
Fancy title goes here

Zalán Sz̋ugyi
Department of Programming Languages and Compilers,

Eötvös Loŕand University
Pázḿany Ṕeter śet́any 1/C H-1117 Budapest, Hungary

Email: lupin@elte.hu

Zoltán Porkoĺab
Department of Programming Languages and Compilers,

Eötvös Loŕand University
Pázḿany Ṕeter śet́any 1/C H-1117 Budapest, Hungary

Email: gsd@elte.hu

Abstract—In software development testing plays the most
important role to discover bugs and to verify that the product
satisfies its requirements. Several methods exist to check code
correctness. Less strict ones require fewer test cases and consume
less resources, however they may discover fewer errors. Chosing
test methods is always a compromise between the code correctness
and the available resources. In this paper we would like to
help on this choice. We analyse two important testing methods,
the Decision Coverage and the more strict Modified Condition
/ Decision Coverage in several aspects. We discuss how these
aspects are affected the difference of the necessary test cases
for these testing methods. The analysis is done on open source
programs written in C++.

I. I NTRODUCTION

... software testing [?] ... The main goals of code coverage
analysis is to find areas of a program not exercised by a set of
test cases, and create additional test cases to increase coverage,
which is an indirect measure of code quality [?].

Code coverage analysis is a structural testing technique
(white box testing), where it test program behavior is compared
against the apparent intention of the source code. Different
types of analysis require different sets of test cases:

a) Statement Coverage (SC):requires that each state-
ment of a program must be invoked at least once. The main
advantage of this method is that is can applied directly on
object code. However this method is insensible to some control
structures. See the code snippet below:

T* t = 0;
if (condition)
t = new T();

t->method();

One test case – where the variablecondition is true
–, may provide a 100% statement coverage, becouse all
the statements are invoked. In that case the program works
properly and we may recognize it is faultless. However in real
application thecondition can be false, which might cause
non-deterministic behavior or segmentation fault.

b) Decision Coverage (DC):enhances statement cov-
erage by requiring that every decision must be evaluated
both as true and as false. Thus the previous problem will
be discovered in testing time. However this method ingores
branches within boolean expressions, which occur due to short-
circuit operators. Let consider the boolean expressionA||B.
Two test cases (whereA == true, B == false, and
A == false, B == false) can satisfy the requirement of

DC, however the effect of B is not tested. Thus these test
cases cannot distinguish between the decisionA||B and the
decisionA.

c) Condition / Decision Coverage (C/DC):requires that
all the arguments in a logical expression must be evaluated
both as true and as false. This method obviously solves the
problem of DC, however it takes for a huge overhead due to
the increase of arguments in the logical expression increases
the number of required test cases exponentially.

d) Modified Condition / Decision Coverage (MC/DC):
is derived from (C/DC) testing method, however it need less
test cases to achieve 100 % coverage. This testing method has
three requirement:

1) every statement must be invoked at least once,
2) every decision must be evaluated both as true and as

false,
3) each condition must be shown to independently affect

the outcome of the decision.

The independence requirement ensures that the effect
of each condition is tested relative to the other
conditions. The logical expressionA||B is fully
covered with three test cases, where the arguments are
(false, false), (true, false), (false, true).

More information on these coverage methods and others
can be found in [?], [?].

In this paper we concentrate on DC, and MC/DC testing
methods, and examine how many test cases are neccessary
to reach 100% coverage. It is clear that more test cases
are needed to satisfy the requirements of MC/DC. But it is
not so trivial how much can be spared when testing by DC
instead of MC/DC. To answer that question we analyse several
open source projects written in C++ programming language.
We discouss our results in several aspects: McCabe metrics
[?], nesting, and maximal argument number in decisions.
We examined how these aspects affect the difference of the
necessary test cases. [?]

Our paper is organized as follows: Section?? and Section
??describes the way how we computed the necessare test cases
for DC and MCDC testing methods. These methods are applied
on several open source projects and we detail our results in
Section??. We discouss the related work in Section??, and
we conclude our results in Section??.

