
Git 
„The stupid content tracker” 

 

 

 

Istvan Szekeres 

11/03/2013 

 

 

 



 Linux kernel development: massively distributed, coordinated by 1 single guy 

(Linus Torvalds) 

 Using nothing first (email..), then a proprietary system (BitKeeper) 

 After some confilicts BK was given up 

 Looking for alternatives: nothing found 

 Requirements: 

 Email client integration 

 Massively distributed / decentralized 

 Fast. I mean FAST. (local operations < 1 sec) 

 Safe against data corruption / intrusion. 

 

 April 2005: git was born (by Linus Torvalds) 

 Shell scripts on the surface (porcelain), tiny C binaries behind the scenes 

(plumbing) 

 

Background & History 



 Support for non-linear development 

 Distributed development 

 Compatibility with existing protocols (HTTP, FTP, rsync, ssh, email) 

 Efficient handling of large projects 

 Cryptographic authentication of history 

 Toolkit-based design 

 Pluggable merge strategies 

 Repository optimizations 

 Made for Linux, ported for Windows (cygwin) 

 Import from Perforce, CVS/RCS, SVN 

 Work with SVN 

 

 

Features 



 Just create a working directory and initialize it 

 

[5]% mkdir hello-world 

[6]% cd hello-world  

[7]% time git init 

Initialized empty Git repository in /var/tmp/hello-world/.git/ 

git init  0.00s user 0.00s system 2% cpu 0.280 total 

[8]% ls -la 

total 24 

drwxrwxr-x   3 szekeres szekeres  4096 Nov 16 12:13 . 

drwxrwxrwt  60 root     root   16384 Nov 16 12:13 .. 

drwxrwxr-x   7 szekeres szekeres  4096 Nov 16 12:13 .git 

 

 git init - very fast repository initialization 

 The repository is in .git 

 

Hello, world – creating the repository 



 Create some files and check what Git thinks about them 

 

[9]% echo "hello" > hello.txt 

[10]% time git status 

# On branch master 

# 

# Initial commit 

# 

# Untracked files: 

#   (use "git add <file>..." to include in what will be committed) 

# 

#       hello.txt 

nothing added to commit but untracked files present (use "git add" to track) 

git status  0.00s user 0.00s system 86% cpu 0.005 total 

 

 git status – how is the working tree vs the repo? 

 

Hello, world – adding some files 



 Tell Git about some new content 

 

[21]% time git add hello.txt  

git add hello.txt  0.00s user 0.00s system 99% cpu 0.005 total 

[22]% time git status                       

# On branch master 

# 

# Initial commit 

# 

# Changes to be committed: 

#   (use "git rm --cached <file>..." to unstage) 

# 

#       new file:   hello.txt 

# 

git status  0.00s user 0.00s system 109% cpu 0.004 total 

 

 git add – tells git there is a new version of a file. DOES NOT tell that from now 

on this file is to be tracked! 

 „Staging area” for the changes to be committed 

Hello, world – adding some files 



 Record the changes 

 

[26]% time git commit -m "My first commit" 

[master (root-commit) 0586713] My first commit 

 1 files changed, 1 insertions(+), 0 deletions(-) 

 create mode 100644 hello.txt 

git commit -m "My first commit"  0.00s user 0.00s system 109% cpu 0.005 total 

[27]% time git status  

# On branch master 

nothing to commit (working directory clean) 

git status  0.00s user 0.00s system 95% cpu 0.004 total 

 

 git commit – commits the changes in the staging area 

 Commit message: by convention: 1 line short description + empty line + many 

lines long description. 1st line used by many tools. 

Hello, world – commiting the changes 



 Change the contents 

 

[39]% echo "hello, world\!\nHello, sunshine\!" > hello.txt 

[40]% git diff 

diff --git a/hello.txt b/hello.txt 

index ce01362..7c46bb1 100644 

--- a/hello.txt 

+++ b/hello.txt 

@@ -1 +1,2 @@ 

-hello 

+hello, world! 

+Hello, sunshine! 

 

 

 git diff – runs „diff” to show the changes against staging area 

 ce01362 – object id of original file (later..) 

 7c46bb1 – object id of new file 

Hello, world – doing some more changes 



 Check the changelog 

 

[61]% git log 

commit a29e14c54c8c01d16b6237d7404802918267d963 

Author: Istvan Szekeres <szekeres> 

Date:   Tue Nov 16 12:50:50 2010 +0100 

 

    My second commit 

 

commit 0586713b3a353246189d9a59a647728369561b6f 

Author: Istvan Szekeres <szekeres> 

Date:   Tue Nov 16 12:35:44 2010 +0100 

 

    My first commit 

[62]% git shortlog 

Istvan Szekeres (2): 

      My first commit 

      My second commit 

 

Hello, world – what changes were made? 



 What was changed in a commit? 

 

[64|128]% git show 0586713b  

commit 0586713b3a353246189d9a59a647728369561b6f 

Author: Istvan Szekeres <szekeres> 

Date:   Tue Nov 16 12:35:44 2010 +0100 

 

    My first commit 

 

diff --git a/hello.txt b/hello.txt 

new file mode 100644 

index 0000000..ce01362 

--- /dev/null 

+++ b/hello.txt 

@@ -0,0 +1 @@ 

+hello 

 

 Commit Ids can be shortened (but must keep them unique) 

 

Hello, world – inspecting the changes 



 Oops, we committed the wrong thing! 

 

[67]% git reset 'HEAD^' 

Unstaged changes after reset: 

M       hello.txt 

 

 HEAD – reference to the last commit of the current branch 

 ^  - refers to the parent object of what it follows 

 So HEAD^ is the commit before the last one in the current branch 

 git reset – reset actual HEAD to the specified state, keeping the changes. 

 DO NOT DO git reset on already published changes! 

 

Hello, world – reverting changes in the local repo 



 Git can figure out the changes... 

 
[129]% cat hello.txt 

hello, world! 

Hello, sunshine! 

[130]% echo 'Hello, trees!' >> hello.txt 

[131]% mv hello.txt helloworld.txt 

[132]% git add helloworld.txt 

[134]% git rm hello.txt 

rm 'hello.txt' 

[135]% git status 

# On branch master 

# Changes to be committed: 

#   (use "git reset HEAD <file>..." to unstage) 

# 

#       renamed:    hello.txt -> helloworld.txt 

# 

[136]% git commit -m "renametest" 

[master edc0fc8] renametest 

 1 files changed, 1 insertions(+), 0 deletions(-) 

 rename hello.txt => helloworld.txt (68%) 

 

 

 

Rename tracking 



 

 Commits are like a linked list 

 Each commit points to a/more parent(s) 

 „master” is the name of the main development branch 

 and technically „master” is a „pointer” to the commit that represents the head of 

the branch 

Branches - master 

My first commit 

My second commit 

Added some comments 

master 



 git branch mynewbranch – creates a new branch at where HEAD points to 

 git checkout mynewbranch – checks out content of mynewbranch 

 

 

 

 

 

 

 

 

 

 

 

 What happens on branch creation? A new reference is made. Time required: ~0. 

 What happens on checking out another branch: the files different in the two 

branches are updated. Time required: ~0. 

 

Branches – creating a new one 

Imported project 

Added some comments 

master 

mynewbranch 

Fixed buffer overflow in foo.java 



 git branch mynewbranch – creates a new branch at where HEAD points to 

 git checkout mynewbranch – checks out content of mynewbranch 

Branches – committing into branches 

master mynewbranch 



 git checkout master – we want to merge into master 

 git merge mynewbranch – checks out content of mynewbranch 

Branches – merging branches 

master 

mynewbranch Merged branch 

„mynewbranch” 



Branches – and then the work can go on... 

master 

mynewbranch 



 git remote – where are other repositories? (local fs, http, git: ..) 

 git fetch – retrieve objects (commits, etc) from other repositories 

 

[113]% git remote -v 

joseph  /elte/user/j/jane/src/tools/.git (fetch) 

joseph  /elte/user/j/jane/src/tools/.git (push) 

origin  /elte/dev/web/tools/SCM/farmtools.git (fetch) 

origin  /elte/dev/web/tools/SCM/farmtools.git (push) 

[114]% git branch -a 

* master 

  remotes/jane/development 

  remotes/jane/master 

  remotes/origin/HEAD -> origin/master 

  remotes/origin/master 

 

 Tracking branch – tracks what happens in remote branches 

Remote branches 



Remote branches - visualized 

master 

mynewbranch 

remotes/origin/master 



 Local tracking branches are „mirrors” of remote branches (same IDs, etc.) 

 

 git fetch – downloads changes from a remote repository into local tracking 

branch 

 git push – upload local commits into remote repository 

 

 Everything else is local !!! 

 

 git clone – Clone remote repository 

 Sets up the git remote under the name „origin” 

 Fetches remote master branch (by default) 

 Sets up local master branch 

 

 git pull - most common operation: fetch and merge remote changes 

 

 „Bare” repositories – no working copy, just the repository 

Remote branches – they are not that special! 



 Individual developer – Standalone 

 One repository, one developer 

 

 Individual developer – Participant 

 One remote repository, more developers pushing directly into it 

 

 Integrator 

 One dedicated repository maintained by an integrator 

 Integrator receives patches / pulls changes, then pushes into dedicated 

repository 

Working models 



 Shortcuts to specific commits 

 „lightweight” tags – just references 

(like a symlink) 

 „annotated” tags 

 actual commited objects 

 GPG-signable 

 

[47]% git tag mytesttag dcaa01f2 

[48]% git tag -l 

mytesttag 

[49]% git show mytesttag 

commit dcaa01f251871058d196dffc45373c7f5aac907a 

Merge: d09fed7 7533413 

Author: Istvan Szekeres <szekeres> 

Date:   Tue Nov 16 13:54:45 2010 +0100 

 

    Merge branch 'mynewbranch' 

 

 

 

Tags 

master 

mytesttag 

v1.0 



 

 

GUI – gitk – Graphical history browser 



 

 

GUI – git gui – Graphical commit tool 



 All data are .. objects... 

 objects are indexed by their SHA1 hash... 

 ... which makes their ID unique (chance for collision is 1 / 2^160 

 Revision ID (Integer, incremented by 1 on each commit) makes no sense 
 

[14]% git cat-file -t 0586713                                                       

commit 

[15]% git cat-file -p 0586713 

tree aaa96ced2d9a1c8e72c56b253a0e2fe78393feb7 

author Istvan Szekeres <szekeres> 1289907344 +0100 

committer Istvan Szekeres <szekeres> 1289907344 +0100 

 

My first commit 

[16]% git cat-file -t aaa96ced2d9a1c8e72c56b253a0e2fe78393feb7 

tree 

[17]% git cat-file -p aaa96ced2d9a1c8e72c56b253a0e2fe78393feb7 

100644 blob ce013625030ba8dba906f756967f9e9ca394464a    hello.txt 

[18]% git cat-file -t ce013625030ba8dba906f756967f9e9ca394464a 

blob 

[19]% git cat-file -p ce013625030ba8dba906f756967f9e9ca394464a  

hello 

Objects 



 All data are .. references... 

 So,  

 where does our current branch (HEAD) points to? 

 where do branches point to? 

 where do tags point to? 
 

[30]% cat .git/HEAD  

ref: refs/heads/master 

[31]% cat .git/refs/heads/master  

dcaa01f251871058d196dffc45373c7f5aac907a 

[32]% cat .git/refs/heads/mynewbranch  

75334137342cd650ccf4997a422d3efc43b53616 

[33]% cat .git/refs/tags/mytesttag    

dcaa01f251871058d196dffc45373c7f5aac907a 

 

References 



The git repository of git itself: 

 

 tracks sources since Apr 7, 2005 

 contains 23366 commits (up to end of Sept 2010) 

 that is ~23 commits / day 

 made by ~950 authors 

 ~2000 files in the latest version 

 

 

 Working directory size (including sources, NOT including the repo itself): 

    

    17 MB 

 

 Repository size: 

  69 MB 

 

 

 

 

Fun statistics #1 



The git repository of the Linux kernel (main motivation for creating git): 

 

 tracks sources since Apr 16, 2005 

 contains ~222000 commits (up to mid of Nov 2010) 

 that is ~108 commits / day 

 ~35000 files in ~2160 directories the latest version 

 

 

 

 Working directory size (including sources, NOT including the repo itself): 

    

    468 MB 

 

 Repository size: 

  400 MB 

 

 

 

 

Fun statistics #2 



 

 On the internet 

 Git homepage 

 Pro Git 

 a very good Git book 

 Git for computer scientists 

 

Links and further info 


