
Type Erasure in C++: The Glue between Object-Ori-
ented and Generic Programming
Presentation Abstract (Submission for MPOOL 07)

by
Thomas Becker

Zephyr Associates, Inc.
mpool@thbecker.net

Summary
C++ is a multi-paradigm language. The two main paradigms in C++ are object-oriented programming
and generic programming. Many real-world C++ software projects use these two paradigms side by
side. This creates considerable tension due to the fact that object-oriented programming is largely
based on the judicious choice of types and hierarchies, while generic programming tends to cause an
abundance of unrelated types. We show how type erasure can reconcile these conflicting tendencies.
We present iterator type erasure as a concrete example that we have implemented and that is being
used in production code at Zephyr Associates, Inc..

The Tension between Object-Oriented and Generic Programming
The most widely used programming paradigms in C++ are object-oriented program-
ming (classes, objects, and runtime polymorphism come to mind) and generic pro-
gramming (algorithms, templates, and compile time polymorphism come to mind).
A cornerstone of object-oriented programming is the judicious choice of types and
hierarchies. Much of what has been written on object-oriented programming is
centered around “object-oriented analysis and design.” The gist of this approach is
that the classes—that is, the types—in an object-oriented piece of software should
be such that they model actual entities in the domain of the application.
In generic programming, on the other hand, one tends to see a multitude of types
that exist for pure technical reasons and do not express much, if anything, related to
the application domain. We will present examples of this phenomenon below.
When object-oriented and generic programming are used side-by-side, this contra-
diction is no longer just philosophical. It will create very practical annoyances, be-
cause the object-oriented side of the code will want to give uniform treatment to ob-
jects that represent the same domain entity, e.g., place them in containers, pass them
to interfaces that use runtime polymorphism, and so on. If unrelated types abound,
none of this can be done easily and naturally.

Using Type Erasure to Resolve the Conflict
From what has been said so far, it is clear how to resolve the tension that occurs
when object-oriented and generic programming meet: given a set Τ of unrelated
types, one must come up with a unifying type S such that

• the interface of S expresses the commonality of the types T∈ Τ, and

• if s is a variable of type S, then any object of type T∈ Τ can be assigned to s.

This is exactly what type erasure does ([1]). The most radical example of type eras-
ure is boost::any ([2]), which can hold objects of any type. Except for the basics

1

mailto:mpool@thbecker.net

Type Erasure in C++ (Submission for MPOOL 07) Thomas Becker

such as construction and assignment, the interface of this class is of course empty,
because there is no commonality between the types that it unifies.

boost::any also exemplifies the most common implementation technique for
type erasure. The idea is to graft runtime polymorphism onto the set of types that are
to be unified. To this end, one defines a templatized wrapper class that holds the ob-
ject whose type is to be erased. This class template derives from a common abstract
base class. The actual type-erasing class holds a pointer to this abstract base class.

Another widely used example of type erasure is boost::function ([3]). Here,
the type erasing class unifies all types that are callable as functions and—simplify-
ing only slightly—have the same function signature.

The Need for C++ Iterator Type Erasure
We feel strongly that type erasure will become more common as C++ continues to
evolve as a multi-paradigm language. One situation where the absence of type eras-
ure has caused us grief in commercial software engineering is with C++ iterators.

The problem occurs when pairs of iterators are used to pass sequences of objects
between interfaces. Suppose you have a class X that internally holds a collection of
objects, let us say doubles, in an std::vector<double>. The class wishes to
expose a method that allows clients to iterate over the collection and retrieve the ele-
ments. The standard way of doing this, endorsed by the STL, is to expose a typedef
like

typedef std::vector<double>::const_iterator XIterator;

and a pair of iterators of type XIterator that point to the begin and end position
of the vector. Purists of object-oriented programming cringe at this, because the type
std::vector<double>, which is purely an implementation detail of the class
X, gets exposed in the interface of X.

Were this just a philosophical issue, one could dismiss it in the name of pragmatism.
However, the practical annoyances caused by this are considerable. Suppose, for ex-
ample, that the following occurs: there is a change in the implementation of X that
causes the vector to be filled in the opposite order than before, but clients are not
supposed to see this change. There is no doubt as to how the STL wants us to deal
with this situation: expose a pair of const reverse iterators instead of ordinary iterat-
ors. But alas, ordinary iterators and reverse iterators are of unrelated type. Therefore,
the implementation change spills into the interface. Clients of the class X will have
to recompile.

Another conceivable situation is that the class X holds a collection of objects, as be-
fore, or perhaps a small number of collections, but it wishes to expose these collec-
tions in several variations, say, forward and backward, then with the objects pro-
cessed in a number of different ways using Boost’s transform iterators, then with the
sequence filtered in a number of different ways using Boost’s filter iterators, and so
on and so forth. All that clients ever want to see are sequences of objects of one and
the same type. Instead, they have to deal with a multitude of iterator types that ex-
press nothing to them, because the differences in type reflect implementation detail
only.

2

Type Erasure in C++ (Submission for MPOOL 07) Thomas Becker

A conspicuous and ugly side effect of this abundance of iterator types is the fact that
the interface of the class X becomes fat. That is because each pair of iterators is re-
trieved via a different function. Soon clients will ask (and they have done so, rather
adamantly, in real life) to get, instead of a multitude of functions, a single function
which returns a pair of iterators and takes an enum value as an argument to specify
which sequence is requested. This cannot be done in a natural way as long as the
types of the iterators involved are all different.

Apart from the unwanted multitude of types, there is another problem with exposing
iterators such as vector iterators directly to clients. Remember that the intent was to
allow clients to retrieve the objects in the exposed sequences via iteration. The inter-
face of an STL vector iterator, however, allows clients to do many other things. For
example, someone could look at end – begin to determine the length of a se-
quence. Now if the class X internally replaces the vector with a list, which is in per-
fect keeping with the original intent, clients will see their code break.

It is clear that all these problems could be solved if there were a type-erasing iterator
class that could

• hold any one of the different iterators that our class X uses internally, and

• cut down the interface to forward iteration, regardless of what other capabil-
ities the internal iterators may have.

The Cost of C++ Iterator Type Erasure
It is clear that type erasure for iterators, like every type erasure, will come at the cost
of a level of indirection and a virtual function call. Normally, this is not considered
much of an issue because type erasure is meant to be used as a bridge between com-
pile time and runtime polymorphism. However, in the case of iterators, there are of-
ten higher expectations in terms of performance. Therefore, the use of iterators with
type erasure has to be weighed carefully against performance requirements.

Implementation of C++ Iterator Type Erasure
Motivated by the type of problems described in the previous section, we have writ-
ten a class template named any_iterator ([4]) which provides type erasure for
C++ iterators. As with any type-erasing class, the main issue to be addressed is the
granularity of the type erasure. The following approach has worked well for us:

• any_iterator is a class template. There is one instantiation of this class
template for each set of iterator traits. (More precisely, any_iterator has
the exact same template argument list as boost::iterator_facade.)

• Suppose that iterator is some concrete iterator type, and furthermore,
any_iterator_inst is an instantiation of the any_iterator class
template. Then an object of type iterator can be assigned to an variable
of type any_iterator_inst if and only if the following holds: the iter-
ator traits of iterator convert elementwise to the iterator traits of
any_iterator_inst.

The main ingredients of the implementation of any_iterator are

3

Type Erasure in C++ (Submission for MPOOL 07) Thomas Becker

• the standard type erasure implementation technique as exemplified by
boost::any,

• boost::iterator_facade, and

• one of the CRTP’s ([5]), where a derived class passes itself as a template ar-
gument to its base class.

The any_iterator class template is currently used in production code.

Acknowledgements
I am indebted to Don Harriman and Thomas Witt for inspiring conversations on this
subject. In particular, it was Don Harriman who first pointed out how the simple act
of exposing a pair of vector iterators from a class is a blatant violation of OO prin-
ciples.

References

[1] In their book on C++ template metaprogramming, Dave Abrahams and Aleksey
Gurtovoy define type erasure as "the process of turning a wide variety of types
with a common interface into one type with that same interface."

[2] http://www.boost.org/doc/html/any.html

[3] http://www.boost.org/doc/html/function.html

[4] The any_iterator package is downloadable from here.

[5] James Coplien, A curiously recurring template pattern, C++ Report, February
1995.

4

http://thbecker.net/free_software_utilities/type_erasure_for_cpp_iterators/start_page.html
http://www.boost.org/doc/html/function.html
http://www.boost.org/doc/html/any.html
http://boost-consulting.com/mplbook

	Type Erasure in C++: The Glue between Object-Oriented and Generic Programming
	Summary
	The Tension between Object-Oriented and Generic Programming
	Using Type Erasure to Resolve the Conflict
	The Need for C++ Iterator Type Erasure
	The Cost of C++ Iterator Type Erasure
	Implementation of C++ Iterator Type Erasure
	Acknowledgements
	References

