
Securing Distributed Applications Using Advanced

Runtime Access Control

Krisztián Pócza, Mihály Biczó, Zoltán Porkoláb

Eötvös Loránd University, Fac. of Informatics, Dept. of Programming Lang. and Compilers,

Pázmány Péter sétány 1/c. H-1117, Budapest, Hungary

mihaly.biczo@t-online.hu, kpocza@kpocza.net, gsd@elte.hu

Abstract. The architecture and integration of distributed applications increased in
complexity over the last decades. It was Service Oriented Architecture (SOA) that

answered most of the emerging questions by its explicit and contract-based
interface definitions for services and autonomous components. The exposed

functionality can be used by anyone who has access to the public interface of SOA

applications. However SOA applications often handle security loosely by making

the published contract available for more outer application than required contrarily
introducing security risks. Although there are attempts to implement fine-grained

access control mechanisms in object-oriented programming languages like Eiffel,

C# and Java, these solutions are in-process that means that they cannot cross

service contract boundaries, which is the case for distributed applications. For
these, it is of utmost importance to validate the type and the identity of the caller,

track the state of the business process and even validate the client itself using

simple, declarative syntax. In this paper we present a framework that aims to

introduce fine-grained access control mechanisms in the context of distributed
applications. We present a semi-formalized description of the framework and also a

pilot implementation on the .NET platform.

1 Introduction

The complexity of IT systems has been getting increasingly complex ever since the

beginning of software development. IT systems and the business processes they serve

span over multiple networks, computers, and programming languages as well. What

makes things even more complicated is that pieces of software serving specific

business goals (the steps of business processes) are dynamically changing. As a

consequence, architects and developers face system integration issues in a

dynamically changing technical and business environment. Until recently, integration

of systems has been performed either manually or using hard-coded modules that

were difficult to maintain and failed in a changing environment. Manual integration

was time consuming and prone to errors, while hard coded solutions required

knowledge of all connected systems and had to be re-designed and implemented when

any of the underlying systems or steps of the business process have been changed.

It is Service Oriented Architecture (SOA) [1, 5] that answers the most common
difficulties of system integration. From the historical point of view, SOA is an

evolution of modular programming, so it extends its basic principles. Reuse,

granularity, modularity, composability, componentization, and interoperability are

common requests for a SOA application as well as for modular object oriented

applications.

However, while the elementary building block of an object oriented software is the

class, the basic element of a SOA application is typically a much larger component.

These larger chunks of functionality are called services, and this is where the name

Service Oriented Architecture originates from. Services implement a relatively large

set of functionality, and should be as independent of each other as possible. This

means that services should have control over the logic they encapsulate and should

not call each other directly. Rather, if a more complex behavior is required, they

should be composed to more complex composite services. In other words, services

should be autonomous and composable.

Services expose their functionality through service contracts. A contract describes the

functions that can be invoked, the communication protocols as well as the

authentication and authorization schemes. The exposed functionality is usually a

public interface that can be called by anyone who is authenticated, is aware of the

existence of the service and uses the required communication protocol. The keyword
is that the exposed functionality is basically public, and users have quite limited

amount of control over the identity and the nature of a caller.

However, in a realistic scenario it can also happen that the identity of the caller or the

set of allowed methods depends on the state of the underlying business process or

other available information. This is usually hard to express, and due to the lack of

technology support for fine-grained, or higher level access control, it is challenging to

implement the above mentioned scenario using standard protocols, programming

environments and tools.

In [2, 9] we have implemented a pilot approach to implement Eiffel-like selective

feature export in C# 3.0. This solution makes it possible to control access to protected

resources (methods of ‘public’ interfaces) in a declarative way using simple

declarative syntax using the concepts of Aspect Oriented Programming [6]. Although

the approach works well in everyday application, it is a language specific approach

that cannot be used in case of distributed systems.

What makes things even more complicated is that SOA usually integrates systems

running on multiple computers and environments, in other words these systems are

very often distributed ones. To successfully implement our solution we have to
sacrifice interoperability property of SOA, meaning that our connected applications

have to be created using homogeneous technologies or homogeneous communication

platform. We require the exposed services to know some information about clients

that is not common for SOA applications however other more important properties

remain unchanged (contract based interface specification, autonomous services)

moreover the security validation attributes can be regarded as part of the contract.

In this paper we aim at formulating a technology independent framework that enables

users to control access to the members of public interfaces in a SOA-enabled

distributed environmentobject system [aa]. This means seamless integration

possibilities into SOA enabled applications.

 In Section 2 we present a simple motivating example that draws attention to issues

when not using fine-grained access control mechanisms.

In Section 3 we present a semi-formalized approach to solving problems presented

through the motivating example.

In Section 4 a possible implementation of the theoretical will be shown. The

chosen environment is the .NET platform, and the Workflow Foundation engine (now

part of the .NET framework), and the C# programming language.

In Section 5 we show some related work and compare our solution. In the closing

Section 65 we summarize our results, and present further research areas as well as

some related work.

2 Motivating Example

2.1 Ping-Pong Game

In order to highlight the problematic parts when accessing fully public SOA

interfaces, in this subsection we are going to show a simple motivating example. The

example is a simple game, through which we describe distributed applications, public

interfaces, and access control problems.

First, we place the game in the previously described context. The players of the game

run on different computers, so the game is a distributed application. Let’s consider a

very simple example: a ping-pong game. In each game there are two players who pass

a ball to each other. The players register themselves at the game manager, who gives a

unique identifier to each player. The game cannot start until there are exactly two

players. The first registered player begins the game, in other words he passes the ball

to the other player. The second player should not be allowed to handle the ball until
the first player passes it to him. Once the ball is passed to the second player, it is his

turn: now the first player should be denied to handle the ball until the second player

passes it back, and so on.

The methods of the game are published as an interface. The Game manager class

implements this interface and exposes methods of the game to possible clients,

primarily players.

The ‘rules’ of the game can be described as a workflow. The workflow itself and

its state transitions is a finite state automaton. The finite state automaton can be

described as a UML state activity diagram [11]. The state transitionactivity diagram

can be seen in Fig. 3Fig. 3. In Fig. 1Fig. 1, the simplified class diagram of the ping-

pong game can be seen.

Formázott: Betűtípus: Nem Félkövér

Formázott: Betűtípus: Nem Félkövér

Ping-pong game

Player

1

*

Game manager

*

-registers 1

Fig. 1. Class diagram of ping-pong game

The game manager is a singleton, there is exactly one instance of the game
manager class. Players register themselves at the game manager and get a unique

identifier. A game manager can manage many games, and in each game there are

exactly two players. Of course a game can be started only if there are exactly two

players.

A possible object diagram can be seen in Fig. 2Fig. 2.

p1 : Player p2 : Player

game : Ping-pong game

manager : Game manager

Fig. 2. Possible object diagram of a distributed game

The objects may possibly run on different computers. The difficulty is that we want to

allow only objects of type Player to call methods of the Ping-pong game object in this

distributed environment. What makes things even more complicated is that the ping-

pong game has a well-defined sequence of allowed events with a well-defined set of

allowed callers, and we have to keep the system consistent based on these rules.

Formázott: Betűtípus: Nem Félkövér

2.2 Security Shortcomings of Recent Business Applications

In real world business applications the sequence and branches of business operations

that instrument business processes are well defined and bounded. It is also well

defined who can execute a business operation in the lifetime of a business process

instance.

To make it clear suppose that we are implementing an IT Helpdesk application that

implements the following business process restricted by business rules:

1. An end user finds that she cannot connect to the Intranet portal of her

corporation
2. She makes an incident in the Helpdesk application

3. A member of the support team accepts the incident and forwards it to an IT

professional

4. The IT professional accepts the incident, corrects the problem and reports that

he corrected the malfunction for example by changing the firewall configuration

5. The support asks the end user if she finds the incident solved

6. If the end user responds yes then the support closes the incident otherwise

reassigns the incident to the same or another IT professional once more

These business rules clearly define who is allowed to perform different tasks and

also define the exact process of solving and incident reported by an end user. The

same that is true for our ping-pong game introduced before even it is not a business

application.

Unfortunately, in most real world applications these business rules are not enforced

carefully on the server side, they are rather hard coded in the client application.

Moreover, the restricted functions - based on the user role and the current state of the

process - are simply hidden on the user interface. At the same time the server is open

for any kind of requests, therefore an attacker can compromise the business process.
The reason of the previous can be one of the following:

1. Architects and developers do not care of business security

2. Architects and developers think that a simple firewall (that restricts the access

of the server from specific subnets) or some built-in authentication is enough

3. Architects and developers think or decide that it is satisfying to implement

business security on the client side

4. There is no time and money to implement adequate security mechanisms

5. It is hard to implement business security in a distributed environment

Of course it is hard or cannot be carried out to change the mind of architects and

developers therefore we suggest a solution that makes server-side business security

checks easier and faster to implement.

3 Solve Shortcomings

First we have to denote which client and business properties are suggested to be

checked and tracked to raise the business process security level:

1. The runtime type of the caller class on the client side (e.g. end-user, support

team member, IT professional in the Helpdesk application; ping-pong player in

the ping-pong game)

2. State of the business process (e.g. Can the reported incident be closed in the

current state in the Helpdesk application?e.g. The rules of the ping-pong game

in our example)

3. The identity of the client (e.g. Is it the first or the second player in the ping-

pong game?)

4. Validate, verify the client itself (e.g. IP address, subnet or some kind of

certification of the client)

All of the previous are static or internal properties from the view of the business

process, therefore all of them can be checked using declarative syntax (statically

burned in) or can be read from a configuration database.

When creating a SOA application we publish a contract (an interface) to the

outside world. The pervious properties can be validated contract-wide and can be

validated only for particular business operations published by the contract.

In the next subsections we will examine these four properties from the validability
point of view.

We identified the need to give semi-formalized description for our solution. There

are two approaches:

1. Extend some existing description language like BPEL [12, bb]

2. Create a new language that only focuses on the problem presented in this

article

Because BPEL focuses on the business process not on security and uses XML

notation we have chosen the second approach. BPEL and our semi-formal description

can be used side-by side.

A contract (C) can be defined as a triplet of set of methods, restrictions applied to

the contract itself and the set of restrictions applied to individual methods published

by the contract.

The restrictions applied to the contract itself () can be formalized using the

following triplet:

Here s represents a contract-level type restrictions for allowed callers

(subsection 3.1), s denotes a contract-level identity restrictions for allowed callers

(subsection 3.3), while s defines a contract-level network restriction (subsection

3.4).

Security restrictions applied to a single method ():

Here s, s and s are the same as their contract-level pairs,

while pairs describe the allowed state and state transition constraints

(subsection 3.2).

3.1 Distributed Runtime Access Control

We have stated in one of our previous work about in-process systems [2] that

reducing the interface where software components can communicate with each other

increases software quality, security and decreases development cost. Compile time or

runtime visibility and access control checking that support encapsulation is the key

part of modern languages and runtime environments [10]. They enforce responsibility

separation, implementation and security policies. Most modern programming

languages like C++, C# and Java do not have sophisticated access control

mechanisms only introduce a subset or combination of the following access modifiers:

public, private, protected, internal, and friend while Eiffel defines sophisticated

selective access control called selective export.

The Eiffel programming language [7] allows features (methods) to be exposed to

any named class. The default access level of a feature is the public level. However, an

export clause can be defined for any feature which explicitly list classes that are

allowed to access the underlying feature.

In this paper we suggest a runtime access control extension to distributed

environments where only well identified classes are allowed to access particular
methods. To achieve this goal, the server side should be extended with the ability to

detect the runtime type of the caller (client) using a declarative solution that statically

predefines the allowed callers at the contract or method level.

Another possibility is to restrict access for clients based on group membership or

roles (like DCOM [cc]). In this case different callers in different roles are to be

assigned to (domain level) groups and restrict access of published contracts for certain

groups. Moreover, restrictions can be enforced at the operation (method) level to

achieve more fine-grained security.

In our ping-ping example Helpdesk example we should ensure (by the runtime type

of the caller or group membership) that only end-users can call the operation that

reports incidents, the support team can close the incident. (Or only players of our

ping-pong game can participate in matches).

3.2 Business Process Validation

In [4] it is noted that it may be necessary to impose constraints on who can perform a

task given that a prior task has been performed by a particular individual. In this

section we feature an other approach to solve the problems stated in [4].

As we mentioned before business applications are driven by rules that define the

following properties:

1. Who is allowed to perform specific actions in given states

2. What is the resulting state of a state transition if a business operation succeeds

3. What is the resulting state of a state transition if a business operation fails

In most cases, business processes defined by rules are hard-coded into applications,

therefore they can be treated as static properties.

As suggested before operations exported on the interface are statically bounded to

certain process states in which they can be executed, furthermore often initiate a state

transition where the process gets into another well-defined state.

Business processes can be represented by state machines which are a kind of

directed graphs. Vertices of such a graph are the states of the state machine, while

edges are the state transitions between states.

The state machine representing the ‘business process’ behind our ping-pong game

can be described by the following UML Activity diagram in Fig. 3Fig. 3. For the sake

of simplicity we have not incorporated the error states and events where for example

one of the players loses the ball.

The first operation is where the first player gets the ball and hits it (evtPing) to the

other player therefore the game will be in Ping state. After that the second player hits

the ball (evtPong) to the first player and the game gets into Pong state. Now the first

player comes again (evtPing). If any of the players get bored of the game the match

can be finished (evtFinish).

Ping Pong

/ evtPing

/ evtFinish / evtFinish

/ evtPong

/ evtPing
Start Game

End Game

Fig. 3. State Machine of the ping-pong game

Manifestly, such state machines can be statically connected or bounded to one or

more published contracts. Operations can be checked if the state machine is in a state

that allows the particular operation and can trigger state transitions. When the user

instantiates one of the published contracts a state machine instance is automatically

attached to the contracts.

Static binding can be implemented declaratively and it is compulsory to have one

state machine instance per session.

To describe it formally remind the definition of the finite state machine or simply

state machine:

Where

1. represents the input alphabet, in our case the set of state transitions

Formázott: Betűtípus: Nem Félkövér,
Dőlt

2. is a finite not empty set of states

3. is an initial state, that is member of S

4. is the state transition function
5. F is the set of finite states, non-empty set in our case

Using the above definition the following restrictions can be applied:

It restricts the states, the state transitions and the state transitions available in

certain states.

3.3 Client Identity Validation

In the previous two subsections we have shown that it is indispensable to restrict

callers by runtime type or group membership and it is also indispensable to instrument

the correct order of business operation execution, enforce business rules.

Notwithstanding the previously mentioned two assurances there is another problem

that we show in the context of our ping-pong game. When Player 1 and Player 2 start

playing a ping-pong match we have to ensure that the players remain the same until

the end of the match. In other words, they do not change sides and they are not

substituted with other players. In short we have to maintain and validate the identity

of players until the end of the match.

If iIt is possible, the easiest solution for this problem is to dedicate a referee or

coordinator that assigns well-defined identities for participants that can be ensured at

method calls. For example the player that gets elected as First Player always gets
Identity no. 1 while the other player gets 2.

The above may not protect from tampering the player identity. But when we assign

the (Name of the Computer, Process Id, Object Reference Id) triplet to the identity and

track it on the server side, it cannot be tampered because the name of the computer

must be unique on network level similarly the process id must be unique on computer

level while the object reference id (practically pair of the runtime type and some type-

level unique object id) must be unique on process level (e.g. hash code is unique for

same-typed objects in .NET).

Because the generated identity number is fixed it can be specified declaratively

along with the type of the caller that exactly identifies callers along with the session

(game) identifier.

To achieve more security, players can be assigned a unique identifier (possibly a

GUID) that changes match-by-match and player-by-player. This unique identifier can

be stored and ensured at subsequent calls of the same (or other) operation.

3.4 Network and Certificate Validation of Clients

Formázott: Betűtípus: Times New
Roman, 10 pt, Dőlt

Formázott: Betűtípus: Times New
Roman, 10 pt, Dőlt

Formázott: Betűtípus: Times New
Roman, 10 pt, Dőlt

Formázott: Betűtípus: Times New
Roman, 10 pt, Dőlt

Firewalls can restrict access from clients deployed on certain subnets or IP addresses

to the server. More advanced firewalls can restrict access to the server by domain

level user identity; however that capability is only a subset of distributed runtime

access control described in this paper.

Our first aim is to declaratively restrict access to specific contracts and also

methods for certain subnets even IP addresses.

The other thing that loosely relates to some sort of network-level validation of

clients is client certificate validation. Using client certificates it can be verified if the

server communicates with a certified, trusted, verified and possibly well-working

client. The server can verify if it communicates with clients having the certificate

issued by a trusted authority.

3.5 Definition of Legal Calls

Let H the information-set provided and available at a method call:

Where

1. is the type of the caller

2. the actual state (business process state)

3. is the identity of the caller

4. is the network properties of the caller

We say that a call is legal with respect to a method (), when H conforms to the

following restrictions:

1.

2.

3.

4.

The four restrictions apply to the four eligible properties of H. However, the second

restriction applies only to the available states because the state transitions are

restricted by the FSM itself.

4 Possible Implementation in .NET 3.0 Environment

We have created a pilot implementation of the previously described security

mechanism extension in .NET 3.0. .NET [8] is a programming platform from

Microsoft that helps to easily and effectively create even large scale connected

applications built on standard technologies like the Web Service platform [12].

Version 3.0 of .NET added two pilot technologies that are used by our solution:

1. WCF – Windows Communication Foundation and

2. WF – Windows Workflow Foundation

In the following two subsections we shortly describe the benefits of these

technologies then show some implementation details.

4.1 WCF - Windows Communication Foundation

’WCF is Microsoft’s unified framework for building secure, reliable, transacted, and

interoperable distributed applications.’ [13]

In our situation it means that we get a unified interface for distributed

communication while we have the possibility to configure the communication address

and binding for our contracts. We can configure different transport and messaging

formats (binary, HTTP request, SOAP (Web Service), WSE*, message queue, etc.),
and the communication platform (data transfer protocol, encoding, formatting, etc.).

4.2 WF - Windows Workflow Foundation

’WF is the programming model, engine and tools for quickly building workflow

enabled applications. WF radically enhances a developer’s ability to model and

support business processes.’ [14]

WF has the ability to model states and state transitions of state machines that

resembles mathematical state machines.

4.3 Ping-Pong Example

Because of space limitations we can show only the server side of our implementation

in details. First we will show and explain the contract definition of our ping-pong

game exposed by WCF.

The following listing shows the contract definition as an interface in C#:

 [ServiceContract(SessionMode=SessionMode.Required)]

 [StateMachineDriven]

 [CallerIdentityDriven]

 public interface IPingPongService : IMultiSession

 {

 [OperationContract]

 [AllowedCaller("Client.Player")]

 [AllowedIdentity("1")]

 [AllowedState("stFirst,stPong")]

 [RaiseTransitionEvent("PingEvent")]

 int Ping();

 [OperationContract]

 [AllowedCaller("Client.Player")]

 [AllowedIdentity("2")]

 [AllowedState("stPing")]

 [RaiseTransitionEvent("PongEvent")]

 int Pong();

 [OperationContract]

 [AllowedCaller("Client.Player")]

 [AllowedIdentity("1,2")]

 [AllowedState("stPong")]

 [RaiseTransitionEvent("FinishEvent")]

 int Finish();

 }

The first line contains a built-in ServiceContract attribute attached to the

IPingPongService interface that enables classes implementing the interface to be

exported as a service.

The StateMachineDriven and the CallerIdentityDriver attributes are

part of our framework that enables the contract to be validated against state machine

states and events, and check for the caller.

The IPingPongService interface inherits from the IMultiSession

interface which enables our solution to share the same session across multiple

instances of the same contract and also multiple instances of multiple contracts. It is

not used in this example;, we only indicate the possibility with the remark that SOA

applications and distributed object systems do not encourage the usage of sessions.

The OperationContract attribute is the method-level pair of

ServiceContract attribute. AllowedCaller and AllowedIdentity

attributes define the allowed caller types and identities at particular methods. The

AllowedState attribute relates to the state machine controlling the ping-pong

game and dictate the states that certain operations can be executed at while the

RaiseTransitionEvent attribute instructs our framework to do a state transition

after successful method executions.

The following figure shows the design view of the state machine presented as a

UML activity diagram in Section 3:

Fig. 4. : State Machine Implementation

The previously explained interface is exposed to the client side also while the
implementation of the interface stays on the server side and defines properties that are

exclusively server specific:
 [StateMachineParameters(typeof(PingPongWF),

 typeof(PingPongController))]

 class PingPongService : MultiSession,

 IPingPongService

 {

The StateMachineParameters attribute declares a state machine workflow

type and a controller type that will be instantiated when the first call occurs. This state

machine and controller instance will drive the process (the game in our example).

4.4 Custom Behaviors

Every call to the exposed operations has to be intercepted on the server side and the

security checks described in this paper have to be performed. WCF has the ability to

extend our service endpoints with custom behaviors that can be used to do security

checks.

We mention that WCF calls do not submit the client side caller type and identity

information automatically therefore at the client side we have to add headers to every

call that contain this information using custom client-side behaviors.

Clients could be altered by malicious people to send fake information however

with client certificates this shortcoming can be eliminated.

The following XML fragment shows the server side configuration that defines the

extension that is responsible to do security checks before executing the real, exposed

operation:

 <extensions>

 <behaviorExtensions>

 <add name="distrRac"

 type="ServerLib.RACServerBehaviorExtension, ServerLib,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=d18ff0ec0229ce90" />

 </behaviorExtensions>

</extensions>

At client side there is a similar configuration setting that refers to the

ClientLib.RACClientBehaviorExtension type in the ClientLib

assembly.

Connecting these extensions to the appropriate services some more lines of XML

configuration has to be added.

We show the client code fragment that adds the type of the caller to the request

headers that will be verified on the server side:

StackTrace stackTrace = new StackTrace(false);

StackFrame callerFrame =

ClientHelper.GetCallerMethod(stackTrace);

request.Headers.Add(MessageHeader.CreateHeader(

 DISTRRAC_HEADERID, DISTRRAC_NS,

 callerFrame.GetMethod().DeclaringType.FullName));

On the server side the following code fragment is executed that checks caller type

and identity:

string absUri = request.Headers.To.AbsoluteUri;

Type contract = ServerHelper.GetContract(absUri);

object []drivenAttrs =

ServerHelper.GetDrivenByAttributes(contract);

MethodInfo targetMethod = ServerHelper.GetTargetMethod(absUri);

bool callerIdentityDriven =

 ServerHelper.IsDrivenByCallerIdentity(drivenAttrs);

bool stateMachineDriven =

 ServerHelper.IsDrivenByStateMachine(drivenAttrs);

if (callerIdentityDriven)

{

 object[] callerAttrs =

 ServerHelper.GetCallerAttributes(targetMethod);

 string callerType =

 request.Headers.GetHeader<string>(DISTRRAC_HEADERID,

 DISTRRAC_NS);

 if (!ServerHelper.IsCallerAllowed(callerAttrs, callerType))

 {

 throw new InvalidCallerException();

 }

}

Formázott: LNCS_programcode

Formázott: Betűtípus: 8 pt

Formázott: LNCS_programcode Char

Formázott: LNCS_programcode Char

Formázott: Betűtípus: 9 pt

Formázott: LNCS_programcode,
Tabulátorok: 0 cm, Balra zárt

Formázott: Betűtípus: 9 pt

Formázott: LNCS_programcode,
Tabulátorok: 0 cm, Balra zárt

Formázott: Betűtípus: 9 pt

Formázott: Betűtípus: 9 pt

Formázott: Betűtípus: 9 pt

Formázott: Betűtípus: 9 pt

Formázott: Betűtípus: 9 pt

The state machine-based verification is performed similarly however in that case

after the execution of the exposed operation the state machine is driven to the next

state.

The other components of the H information set can be checked similarly therefore

we omit the discussion of their implementation.

5 Related Work

There are several authors who deal with the security of distributed applications and

show the importance of the topic [ff, ii]. There are techniques which can be used to
generate formal proof that an access request satisfies access-control policy [gg].

[4] provides a method for specifying authorization constraints for workflow based

systems that include separation of duty constraints (two different tasks must be

executed by different users), binding of duty constraints (same user is required to

perform multiple tasks) and cardinality constraints (specify the number that certain

tasks have to be executed). A custom reference monitor has been specified that checks

the previously mentioned properties of workflows and workflow tasks.

The parts of our solution that deal with state machines (workflows) and client type

and identity validation provide some features in a more sophisticated way than [4],

however there are some features our framework lacks. The difference between the two

approaches can be characterized by the fact that we are dedicated to find answers to

shortcomings of working enterprise applications.

The concepts in [hh] are based on the workflow RBAC authorization rules (tuple

(r, t, execute, p) sais that users in r role can execute task t when an optional predicate

p holds true). They create an extension to the WARM methodology that enables to

determine workflow access control information from the business process model.

[ii] presents an approach where the workflow access control model is decoupled
from the workflow model that enables them to create a service oriented workflow

access control model. Our solution follows exactly the different approach that makes

it more compact but harder to configure.

TheAn other way would be to create a DSL that is dedicated to implementing

Services [3] and extend this language with security concepts.

There are approaches that store and control policy settings using some centralized

database [dd] or have multiple layers of configuration [ee]. We decided to create an

application specific solution and have unified configuration methodology

(declaratively specify settings in the source text on application level or use

application-level configuration files).

65 Summary and Future Work

In this paper we have studied access control mechanisms that can be applied in case of

distributed software systems.

Formázott: Betűtípus: 9 pt

Formázott: LNCS_p1a

Applications serving business processes are usually implemented as a distributed

system: they span over different servers on different networks and are written in

different programming languages. Typical properties of such applications include

dynamism: the business goals they serve change just as often as the programming or

hardware environments. In order to successfully fight challenges imposed by the

nature of these applications, the basic principles of Service Oriented Architecture

(SOA) have been formed. SOA is a natural extension and descendant of modular

programming: the functions of modules are published through interfaces.

In our work we have focused on the public interfaces of SOA applications with the

caveat the application should use homogeneous technologies or communication

platform and the service should have some information about the clients. We have

described motivating examples showing why it is often not enough to rely ourselves

on standard security mechanisms of existing standards. Starting from the motivating

examples we have shown why lower level access control mechanisms are necessary to

protect the interfaces exposing functionality to the outside world.

We have elaborated our research and extended the security context of distributed

applications based on the following properties: distributed runtime access control,
business process and client identity validation, and the network identity validation of

clients. We have been following a semi-formal approach of the topic, and have given

a definition of a legal method call. Other solutions described in the related work

section solve only a part of the security problems specific to distributed enterprise

applications while we aimed to create a framework that answers respectively can be

extended to answer most of emerging questions.

The formal approach described important runtime restrictions for assures language

independency, which is a very important factor for distributed object systems.

However, the formal approach itself cannot guarantee that it can be implemented in

practice. In order to prove the practical applicability of the proposal, we have

implemented a pilot framework in the .NET 3.0 programming environment. The

implementation uses the innovative technologies of the .NET framework: Windows

Communication Foundation and Workflow Foundation. We exploited declarative

programming to the maximal possible extent.

One of our further research directions can be the extension of the pilot

implementation with different environments, such as the Java platform. The

capabilities of widely used industrial standards should be analyzed, and, if necessary,
the presented formal framework should be refined in order to adapt to different

security mechanisms.

[4] provides a method for specifying authorization constraints for workflow based

systems that include separation of duty constraints (two different tasks must be

executed by different users), binding of duty constraints (same user is required to

perform multiple tasks) and cardinality constraints (specify the number that certain

tasks have to be executed). A custom reference monitor has been specified that checks

the previously mentioned properties of workflows and workflow tasks.

The parts of our solution that deal with state machines (workflows) and client type

and identity validation provide some features in a more sophisticated way than [4],

however there are some features our framework lacks. The difference between the two

approaches can be characterized by the fact that we are dedicated to find answers to

shortcomings of working enterprise applications.

The other way would be to create a DSL that is dedicated to implementing Services

[3] and extend this language with security concepts.

We designed our framework to be extensible with other custom security

mechanisms that may be orthogonal to the formalized and implemented ones.

This paper also shows the need for runtime access control in order to secure

distributed applications. Therefore we hope that similar frameworks will gain

popularity and help the quality improvement of complex, distributed software object

systems.

References

1. A. Barros, G. Decker, M. Dumas, F. Weber: Correlation Patterns in Service-Oriented

Architectures, In Proceedings of the 10th International Conference on Fundamental

Approaches to Software Engineering (FASE 2007), Braga (Portugal), 2007. Springer

Verlag, pages 245-259.
2. M. Biczó, K. Pócza, Z. Porkoláb: Runtime Access Control in C# 3.0 Using Extension

Methods, Proceedings of the 10th Symposium on Programming Languages and Software

Tools (SPLST 2007), Dobogókő (Hungary), 2007, pages 45-60.

3. D. Cooney, M. Dumas, P. Roe: GPSL: A Programming Language for Service
Implementation, In Proceedings of the 8th International Conference on Fundamental

Approaches to Software Engineering (FASE), Vienna, Austria, March 2006. Springer

Verlag, pages 3–17.

4. J. Crampton: A reference monitor for workflow systems with constrained task execution, In
Proceedings of the 10th ACM Symposium on Access Control Models and Technologies,

pages 38–47, 2005.

5. R. Gronmo, M. C. Jaeger, A. Wombacher: A Service Composition Construct to Support

Iterative Development, In Proceedings of the 10th International Conference on Fundamental
Approaches to Software Engineering (FASE 2007), Braga (Portugal), 2007. Springer

Verlag, pages 230-244.

6. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin.

Aspect-Oriented Programming, Proceedings of the European Conference on Object-
Oriented Programming, 1997, Springer Verlag, pages 220–242.

7. B. Meyer. Eiffel - The Language, Prentice Hall, 1992. ISBN 0-13-247925-7

8. .NET Framework: http://msdn2.microsoft.com/netframework/

9. K. Pócza, M. Biczó, Z. Porkoláb: Runtime Access Control in C#, Proceedings of the 7th
International Conference on Applied Informatics (ICAI), Eger, Hungary, 2007, jan. 28-31.

10. A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In

Proceedings OOPSLA ’86, pages 38–45. ACM Press, 1986.

11. UML: http://www.uml.org/
12. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services

Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable

Messaging, and More. Prentice Hall PTR, 2005.

13. Windows Communication Foundation: http://wcf.netfx3.com/
14. Windows Workflow Foundation: http://wf.netfx3.com/

aa. Z. Tari, O. Bukhres. Fundamentals of Distributed Object Systems: The CORBA Perspective,

Wiley, 2001, ISBN 978-0-471-35198-6

bb. M. B. Juric, B. Mathew, P. Sarang. Business Process Execution Language for Web
Services: BPEL and BPEL4WS, Packt Publishing, 2004, ISBN 1-904811-18-3

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Dőlt

cc. Frank E. Developing Distributed Enterprise Applications With the MS Common Object

Model. Hungry Minds, 1997, ISBN 0-764580-44-2

dd. N. Damianou, N. Dulay, E. Lupu, M. Sloman and T. Tonouchi. Policy Tools for Domain

Based Distributed Systems Management. IFIP/IEEE Symposium on Network Operations and
Management. Florence, Italy, 2002.

ee. D. Thomsen, D. O'Brien, and J. Bogle. Role Based Access Control Framework for Network

Enterprises. In Proceedings of 14th Annual Computer Security Applications Conference.

December 1998
ff. M. Blaze, J. Feigenbaum, J. Ioannidis, A. D. Keromytis. The role of trust management in

distributed systems security, Secure Internet Programming. Springer Verlag, 1999, pages

185-210

gg. L. Bauer, S. Garriss, M. K. Reiter. Efficient Proving for Practical Distributed Access-
Control Systems. Computer Security – ESORICS 2007, 2007, Springer Verlag, pages 19-37

hh. D. Domingos, A. R. Silva, P. Veiga. Workflow Access Control from a Business Perspective.

International Conference on Enterprise Information Systems, 2004

ii. X. Wei, W. Jun, L. Yu, L. Jing. SOWAC: a service-oriented workflow access control model.
COMPSAC 2004, Proceedings of the 28th Annual International Computer Security and

Applications Conferences, 2004, pages 128-134.

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Dőlt

Formázott: Betűtípus: Nem Dőlt

