on more than half a dozen different platforms, each of which is
running a different operating system.A common source pool is shared across those machines that support
symbolic links and NFS by creating trees of links pointing back to the master sources (similar to the object
trees of [Harrison 88]).Editing and source code control is done in the master sources and builds are done



-- --

in the link trees.

A full build is done by creating a fresh link tree and invoking a simple, stub top-level Makefilewhich:

1. compilesimake.

2. builds the real top-level Makefile.

3. builds the rest of theMakefilesusing the new top-level Makefile.

4. removes any object files left over from the previous build.

5. builds the header file tree, and computes and appends the list of dependencies between object
files and sources to the appropriateMakefiles.

6. andfinally, compiles all of the sources.

If the build completes successfully, programs, libraries, data files, and manual pages may then be installed.
By keeping object files out of the master source tree, backups and releases can be done easily and effi-
ciently. By substituting local copies of particular files for the appropriate links, developers can work with-
out disturbing others.

5. Limitations

Although the system described here is very useful, it isn’t perfect. Differences between utilities on various
systems places a restriction on how well existing tools can be used.One of the reasons why imake is a pro-
gram instead of a trivial invocation of the C preprocessor is that somecpp’s collapse tabs into spaces while
others do not.Sincemake uses tabs to separate commands from targets,imake must sometimes reformat
the output fromcppso that a valid Makefile is generated.

Sincecpponly provides global scoping of symbolic constants, parameters are visible to the whole configu-
ration system.For larger projects, this approach will probably prove unwieldy both to the people trying to
maintain them and to the preprocessors that keep the entire symbol table in memory.

The macro facility provided bycpp is convenient because it is available on every platform and it is familar
to most people.However, a better language with real programming constructs might provide a better inter-
face. Thenotions of describing one platform in terms of another and providing private configuration
parameters map intriguingly well into the models used in object management systems.

6. Summaryand Observations

The sample implementation of the X Window System from MIT takes advantage of a system architecture
that goes to great lengths to isolate device-dependencies. Byselectively using portable versions of the
device-specific functions, a developer moving X to a new platform can quickly get an initial port up and
running very quickly.

To manage the various combinations of modules and to cope with the differing requirements of every plat-
form and site, X uses a utility namedimake to separate the description of sources and targets from the
details of how the software is actually built. Usingas few external tools as possible, this mechanism allows
support for new platforms to be added with relatively little effort.

Although the approaches taken by MIT will not work for everyone, several of its experiences may be useful
in other projects:

• Even if portability isn’t a goal now, it probably will become one sooner than expected.

• Just as in other areas, it frequently pays to periodically stand back from a problem and see
whether or not a simple tool will help.With luck and the right amount of abstracting it may even
solve sev eral problems at once.

• Be wary of anything that requires manual intervention.

• And finally, there is no such thing as portable software, only software that has been ported.



-- --

7. References

[Harrison 88]
‘‘ Rtools: Tools for Software Management in a Distributed Computing Environment,’’ H elen E. Harri-
son, Stephen P. Schaefer, Terry S. Yoo, Proceedings of the Usenix Association Summer Conference,
June 1988, 85-94.

[Lord 88]
‘‘ Tools and Policies for the Hierarchical Management of Source Code Development,’’ T homas Lord,
Proceedings of the Usenix Association Summer Conference, June 1988, 95-106.

[Scheifler 88]
X Window System: C Library and Protocol Reference, Robert Scheifler, James Gettys, and Ron New-
man, Digital Press, Bedford, MA, 1988.

-- --


