Language design

Language design

Key concepts:
- Syntax, Semantics, Pragmatics
 Language categories
+ Specification
* Design concepts
* Implementation
- Standardization
* Programming language evolution

Syntax, Semantic,
Pragmatics

Syntax

* The correct grammar of the language
Semantic

 The meaning of a syntactically correct phrase
Pragmatics

* How to use the given phrase for a useful purpose

Syntax

Help the lexer/parser
+ C declaration syntax: double (*funptr)(double);
Help the programmer to write correct code
 Pascal or C type of use ;
Too lazy
* PL/I generated missing end keyword
* Algol68 begin (interchangable
 Newline appears in strings?
Too strict
* Algol68 only implementation for skip statement

Syntax

Goto?
Exceptions?
Block statement:
* The goto fail error
if (cond)
goto fail;
goto fall;
| = 0;

Syntax

(Dangling) else statement:
if (1<10)
if (j<20)i+=j;
else
1=];
Switch statement in C
* 90% of case statements require break

Syntax

C++11

vector<vector<Node>> parents;
int n = index_of parent();

/...

for (Node n in parents[n])

Semantics
The meaning of the code
- Axiomatic
{ x=n A y=m } z:=x; xi=y; y:=z { y=n A Xx=m }
 Denotational

Slz:=x; x:=y; y:=z] = Sly:=z] o S[x:=y] o S[z:=x]

 Operational

(z:=x, s9) — $1 (x:=y, s1) — $2

<ZZ:X; X:=y, 5-,’0} —> 89 <YZ:Z, “-s’g} —r S3

(z:=x; x:=y; y:=2, So) — S3

- Textual

Pragmatics

How to write good code
Programmers practices, design rules

Scala

- Optimize for immutable
C++

 Use RAIl, Pimpl, use const correctness
C

if (5 == strlen(str))

Language specification

Fortran: BNF

Pascal: EBNF, ,Railways notation”

ALGOLGS: first textual
* After 1973 revised in Van Wijngaarden grammar
* Context sensitive
* Turing complete

C/C++ textual + abstract machine

Language design
concepts

Well-defined syntax and semantics
Expressivity

In APL 256 operators

* Redundancy is important
Orthogonality

 C++: protected abstract virtual base pure virtual
private destructor

om Cargqill

If you think C++ is not overly complicated, just what
IS a protected abstract virtual base pure virtual
private destructor, and when was the last time you
needed one? — Tom Cargill, C++ Journal, Fall 1990

The first 90% of the code accounts for the first 90%
of the development time. The remaining 10% of the
code accounts for the other 90% of the development
time.

Language design
concepts

Generality
- C++ templates
- Java generics?
Modularity
- Java package vs. C++ namespace
+ C++ included headers?, Erlang flat modules?

Language design
concepts

Portability

- Source/Bytecode/Binary

 Pascal P code, COBOL
Performance

- Garbage collection?

- Optimizations vs. Debugging
Learnability

Implementation

Compilation
 Phases: (Preprocessing), Compiling, Linking
- Static or dynamic linking
 Generates HW and OS-specific executable
- Effective optimizations
Interpretation
- Faster developing process
' Less correctness-checking possibilities

Implementation

Hybrid model

- Compiler generates platform independent
iIntermediate code

' Intermediate code executed by “virtual machine”

* Fair correctness checking and optimization

* More optimization: Just-in-time compilers
Samples

- Pascal P-code, Java virtual machine, MS IL

Standardization

Reasons
- Portability of source
 Maintanability
- Portability of programmers
* Acceptability
' Faster development
Standard library must included
C++ [SO (since 1998)
C# ECMA-334 C# version 2.0
Java nope

Language evolution

New features/keywords

* Reverse compatibility issues

 Depricated elements

- Silent semantic changes?
Successful

- C++: delete functions, auto keyword, overload
Issues

* Python 2 — Python 3

*Cto C++

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

