
ELTE - PPKE informatika
tananyagfejlesztési projekt

TÁMOP-4.1.2.A/1-11/1-2011-
0052

Advanced Programming Languages

Zoltán Porkoláb, PhD.

Associate Professor

Eötvös Loránd University, Faculty of Informatics

Dept. Of Programming Languages and Compilers

2013.

The book

• The book: Advanced Programming Languages
• To be published in 2013
• Editor: Judit Nyéky-Gaizler, PhD
• Almost 20 authors, mostly from Eötvös
LorándUniversity, Faculty of Informatics
• 1080 pages, 17 chapters + Appendix

• The predecessor book:
• 2003, in Hungarian

•

The purpose of this
training

• The book
• Generic concepts in programming languages
• Unified terminology
• Cross-reference between chapters

• The training
• Summarize most important language features
• Recap key concepts
• Base of programming language class/training

Content (1)

• Language design
• Lexical elements
• Control structures
• Scope and Life
• Data types
• Composite types
• Subprograms
• Exception handling

Content (2)

• Abstract data types
• Object-oriented programming
• Type parameters (Generics)
• (Correctness in practice)
• Concurrency
• Program libraries
• Elements of functional programming languages
• Logic programming and Prolog
• (Aspect-oriented programming)

Language design

Language design

• Key concepts:
• Syntax, Semantics, Pragmatics
• Implementation
• Programming language evolution
• Language categories
• Language design
• Standardization

Syntax, Semantic,
Pragmatics

• Syntax
• The correct grammar of the language

• Semantic
• The meaning of a syntactically correct phrase

• Pragmatics
• How to use the given phrase for a useful purpose

Implementation

•Compilation
• Phases: (Preprocessing), Compiling, Linking
• Static or dynamic linking
• Generates HW and OS-specific executable
• Effective optimizations

• Interpretation
• Faster developing process
• Less correctness-checking possibilities

Implementation

• Hybrid model
• Compiler generates platform independent
intermediate code
• Intermediate code executed by “virtual machine”
• Fair correctness checking and optimization
• More optimization: Just-in-time compilers

• Samples
• Pascal P-code, Java virtual machine, MS IL

Evolution of the
programming languages

• Early attempts
• Computation of Bernoulli Numbers for the
Analytical Engine – notes from Ada Lovelace
• Plankalkül (Zuse, 1943-45) – relational algebra
• Hard-wired machines (1940 -)

• Raising the abstraction level
• Machine code (1945-50)
• Assembly (1950-)

Evolution of the
programming languages

• Early high level languages
• FORTRAN (1956) – Math expressions
• LISP (1957) – Functional
• ALGOL (1958-60) – First block structure
• COBOL (1960-) – Detailed data description
• PL/1 – Union of all existing features
• Basic – (Kemény), Simplification for education

Evolution of the
programming languages

• New directions for better abstraction
• Simula 67 (1967) – First OO language
• Algol 68 (1968) – More precise specification
• Pascal (1970) – Educational purposes
• C (1971) – HW abstraction for system programming
• Smalltalk (1971-) – Pure OO language
• Prolog – First Logic programming language
• ML – Statically typed functional language

Evolution of the
programming languages

• Towards better modularization
• Modula-2 (1978) – (Pascal) Better modularization
• ADA (1977-) – Programming safety critical systems
• C++ (1980) – C + Simula 67 + Algol 68
• Oberon (1986) – Modula 2++
• Objective C – Object based, dynamic

Evolution of the
programming languages

• Towards faster development – Scripting languages
• Perl, Python, Ruby, PHP (1985-)

• … and hybrid languages
• Java - easy to use and deploy (virtual machine)
• C#
• Scala

• Just now: towards many-core & multicore systems
• OpenCL, Go, ...

Programming language
classification

• Imperative (procedural)
• Applicative (functional)
• Rule-based or logic
• Object-oriented

• Object-based, class-based
• Concurrent
• Scripting (dynamic)

Language design

concepts
• Well-defined syntax and semantics
• Expressivity
• Orthogonality
• Generality
• Modularity
• Portability
• Easy to learn
• Performance

Lexical elements

Lexical elements

• Key concepts:
• Compilation units
• Lexical elements, character sets
• Delimeters, strict and non-strict format languages
• Identifiers
• Keywords, reserved words
• Literals (number, character, string, …)
• Comments

Control structures

Control structures

• Key concepts:
• Sequences
• Transfer of control

• Conditional
• Unconfitional

• Subprogram (function, subroutine) call
• Return from subprogram
• (Exceptions)

Representing the
control structure

• Sentence-like descriptions
• Flow diagrams
• D diagramss
• Block diagrams
• Structograms

Imperative
(procedural) languages

 Abstraction of von Neumann computer
• Variables representing the program state

• Assignment = change state
• Execution is a sequence of state transitions
• Procedures: nesting state + state transition

Declarative and
Functional languages

 No method of execution is specified
• Specification of the problem to solve

• SQL, Prolog
• In functional languages

• The problem specification is to solve a (pure)
function
• Input/output is considered as „side effect”

Assignment

• Statement in earlier languages
• Expression in modern languages

• Can be nested
• Has return value
• User may redefine semantics (C++ operator=)

• Some languages (CLU) has multiply assignment
• Implicit conversions are involved

Unconditional transfer
of control

• Go To statement
• …is considered harmful (Edsger W. Dijkstra, 1968)
• Sometimes still used in modern languages

• Break and continue in C
• Return from the middle of a subprogram

• Call of subprogram and return
• Recursion

Conditional transfer of
control

• Arithmetic GOTO in Fortran
• Branching structures

• If, elif, else
• Dangling if

• Switch/case
• Default case

Loops

• Loops on condition expression
• While, do-while, for(expr1;expr2;expr3) in C

• Iteration over an integer range
• Iteration over a value range

• Foreach in C#, for (expr) in C++
• Iteratiors

• Abstraction over control structure

Scope and Life

Scope and Life

• Key concepts:
• Scope

• Identifyer, declaration, definition
• Block structure, visibility

• Life (or lifetime)
• Construction, destruction
• Garbage collector, Memory leak
• RAII, Smart pointers

Scope and Life

• Scope
• Static feature – compilation time
• The mapping between names (identifiers) and
program objects (types, functions, variables)

• Life (or lifetime, life span)
• Dynamic feature – during runtime
• The time between the creation and destruction of
the object

• Related, but not identical features

Scope types

• The entire program
• perhaps more compilation units

• One compilation unit
• A type or class
• A namespace
• A subprogram
• A block of code

Scope rules

• Scopes may overlap
• Internal scope hides external one
• In some languages: syntax error

• Important difference between
• Hiding (of a name in external scope)
• Overriding (of virtual function)
• Overloading (between functions with same name
but different signature)

Life, lifetime, life span

• Static
• Memory allocated at the beginning of program
• Memory deallocated at the end of the program

• Automatic
• Memory allocated when control enters the block
• Memory deallocated when leaving the block

• Dynamic
• Allocation controlled by the programmer
• Deallocating manually or by garbage controller

Static life

• Memory allocated at the beginning of the program
• Life keeps until the end of the program
• Nasty details:

• Java: construction when loading the class
• C++: no creation order between compilation units
• C++: Static initialization issue, when constructors
of static variables refers to each other. Use
Singleton pattern!

Automatic life

• To reuse memory between disjunct subprograms
• Objects are allocated in the stack
• Mostly used for local variables and temporaries
• Objects constructed at entering the code block
where the object is declared (in declaration order)
• Objects are destructed when leaving the block
• Nasty details:

• Sometimes we have reference to variable after
automatic life finished (e.g. return pointer to it)

Dynamic life

• Construction and destruction (mostly) controlled by
the programmer
• Objects are allocated in the heap/free memory on
programmer request
• In some languages deallocation is on request
• In other languages: garbage collection

• Difference between destruction and finalization
• Heap operations are very slow in-memory activities

Dynamic life

• Memory leak: when allocations and deallocations
do not match

• Can happen even with garbage collection
• Usually happen when no garbage collection
• Throwing exceptions is a typical source of issue

• RAII – Resource allocation is initialization
• C++ smart pointers using RAII

• Ownership or reference counting strategy

Data types

Data types

• Key concepts:
• What is a data type
• Specification and realization

• Invariants
• Type system

• Strongly typed, graduate typed, typeless
• Type inference

• Type conversions

Data type categories

• Primitive/built-in types
• Scalar types

• Integral types
• Floating point types
• Characters
• Enumerations

• Pointers
• Pointers to objects, pointers to subprograms

Composite types

Composite types

• Key concepts:
• Abstract constructions

• Cartesian product types
• Union types
• Iterated types

• Type equivalence
• Name equivalence
• Structure equivalence
• Declaration equivalence

Cartesian product

• Type-value set: T1 ᵡ T2 ᵡ T3 ᵡ … ᵡ Tn
• Widely supported in languages: record, struct, ...

• Operations
• Type/Field selection
• Assignment
• Equality check

• Language specific
• Variadic record
• Default values

Union

• Type-value set: T1 ᴗ T2 ᴗ T3 ᴗ … ᴗ Tn
• Less support in languages: union, variant
• Some OO languages use inheritance instead
• Tagged or free union

• Operations
• Type/Field selection
• Assignment
• Type selection (in some languages)

Iterated types: Array

• Type-value set: T ᵡ T ᵡ T ᵡ … ᵡ T
• Full support in languages: array, ...
• Length may variadic (given at runtime) or static
• In some languages arrays „know” their lenght

• Operations
• Selection based on index value
• Assignment is not fully supported
• In C special relation between pointers and arrays

Iterated types: Set

• Type-value set: 2T
• Partial support in (mostly Pascal-like) languages
• Otherwise implemented as library type

• Operations
• Assignment
• Equality check
• Set operations (push, pop, has, ...)

Iterated types: Set

• Type-value set: 2T
• Partial support in (mostly Pascal-like) languages
• Otherwise implemented as library type

• Operations
• Assignment
• Equality check
• Set operations (push, pop, has, ...)

Other iterated types

• Hashtables
• Key-value pairs
• Mostly in script languages (Perl)
• Otherwise implemented as library type (C++, Java)

• Multisets/bags
• Key-counter pairs
• Usually implemented as library type

Subprograms

Subprograms

• Key concepts:
• Formal and actual parameters
• Parameter passing methods
• In, out, and in-out parameters
• Overloading
• Subprograms as parameters
• Corutines

Subprograms

• Reusing existing code parts (since Babbage!)
• Positive effect on code quality

• Reusablility
• Readability
• Changeability
• Maintainability

• Procedures and functions

Subprogram structure

• Function signature
• Name
• Parameter list

• Formal parameters: at subprogram definition
• Actual parameters: at subprogram call

• Const, volatile modifiers are part of the signature
• Return value (for functions)
• Usually a single entry point (exceptions, like PL/I)
• Potentially multiply return points

Calling subprograms

• Explicit call statement with keyword, like CALL f()
• Just write a call expression, like x = f()
• Actual parameters match with formal parameters

• Either prameters matching by name
• Or parameters are passed using formal name

• Default parameters (if any) are evaluated at calling
site
• In some languages () can be omitted at calls with no
actual parameter

Parameter list

• Sometimes we have variadic parameter list
• printf(const char *fmt …)

• Sometimes we have default parameters
• void f(int x = 1)

• Sometimes we overload functions on parameters
• void f(double x) and void f(int x)

• Sometimes we overload on modifiers:
• void F(int* x) and void F(const int* x)

• In OO languages we pass hidden parameter “this”

Parameter passing

by value
• Actual parameters are copied into the subprogram
• Formal parameters acting like local variables
• Best separation of caller and callee

• Formal parameter identifies different memory area
than the actual parameter, changing them has no
effect on caller
• Parameters transfer information only into callee
• Only return value transfer information to caller

• Out parameters can be simulated by passing pointers
•

Parameter passing

by reference (address)
• Actual parameter addresses are used in subprogram
• Formal parameters acting like global variables
• Weak separation of caller and callee

• Formal parameter identifies the same memory
area than the actual parameter, changing them has
permanent effect on caller
• Parameters may transfer information in and out

• Issues when actual parameter is an expression not
identifying a memory area, like: CALL F(k+1)
•

Parameter passing

by result
• Modification of pass by value for implementing output
parameters
• Actual parameters are copied into the subprogram
• Formal parameters acting like local variables
• When the subprogram returns, value of formal
parameters are copyed back to actual parameters
• Good separation of caller and callee

• Modification of formal parameters has no effect to
caller until subprogram returns

Parameter passing

by name
• Actual parameters not identifying any memory region
(expressions, like 3+4) are passed by value
• Actual parameters referring to memory region
(expressions, like 3+t[i]) are passed by address

• Every time a formal parameter is referred during
subprogram execution, the expression specified as
actual parameter is re-evaluated.

• Weak separation of caller and callee
• Modification of actual parameters has immediate
effect to the subprogram execution

Textual substritution of
parameters

• Used mainly in simple scripting languages and
macros
• Weak separation of caller and callee

• No separation of caller and callee
• Dangerous side-effects may happen, like

• Multiply evaluation
• Precedence hijacking

Overloading

• The same name can denote multiply subprograms
• Compiler selects the appropriate subprogram

• Overload resolution happens in compile-time
• Compiler flags compile error if unable to select

• Overloading happens on
• Number of parameters
• Types of parameters
• Modifyers (like const and volatile)

Operator overloading

• Operators – when programmer can define them – are
acting like functions with special names
• ADA, C++, C# allows operator overloading, Java not

• Arity and precedence of operators are usually fixed
•

Passing subprograms
as parameters

• Subprograms are first calss citizens in functional
programming languages

• They can be passed as parameters
• In imperative and OO languages this is not general

• Funtion pointers in C/C++
• Function objects and lambda functions in C++
• Modula-3: closure carrying the environment where
the subprogram will be executed

Corutines

• Corutines are subprograms executed in a symmetric
control model instead of caller-callee distinction

• The corutin can pass back the control without
finishing its task – dispatch
• Local variables are kept alive
• Corutin can resume its execution from the place
where it was last dispatced

• They mimic parallelism – sometimes decreaseing
program complexity

Exception handling

Exception handling

• Key concepts:
• Handling runtime errors
• Separation of error handling concepts
• Exception safety
• Checked and unchecked exceptions
• Grouping exceptions
• Polymorphic exceptions

Basic concepts

• Runtime errors break normal execution flow
• Error handling code crosscuts normal execution
• Separation of error handling is welcome

• Exception may raised (throw, signal) by SW or HW
• Exceptions are catched by specific handlers
• Exceptions can carry information from the site of
error to the place where we can handle it

• In modern languages exceptions are objects of
arbitrary type – we can define our type too

Exception safety

• As exceptions break the normal flow of execution
• Object can be left in undefined state
• Resources may not be deallocated
• This can cause inconsistency, like memory leak

• In Java and C# finally blocks are executed before
the control leaves a block
• In C++ RAII is used to avoid memory leak

• Nothrow, strong, and basic garantees

Checked exceptions

• An exception throable from a subprogram or class
is part of the interface of that module
• Checked exceptions in Java

• Static (compile-time) checking whether the
exception has been properly handled
• There are non-checked run time exceptions too

• In C++ the compiler has less possibility for checks
• In C++11 there is a __nothrow attribute and
operator which is evaluated in compile time

Grouping exceptions

• In modern OO languages exceptions are common
objects from arbitrary types
• Custom types can be defined for custom exceptions
• Inheritance hierarchy can be used to group
exceptions

• The handler of base class catch derived
exceptions
• Always throw the most derived type of exception
• Exception objects can be polymorphic

Abstract Data Types

Abstract Data Types

• Key concepts:
• Modular design
• Language support for modularity
• Representation hiding
• Separation of specification and implementation
• Generalized program schemes

Modular design

• In modern programming languages modular design
is a key concept.
• Criteria of modular design:

• Modular decomposition
• Modular composition
• Modular intelligibility
• Modular continuity
• Modular protection

Modularity

• Language support of modules
• Few interconnections
• Weak interconnections
• Explicit interfaces
• Information hiding
• Open and closed modules

• Open: extendable (like C++ namespaces)
• Closed: reachable via interface, used unchanged

Modularity

• Reusability
• Variety of types
• Variety of data structures and algorithms
• One type – one module
• Representation independence

Language Support for
Modularity

• Procedural languages
• C: #include
• Modula-3: modules, export, import, generic
• Ada: package – open modules support

• Functional languages
• Signature description in ML, can be reused

• By embedding
• By specialization

Object-oriented
languages

• Address open/closed modules with inheritance
• Package (Java as example)

• Package visibility
• Import, imported names should be fully qualified

• Single-type import
• On-demand import

•

Representation hiding

• Opaque type
• Handlers in C, Pascal
• ADA: private type
• CLU: abstract data types

• Visibility levels
• Private
• Protected
• Public

•

 Specification and
Implementation

• Enables the modules to be developed separately
• Supports modification in implementation
• Implementation can be delivered in binary
• Supports separation:

•C and C++ header files / source files separation
• Mapping to pointers / C++ PIMPL strategy

• Not supports physical separation
• Eiffel, Java

 Generalized
program schemes

• Data parameters
• Type parameters: Generic, Template

• Type erasure
• Instantiation

• Subprograms as parameters
• Function pointers, functors, lambdas

• Higher level structures as parameters
• Scala

Object-oriented
programming

Object-oriented
programming

• Key concepts:
• Class and Object
• Constructing and destructing objects
• Encapsulation
• Data hiding, interfaces
• Class (static) data and method
• Inheritance
• Polymorphism

 Class and Object

• Object
• Independent units of the reality we model
• Inner state (represented by attributes)
• Response for the messages received (behavior)
• Each object has its identity

• Class
• Group of objects with similar attributes and
behavior
• Each object is an instances of a class

Construction, destruction

• Life cycle of objects: born, live, die
• Construction

• Set the initial state to fulfill type invariant
• Constructor: usually a public method

• Destruction
• Sometimes need to clean-up resources
• Destructor (C++)
• Finalize method (called by Garbage Collector)

Encapsulation

• Considering data structure and the operations on it
as a single unit and hide them from outer word
• Specification gives the outer description

• Value-set of the type
• Behavior: methods

• Implementation
• Data representation
• Method implementation

Data hiding, interfaces

• Encapsulation means objects hides implementation
• To communicate with the outside word: interface

• Interface: previously defined set of messages
• Object can be touched only using the interface
• Interface should be minimal

• Visibility
• Public, protected, private
• (C++) friends, (Eiffel) selective access

Class (static) data and
methods

• Normally we work with objects and their methods
• For such instance methods we pass Self/This

• Sometime we use data and methods not connected
to any objects – called class (static) data and method

• Cannot access instance members
• Cannot call instance methods (not receiving Self)

• C++, C#, Java: static members, static methods
• Scala: object – a singleton

Inheritance

• Generalization and specialization
• Inheritance

• Super-class (base) and sub-class (derived)
• Derived inherits base attributes and methods
• New attributes and methods can be added
• Cannot access instance members
• Cannot call instance methods (not receiving Self)

• Inheritance can be single and multiply
• Some lang multiply inheritance only for interfaces

Inheritance types

• Derived class access public and protected of base
• Inheritance normally extend base interface

• Java keyword: extend
• In C++ there are three kind of inheritances

• Public: extend interface as Java
• Protected: convert base interface to protected
• Private (default): Hide the interface of base

Polymorfism

• Extending base interface: substitutability
• Liskov Substitution Principle

• Subclass objects can appear in place of super
• Static and dynamic (run-time) type of object

• Polymorphism: in OO = subtype polymorphism
• Methods can be redefined in subclass

• Static redefinition (based on static type)
• Dynamic redefinition (based on run-time type):

• Virtual functions, dynamic dispatch

Abstract class, interface

• Representing common abstractions
• No objects are instantiated from abstract class

• Common data for all subclasses
• Protocol: for redefine in subclasses

• C++ abstract class
• Pure virtual

• Java
• Interface: no data
• Abstract class

Multiple inheritance

• Mostly for unifying multiply interfaces
• In many languages only for interfaces

• Java, C#
• In C++ works by default

• Resolving name conflict with scope operator
• Diamond-shape inheritance

• Common base class inherited multiply times
• Scala traits

Type parameters

Type parameters

• Key concepts:
• Control and data abstraction
• Taxonomy of Polymorphism
• Generic contract model
• Instantiation
• Type erasure

Abstraction

• Control Abstraction
• Procedural (C): function pointers
• Object-oriented (Java): classes with “doit” func.
• Generic (C++): functors – function objects

• Data abstraction
• Type parameters
• Opaque types

Taxonomy of
Polymorphism

• Universal
• Parametric
• Inclusion

• Ad-hoc
• Overloading
• Coercion

Generic Contract Model

• Constraining type parameters for data or method
• Constrained generics

• Java – supertype, subtype relationships
• Ada – with clause

• Unconstrained generics
• C++ templates – no restriction on type parameter
• C++14 Concepts (light)

• Type class in functional languages

Instantiation

• Actual type parameter substitues formal parameter
• New code generated – instantiation

• On demand (C++)
• Manually (ADA)

• User defined specialization in C++
• Template metaprogramming – executing algorithm
in compile-time

Type erasure

• Actual type parameter substitued by common heir
• Most famously used in Java
• Only one code serves all type parameters
• Compiler ensures type safety on back-conversion
• Auto-boxing unboxing for built-in types
• No specialization

Concurrency

Concurrency

• Key concepts:
• ”The free lunch is over”
• Why to write concurrent applications?
• Amdahl's law
• Syncronization
• Process vs. Thread
• Sample: MPI and Java

The free lunch is over

• Moore's law
• Number of transistors
• Processing speed

 doubles in every 24 month
• Free lunch: the same program will run faster by time
• Trend on speed has broken:

• The free lunch is over (Herb Sutter, 2004)
• Make programs faster should utilize concurrency

Area of concurrent
programming

• Responsive user interfaces
• Multi-user server solutions incl. databases
• Web servers, and web browsers
• Multicore systems to utilize all resources
• Scalable applications
• More intuitive programming schema

Popular fallacies on
Concurrency

• If it is concurrent it is quicker.
• Program structure does not matter.
• Easier to write a sequential prototype and then
rewrite it as a parallel version.
• I do not need to care concurrency.
• Concurrency is easy. At least easy to debug if I
make mistakes.

Amdahl's law

The performance gain by paralellizing an application
is heavily bounded by the ration of concurrently
executable parts that are independent of each other

Data and Instruction

• Single instruction
• Single Data Stream SISD
• Multiply Data Stream SIMD

• Multiply Instruction
• Single Data Stream MISD
• Multiply Data Stream MIMD

Syncronization

• Deadlocks
• happen if all these conditions state (Coffman
conditions):

• Mutual exclusion
• Hold-and-wait locking
• No preemption
• Circular dependencies

• Starvasion

Syncronization techniques

• Critical section
• Set of instructions where the execution is
restricted to a single thread/process.
• Entry protocol, exit protocol

• Busy waiting
• Semaphore
• Monitor
• Conditional critical section

Concurrent execution units

• Process vs thread
• Process

• Own address space
• Expensive to start and switch

• Thread
• Own execution thread, shared address space
• Thread local memory - own stack
• User / system thread

Sample: MPI

• Message Passing Interface – language independent
• Inter-thread point-to-point communication
• Handle tasks in groups

• Creating tasks
• Communication methods
• Communication in group

Sample: Java

• Runnable interface and Thread class
• Thread groups
• Concurrent API
• Concurrent collections
• Executor framework
• Thread pools
• Syncronized

Program libraries

Program libraries

• Key concepts:
• Requirements against libraries
• Procedural programming
• Object-oriented programming
• Generic programming

Library requirements

• Correctness
• Efficiency
• Reliability
• Extensibility and maintainability
• Reusability
• Portability

Procedural library design

• Set of type definitions and functions
• Separation of interface and implementation
• Most frequently tasks are covered:

• Standard I/O: file handling
• Memory manipulation
• String library
• Mathematical functions

Object-oriented library
design

• Class hierarchy
• Optimal service size < 80
• Abstract types with interface

• Fat vs. narrow interfaces
• Handle classes, proxy classes

• Expression problem:
• Easy to extend with new data (class)
• Hard to extend with new service
• Visitor pattern

Generic programming
library design

• First introduced in C++ as STL (Stepanov&Musser)
• Orthogonal separation of data and algorithm
• Containers (parametrized by types)
• Algorithms without knowing data representation
• Iterators connecting containers to algorithms

• Hierarchy of iterators
• Functors
• Adaptors

Functional Programming

Functional Programming

• Key concepts:
• Mathematical foundation: Lambda calculus
• Structure: function definitions, starts expression
• Referential transparency
• Pattern matching

Mathematical foundation

• Lambda calculus (Church 1932-33)
• Equivalent to Turing Machine

• Evaluation of (mathematical) functions
• First implemented: LISP (1957)

Functional program
structure

• Type, type class and function declarations
• Program execution = evaluate start expression
• Rewriting system: rewriting start expression
determined with the computation model
• Pure (side-effect free) functions
• Referential transparency (no assignment)
• Strong static typing
• Pattern matching

Functional program
structure

• Recursive function application
• Currying, partial function application
• Higher order functions
• Evaluation strategy

• Lazy evaluation
• Eager, strict evaluation

• List comprehension

Logic Programming

Logic Programming

• Key concepts:
• Algorithm = Logic + Control
• Logic programs
• Prolog

Logic programming

• Roots: Automated theorem prover (suggested by
Hilbert) has two components:

• Logical (declarative) description of problem
• Control component of deduction or computation

• Axiom:
• Fact
• Rule (incl. recursive rules)

• Search trees

Prolog

• Robert Kowalski (~1970): Theoretical foundations
• Alain Colmerauer (1972): PROLOG

• Implemented first as an interpreter
• David Warren (~1976): First effective compiler
• Data structure: terms

• Set of predicates and a query or goal
• The prolog machine

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51
	Dia 52
	Dia 53
	Dia 54
	Dia 55
	Dia 56
	Dia 57
	Dia 58
	Dia 59
	Dia 60
	Dia 61
	Dia 62
	Dia 63
	Dia 64
	Dia 65
	Dia 66
	Dia 67
	Dia 68
	Dia 69
	Dia 70
	Dia 71
	Dia 72
	Dia 73
	Dia 74
	Dia 75
	Dia 76
	Dia 77
	Dia 78
	Dia 79
	Dia 80
	Dia 81
	Dia 82
	Dia 83
	Dia 84
	Dia 85
	Dia 86
	Dia 87
	Dia 88
	Dia 89
	Dia 90
	Dia 91
	Dia 92
	Dia 93
	Dia 94
	Dia 95
	Dia 96
	Dia 97
	Dia 98
	Dia 99
	Dia 100
	Dia 101
	Dia 102
	Dia 103
	Dia 104
	Dia 105
	Dia 106
	Dia 107
	Dia 108
	Dia 109
	Dia 110
	Dia 111
	Dia 112
	Dia 113
	Dia 114
	Dia 115
	Dia 116
	Dia 117
	Dia 118
	Dia 119
	Dia 120
	Dia 121
	Dia 122
	Dia 123
	Dia 124
	Dia 125
	Dia 126
	Dia 127

