
Modern C++ - STL example

19. An STL example

In this chapter we discuss the practical usage of STL. We will solve a simple task

without STL and then we will introduce STL instrments step by step.

Merging two sorted file

Suppose we have two sorted files of strings file1 and file2. The task is to create file3 as

a sorted output where we merge the values from the input files.

At the beginning we create a solution without using STL at all.

 1 #include <iostream>

 2 #include <fstream>

 3 #include <string>

 4

 5 using namespace std;

 6

 7 // simple merge

 8 int main()

 9 {

10 string s1, s2;

11 ifstream f1("file1.txt");

12 ifstream f2("file2.txt");

13 ofstream f3("file3.txt");

14 f1 >> s1;

15 f2 >> s2;

16 // the usual way:

17 while (f1 || f2)

18 {

19 if (f1 && ((s1 <= s2) || !f2))

20 {

21 f3 << s1 << endl;

22 f1 >> s1;

23 }

24 if (f2 && ((s1 >= s2) || !f1))

25 {

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

1 of 10 2017. 05. 18. 16:12

26 f3 << s2 << endl;

27 f2 >> s2;

28 }

29 }

30 return 0;

31 }

In lines 11-13 we open the files. In lines 14-15 we read one-one elements from both

input streams. This will indicate eof state if any of the files is empty.

We are looping until all input files are exhausted. To reach this, in line 19 and 24 we

compare the two pre-read elements, and we select the smaller one. The trick in the

comparision is that we also select the element if the other file is already empty. the

selected element is written to the output and a new pivot element is read from the

same file.

Although this solution is working fine and effectively, it is easy to see that its

complexity make it hard to maintain. For example, if the client requirement changes to

use a different way of comparision, or handle eof in a different way, we have to modify

the critical part of the loop, and then have to re-test the whole program.

Using STL in a naïve way

In the following iteration we will use teh std::vector container and tthe std::merge

algorithm in a naïve way: we read both input files into two vector of std::string and

then merge them into a third output vector.

 1 #include <iostream>

 2 #include <fstream>

 3 #include <string>

 4 #include <algorithm> // for merge(b1, e1, b2, e2, b3 [,opc_comp])

 5 #include <vector>

 6

 7 using namespace std;

 8

 9 int main()

10 {

11 ifstream f1("file1.txt");

12 ifstream f2("file2.txt");

13 ofstream f3("file3.txt");

14 string s;

15 vector<string> v1;

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

2 of 10 2017. 05. 18. 16:12

16 while (if1 >> s) v1.push_back(s);

17 vector<string> v2;

18 while (if2 >> s) v2.push_back(s);

19

20 // allocate the space for the result

21 vector<string> v3(v1.size()+v2.size()); // expensive...

22

23 merge(v1.begin(), v1.end(),

24 v2.begin(), v2.end(),

25 v3.begin()); // v3[i++] = *current++

26 for (int i = 0; i < v3.size(); ++i)

27 f3 << v3[i] << endl;

28 return 0;

29 }

We read the content of input files into v1 and v2 in lines 16 and 18 respectively. As

merge put the output into a fully pre-allocated container we have to create v3 with

the necessary size in line 21. This is an expensive operation as we have to create an

empty string into every vector element – just to be overwritten in the next statement.

The actual merge happens in line 23-25 in the merge function, where the first four

parameters define the input intervals, and the fifth parameter is the iterator to the

beginning of the output interval. The merge algorithm supposes that thelength of the

output interval is long enough, that we fulfilled in line 21.

Although, the program itself is trivial now, it has both functional and performance

problems. First of all: the input file sizes are limited by the memory of the program: in

one point we keep all input strings twice in the memory: (ones as the input either in v1

or v2 and as the output in v3). The unnecessary creation of empty strings in line 21 is

also a burden.

Using insert adaptors

Although, it does not really changes the major problems with the program above, we

can solve the last issue. It would be a logical choice not to preallocate (and then

owerwrite) all output elements, but extend the vector using the push_back method

one by one.

First of all, we do not allocate all elements of the output vector in advance, we just

create an empty vector v3 in line 22. Since extending a vector with N elements at the

end reallocates the buffer of a vector roughly log(N) times, and copies the elements,

we pre-allocatethe buffer with the reserve method in the next line in one step. After

calling reserve the logical size of v3 is still zero, only the physical buffer is allocated.

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

3 of 10 2017. 05. 18. 16:12

The issue comes with the merge function. Merge wants to overwrite the output vector

and not to extend it. Here we apply an adaptor.

 1 #include <iostream>

 2 #include <fstream>

 3 #include <string>

 4 #include <algorithm> // for merge(b1, e1, b2, e2, b3 [,opc_comp])

 5 #include <vector>

 6 #include <iterator> // for back_insert_iterator

 7

 8 using namespace std;

 9

10 int main()

11 {

12 ifstream f1("file1.txt");

13 ifstream f2("file2.txt");

14 ofstream f3("file3.txt");

15 string s;

16 vector<string> v1;

17 while (f1 >> s) v1.push_back(s);

18 vector<string> v2;

19 while (f2 >> s) v2.push_back(s);

20

21 // do not allocate the space for the result

22 vector<string> v3; // cheap...

23 v3.reserve(v1.size()+v2.size()); // allocate all space in once

24

25 merge(v1.begin(), v1.end(),

26 v2.begin(), v2.end(),

27 back_inserter(v3)); // v3.push_back(*current++)

28 for (int i = 0; i < v3.size(); ++i)

29 f3 << v3[i] << endl;

30 return 0;

31 }

Adaptors modify the interface of a container (or an iterator). That is here we will

replace v3.begin() with a back_inserter_iterator object in line 27. The

back_insert_iterator class is defined in header <iterator> included in line 6 and the

object itself is created by the back_inserter factory function.

A back_inserter_iterator adaptor is acting like an output iterator, but its operator=

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

4 of 10 2017. 05. 18. 16:12

instead of overwriting the referred element on the container calls the push_back

method on the original container (here on v3). Thus merge thinks that overwrites the

output range, but in reality it extends it.

There are also inserters to insert elements into front calling push_front or just insert

for associative containers.

Input and output iterator adaptors

The major issue with the previous program version was to store all elements in the

memory (twice) in temporary vectors.

To solve this we will apply adaptors for the input and output files. Such adaptors are

called input and output iterator adaptors.

 1 #include <iostream>

 2 #include <fstream>

 3 #include <string>

 4 #include <algorithm>

 5 #include <iterator> // input- and output-iterators

 6

 7 using namespace std;

 8

 9 int main()

10 {

11 ifstream f1("file1.txt");

12 ifstream f2("file2.txt");

13 ofstream f3("file3.txt");

14 // istream_iterator(if1) -> f1 >> *current

15 // istream_iterator() -> EOF

16 // ostream_iterator(f3,x) -> of << *current << x

17 merge(istream_iterator<string>(f1), istream_iterator<string>(),

18 istream_iterator<string>(f2), istream_iterator<string>(),

19 ostream_iterator<string>(f3,"\n"));

20 return 0;

21 }

The iterator adaptors have the same idea as the inserters. They are acting like

iterators but reading from and write to the wrapped stream objects. To express the end

of the input range (here the eof event on read), default constructed istream_iterator

objects are given as the first and third parameter of merge.

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

5 of 10 2017. 05. 18. 16:12

As the same stream can be read as sequence of characters, numbers of strings, the

input_iterator class is a template to define the unit to read (here string). For output

iterator we can define a sepearator to be written after every output action (here “\n”).

Notice that in this version there is no vectors to buffer input and output, therefore our

program has a low memory footprint and can also work on infinite input streams.

Functors

Suppose, later the customer of our program wants a change: in the sorting of the

strings we have to negligate the difference between upper case and lower case letters.

The problem is, that the merge algorithm by default uses the operator< between the

input elements, here string objects.

In fact, merge has a second version, where the sixth parameter is used to compare the

input elements. Such functors are classes acting like dunctions, defining the function

call operator (operator()). Functors can appear in various ways, but unary predicates,

taking one parameter and returning bool, and binary predicates taking two

parameters and returning bool has a major role for STD algorithms. Unary predicates

are used in algorithms, like find_if or remove_if, while binary ones mainly as

comparisions.

 1 #include <iostream>

 2 #include <fstream>

 3 #include <string>

 4 #include <cctype>

 5 #include <algorithm>

 6 #include <iterator>

 7

 8 using namespace std;

 9

10 struct my_less // function object: "functor"

11 {

12 bool operator()(const string& s1, const string& s2) const

13 {

14 string us1 = s1;

15 string us2 = s2;

16 // TODO: use locale object

17 transform(s1.begin(), s1.end(), us1.begin(), toupper);

18 transform(s2.begin(), s2.end(), us2.begin(), toupper);

19 return us1 < us2;

20 }

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

6 of 10 2017. 05. 18. 16:12

21 };

22 int main()

23 {

24 ifstream f1("file1.txt");

25 ifstream f2("file2.txt");

26 ifstream f3("file3.txt");

27

28 merge(istream_iterator<string>(f1), istream_iterator<string>(),

29 istream_iterator<string>(f2), istream_iterator<string>(),

30 ostream_iterator<string>(f3,"\n"), my_less());

31 return 0;

32 }

The my_less class has a function call operator method to compare two strings and

returning true when the case insensitive comparison recognizes that the first

parameter is less than the second. This class is callable. Thus it acts as a binary

predicates.

A temporary object is created as the sixth parameter of merge algorithm and its

function call operator is called for every time merge compares two strings.

The implementation of the function call operator is only demonstration purposes, a real

solution would utilize the local library.

Functor with state

More complex functors can be defined using the full feature set of object-oriented

programming.

For example, the customer may not simply want to merge the input files in a sorted

way, but taking one element from file1 and than one from file2, “zipping” the files. We

can modify the previous solution to returning the predicates alternating true and

false. This requires to strore the previous state: we will create an attribute in the

functor for this purpose.

 1 #include <iostream>

 2 #include <fstream>

 3 #include <string>

 4 #include <cctype>

 5 #include <algorithm>

 6 #include <iterator>

 7

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

7 of 10 2017. 05. 18. 16:12

 8 using namespace std;

 9

10 struct zipper

11 {

12 zipper() : _flag(false) {}

13 bool operator()(const string&, const string&) const

14 {

15 _flag = ! _flag;

16 return _flag;

17 }

18 bool _flag;

19 };

20 int main()

21 {

22 ifstream f1("file1.txt");

23 ifstream f2("file2.txt");

24 ifstream f3("file3.txt");

25

26 merge(istream_iterator<string>(f1), istream_iterator<string>(),

27 istream_iterator<string>(f2), istream_iterator<string>(),

28 ostream_iterator<string>(f3,"\n"), zipper());

29 return 0;

30 }

Usually, it is not suggested to define functors with state. Some STL algorithm may copy

or assign the functor and therefore its behavior may hard to predict. In such simple

cases, however, we can use predicates with state.

Notice, that since the function call operator does not depend on its parameters, we

declare them without formal parameter name.

Generalization

In the last step we generalize the zipper class. We make it template, so it can work for

any type we can read in and write out to files. (We do not use any comparision

anymore, so this is not a restriction now.)

We can apply further (run-time) parameters to tell teh zipper how many elements to

read from “left” (file1) and from “right” (file2). Also we can specify whether to start

from left or right.

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

8 of 10 2017. 05. 18. 16:12

 1 #include <iostream>

 2 #include <fstream>

 3 #include <string>

 4 #include <cctype>

 5 #include <algorithm>

 6 #include <iterator>

 7

 8 using namespace std;

 9

10 template <typename T>

11 class zipper

12 {

13 public:

14 zipper(int l, int r, bool fl = true) :

15 left(l), right(r), from_left(fl), cnt(0) { }

16 bool operator()(const T&, const T&) const

17 {

18 bool ret = from_left;

19 const int max = from_left ? left : right;

20 if (++cnt == max)

21 {

22 cnt = 0;

23 from_left = ! from_left;

24 }

25 return ret;

26 }

27 private:

28 const int left;

29 const int right;

30 const bool from_left;

31 int cnt;

32 };

33 int main()

34 {

35 ifstream f1("file1.txt");

36 ifstream f2("file2.txt");

37 ifstream f3("file3.txt");

38

39 merge(istream_iterator<string>(f1), istream_iterator<string>(),

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

9 of 10 2017. 05. 18. 16:12

40 istream_iterator<string>(f2), istream_iterator<string>(),

41 ostream_iterator<string>(f3,"\n"), zipper());

42 return 0;

43 }

A further advantage of such STL-style programming is that we separated the functor

logic: a different individual can code (and test) it, while somebody else can write the

other part of the program.

Modern C++ file:///home/gsd/work/zolix/tanfolyam/FFsa/lectu...

10 of 10 2017. 05. 18. 16:12

