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Abstract
Template metaprograms have become an essential part of today’s
C++ programs. Despite their importance there are surprisingly few
tools for creating, using and analysing them efficiently. The radi-
cally increased compilation time of programs using template-heavy
code is one of the phenomena of which root is a serious challange
to trace down. The compilation speed can increase when one starts
using even less complex template metaprogram structures. Indus-
trial projects pay a big price for these additional times. Our paper
presents intrusive and non-intrusive approaches of getting detailed
information on the compilation process of templates and measur-
ing time each specific template instantiations had taken. The results
show the pros and cons of the different techniques, comparing them
across different compilers. In an example we demonstrate how to
identify the bottleneck and how to improve template metaprograms
regarding compilation time.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification – C++; D.2.5 [Testing and De-
bugging]: Profiling

General Terms Languages

Keywords C++ template metaprogram, Profiling, Compilation
time, Tools

1. Introduction
Code efficiency is an all-important aspect of software design. In
order to improve the efficiency of a program, a programmer must
identify the critical parts. Boehm reports that 20 percent of the rou-
tines consumes 80 percent of the execution time [4]. Knuth claimes
that less than 4 percent of a program usually accounts for more than
50 percent of its runtime [7]. To identify and modify these critical
parts may significally improve the efficiency of the whole program.
As static analysis methods fail in many cases to explore the dynam-
ical behavior of the program, execution profiling is a key element
to finding bottlenecks in the code. In order to investigate the be-
havior of a program profilers should collect information during the
runtime.
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The more complex the language environment we work in, the
more sophisticated profiling toolset we need. In object-oriented
languages like C++ tools must be able to measure all elements of
classes, like constructors and destructors, inlined functions, static
variables etc. [12]. Most current profilers [30, 31] available for
object-oriented languages are capable of handling these problems.

Templates are essential part of the C++ language, by enabling
data structures and algorithms to be parameterized by types [15,
18]. This abstraction is frequently needed when using general algo-
rithms like finding an element in a data structure, or defining data
types like a list or a matrix of elements of same type. The mecha-
nism behind a matrix containing integer or floating point numbers,
or even strings is essentially the same, it is only the type of the con-
tained objects that differs. With templates we can express this ab-
straction, thus this generic language construct aids code reuse, and
the introduction of higher abstraction levels. This method of code
reuse often called parametric polymorphism, to emphasise that here
the variability is supported by compile-time template parameter(s).

The effect of heavy usage of templates in C++ had a signifi-
cant negative effect on compilation time. As templates have to be
presented as source code, they are usually implemented in form of
header files. Header files are included into source files as well as
other header files in a recursive manner. The parser have to process
each of them repetedly in every compilation unit.

Generic programming [14] is a recently emerged programming
paradigm for writing highly reusable components. The Standard
Template Library (STL) – the most notable example of generic
programming – is now an unavoidable part of most professional
C++ programs [8]. The STL as well as the rest of the C++ standard
library mostly consist of template classes placed into a number
of header files. While the usage of templates provides a great
flexibility and reusability for the programmers, compile times grew
significantly.

The everyday process of programming consists of compiling,
executing (and perhaps profiling) the code. However, the recently
emerged programming paradigm, C++ template metaprogram-
ming (TMP) does not follow this pattern. In template metapro-
gramming the program itself is running during compilation time.
A cleverly designed C++ code is able to utilize the type-system of
the language and force the compiler to execute a desired algorithm
[21]. The output of this process is still checked by the compiler and
run as an ordinary program.

Template metaprograming is proved to be a Turing-complete
sublanguage of C++ [5]. We write metaprograms for various rea-
sons, like expression templates [22] replacing runtime compu-
tations with compile-time activities to enhance runtime perfor-
mance, static interface checking, which increases the ability of the
compile-time to check the requirements against template parame-



ters, i.e. they form constraints on template parameters [9, 13], ac-
tive libraries [19], acting dynamically during compile-time, mak-
ing decisions based on programming contexts and making opti-
mizations, and many others.

Unfortunately, execution of template metaprograms are typi-
cally far from optimal [1]. One reason is that compilers are op-
timized to generate efficient runtime code and optimal efficiency
of the compilation process of average C++ codes. However, tem-
plate metaprograms have specialities like recursive instantiations,
template specialisations, typelists. These constructs are notorius
sources of increased compilation time. Another main reason of
writing unefficient template metaprograms is that programmers are
not familiar with all the background costs of the metaprogram con-
structs. This may result in a very long compilation time and huge
memory usage.

C++0x, the next standard of C++ will introduce a number of
new features, programmers long time desire. However, experts
agree that an additional ten percent of compile time increase will
be expected.

In this situation fast build process is a crucial part of project
management. To achive this goal we have to understand the compile
time behaviour of our programs, identify critical portions, unnec-
essarily included headers, avoidable instantiations, and expensive
compile time structures.

Traditional (i.e. run-time) profiling tools are inadequate as they
are impossible to measure compile time activities. Profiling the
compiler does not give any relevant information about the com-
piled code ifself. We need special methods to measure the com-
pilation process, especially the behaviour of templates. With such
template profiling tools we should be able to identify compilation
bottlenecks, “noisy” code segments, which hold up the compilation
process.

In this paper we propose methods for profiling heavily tem-
plated C++ codes, especially template metaprograms. First we dis-
cuss the method of measuring the compilation of the whole pro-
gram. To detect critical parts, however, we have to analyse the in-
stantiation process of every template individually. For this purpose
we extend a template metaprogram debugging framework [10] with
time informations. To make the measure more accurate, we show a
number of improvements, some of them includes the modification
of the compiler itself to move the timestamp generation closer the
event. These methods may serve as foundations of an optimization
process.

This paper is organized as follows. In Section 2 we give an
overview of C++ template metaprogramming compared to runtime
programming specially regarding the profiling requirements. Our
external profiling framework is described in details in Section 3.2.
Our second approach, presented in Section 3.3 involves the modi-
fication of the open source g++ compiler. In Section 4 we analyze
our results. Limitations of our methods are overviewed in Section
5. Related works and future directions are discussed in Section 5.
The paper is concluded in Section 7.

2. Profiling C++ Template metaprograms
In our context the notion template metaprogram stands for the
collection of templates, their instantiations, and specializations,
whose purpose is to carry out operations in compile-time. Their
expected behavior might be either emitting messages or generating
special constructs for the runtime execution. Henceforth we will
call a runtime program any kind of runnable code, including those
which are the results of template metaprograms.

C++ template metaprogram actions are defined in the form of
template definitions and are ”executed” when the compiler instan-
tiates them. Templates can refer to other templates, therefore their
instantiation can instruct the compiler to execute other instantia-

tions. This way we get an instantiation chain very similar to a call
stack of a runtime program. Recursive instantiations are not only
possible but regular in template metaprograms to model loops.

Conditional statements (and stopping recursion) are solved via
specializations. Templates can be overloaded and the compiler has
to choose the narrowest applicable template to instantiate. Subpro-
grams in ordinary C++ programs can be used as data via function
pointers or functor classes. Metaprograms are first class citizens in
template metaprograms, as they can be passed as parameters for
other metaprograms [5].

Data is expressed in runtime programs as constant values or lit-
erals. In metaprograms we use static const and enumeration
values to store quantitative information. Results of computations
during the execution of a metaprogram are stored either in new con-
stants or enumerations. Furthermore, the execution of a metapro-
gram may trigger the creation of new types by the compiler. These
types may hold information that influences the further execution of
the metaprogram.

Complex data structures are also available for metaprograms.
Recursive templates are able to store information in various forms,
most frequently as tree structures, or sequences. Tree structures
are the favorite implementation forms of expression templates
[22]. The canonical examples for sequential data structures are
typelist [2] and the elements of the boost::mpl library [6].

Profilers are software tools carrying out performance analysis
by measuring the behavior of programs. The most commonly ana-
lyzed behaviors for run-time programs are the frequency and dura-
tion of subprogram calls and the used heap memory’s size. These
events are either recorded into a trace, a stream of recorded events,
or a profile, a statistical summary of the observed events. Profilers
use numerous techniques to measure softwares, including hardware
interrupts, operating system hooks, performance counters, and code
instrumentation.

When we are looking for compile time analogy of these terms,
we can identify certain similarities between run-time and compile
time programs. Template classes play similar role in metaprograms
like subprograms – functions or procedures – do in run-time case.
They control the chain of instantiation, just like ordinary functions
can call each other. They have even parameters: types or constants,
to change the actual behaviour when different arguments are ap-
plied. The chain of instantiation is a fundamental property of in-
specting template metaprograms similarly to the execution stack of
their run-time equivalences.

Intrumentation is a process, during which the profiler modifies
the analyzed program, inserting profiling code fragments. Instru-
mentations can be executed manually by the programmer, or auto-
matically by the compiler. Instrumentation may be a binary transla-
tion when the tool adds instrumentation to a compiled binary code.
Another method is runtime instrumentation, when the code is in-
strumented directly before the execution. In this case the analyzed
software is controlled by the profiler. The profiler may work with
runtime injection, i.e. the code is modified at runtime.

Instrumentations are typically added at specific points to the
analyzed software’s code. These points are called instrumentation
points (IP). An instrumentation point encapsulates the functional-
ity of instrumentation and the IP’s original program context. An
instrumentation point consists of an instrumentation probe and in-
strumentation payload. The payload is the activity that collects the
data about the measured program. The probe is the activity that
switches the analyzed code to the payload. The probe may have a
condition that controls the invocation of the payload.

Instrumenting templates requires injecting identifyable code
snippets into the original source on well-chosen IP places. As our
main goal is to chart template instantiation steps, an ideal place for
such injection is the syntactical beginning and end of each tem-



plates. Thus when templates are instantiated the IP’s may trace the
chain of instantiation. As the whole metaprogram is executed by
the compiler to detect these events are not trivial.

Another popular profiling method for run-time programs is sam-
pling. These profilers are often called statitistical profilers. A sam-
pling profiler probes the analyzed software’s program counter at
regular intervals using operating system interrupts. Sampling pro-
filers are typically less accurate and specific, but allow the mea-
sured software to run at near full speed.

Implementing sampling profilers for template metaprograms are
possible but their usufulness is far behind their run-time counter-
parts. It is possible to interrupt the compilation process, and com-
pilers could be modified to report which part of code is executed at
the moment. However, as the compilation process – in most logi-
cal cases – a deterministic process statistical methods have not too
much value here.

Since instrumentations are not the part of the analyzed code,
profiling has overhead [26]. The number of executed probes, or the
probe count causes instrumentation overhead. The probe count for
an instrumentation point is the number of the instances of probe.
All executed probes incur overhead associated with executing the
probe code that intercepts program execution. Because of the con-
dition that controls the payload, every instance of a probe may not
incur overhead of the payload. Thus, the total overhead for an in-
strumentation point is related to the number of done probes, how
much each probe costs, how frequently the payload is called and
the payload’s cost.

We can avoid this overhead when measuring full programs,
rather then their’s structural parts. Such test programs can high-
ligh certain patterns of template metaprograms even they do not
revealing internal details.

3. Practical approaches of profiling
3.1 Measuring compilation units
The most available method to measure compile time performance
is measuring full compilation of units. Compilation of full source
files does not require to modify the code, thus this is a non-intrusive
method, and do not add overhead or significant distorsion. Al-
though filter out all perturbations are not easy, most of the operating
systems provide us fair tools to measure the experienced real-time,
user and system times on the run of a compilation session.

In most cases locating, loading, and parsing header files is a
non-trivial effort. To filter out this effect we can run the precom-
piler in a separate session and measure only further compilation
stages. Figure 1 shows that separating precompiler tasks changes
the compilation times significantly.

in one step
preprocessed
preprocessing

Figure 1. Compilation time with separate precompilation

Compiling full programs or compilation units can reveal signifi-
cant behavioural patterns of programs or template constructs. Abra-
hams and Gurtovoy measured template metaprogram constructs in
[1] with this method and were able pointing to fundametal dif-
ferences in strategy and tactics of different compilers. They have
shown the effect of certain techniques, like memoisation and have
measured structural complexity of metaprograms.

However, measuring full compilation time has certain short-
ages. It is not always trivial to write wrapper programs around
certain template constructs without seriously distort measurement
results. Full session of compilation includes activities we are not
interested in: initializations, outputting, solve non-template related
tasks. When we analyse the results we have the compilation times,
but no implications on how this gross time splits amongs differ-
ent code components. Measuring full compilation is great to prove
concepts but hard to use for analysis.

3.2 Measuring with instrumenting
Most compilers generate additional information for profilers. An
appropriate compiler support for measuring template metaprogram
profiles would be the ideal solution. However, as this support is
unavailable as of now, an immediate and portable method is to use
external tools cooperating with standard C++ language elements.

Without the modification of the compiler the only way of ob-
taining any information about our metaprogram during compila-
tion is to generate warning messages [1]. Therefore the task is the
instrumentation of the source, i.e. its transformation into a func-
tionally equivalent modified form that triggers the compiler to emit
talkative warning messages. The inserted code fragments are de-
signed to generate warnings that contain enough information about
the context and details of the actual event. Whenever the compiler
instantiates a template, defines an inner type etc. the inserted code
fragments generate detailed information on the actual template-
related event. A pipeline transmits the information for the profiler
which measures the time of the event. As we will see in the results,
for large template metaprograms the overhead of the communica-
tion between processes is negligible.

The instrumented code fragments, on the other hand, result in
big performance overhead, that can significantly distort the mea-
sured data.

Our instrumentation method is based on the Templight frame-
work, originally addressed debugging C++ template metaprograms
[10]. The framework was intentionally designed to be as portable
as possible, for this end we tried to use portable and standard-
compliant tools. Almost all components are written in standard
C++ using the STL, boost and Xerces libraries. The input of
Templight is a C++ source file and the output is a trace file, a list of
events like instantiation of template X began, instantiation of tem-
plate X ended, typedef definition found etc. The overall architecture
of the framework is seen on Figure 2.

The procedure begins with the execution of the preprocessor,
followed by invoking the boost::wave C++ parser. Our aim is
to insert warning-generating code fragments at the instrumentation
points. As wave does not semantic analysis we can only recognise
these places by searching for specific token patterns. We go through
the token sequence and look for patterns like template keyword +
arbitrary tokens + class or struct keyword + arbitrary tokens + {
to identify template definitions. This pattern matching step is called
annotating, its output is an XML file containing annotation entries
in a hierarchical structure following the scope.

The instrumentation takes this annotation and the single source
and inserts the warning-generating code fragments for each anno-
tation at its corresponding location in the source thus producing a
source that emits warnings at each annotation point during its com-
pilation. The next step is the execution of the compiler to have these
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Figure 2. Architecture of debugging/profiling framework

warning messages generated. The inserted code fragments are in-
tentionally designed to generate warnings that contain enough in-
formation about the context and details of the actual event. Since
the compiler may produce output independently of our instrumen-
tation, it is important for debugger warnings to have a distinct for-
mat that differentiates them. This is the step where we ask the com-
piler for valuable information from its internals. Here the result is
simply the build output as a text file. The warning translator takes
the build output, looks for the warnings with the aforementioned
special format and generates an event sequence with all the details.
The result is an XML file that lists the events that occurred dur-
ing the compilation in chronological order. For profiling purposes,
timestamps are also placed in the XML file for each instantiation.
Following is a segment of the file with profiling data:

Compile-time performance is discussed in [1] with a spectacu-
lar test. Since there was no other applicable tool, the authors had
to fall back on measuring the full compilation time and modifying
a preprocessor parameter every time thus producing measurement
series and graphs. With the Templight framework we have to ex-
ecute only one compilation that emits warnings for each instanti-
ation, and a post processing pipelined tool memorizes the times-
tamps whenever a warning occures. This way we have timestamps
for each template-related event, and the processing time of a certain
template instance can be easily computed by subtracting the times-
tamps stored at the corresponding template-begin and template-end
event (warning message).

There is an interesting distortion factor in case of instrumen-
tation regarding inheritance hierarchy. Let consider the following
code snippet:

template <typename T>
class Derived : public Base<T>
{

// ..
};

When Derived is about to be instantiated, the compiler starts to
instantiate Base with typename parameter T. This process will
be finished before class Derived would start to be instantiated.
If we inject the observer code at the beginning and end-point of
both classes, we end up with the following sequence of emitted
warnings:

Base starts
Base ends
Derived starts
Derived ends

In other words, inheritance relationship would remain hidden, and
instantiation time for Derived (wrongly) will not include the time
of instantiation of Base. This is a serious problem, when a metapro-
gram relies heavily on inheritance, like in the case of boost::mpl
or boost::wave::wave Therefore we have to handle this situation
with greater attention.

An other factor of distortion is the way we add timestamps to
the emitted warning messages. Compilers do not decorate warnings
with timestamp info. In the simplest solution an external program
reads compiler output and apply timestamps. In this case the de-
lay between the warning is generated and timestamped can be sigi-
ficant. Better way, if timestamp is generated inside the compiler
when constructing the warning message, this delay can be elimi-
nated. But this requires the modification of the compiler.

3.3 Modification of the compiler
The most accurate way for evaluating compilation times is by
acquiring timing information from the compiler itself. As our
metaprogram is executed on a meta-level from the viewpoint of
C++, a meta-level profiler is needed, i.e. one measuring the com-
piler’s action times. The obvious approach – to use a profiler tool
(like gprof) and measure the compiler’s runtime – does not work,
since we cannot identify those parts of the subject code wich are
under compilation. Even though we would be able to measure some
kind of compiler method instantiate class template’s run-
ning time in general, we could not disambiguate certain instantia-
tions. In other words, we could acquire the sum of all instaniation
times, but would not be able to measure each instantiation sepa-
rately.

To gain the required detailed data on particular instantiations
we have to modify the compiler fur the purpose. We instrument the
code with templight, but generate warnings with timestamp via the
modified compiler. To demonstrate this method we have chosen the
widely used GNU g++ compiler (version 3.4.3), as its C source
code is freely available, thus rendering it a plausible target for
”hacking”, and developing possible future compiler features. In the
center of our examination is the modification of warning generation
procedure, i.e. the warning and cp warning at functions.

The modification consists of generating timestamps when en-
tering and exiting these functions and adding it to the emitted mes-
sage. We used this approach to eliminate the distortion of gener-
ating the warning itself. Experiments showed, however, that most
cases the time we spent in these functions is negligible.

4. Evaluation of the methods
In this section we present our measurement results with the pro-
posed methods. We analyzed the profiling methods from the fol-
lowing points of view:



1. Accuracy. What is the accuracy of the different profiler meth-
ods?

2. Applicability. Are the profilers applicable to large programs?

3. Overhead. What are the overheads of the profiling methods
itselves: i.e. to what degree do the different methods distort
profiling results?

When constructing the tests we partly followed the examples
discussed by Abrahams and Gurtovoy in [1]. In these examples the
importance of memoization is emphasized. Memoization is a proce-
dure done by the compiler when instantiating new types from tem-
plates. Each instantiation begins with a lookup in the compiler’s
repository, searching for the type about to be instantiated. If the
compiler does find the type (i.e. it has already been instantiated)
it aborts the creation procedure, and uses the already finished type.
Memoization speeds up the compilation [1], as this lookup happens
much faster than it would take to repeat the instantiation. In order
to avoid this phenomenon, we modified our fibonacci metapro-
gram (computing fibonacci numbers in compile-time) to enforce
instantiation.

In the following we describe the four test methods whose results
are presented in this section.

The first method follows the test method described by Abra-
hams and Gurtovoy. Here the program was compiled and the full
compilation time was measured with the UNIX time command.
Therefore the compilation times of the templated part and the rest
of the program were not separated. The curve representing the re-
sult data is labelled g++ whole.

The second approach uses the Templight framework to instru-
ment the source code. The instrumentation results in a code that
emits a warning message at the begin and end points of each tem-
plate instantiation. As the warnings appear, the external profiling
tool measures the time spent on the instantiation. Thus we are able
to separate the compilation of templates from the rest of the activi-
ties.

The third and four methods are based on the modification of the
g++ compiler. Since there was no significant difference between
the results with buffering the output and the immediate printing
with redirection to file, we illustrated these results with one curve
labelled g++ mod.

Figure 3 shows the results of our experiments with the same
non-memoizating example.
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Figure 3. Instantiation time without memoization

The most significate experience based on the results is that the
characteristics of all the three curves are similar. Templight has
constant overhead. The best results have been produced by the
built-in solution that indicates the importance of compiler sup-
ported template metaprogram debuggers.

4.1 Accuracy
To estimate the accuracy of our methods we compared the total ex-
ecution time of g++ to the outermost template’s instantiation time,
i.e. the running of the whole metaprogram. The difference between
fibonacci<N,N> (N = 1, 20, 40...) and the whole compilation
time grew linearly, with N = 200 the difference being about 30
seconds. Even though we have acquired the sameO(N 3) complex-
ity for the compilation time as found in [1], there is a significant
difference between numeric data of the outermost template’s in-
stantiation and the whole compilation time.

N 1 20 40 60 80 100 120 140 160 180 200
full 0.1 0.1 0.4 0.8 2.3 6.1 13.9 27.2 47.6 75.4 116.1
inst 0.1 0.1 0.4 0.8 2.3 5.1 11.2 21.3 36.4 58.6 87.8

Table 1. Full compilation time (full) vs. sum time of instantiation
(inst)

The cause of the difference is that even in case of high num-
ber of template instantiations, all the operations g++ carries out
before, after, and between instantiating types (source code analy-
sis, optimization, code generation, etc) have heavy costs. The result
shows the importance of precise profiling methods.

4.2 Applicability
One of the most frequently used functionalities of a profiler is the
determination of critical parts that slow down the compilation pro-
cess. Both the modified g++, and Templight generate a trace con-
taining the names of the instantiated templates, and the instantia-
tion times. With the help of a script processing this trace file we
can easily obtain a list of template instances sorted by their compi-
lation times. A portion of Templight’s output profiling fibonacci
is shown in Table 2.

Template instance Full instantiation time
fibonacci<118,119> 2,5837152
fibonacci<121,123> 2,6137584
fibonacci<113,120> 2,6237728
fibonacci<124,125> 2,6237728
fibonacci<118,121> 2,6337872
fibonacci<55,55> 2,653816
fibonacci<115,121> 2,6638304
fibonacci<120,122> 2,6638304
fibonacci<123,124> 2,6738448
fibonacci<122,123> 2,703888
fibonacci<117,122> 2,7139024
fibonacci<119,123> 2,75396
fibonacci<121,124> 2,7940176
fibonacci<123,125> 2,8440896
fibonacci<56,56> 2,8440896

Table 2. Instantiation times

On the other hand, fibonacci is a relatively simple metapro-
gram. In larger software projects, however, there are many tem-
plates referencing each other, and it is not as easy to spot the ex-
act cause of a slow compilation as in the previous example. To
see how this profiling technique operates in projects where nu-
merous templates are used we measured the compilation of the
Templight framework itself. The measured source combines differ-
ent template libraries like STL algorithms, Boost::spirit, and
Boost::wave. Table 3 shows the 20 most time-consuming instan-
tiations.



Template instance Time
iterator_facade<boost::filesystem::bas... 511
detail::iterator_facade_types<const st... 420
detail::facade_iterator_category_impl<... 290
wave::context<char *,Templight::FileAn... 180
Templight::Grammar<wave::pp_iterator<b... 171
wave::util::functor_input::inner<boost... 161
wave::impl::pp_iterator_functor<boost:... 151
wave::util::macromap<boost::wave::cont... 130
spirit::tree_match<boost::wave::cpplex... 91
mpl::if_<boost::detail::is_iterator_ca... 80
detail::operator_brackets_result<boost... 71
mpl::if_<boost::detail::use_operator_b... 71
detail::is_pod_impl<const std::basic_s... 61
detail::is_scalar_impl<const std::basi... 51
mpl::if_<boost::is_convertible<std::bi... 50
mpl::if_<boost::mpl::and_<boost::is_re... 50
spirit::unary<boost::spirit::chlit<cha... 50
spirit::unary<boost::spirit::chlit<wch... 50
spirit::unary<boost::spirit::strlit<co... 50
spirit::tree_node<boost::spirit::node_... 41

Table 3. Compilation times per template instances

If we are not interested in the actual instances, but rather we
would like to see what templates need the most time during the
compilation process, we can see the table in template level as shown
in Table 4. Though none of the instantiations of the STL templates
appear in the first table, in the template level view we can see that
the std::allocator template is instantiated 64 times and takes
the 13th most time to be processed.

Template Time Count
iterator_facade 511 1
detail::iterator_facade_types 420 1
mpl::if_ 411 12
detail::facade_iterator_category_impl 290 1
detail::is_convertible_impl_dispatch_base 200 8
call_traits 190 5
spirit::unary 190 4
wave::util::functor_input::inner 181 2
wave::context 180 1
Templight::Grammar 171 1
wave::impl::pp_iterator_functor 151 1
std::allocator 131 64
wave::util::macromap 130 1
detail::is_abstract_imp 120 8
detail::is_pointer_impl 110 6
spirit::tree_match 91 1
detail::is_convertible_impl 80 24
detail::operator_brackets_result 71 1
detail::is_pod_impl 61 5

Table 4. Compilation times per templates

We can easily have a quick overview about the compilation
times of the different template library usages in our code if we sum
the template processing times by their namespaces. This compari-
son can be found in Table 5. Table 4 and 5 not only give an overview
of the processing times but also present the number of template in-
stantiations per templates and per namespaces respectively.

Namespace Time Count
boost 4663 819
std 772 241
Templight 181 5

Table 5. Compilation times per namespaces

4.3 Overhead
The Templight framework inserts code fragments into the user
code, resulting in significant compilation time overhead, see Ta-
ble 6. Compiler modification methods result only in marginal over-
heads.

Test Overhead
memoisation +646%
Templight source +73%

Table 6. Compilation time overhead caused by the inserted code
fragments when the Templight framework is used

5. Limitations
5.1 Modification of the source code
Compiler support The Templight framework works only if the
compiler gives enough information when it meets the instrumented
erroneous code. Unfortunately not all compilers fulfil this criterion
today. Table 7 summarizes our experiences with some compilers.

compiler result
g++ 3.3.5 ok
g++ 4.1.0 ok
MSVC 7.1 ok
MSVC 8.0 ok
Intel 9.0 no instantiation backtrace
Comeau 4.3.3 no instantiation backtrace
Metrowerks no instantiation backtrace
CodeWarrior 9.0
Borland 5.6 no warning message at all
Borland 5.8 no instantiation backtrace,

but the warning message is printed
for each instantiation

Table 7. Our experiences with different compilers

It is a frequent case when a warning is emitted, but there is no
information about its context. The most surprising find was that the
Borland 5.6 compiler does not print any warnings to our instru-
mented statement even with all warnings enabled. A later version
of this compiler (version 5.8) prints the desired messages, but sim-
ilarly to many others it does not generate any context information.
In contrast to the others this compiler prints the same warning for
each instantiation.

Semantics Since we do not have semantical information we fall
back on using mere syntactic patterns. Unfortunately without se-
mantic information there are ambiguous cases where it is impos-
sible to determine the exact role of the tokens. This simply comes
from the environment-dependent nature of the language and from
the heavily overloaded symbols. The following line for example
can have totally different semantics depending on its environment:

enum { a = b < c > :: d };



If the preceding line is

enum { b = 1, c = 2, d = 3 };

then the < and > tokens are relational operators, and :: stands
for ’global scope’, while having the following part instead of the
previous line

template<int>
struct b {

enum { d = 3 };
};
enum { c = 2 };

the < and > tokens become template parameter list parentheses and
:: the dependent name operator. This renders recognising enum
definitions more difficult.

6. Related work and future directions
Template metaprogramming was first investigated in Veldhuizen’s
articles [21]. Vandevoorde and Josuttis introduced the concept of
a tracer, which is a specially designed class that emits runtime
messages when its operations are called [18]. When this type is
passed to a template as an argument, the messages show in what
order and how often the operations of that argument class are
called. The authors also defined the notion of an archetype for a
class whose sole purpose is checking that the template does not set
up undesired requirements on its parameters.

To improve the compilation of heavily templated C++ programs
Veldhuizen proposed alternative compilation models [20], each
with a distinct tradeoff of compile time, code size, and code speed.

Abrahams and Coelho compared compilers and compilation
strategies in [29]. They pointed to such important parameters, like
reinstantiation overhead, and symbol size.

In their book on boost [1] Abrahams and Gurtovoy devoted
a whole section to diagnostics, where the authors showed meth-
ods for generating textual output in the form of warning messages.
They implemented the compile-time equivalent of the aforemen-
tioned runtime tracer (mpl::print). Compile-time performance
was also investigated via a set of carefully selected test cases. The
cost of memoization, memoized lookup, and instantiation was char-
acterized and compared across various compilers.

Accuracy is a fundamental property of profilers. To minimize
overhead of instrumentation and measurement we have to step
forward to the modification of compilers. While instumentation is a
more portable solution, real industrial solutions we could imagine
via compiler modifications only.

In this paper we have concentrated mostly on temporal proper-
ties of metaprogram execution. Memory consuption is at least as
important as the run-time properties. We want to extend our re-
searches to this area.

Using relaible template metaprogram profilers it is possible to
describe the compile time characteristics of metaprogram algo-
rithms. In STL, runtime complexity guarantees are part of the stan-
dard. Similar compile time guaranties for template metaprograms
can largely improve practicability of template metaprograms.

In C++0x concepts will support constrained generics, i.e. the
programmer may define concepts – requirements against template
arguments. While this will be a long time desired functionality for
C++ community, most notably programmers for the STL library,
early tests warn that the new feature may increase compilation
time. One of our future research plans involve the examination
of this language feature, especially the compile-time consequences
the heavy usage of concept maps, and searching for best practices.

7. Conclusion
C++ template metaprogramming is a new, evolving programming
paradigm. It extends traditional runtime programming with numer-
ous advantages, like implementing active libraries, optimizing nu-
merical operations, and enhancing compile-time checking possibil-
ities. Since metaprograms typically show bad compile-time perfor-
mance, identifying the bottlenecks is a crucial task.

In this article we evaluated profiling techniques applicable for
C++ template metaprograms. Instrumenting the C++ source, col-
lecting and measuring the emitted messages during compilation is
a highly portable but limited possibility. Real profiling information
can only be obtained with the help of the compiler. To demonstrate
this possibility we modified the g++ compiler to produce profiling
information on C++ template metaprograms.
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Template Metaprograms. Accepted for publication in the ACM series,
in the proceedings of GPCE 2006, October, 2006, Portland.

[11] Gabriel Dos Reis, Bjarne Stroustrup: Specifying C++ concepts.
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2006: pp. 295-308.

[12] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman,
and S. Karmesin: Portable Profiling and Tracing for Parallel
Scientific Applications using C++. In Proceedings of SPDT’98:
ACM SIGMETRICS Symposium on Parallel and Distributed Tools,
August 1998, pp. 134-145.

[13] Jeremy Siek and Andrew Lumsdaine: Concept checking: Binding
parametric polymorphism in C++. In First Workshop on C++
Template Metaprogramming, October 2000

[14] Jeremy Siek: A Language for Generic Programming. PhD thesis,
Indiana University, August 2005.

[15] Bjarne Stroustrup: The C++ Programming Language Special Edition.
Addison-Wesley (2000)

[16] Bjarne Stroustrup: The Design and Evolution of C++. Addison-
Wesley (1994)

[17] Erwin Unruh: Prime number computation. ANSI X3J16-94-0075/ISO
WG21-462.

[18] David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The
Complete Guide. Addison-Wesley (2003)

[19] Todd L. Veldhuizen and Dennis Gannon: Active libraries: Rethinking



the roles of compilers and libraries. In Proceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable Scientic
and Engineering Computing (OO’98). SIAM Press, 1998 pp. 21–23

[20] Todd Veldhuizen: Five compilation models for C++ templates. In
First Workshop on C++ Template Metaprogramming, October 2000

[21] Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report
vol. 7, no. 4, 1995, pp. 36-43.

[22] Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5,
1995, pp. 26-31.
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