
Modern C++ - Common errors
regarding scope and life

9. Common errors regarding scope
and life

Life and scope rules

In imperative programming languages variables have two important properties:

Life - the TIME under run-time when the memory area is valid and usable.1.

Scope - the AREA in the program where a name is binded to a memory area.2.

There are plenty of problems junior C++ programmers meet when make mistakes in

scope or life rules.

How (not to) make scope-life errors?:

The task:

write a question to stdout1.

read a string as answer from stdin2.

print the answer to stdout3.

 1 //

 2 // This is a VERY BAD program

 3 //

 4 #include <iostream>

 5

 6 using namespace std;

 7 char *answer(const char *question);

 8

 9 int main()

10 {

11 cout << answer("How are you? ") << endl;

12 return 0;

13 }

14 char *answer(const char *question)

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

1 of 7 2017. 05. 18. 15:58

15 {

16 cout << question;

17 char buffer[80]; // local scope, automatic life

18 // char[] converts to char*

19 cin >> buffer; // ERROR1: possible buffer overrun!!

20 return buffer; // ERROR2: return pointer to local: never do this!

21 }

There are two big errors in the code above:

The cin » buffer call reads charakters into buffer until the first separator. The

buffer could be (and sooner or later will be) overflow, i.e. we read more charactres

then the room we have. This buffer overflow problem is perhaps the most critical

security errors in C++.

1.

The function returns a pointer to an automatic life local variable. When we try to

use that pointer, the memory behind it already gone. As the life of the local buffer

is over, we may overwrite other values.

2.

Lets try to fix the program with making buffer to global, therefore its life to static. Also

we avoid buffer overrun problem using getline.

 1 #include <iostream>

 2

 3 using namespace std;

 4

 5 char *answer(const char *question);

 6 char buffer[80]; // global scope, static life

 7

 8 int main()

 9 {

10 cout << answer("How are you? ") << endl;

11 return 0;

12 }

13 char *answer(const char *question)

14 {

15 cout << question;

16 // char buffer[80];

17 cin.getline(buffer,80); // reads max 79 char + places '\0'

18 return buffer;

19 }

This is working (in this example), but buffer is visible in too many places. This is a

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

2 of 7 2017. 05. 18. 15:58

maintenance nightmare. In fact, buffer is not a global concept in this program, it is only

an implementation detail of answer function.

We should try to narrow the scope of buffer.

 1 #include <iostream>

 2

 3 using namespace std;

 4

 5 char *answer(const char *question);

 6 // char buffer[80]; // global scope, static life

 7

 8 int main()

 9 {

10 cout << answer("How are you? ") << endl;

11 return 0;

12 }

13 char *answer(const char *question)

14 {

15 cout << question;

16 static char buffer[80]; // local scope, static life

17 cin.getline(buffer,80);

18 return buffer;

19 }

This works as we expected, and the scope of buffer is minimal. The buffer is not

visible but still valid outside of the answer function.

However, this solution is also far from perfect:

 1 #include <iostream>

 2

 3 using namespace std;

 4

 5 char *answer(const char *question);

 6

 7 int main()

 8 {

 9 cout << answer("Sure?: ") << ", " << answer("How are you?: ") <<

endl;

10 return 0;

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

3 of 7 2017. 05. 18. 15:58

11 }

12 char *answer(const char *question)

13 {

14 cout << question;

15 static char buffer[80];

16 cin.getline(buffer,80);

17 return buffer;

18 }

$ g++ -ansi -pedantic -Wall -W howareyou.cpp

$./a.out

How are you?: fine

Sure?: yes

yes, yes

(Also, consider the reverse evaluation order for the two calls.)

The problem is that we have only one buffer for the two answers, and the second

answer overwrites the first one. The second answer will be printed twice.

In real world the same situation happens with concurrent programs executing multiply

threads.

We need a separate buffer for each simultanious calls of answer. Lets try this with

dynamic memory.

 1 #include <iostream>

 2

 3 using namespace std;

 4

 5 char *answer(const char *question);

 6

 7 int main()

 8 {

 9 cout << answer("Sure?: ") << ", " << answer("How are you?: ") <<

endl;

10 return 0;

11 }

12 char *answer(const char *question)

13 {

14 cout << question;

15 char *buffer = new char[80];

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

4 of 7 2017. 05. 18. 15:58

16 cin.getline(buffer,80);

17 return buffer;

18 }

$./a.out

How are you?: fine

Sure?: yes

yes, fine

We finally have got two separate answers (in wrong order). But the real problem is

hidden: no one freed the allocated buffers. In long run-time, with many calls of

answer() we will run out of the memory!

This fenomenon is called memory leak and it is a fatal error in C++.

The right solution is to

Having an exact owner of every memory area. This case the owner is the caller

function (here the main()).

1.

Use sequence points to separate sequential events.2.

 1 #include <iostream>

 2

 3 using namespace std;

 4

 5 char *answer(const char *question, char *buffer, int size);

 6

 7 int main()

 8 {

 9 const int bufsize = 80;

10 char buffer1[bufsize],

11 char buffer2[bufsize];

12

13 cout << answer("How are you?: ", buffer1, bufsize) << endl;

14 cout << answer("Sure?: ", buffer2, bufsize) << endl;

15 return 0;

16 }

17 char *answer(const char *question, char *buffer, int size)

18 {

19 cout << question;

20 cin.getline(buffer,size);

21 return buffer;

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

5 of 7 2017. 05. 18. 15:58

22 }

This is correct, but also hard to maintain solution. The main function, which uses the

memory allocates it. The answer function receives the parameters, and fills the buffer.

The maximum size of the characters to read is passed as an extra parameter.

However, in C++ we can use the standard library sdt::string class. There are a lot of

advantages of using std::string.

The size of the answer is flexible, the memory behind the std::string grows

dynamically on demand.

The string class can be defined locally and answer can be returned by value

(i.e.we copy the local string back). The characters behind the string will be copied

by the copy constructor of std::string.

When answer returns the local std::string object is destroyed (after its value

copied from) by the destructor function of the std::string class. Therefore there

will be no memory leak.

 1 #include <iostream>

 2 #include <string> // for std::string class

 3

 4 using namespace std;

 5

 6 string answer(string question);

 7

 8 int main()

 9 {

10 string a1 = answer("How are you? ");

11 string a2 = answer("Sure? ");

12 cout << a1 << ", " << a2 << endl;

13 return 0;

14 }

15 string answer(string question)

16 {

17 cout << question;

18 string answ;

19 getline(cin, answ);

20 return answ;

21 }

This code not only works well (even in multithreaded code) but also looks more natural.

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

6 of 7 2017. 05. 18. 15:58

$./a.out

How are you? fine

Sure? yes

fine, yes

Use the most straitforward solutions with the help of the standard library classes!

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

7 of 7 2017. 05. 18. 15:58

