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The book

• The book: Advanced Programming Languages
• To be published in 2013
• Editor: Judit Nyéky-Gaizler, PhD
• Almost 20 authors, mostly from Eötvös 
LorándUniversity, Faculty of Informatics
• 1080 pages, 17 chapters + Appendix

• The predecessor book: 
• 2003, in Hungarian

•



The purpose of this 
training

• The book
• Generic concepts in programming languages
• Unified terminology
• Cross-reference between chapters

• The training
• Summarize most important language features
• Recap key concepts
• Base of programming language class/training



Content (1)

• Language design
• Lexical elements
• Control structures
• Scope and Life
• Data types
• Composite types
• Subprograms
• Exception handling



Content (2)

• Abstract data types
• Object-oriented programming
• Type parameters (Generics)
• (Correctness in practice)
• Concurrency
• Program libraries
• Elements of functional programming languages
• Logic programming and Prolog
• (Aspect-oriented programming)



Language design



Language design

• Key concepts:
• Syntax, Semantics, Pragmatics
• Implementation
• Programming language evolution 
• Language categories
• Language design
• Standardization



Syntax, Semantic, 
Pragmatics

• Syntax
• The correct grammar of the language

• Semantic
• The meaning of a syntactically correct phrase

• Pragmatics
• How to use the given phrase for a useful purpose 



Implementation

•Compilation
• Phases: (Preprocessing), Compiling, Linking
• Static or dynamic linking
• Generates HW and OS-specific executable 
• Effective optimizations

• Interpretation
• Faster developing process 
• Less correctness-checking possibilities



Implementation

• Hybrid model
• Compiler generates platform independent 
intermediate code
• Intermediate code executed by “virtual machine”
• Fair correctness checking and optimization 
• More optimization: Just-in-time compilers

• Samples
• Pascal P-code, Java virtual machine, MS IL 



Evolution of the 
programming languages

• Early attempts
• Computation of Bernoulli Numbers for the 
Analytical Engine – notes from Ada Lovelace 
• Plankalkül (Zuse, 1943-45) – relational algebra
• Hard-wired machines (1940 - )

• Raising the abstraction level
• Machine code (1945-50)
• Assembly (1950-) 



Evolution of the 
programming languages

• Early high level languages
• FORTRAN (1956) – Math expressions
• LISP (1957) – Functional
• ALGOL (1958-60) – First block structure
• COBOL (1960-) – Detailed data description
• PL/1 – Union of all existing features
• Basic – (Kemény), Simplification for education



Evolution of the 
programming languages

• New directions for better abstraction
• Simula 67 (1967) – First OO language
• Algol 68 (1968) – More precise specification 
• Pascal  (1970) – Educational purposes
• C (1971) – HW abstraction for system programming
• Smalltalk (1971-) – Pure OO language
• Prolog – First Logic programming language
• ML – Statically typed functional language



Evolution of the 
programming languages

• Towards better modularization
• Modula-2 (1978) – (Pascal) Better modularization
• ADA (1977-) – Programming safety critical systems 
• C++  (1980) – C + Simula 67 + Algol 68
• Oberon (1986) – Modula 2++
• Objective C – Object based, dynamic 



Evolution of the 
programming languages

• Towards faster development – Scripting languages
• Perl, Python, Ruby, PHP (1985-) 

• … and hybrid languages
• Java  - easy to use and deploy (virtual machine)
• C#
• Scala

• Just now: towards many-core & multicore systems
• OpenCL, Go, ...



Programming language 
classification

• Imperative (procedural) 
• Applicative (functional)
• Rule-based or logic
• Object-oriented

• Object-based, class-based
• Concurrent
• Scripting (dynamic) 



Language design

concepts
• Well-defined syntax and semantics
• Expressivity
• Orthogonality
• Generality
• Modularity
• Portability 
• Easy to learn 
• Performance



Lexical elements



Lexical elements

• Key concepts:
• Compilation units
• Lexical elements, character sets
• Delimeters, strict and non-strict format languages
• Identifiers
• Keywords, reserved words
• Literals (number, character, string, …)
• Comments



Control structures



Control structures

• Key concepts:
• Sequences
• Transfer of control 

• Conditional 
• Unconfitional 

• Subprogram (function, subroutine) call
• Return from subprogram 
• (Exceptions)



Representing the 
control structure

• Sentence-like descriptions
• Flow diagrams
• D diagramss
• Block diagrams
• Structograms



Imperative 
(procedural) languages

 Abstraction of von Neumann computer
• Variables representing the program state

• Assignment = change state
• Execution is a sequence of state transitions
• Procedures: nesting state + state transition



Declarative and 
Functional languages

 No method of execution is specified
• Specification of the problem to solve

• SQL, Prolog
• In functional languages

• The problem specification is to solve a (pure) 
function
• Input/output is considered as „side effect” 



Assignment

• Statement in earlier languages
• Expression in modern languages 

• Can be nested
• Has return value
• User may redefine semantics (C++ operator=)

• Some languages (CLU) has multiply assignment
• Implicit conversions are involved



Unconditional transfer 
of control

• Go To statement 
•   …is considered harmful (Edsger W. Dijkstra, 1968)
• Sometimes still used in modern languages 

• Break and continue in C
• Return from the middle of a subprogram

• Call of subprogram and return 
• Recursion



Conditional transfer of 
control

• Arithmetic GOTO in Fortran
• Branching structures

• If, elif, else 
• Dangling if 

• Switch/case
• Default case



Loops

• Loops on condition expression
• While, do-while, for(expr1;expr2;expr3) in C

• Iteration over an integer range
• Iteration over a value range

• Foreach in C#, for (expr) in C++
• Iteratiors

• Abstraction over control structure



Scope and Life



Scope and Life

• Key concepts:
• Scope

• Identifyer, declaration, definition
• Block structure, visibility

• Life (or lifetime)
• Construction, destruction
• Garbage collector, Memory leak
• RAII, Smart pointers



Scope and Life

• Scope
• Static feature – compilation time
• The mapping between names (identifiers) and  
program objects (types, functions, variables)

• Life (or lifetime, life span)
• Dynamic feature – during runtime
• The time between the creation and destruction of 
the object

• Related, but not identical features



Scope types

• The entire program 
• perhaps more compilation units

• One compilation unit
• A type or class
• A namespace 
• A subprogram
• A block of code



Scope rules

• Scopes may overlap
• Internal scope hides external one
• In some languages: syntax error

• Important difference between
• Hiding (of a name in external scope)
• Overriding (of virtual function)
• Overloading (between functions with same name 
but different signature)



Life, lifetime, life span

• Static
• Memory allocated at the beginning of program 
• Memory deallocated at the end of the program

• Automatic
• Memory allocated when control enters the block 
• Memory deallocated when leaving the block

• Dynamic
• Allocation controlled by the programmer
• Deallocating manually or by garbage controller



Static life

• Memory allocated at the beginning of the program
• Life keeps until the end of the program
• Nasty details:

• Java: construction when loading the class
• C++: no creation order between compilation units
• C++: Static initialization issue, when constructors 
of static variables refers to each other. Use 
Singleton pattern!



Automatic life

• To reuse memory between disjunct subprograms
• Objects are allocated in the stack
• Mostly used for local variables and temporaries
• Objects constructed at entering the code block 
where the object is declared (in declaration order)
• Objects are destructed when leaving the block
• Nasty details:

• Sometimes we have reference to variable after 
automatic life finished (e.g. return pointer to it) 



Dynamic life

• Construction and destruction (mostly) controlled by 
the programmer
• Objects are allocated in the heap/free memory on 
programmer request
• In some languages deallocation is on request
• In other languages: garbage collection

• Difference between destruction and finalization
• Heap operations are very slow in-memory activities



Dynamic life

• Memory leak: when allocations and deallocations 
do not match

• Can happen even with garbage collection
• Usually happen when no garbage collection
• Throwing exceptions is a typical source of issue

• RAII – Resource allocation is initialization
• C++ smart pointers using RAII

• Ownership or reference counting strategy



Data types



Data types

• Key concepts:
• What is a data type
• Specification and realization

• Invariants 
• Type system

• Strongly typed, graduate typed, typeless 
• Type inference

• Type conversions



Data type categories

• Primitive/built-in types
• Scalar types

• Integral types 
• Floating point types
• Characters
• Enumerations 

• Pointers
• Pointers to objects, pointers to subprograms 



Composite types



Composite types

• Key concepts:
• Abstract constructions 

• Cartesian product types
• Union types
• Iterated types

• Type equivalence
• Name equivalence
• Structure equivalence
• Declaration equivalence



Cartesian product

• Type-value set: T1 ᵡ T2 ᵡ T3 ᵡ … ᵡ Tn
• Widely supported in languages: record, struct, ...

• Operations
• Type/Field selection
• Assignment
• Equality check 

• Language specific
• Variadic record
• Default values



Union

• Type-value set: T1 ᴗ T2 ᴗ T3 ᴗ … ᴗ Tn
• Less support in languages: union, variant
• Some OO languages use inheritance instead
• Tagged or free union

• Operations
• Type/Field selection
• Assignment
• Type selection (in some languages)



Iterated types: Array

• Type-value set: T ᵡ T ᵡ T ᵡ … ᵡ T
• Full support in languages: array, ... 
• Length may variadic (given at runtime) or static
• In some languages arrays „know” their lenght

• Operations
• Selection based on index value
• Assignment is not fully supported
• In C special relation between pointers and arrays 



Iterated types: Set

• Type-value set: 2T 
• Partial support in (mostly Pascal-like) languages
• Otherwise implemented as library type

• Operations
• Assignment
• Equality check
• Set operations (push, pop, has, ...)



Iterated types: Set

• Type-value set: 2T 
• Partial support in (mostly Pascal-like) languages
• Otherwise implemented as library type

• Operations
• Assignment
• Equality check
• Set operations (push, pop, has, ...)



Other iterated types

• Hashtables
• Key-value pairs
• Mostly in script languages (Perl)
• Otherwise implemented as library type (C++, Java)

• Multisets/bags
• Key-counter pairs
• Usually implemented as library type



Subprograms



Subprograms

• Key concepts:
• Formal and actual parameters 
• Parameter passing methods
• In, out, and in-out parameters 
• Overloading
• Subprograms as parameters
• Corutines



Subprograms

• Reusing existing code parts (since Babbage!)
• Positive effect on code quality

• Reusablility
• Readability 
• Changeability
• Maintainability

• Procedures and functions



Subprogram structure

• Function signature
• Name
• Parameter list

• Formal parameters: at subprogram definition
• Actual parameters: at subprogram call

• Const, volatile modifiers are part of the signature
• Return value (for functions)
• Usually a single entry point (exceptions, like PL/I)
• Potentially multiply return points



Calling subprograms

• Explicit call statement with keyword, like CALL f()
• Just write a call expression, like x = f()
• Actual parameters match with formal parameters 

• Either prameters matching by name
• Or parameters are passed using formal name

• Default parameters (if any) are evaluated at calling 
site
• In some languages () can be omitted at calls with no 
actual parameter



Parameter list

• Sometimes we have variadic parameter list
• printf( const char *fmt … )

• Sometimes we have default parameters
• void f(int x = 1)

• Sometimes we overload functions on parameters
• void f(double x) and void f(int x)

• Sometimes we overload on modifiers:
• void F( int* x) and void F(const int* x)

• In OO languages we pass hidden parameter “this” 



Parameter passing

by value 
• Actual parameters are copied into the subprogram
• Formal parameters acting like local variables
• Best separation of caller and callee

• Formal parameter identifies different memory area 
than the actual parameter, changing them has no 
effect on caller 
• Parameters transfer information only into callee
• Only return value transfer information to caller

• Out parameters can be simulated by passing pointers
•



Parameter passing

by reference (address) 
• Actual parameter addresses are used in subprogram
• Formal parameters acting like global variables
• Weak separation of caller and callee

• Formal parameter identifies the same memory 
area than the actual parameter, changing them has 
permanent effect on caller 
• Parameters may transfer information in and out

• Issues when actual parameter is an expression not 
identifying a memory area, like: CALL F(k+1)
•



Parameter passing

by result
• Modification of pass by value for implementing output 
parameters
• Actual parameters are copied into the subprogram
• Formal parameters acting like local variables
• When the subprogram returns, value of formal 
parameters are copyed back to actual parameters
• Good separation of caller and callee

• Modification of formal parameters has no effect to 
caller until subprogram returns



Parameter passing

by name
• Actual parameters not identifying any memory region 
(expressions, like 3+4) are passed by value
• Actual parameters referring to memory region 
(expressions, like 3+t[i]) are passed by address 

• Every time a formal parameter is referred during 
subprogram execution, the expression specified as 
actual parameter is re-evaluated. 

• Weak separation of caller and callee
• Modification of actual parameters has immediate 
effect to the subprogram execution



Textual substritution of 
parameters

• Used mainly in simple scripting languages and 
macros
•  Weak separation of caller and callee

• No separation of caller and callee
• Dangerous side-effects may happen, like

• Multiply evaluation 
• Precedence hijacking



Overloading

• The same name can denote multiply subprograms
• Compiler selects the appropriate subprogram 

• Overload resolution happens in compile-time
• Compiler flags compile error if unable to select 

• Overloading happens on 
• Number of parameters
• Types of parameters 
• Modifyers (like const and volatile)



Operator overloading

• Operators – when programmer can define them – are  
acting like functions with special names
• ADA, C++, C# allows operator overloading, Java not

• Arity and precedence of operators are usually fixed
• 



Passing subprograms 
as parameters

• Subprograms are first calss citizens in functional 
programming languages

• They can be passed as parameters
• In imperative and OO languages this is not general

• Funtion pointers in C/C++
• Function objects and lambda functions in C++
• Modula-3: closure carrying the environment where 
the subprogram will be executed



Corutines

• Corutines are subprograms executed in a symmetric 
control model instead of caller-callee distinction

• The corutin can pass back the control without 
finishing its task – dispatch 
• Local variables are kept alive
• Corutin can resume its execution from the place 
where it was last dispatced

• They mimic parallelism – sometimes decreaseing 
program complexity 



Exception handling



Exception handling

• Key concepts:
• Handling runtime errors
• Separation of error handling concepts
• Exception safety
• Checked and unchecked exceptions
• Grouping exceptions
• Polymorphic exceptions



Basic concepts

• Runtime errors break normal execution flow
• Error handling code crosscuts normal execution
• Separation of error handling is welcome

• Exception may raised (throw, signal) by SW or HW
• Exceptions are catched by specific handlers
• Exceptions can carry information from the site of 
error to the place where we can handle it

• In modern languages exceptions are objects of 
arbitrary type – we can define our type too



Exception safety

• As exceptions break the normal flow of execution
• Object can be left in undefined state
• Resources may not be deallocated
• This can cause inconsistency, like memory leak

• In Java and C# finally blocks are executed before 
the control leaves a block
• In C++ RAII is used to avoid memory leak

• Nothrow, strong, and basic garantees



Checked exceptions

• An exception throable from a subprogram or class 
is part of the interface of that module
• Checked exceptions in Java 

• Static (compile-time) checking whether the 
exception has been properly handled
• There are non-checked run time exceptions too

• In C++ the compiler has less possibility for checks
• In C++11 there is a __nothrow attribute and 
operator which is evaluated in compile time



Grouping exceptions

• In modern OO languages exceptions are common 
objects from arbitrary types 
• Custom types can be defined for custom exceptions
• Inheritance hierarchy can be used to group 
exceptions

• The handler of base class catch derived 
exceptions
• Always throw the most derived type of exception
• Exception objects can be polymorphic



Abstract Data Types



Abstract Data Types

• Key concepts:
• Modular design
• Language support for modularity
• Representation hiding
• Separation of specification and implementation
• Generalized program schemes



Modular design

• In modern programming languages modular design 
is a key concept.
• Criteria of modular design:

• Modular decomposition
• Modular composition
• Modular intelligibility
• Modular continuity
• Modular protection



Modularity

• Language support of modules
• Few interconnections
• Weak interconnections
• Explicit interfaces
• Information hiding
• Open and closed modules

• Open: extendable (like C++ namespaces) 
• Closed: reachable via interface, used unchanged



Modularity

• Reusability 
• Variety of types
• Variety of data structures and algorithms
• One type – one module
• Representation independence



Language Support for 
Modularity

• Procedural languages
• C: #include 
• Modula-3: modules, export, import, generic
• Ada: package – open modules support

• Functional languages
• Signature description in ML, can be reused 

• By embedding
• By specialization 



Object-oriented 
languages

• Address open/closed modules with inheritance 
• Package (Java as example)

• Package visibility
• Import, imported names should be fully qualified

• Single-type import
• On-demand import 

• 



Representation hiding

• Opaque type
• Handlers in C, Pascal
• ADA: private type
• CLU: abstract data types

• Visibility levels
• Private
• Protected
• Public

• 



 Specification and 
Implementation

• Enables the modules to be developed separately
• Supports modification in implementation
• Implementation can be delivered in binary 
• Supports separation:

•C and C++ header files / source files separation
• Mapping to pointers / C++ PIMPL strategy

• Not supports physical separation
• Eiffel, Java 



 Generalized 
program schemes

• Data parameters
• Type parameters: Generic, Template

• Type erasure
• Instantiation

• Subprograms as parameters
• Function pointers, functors, lambdas

• Higher level structures as parameters
• Scala



Object-oriented 
programming



Object-oriented 
programming

• Key concepts:
• Class and Object
• Constructing and destructing objects
• Encapsulation
• Data hiding, interfaces
• Class (static) data and method
• Inheritance
• Polymorphism



 Class and Object

• Object
• Independent units of the reality we model
• Inner state (represented by attributes)
• Response for the messages received (behavior)
• Each object has its identity 

• Class
• Group of objects with similar attributes and 
behavior  
• Each object is an instances of a class



Construction, destruction

• Life cycle of objects: born, live, die
• Construction

• Set the initial state to fulfill type invariant 
• Constructor: usually a public method

• Destruction
• Sometimes need to clean-up resources 
• Destructor (C++)
• Finalize method (called by Garbage Collector)



Encapsulation

• Considering data structure and  the operations on it 
as a single unit and hide them from outer word
• Specification gives the outer description 

• Value-set of the type 
• Behavior: methods

• Implementation
• Data representation 
• Method implementation



Data hiding, interfaces

• Encapsulation means objects hides implementation
• To communicate with the outside word: interface

• Interface: previously defined set of messages
• Object can be touched only using the interface 
• Interface should be minimal

• Visibility
• Public, protected, private
• (C++) friends, (Eiffel) selective access



Class (static) data and 
methods

• Normally we work with objects and their methods 
• For such instance methods we pass Self/This

• Sometime we use data and methods not connected 
to any objects – called class (static) data and method

• Cannot access instance members 
• Cannot call instance methods (not receiving Self)

• C++, C#, Java: static members, static methods
• Scala: object – a singleton



Inheritance

• Generalization and specialization
• Inheritance

• Super-class (base) and sub-class (derived)
• Derived inherits base attributes and methods
• New attributes and methods can be added
• Cannot access instance members 
• Cannot call instance methods (not receiving Self)

• Inheritance can be single and multiply
• Some lang multiply inheritance only for interfaces



Inheritance types

• Derived class access public and protected of base 
• Inheritance normally extend base interface

• Java keyword: extend
• In C++ there are three kind of inheritances

• Public: extend interface as Java 
• Protected: convert base interface to protected
• Private (default): Hide the interface of base



Polymorfism

• Extending base interface: substitutability
• Liskov Substitution Principle

• Subclass objects can appear in place of super
• Static and dynamic (run-time) type of object

• Polymorphism: in OO = subtype polymorphism 
• Methods can be redefined in subclass

• Static redefinition (based on static type)
• Dynamic redefinition (based on run-time type):

• Virtual functions, dynamic dispatch



Abstract class, interface

• Representing common abstractions
• No objects are instantiated from abstract class

• Common data for all subclasses
• Protocol: for redefine in subclasses

• C++ abstract class
• Pure virtual 

• Java 
• Interface: no data 
• Abstract class



Multiple inheritance

• Mostly for unifying multiply interfaces
• In many languages only for interfaces

• Java, C#
• In C++ works by default

• Resolving name conflict with scope operator
• Diamond-shape inheritance 

• Common base class inherited multiply times 
• Scala traits



Type parameters



Type parameters

• Key concepts:
• Control and data abstraction
• Taxonomy of Polymorphism 
• Generic contract model
• Instantiation
• Type erasure



Abstraction

• Control Abstraction
• Procedural (C): function pointers
• Object-oriented (Java): classes with “doit” func.
• Generic (C++): functors – function objects 

• Data abstraction
• Type parameters
• Opaque types



Taxonomy of 
Polymorphism

• Universal
• Parametric
• Inclusion

• Ad-hoc
• Overloading
• Coercion



Generic Contract Model

• Constraining type parameters for data or method
• Constrained generics

• Java – supertype, subtype relationships
• Ada – with clause

• Unconstrained generics
• C++ templates – no restriction on type parameter
• C++14 Concepts (light)

• Type class in functional languages



Instantiation

• Actual type parameter substitues formal parameter
• New code generated – instantiation

• On demand (C++)
• Manually (ADA)

• User defined specialization in C++ 
• Template metaprogramming – executing algorithm 
in compile-time 



Type erasure

• Actual type parameter substitued by common heir
• Most famously used in Java 
• Only one code serves all type parameters
• Compiler ensures type safety on back-conversion
• Auto-boxing unboxing for built-in types
• No specialization



Concurrency



Concurrency

• Key concepts:
• ”The free lunch is over”
• Why to write concurrent applications?
• Amdahl's law
• Syncronization
• Process vs. Thread
• Sample: MPI and Java



The free lunch is over

• Moore's law
• Number of transistors 
• Processing speed

               doubles in every 24 month
• Free lunch: the same program will run faster by time
• Trend on speed has broken: 

• The free lunch is over (Herb Sutter, 2004)
• Make programs faster should utilize concurrency



Area of concurrent 
programming

• Responsive user interfaces
• Multi-user server solutions incl. databases
• Web servers, and web browsers
• Multicore systems to utilize all resources
• Scalable applications
• More intuitive programming schema



Popular fallacies on 
Concurrency

• If it is concurrent it is quicker.
• Program structure does not matter.
• Easier to write a sequential prototype and then 
rewrite it as a parallel version.
• I do not need to care concurrency.
• Concurrency is easy. At least easy to debug if I 
make mistakes.



Amdahl's law

The performance gain by paralellizing an application 
is heavily bounded by the ration of concurrently 
executable parts that are independent of each other



Data and Instruction

• Single instruction
• Single Data Stream SISD
• Multiply Data Stream SIMD

• Multiply Instruction
• Single Data Stream MISD
• Multiply Data Stream MIMD



Syncronization

• Deadlocks
• happen if all these conditions state (Coffman 
conditions):

• Mutual exclusion
• Hold-and-wait locking
• No preemption
• Circular dependencies

• Starvasion



Syncronization techniques

• Critical section
• Set of instructions where the execution is 
restricted to a single thread/process.
• Entry protocol, exit protocol

• Busy waiting
• Semaphore
• Monitor
• Conditional critical section



Concurrent execution units

• Process vs thread
• Process

• Own address space 
• Expensive to start and switch

• Thread
• Own execution thread, shared address space
• Thread local memory - own stack
• User / system thread



Sample: MPI

• Message Passing Interface – language independent 
• Inter-thread point-to-point communication
• Handle tasks in groups

• Creating tasks
• Communication methods
• Communication in group



Sample: Java

• Runnable interface and Thread class
• Thread groups
• Concurrent API
• Concurrent collections
• Executor framework
• Thread pools
• Syncronized 



Program libraries



Program libraries

• Key concepts:
• Requirements against libraries
• Procedural programming
• Object-oriented programming
• Generic programming



Library requirements

• Correctness
• Efficiency
• Reliability
• Extensibility and maintainability
• Reusability
• Portability



Procedural library design

• Set of type definitions and functions
• Separation of interface and implementation
• Most frequently tasks are covered:

• Standard I/O: file handling
• Memory manipulation
• String library
• Mathematical functions



Object-oriented library 
design

• Class hierarchy
• Optimal service size < 80
• Abstract types with interface

• Fat vs. narrow interfaces
• Handle classes, proxy classes

• Expression problem: 
• Easy to extend with new data (class)
• Hard to extend with new service 
• Visitor pattern



Generic programming 
library design

• First introduced in C++ as STL (Stepanov&Musser)
• Orthogonal separation of data and algorithm
• Containers (parametrized by types)
• Algorithms without knowing data representation
• Iterators connecting containers to algorithms

• Hierarchy of iterators
• Functors 
• Adaptors



Functional Programming



Functional Programming

• Key concepts:
• Mathematical foundation: Lambda calculus
• Structure: function definitions, starts expression  
• Referential transparency
• Pattern matching



Mathematical foundation

• Lambda calculus (Church 1932-33)
• Equivalent to Turing Machine

• Evaluation of (mathematical) functions
• First implemented: LISP (1957)



Functional program 
structure

• Type, type class and function declarations
• Program execution = evaluate start expression 
• Rewriting system: rewriting start expression 
determined with the computation model
• Pure (side-effect free) functions
• Referential transparency (no assignment) 
• Strong static typing
• Pattern matching



Functional program 
structure

• Recursive function application
• Currying, partial function application
• Higher order functions
• Evaluation strategy

• Lazy evaluation
• Eager, strict evaluation

• List comprehension



Logic Programming



Logic Programming

• Key concepts:
• Algorithm = Logic + Control
• Logic programs
• Prolog



Logic programming

• Roots: Automated theorem prover (suggested by 
Hilbert) has two components:

• Logical (declarative) description of problem
• Control component of deduction or computation  

• Axiom:
• Fact
• Rule (incl. recursive rules)

• Search trees



Prolog

• Robert Kowalski (~1970): Theoretical foundations
• Alain Colmerauer (1972): PROLOG

• Implemented first as an interpreter
• David Warren (~1976): First effective compiler
• Data structure: terms

• Set of predicates and a query or goal
• The prolog machine
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