
Workshop on Generative Programming 2008

TODO

Ábel Sinkovics1 Zoltán Porkoláb2

Department of Programming Languages and Compilers
Eötvös Loránd University

Budapest, Hungary

Abstract

Keywords: C++, Boost, Template metaprogramming

1 Introduction

Boost has a template metaprogramming library [1] providing tools to build template

metaprograms in a structured way. The library implements commonly used utilities

and algorithms in an extendible and reusable way. It helps reducing the amount of

boilerplate code when developing C++ template metaprograms.

C++ template metaprogramming follows the functional paradigm (TODO

citek), thus all the experience gained in the field of functional programming could be

reused in C++ template metaprogramming. When developers intentionally follow

the functional paradigm they can easily apply the techniques developed over the

years. To follow the functional paradigm directly the tools have to be developed

in functional programming in mind. In this paper we evaluate some functional as-

pects of the boost metaprogramming library and propose new tools for more direct

support of functional programming.

2 Laziness

A value in template metaprogramming and a nullary function are two different

things: a value is an arbitrary class or compile-time data, such as an int or bool

constant, wrapped by a wrapper class. A nullary metafunction is a template meta-

function with 0 arguments. It’s represented by a class with a nested class called

type, which is the value of the metafunction. Here is an example of a value:

1 Email: abel@elte.hu
2 Email: gsd@inf.elte.hu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sinkovics, Porkoláb

int_<13>

and here is an example of a nullary metafunction:

struct thirteen

{

typedef int_<13> type;

};

Both of these things represent a value in template metaprogramming, but there is

a difference: a nullary metafunction is a metafunction which is not evaluated until

it’s value is needed for the first time. It’s code may contain errors, unless it’s value

is used somewhere it will not break the compilation. A nullary metafunction can be

built from any template metafunction by applying it to arguments but not accessing

the nested ::type. For example

plus<int_<1>, int_<2> >

is a nullary metafunction.

Nullary metafunctions can be used to implement lazy evaluation in C++ tem-

plate metaprogramming because they are not evaluated until their nested ::type

class is used. Should we need it we can also enforce eager evaluation by directly

accessing the nested ::type class. Here is the lazy and eager evaluation of the same

function as an example:

// Lazy evaluation

plus<int_<1>, int_<2> >

// Eager evaluation

plus<int_<1>, int_<2> >::type

In the code

struct infinite {};

template <class a, class b>

struct divide :

if_<

typename equal_to<b, int_<0> >::type,

infinite,

typename divides<a, b>::type

>

{};

we create a new infinite class for representing the infinite value and a new divide

function which divides it’s two operands. In case the second operand is zero, it

returns infinite. This code doesn’t work. divide<int <3>, int <0> >::type

doesn’t evaluate to infinite, it breaks the compilation. The reason why the com-

piler generates an error is that the second case of if is evaluated eagerly. if takes

values as arguments, it expects eager evaluation of both cases.

boost::mpl tackles this problem with eval if which takes nullary metafunctions

as arguments for the true and false cases. Doing this, eval if can evaluate the

2

Sinkovics, Porkoláb

selected one only, avoiding instantiation of invalid templates. Here is the correct

version of the above example using eval if:

struct infinite {};

template <class a, class b>

struct divide :

eval_if<

typename equal_to<b, int_<0> >::type,

identity<infinite>,

divides<a, b>

>

{};

As you can see infinite had to be passed to identity. A value can be transformed

into a nullary metafunction by passing it to identity.

A class we’d like to use as a value in a template metaprogram can be designed

in a smart way: you can add itself to it as a nested type called type:

struct infinite

{

typedef infinite type;

};

By doing it both functions expecting a nullary metafunction and functions expecting

a value will accept it, and it will behave as expected in both situations. For example

the advanced infinite simplifies the definition of divide:

template <class a, class b>

struct divide :

eval_if<

typename equal_to<b, int_<0> >::type,

infinite,

divides<a, b>

>

{};

Integral wrappers in boost use this: they are nullary metafunctions and evaluate to

themselves.

Consider a more complicated, but still simple example:

template <class a, class b>

struct some_calculation :

eval_if<

typename equal_to<b, int_<0> >::type,

//,

eval_if<

typename less<

typename divides<a, b>::type,

int_<10>

>::type,

3

Sinkovics, Porkoláb

// ...,

// ...

>

>

{};

In this metafunction taking two arguments we need to make a decision based on

the quotient of the two arguments but we have to handle the case when the second

argument is zero, this is what the outer eval if is for. The code above doesn’t

work when the second argument, b, is zero because even though the branches of

eval if are evaluated lazily, it’s condition isn’t. Thus the condition of the nested

eval if is instantiated when some calculation is instantiated, regardless of the

value of the outer eval if’s condition. When the value of b is zero, instantiation

of the nested eval if’s condition generates an error.

We suggest a completely lazy version of eval if which takes a nullary meta-

function as it’s condition. It’s implementation is straight forward:

template <

class condition,

class true_case,

class false_case

>

struct lazy_eval_if :

eval_if<

typename condition::type,

true_case,

false_case

>

{};

Using lazy eval if our more complicated example can be solved as well:

template <class a, class b>

struct some_calculation :

eval_if<

typename equal_to<b, int_<0> >::type,

//,

lazy_eval_if<

apply<less<divides<a, _1>, int_<10> >, b>,

// ...,

// ...

>

>

{};

3 Function composition

Suppose we have to write a metafunction taking a number in the range [−π, π] as

it’s argument and returning the square of the tangent of that number or a special

4

Sinkovics, Porkoláb

class called not a number in case the argument is ±
π

2 .

Assume we have template metafunctions to calculate the absolute value (abs)

and the tangent (tan) of a number. tan breaks the compilation when evaluated

with a number the tangent of which is not defined. The following solution doesn’t

work

template <class deg>

struct square_tangent :

eval_if<

typename equal_to<

typename abs<deg>::type,

divides<pi, int_<2> >::type

>::type,

not_a_number,

square<typename tan<deg>::type>

>

{};

when the argument is ±π

2 because the C++ compiler tries instantiating both cases of

eval if and the instantiation of the second case generates an error. eval if takes

nullary metafunctions as second and third arguments, thus they are evaluated lazily,

but those nullary metafunctions may not take nullary metafunctions as arguments.

In case the function we use in the true or false case of an eval if doesn’t take

nullary metafunctions as arguments, it’s arguments need to be evaluated prior to

the evaluation of the function itself. In our example the false case of the eval if

is the evaluation of square with the value of tan<deg> as it’s argument. square

doesn’t accept nullary metafunctions as arguments, we have to evaluate tan<deg>

before evaluating square. We embedded square in an eval if expression, thus we

have to evaluate tan<deg> before evaluating eval if. It means that we have to

calculate the tangent of a value before we could check if it’s a valid operation or

not.

If every template metafunction took nullary metafunctions as arguments we

wouldn’t have this problem. Requiring all metafunctions to take nullary metafunc-

tions as arguments would solve the problem, but we can’t ensure that and we can’t

affect third-party libraries developed by someone else.

Another solution is factoring the code of the branches out to external classes

and only the chosen one is instantiated:

template <class deg>

struct square_tangent_impl :

square<typename tan<deg>::type>

{};

template <class deg>

struct square_tangent :

eval_if<

typename equal_to<

typename abs<deg>::type,

5

Sinkovics, Porkoláb

divides<pi, int_<2> >::type

>::type,

not_a_number,

square_tangent_impl<deg>

>

{};

This solution works, but in this case the business logic of the function is scattered

in multiple metafunctions which makes it difficult to understand. The more selection

points a function has the more splits it requires.

A third solution is building anonymous template metafunctions in place, so we

don’t have to move parts of the business logic to external classes. We can do it

using boost::mpl’s lambda expressions. The lambda expression is then evaluated

lazily by eval if. The lambda-based implementation of our example metafunction

template <class deg>

struct square_tangent :

eval_if<

typename equal_to<

typename abs<deg>::type,

divides<pi, int_<2> >::type

>::type,

not_a_number,

apply<square<tan<_1> > >, deg>

>

{};

solves the problem and keeps the business logic in one place. But when we have

to deal with template metafunction classes [6] instead of template metafunctions,

or template metafunction class arguments it has a large syntactical overhead. If

square and tan are template metafunction classes, this solution is still difficult to

write, understand and maintain:

template <class deg>

struct square_tangent :

eval_if<

typename equal_to<

typename abs<deg>::type,

divides<pi, int_<2> >::type

>::type,

not_a_number,

apply<square::apply<tan::apply<_1> > >, deg>

>

{};

We had to use complex tools to solve a rather simple problem which is applying

a chain of functions to an argument. It is so common that functional languages

often have a special operator for it in the language or the standard library. Due to

the functional nature of C++ template metaprograms introducing it in template

6

Sinkovics, Porkoláb

metaprogramming could reduce the complexity of the code of metaprograms. We

propose a compose metafunction for function composition. It takes any number

of metafunction classes as arguments and evaluates to an anonymous metafunction

class implementing the chain of the arguments. The C++ standard hasn’t got vari-

adic template [8,?] support, but there are workarounds [2]. This metafunction can

be implemented by boost lambda expressions or manually as well, it’s implemen-

tation is straight forward. Using it we get a cleaner implementation of our sample

function:

template <class deg>

struct square_tangent :

eval_if<

typename equal_to<

typename abs<deg>::type,

divides<pi, int_<2> >::type

>::type,

not_a_number,

apply<compose<square, tan>, deg>

>

{};

4 Currying

Currying is supported by several functional languages. When we have a function

taking n arguments we can apply one argument to it and get a function taking n-1

arguments, and so on. When we have a function taking only 1 argument and we

apply that one argument we get the value of the function. This is a special form a

partial function application which is difficult to simulate using lambda expressions

in boost::mpl.

We’re going to use the following example to demonstrate what Currying means

in C++ template metaprogramming. Consider a function that calculates the area

of a rectangle.

template <class x1, class y1, class x2, class y2>

struct area :

multiplies<minus<x2, x1>, minus<y2, y1> >

{};

This function takes 4 numbers as arguments: two opposite points of the rect-

angle. It takes 4 arguments in one step and calculates the result immediately. If

this function was using currying, it would be a function accepting one number. The

value of this function would be an anonymous function taking 1 number as argu-

ments. The value of that function would be another anonymous function taking 1

argument. The value of that function would be the area of the function. It would

be something like the following template metaprogram:

template <class x1>

struct area

{

7

Sinkovics, Porkoláb

struct type

{

template <class y1>

struct apply

{

struct type

{

template <class x2>

struct apply

{

struct type

{

template <class y2>

struct apply :

multiplies<minus<x2, x1>, minus<y2, y1> >

{};

};

};

};

};

};

};

As you can see adding currying to a function by hand has a large syntactical over-

head. A large amount of boilerplate could be the result of using it. We propose

a template metafunction taking a template metafunction class and the number of

arguments as arguments and building the curried version automatically. The gen-

erated metafunction maintains a compile-time list internally and every time a new

argument is passed to it, it simply stores the argument in the list. When all of the

arguments are available it applies the full argument list to the lambda expression.

There is no need for preprocessor based workarounds in this solution, it can be

completely implemented using C++ template metaprogramming techniques. Us-

ing this metafunction the above example can be generated from the simple area

metafunction we presented for the first time:

curry<quote4<area>, int_<4> >

Note that we had to use quote4 from boost::mpl because curry expects template

metafunction classes while we had a template metafunction, thus we had to generate

a metafunction class from it.

curry is a tool we can avoid writing a large amount of boilerplate code when we

need currying making heavy use of automatic code generation in C++. In situations

where we can’t change the implementation of a metafunction because other codes

rely on it or because it’s coming from a third party library external currying support

is the only option and in such cases this tool can do the hard work.

8

Sinkovics, Porkoláb

5 Summary

C++ template metaprogramming can save development and maintance effort when

used well. Given that it’s naturally following the functional programming paradigm

(TODO cite milewksi) we have evaluated how the most widely used C++ template

metaprogramming library, boost::mpl supports following the functional program-

ming paradigm. We’ve seen that it’s support for lazy evaulation is good and we’ve

proposed an addition for further improvement. We’ve also evaluated the support

for an often used task, the function composition and we’ve proposed an addition for

further improvement. We’ve also proposed a way for automatically adding currying

support to existing template metafunctions and metafunction classes. As a sum-

mary we’ve found that the tools available help following the functional programming

paradigm, and we’ve proposed ways for improving this support.

6 Related work

Andrei Alexanderscu built template metaprogramming tools in his library called

Loki [7]. He builds compile time lists called Typelists and uses them as a source of

code generation. He doesn’t talk explicitly about template metaprogramming and

he doesn’t mention it’s functional aspects either.

FC++ [10] is a C++ library providing runtime functional programming support

for C++. Template metaprograms are always evaluated at compilation time. The

development of template metaprograms is different from runtime programs, thus

they need different supporting tools to develop software following the functional

paradigm.

Barotsz Milewski pointed out the commonalities between functional program-

ming and C++ template metaprogramming in his talk and on his blog. He demon-

strates the capabilities of C++ and C++0x to support the functional paradigm

in template metaprograms but he doesn’t consider the tools of the boost metapro-

gramming library and compatibility with those tools.

In [3] a tool transforming a simple language based on lambda expressions was

presented. Lambda expressions form an NP-complete functional language [11]. Us-

ing lambda expressions strongly simplified the

In [4] transformation tool was presented which transforms code written in a

simplified version of Clean, called E-Clean, to C++ template metaprograms. The

generated code was more efficient than the hand-written C++ template metapro-

gram for the same problem.

References

[1] The boost metaprogram libraries.
http://www.boost.org/doc/libs/1_39_0/libs/mpl/doc/index.html

[2] The boost preprocessor metaprogramming library.
http://www.boost.org/doc/libs/1_41_0/libs/preprocessor/doc/index.html

[3] Ábel Sinkovics, Zoltán Porkoláb: Expressing C++ Template Metaprograms as Lambda expressions, In
Tenth symposium on Trends in Functional Programming (TFP ’09, Zoltn Horvth, Viktria Zsk, Peter
Achten, Pieter Koopman, eds.), Jun 2 - 4, Komarno, Slovakia 2009., pp. 97-111

9

Sinkovics, Porkoláb

[4] Ádám Sipos, Zoltán Porkoláb, Viktória Zsók: Meta<fun> – Towards a functional-style interface for
C++ template metaprograms In Frentiu et al ed.: Studia Universitatis Babes-Bolyai Informatica LIII,
2008/2, Cluj-Napoca, 2008, pp. 55-66.

[5] E. Unruh, Prime number computation, ANSI X3J16-94-0075/ISO WG21-462.

[6] D. Abrahams, A. Gurtovoy, C++ template metaprogramming, Concepts, Tools, and Techniques from
Boost and Beyond, Addison-Wesley, Boston, 2004.

[7] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns Applied, Addison-
Wesley, 2001.

[8] Douglas Gregor, Jaakko Järvi, Variadic templates for C++, In Proceedings of the 2007 ACM
symposium on Applied computing, March 11-15, 2007, Seoul, Korea Pp.1101-1108, 2007, ISBN:1-59593-
480-4

[9] D. Gregor, J. Jrvi, G. Powell, Variadic Templates (Revision 3), ISO SC22 WG21 TR N2080==06-0150.

[10] B. McNamara, Y. Smaragdakis, Functional programming in C++, Proceedings of the fifth ACM
SIGPLAN international conference on Functional programming, pp.118-129, 2000.

[11] Simon L. Peyton Jones: The Implementation of Functional Languages, Prentice Hall, 1987, [445], ISBN:
0-13-453333-9 Pbk

10

