
C++ Template Metaprogramming with Embedded Haskell

Zoltán Porkoláb
Eötvös Loránd University,

Dept. of Programming Languages
and Compilers

H-1117 Pázmány Péter sétány 1/C
Budapest, Hungary

gsd@elte.hu

Ábel Sinkovics
Eötvös Loránd University,

Dept. of Programming Languages
and Compilers

H-1117 Pázmány Péter sétány 1/C
Budapest, Hungary

abel@elte.hu

Abstract
Template metaprogramming is an emerging new direction of gen-
erative programming: with the clever definitions of templates we
can enforce the C++ compiler to execute algorithms at compilation
time. Among the application areas of template metaprograms are
the expression templates, static interface checking, code optimiza-
tion with adaption, language embedding and active libraries. How-
ever, as this capability of C++ was not a primary design goal, the
language is not capable of clean expression of template metapro-
grams. The complicated syntax leads to the creation of code that
is hard to write, understand and maintain. Despite that template
metaprogramming has a strong relationship with functional pro-
gramming paradigm, existing libraries do not follow these require-
ments. In this paper we discuss the possibility to enhance the syn-
tactical expressiveness of template metaprograms using an embed-
ded functional language. Programmers can write metaprograms in
Haskell syntax embedded in native C++ code and a translator tool
transfers it to template metaprograms. The Haskell code snippets
inter-operate with their C++ environment.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification – C++; D.3.2 [Programming
Languages]: Language Classification – Multiparadigm languages

General Terms Languages

Keywords C++ template metaprogram, Haskell, Embedded lan-
guage, Functional programming

1. Introduction
Programming is primarily is a human activity to understand the
problem, make design decisions, and express our intentions to the
computer. In most cases this last step manifests as writing code in a
certain programming language according to its specific syntactical
and semantical rules. Writing programs today is largely supported
by various automated tools, like code generators mapping UML no-
tations to source code, model driven architectures, cross-compilers,
RAD tools, etc. Coding, however, is still considerably influenced
by personal experiences, conventions, traditions, and customs. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’09 October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM XX. . . $5.00.

syntax and the semantics of the programming language is a major
factor as it seriously drives the programmer’s attitude. It is possible,
but not easy to program in a style which is not directly supported
by the actual programming language. Even worse, if the required
programming approach is not a supported paradigm. Similarly, as
the spoken language has impact on human perception, the program-
ming language may drive programmer’s style. In an ideal situation
the applied programming language supports the paradigm the task
have to be solved in.

Templates are key language elements for the C++ programming
language [3]. They are essential for capturing commonalities of
abstractions without performance penalties in runtime. The most
notable example is the Standard Template Library [16] is now an
unavoidable part of professional C++ programs. In 1994 Erwin
Unruh wrote a heavily templated program [29] in C++ which didn’t
compile, however, the error messages emitted by the compiler
during the compilation process displayed a list of prime numbers.
Unruh used C++ templates and the template instantiation rules to
write a program that is “executed” as a side effect of compilation.
It turned out that a cleverly designed C++ code is able to utilize
the type-system of the language and force the compiler to execute
a desired algorithm [32]. These compile-time programs are called
C++ Template Metaprograms and later has been proved to be form
a Turing-complete sublanguage of C++ [9].

Today programmers write metaprograms for various reasons,
like implementing expression templates [33], where we can replace
runtime computations with compile-time activities to enhance run-
time performance; static interface checking, which increases the
ability of the compile-time to check the requirements against tem-
plate parameters, i.e. they form constraints on template parameters
[14, 19]; active libraries [31], acting dynamically during compile-
time, making decisions and optimizations based on programming
contexts. Other applications involve embedded domain specific lan-
guages as the AraRarat system [10] for typed safe SQL interface
and boost:xpressive [40] for regular expressions.

Abrahams and Gurtovoy [1] defined the term template meta-
function as a special template class: the arguments of the meta-
function are the template parameters of the class, the value of the
function is a nested type of the template called type. Data and
even data structures can be expressed in template metaprograms
with constructs like typelist [2].

Template metaprograms are fundamentally differ from ordinary
programs. As those programs are “executed” by the compiler, we
cannot speak about variables, statements, or classical control struc-
ture. In C++, in order to use a template with some specific type an
instantiation is required. Hereby, the compiler creates a concrete
type from a template substituting the template argument(s). This
process is initiated when another code snippet refers to a template.

As those activating code units could be templates itselves, a chain
of instantiation is created under compilation. Recursive instantia-
tions are allowed and happens in practice quite often. With the help
of partial and full specialisation, we can choose between templates
to instantiate, that is how Turing-complete constructions work. As
objects (constant values, enums, and types) once evaluated under
compilation, they will be immutable. We can still organize loops,
and other complex tmplate metaprogram algorithms using recursive
instantiations, and specialisations to stop recursion.

Complex data structures are also available for metaprograms.
Recursive templates are able to store information in various forms,
most frequently as tree structures, or sequences. Tree structures
are the favorite implementation forms of expression templates
[33]. The canonical examples for sequential data structures are
typelist [2] and the elements of the boost::mpl library [?, 12].

As we can see, C++ template metaprograms’ behaviour and
their programming are very close to functional programming
paradigm. Although, this realationship is well-known, current C++
template metaprogramming libraries does not support functional
programming directly. Metaprogram implementors are forced to
use alien techniques and extremely intricate syntax to implement
their own concepts. This often leads to criptic, unmanagable and
fragile code.

This paper is organized as follows: In section 2 we discuss the
design decisions of C++ template metaprograms and their con-
nection with functional programming. The high level overview of
our transformation schema is presented in section 3. In section 4
the implementational details of the most important functional pro-
gramming elements and their mapping on to C++ metaprograms
is given. Tools which are essential for develop, translate and de-
bug metaprograms written in Haskell is presented in section 6. We
survey the works related in the topic 7. The paper is concluded in
section 8.

2. Prime numbers
Erwin Unruh ...

Most mkd...

/*
* Implementation of primes in TMPL
*/
namespace
{
int helper_begin(char*);

}
template <int n>
struct Print
{
enum { helper_begin_ = sizeof(helper_begin("")) };

};
template <bool condition, class True, class False>
struct If : True {};
template <class True, class False>
struct If<false, True, False> : False {};
template <bool b>
struct Bool
{
static const bool value = b;

};
template <class a, class b>
struct And : Bool<a::value && b::value>
{};
template <int from, int to, int n>
struct IsPrimeImpl :
If<

from <= to,
And< Bool<n%from != 0>,
IsPrimeImpl<from+1, to, n> >,
Bool< true >

>
{};
template <int n>
struct IsPrime
{
static const bool value =

IsPrimeImpl<2, n/2, n>::value;
};
struct Nop {};
template <int n>
struct PrintIfPrime :
If< IsPrime<n>::value, Print<n>, Nop >

{};
template <class A, class B>
struct Sequence
{
A a;
B b;

};
template <int from, int to>
struct PrintPrimes :
If<

from <= to,
Sequence<
PrintIfPrime<from>,
PrintPrimes<from+1, to>

>,
Nop

>
{};
int main()
{
PrintPrimes<2,20> x;

}

GSD: megszidom,
C runtime verzi
Haskell verzi

3. Overview of the transformation schema

C++

Haskell

Haskell Yhc.Core

Yhc.Core

C++
C++

Lambda

Lambda

Lambda

C++native

Template

Template

Template

metaprog.

metaprog.

metaprog.

Lambda gen. C++ Template
metaprog. gen.

Yhc

Figure 1. Overall transformation schema

3.1 Maintenance problems with template metaprograms
We have seen what template metaprogramming is capable of, but
it has drawbacks as well. C++ wasn’t designed to support template
metaprogramming, this capability of the language was discovered
later. Because of this, template metaprogramming is not a simple
and easy to use tool. The syntax is intricate and error messages
displayed by the C++ compilers are difficult to read and understand.
Having tools supporting development of template metaprograms
could let developers safely use them in production software.

We examine how functional languages could be used to write
template metaprograms in, letting developers use a better syntax for
writing and maintaining metaprograms. Since lambda expressions
are capable of expressing any functional program we show how
lambda expressions can be used to express C++ template metapro-
grams in. We wrote a translator which can translate nested lambda
expressions into template metaprograms in C++ code.

4. Implementation
In this section we discuss the technical details of translating Haskell
programs into template metaprograms. The transformation takes
three steps. First Haskell code is translated to Yhc.Core with the
Yhc compiler. Then Yhc.Core is adjusted to our Lambda language.
And the last step, Lambda is used to generate standard compliant
C++ source. Users may compile the final result with any recent
C++ compiler.

4.1 Generating Yhc.Core code
Yhc.Core [15, 37] is a core Haskell-like language all Haskell pro-
grams can be expressed in. It uses a small amount of structures
making it easy to process programs further. Haskell programs can
be transformed into Yhc.Core using the York Haskell Compiler us-
ing the --showcore argument. It generates a human readable code
which is easy to use for further processing. The Core language can
be treated as a subset of Haskell with restrictions:

• Case statements examine their outermost constructor
• Does not contain type classes
• Does not contain where statements
• Has only top level functions
• Fully qualified names
• Constructors and primitives are fully applied

Currently lambda expressions are guaranteed not to appear in
the output of the Haskell to Core transformation. The syntax of
Yhc Core is found in [15].

The code generated by Yhc contains function definitions. Each
function definition may have any number of arguments (including
zero) and an <expression> we have defined as it’s body.

4.2 Generating lambda expressions
We defined our Lambda language to express lambda expressions
in a handy way. Lambda is a full-featured language. Programmers
may embed Lambda code into C++ [?] and generate C++ template
metaprograms. However, this case Lambda is used as an interme-
diate language.

We use the definition of non-typed enriched lambda expressions
from [26]. We express the λ symbol with the \ character. As you
can see our solution supports naming lambda expressions. The
syntax is the following:

<named lambda expression> ::=
__lambda <name> = <expression>;

<expression> ::=
<constant> | <variable> |
<expression> <expression> |
\ <name> . <expression> |
(<expression>);

Decimal numbers and built-in operators are valid constants. Sup-
ported operators are: +, −, ∗, /, %, <, >, <=, >=, <>, =, $.
(These operators have the usual meanings, % is modulo and $ is
the fixpoint operator). We restrict the form of a general lambda

abstraction allowing only one variable, i.e. the expression \xy.E
should be written in form of \x.\y.E. This restriction doesn’t af-
fect expressiveness.

The code generated by Yhc contains a list of function defini-
tions. Each function definition is converted into a named lambda
expression with a corresponding name. Functions taking arguments
are converted into lambda abstractions: a new abstraction is intro-
duced for each argument of the function. These lambda abstractions
wrap each other in their order appearance in the argument list. The
lambda abstraction generated for the leftmost argument is the out-
ermost. The body of the lambda abstraction generated for the right-
most argument is the lambda abstraction the body of the function
definition is transformed into.

Function applications are handled by our lambda expressions.
The let expressions and the case expressions are transformed
into lambda expressions supported by our syntax based on the
transformation techniques described in [26].

4.3 Generating template metaprograms
We have another tool transforming lambda expressions into C++
template metaprograms which can be compiled by any standard
C++ compiler. These metaprograms have access to natively imple-
mented template metaprograms making interoperatability between
lambda expressions (and because of this Haskell functions) and na-
tively implemented template metaprograms possible.

During the execution of the generated template metaprograms
the C++ compiler builds the graph of the expression and reduces
it lazily. Our compiler compiles named lambda expressions into
C++ classes (metafunction classes [1]) implementing the lambda
expression. The names of the classes are the names of the lambda
expressions indicating that names have to be valid C++ names.
Since these expressions are translated into C++ classes they can be
at any part of the code where classes can be defined [3] indicating
that Haskell code can be embedded at any part of the C++ code
where classes can be defined.
Lazy and eager evaluation Our compiler supports lazy evaluation
of lambda expressions: every (sub)expression is evaluated only
when it’s value is needed. It makes implementation of infinite
data structures (such as infinite lists) possible. Eager evaluation
is supported by the classes implementing the lambda expressions
in C++ but are not supported directly in the lambda expressions
themselves: they are always evaluated lazily indicating that Haskell
functions are always evaluated lazily.
Currying Currying is supported: when the number of elements ap-
plied to a function symbol is less than the number of elements re-
quired by the function symbol the result is a new function symbol.
For example: we have an anonymous function requiring two ele-
ments to be applied to it: \x.\y. + x y. When only one element
is applied to this function the result is a new function requiring one
element to be applied to it. (\x.\y. + x y) 5 is equivalent to
\y. + 5 y.

The C++ template metaprogram equivalent of these lambda ex-
pressions supports currying as well. Currying has to be used ex-
plicitly: only one element can be applied to the metaprogramming
equivalent of a function at a time. Applying one element to the
equivalent of a function requiring multiple elements being applied
to it is evaluated to the equivalent of another function requiring
less (by one) elements. Another element needs to be applied to that
function after that, etc. The same thing happens in lambda expres-
sions in a series of applications, for example in f 5 8.

Haskell function applications are translated into applications
of lambda expressions indicating that the template metaprograms
genereated from Haskell functions support currying and are evalu-
ated using currying.

Recursion Named lambda expressions translated to template meta-
functions can reference themselves:

__lambda factorial =
\n. (= n 0) 1 (* n (factorial (- n 1)));

Our compiler generates the following code from this example:

struct factorial;

struct factorial__implementation
{

template <class n>
struct apply
{
typedef

lambda::Application<
lambda::Application<

lambda::Application<
lambda::Application<

lambda::OperatorEquals,
n

>,
lambda::Constant<int, 0>

>,
lambda::Constant<int, 1>

>,
lambda::Application<

lambda::Application<
lambda::OperatorMultiply,
n

>,
lambda::Application<
factorial,
lambda::Application<

lambda::Application<
lambda::OperatorMinus,
n

>,
lambda::Constant<int, 1>

>
>

>
>
type;

};
};

struct factorial : factorial__implementation
{

typedef factorial__implementation base;
};

Constants Constants are implemented by a class. Currently two
types of constants are supported: integral constants and types.
Types are implemented by themselves, for example the type int
is implemented by int. Integral constants are implemented by a
wrapper class, such as the wrappers from boost::mpl [1]. Cur-
rently Haskell code can’t reference types, it has access to integral
constants only.
Lambda abstractions Lambda abstractions are implemented by
metafunction classes [1] whose embedded apply metafunction
takes exactly one argument. The name of the argument is the name
of the variable the lambda abstraction bounds.

For example here is a lambda expression and it’s implementa-
tion:

// The lambda expression
__lambda I = \x. y;

// It’s implementation
struct I {

template <class x>
struct apply {
typedef y type;

};
};

Variables Variables are implemented by their name. A name sym-
bol from the lambda expression becomes a name symbol in C++.
Binding of the names in lambda abstractions is done by the C++
compiler. As we could see it in the previous example the lambda
expression y becomes typedef y type in the C++ template
metaprogram. The example has a lambda abstraction binding x.
This lambda abstraction is represented by a template metafunction
taking one argument called x. When this metafunction is instanti-
ated the x symbols in it’s body (if there are any) are replaced by the
class the metafunction is instantiated with.
Eagerly evaluated applications Eager application of a lambda ex-
pression to a lambda abstraction is implemented by the evaluation
of the apply metafunction. The C++ compiler does the β conver-
sion during the instantiation because the name of the bounded vari-
able is the name of the argument of the nested apply metafunction
(and the variables are implemented by their names).

The I lambda expression defined in the previous section can
be evaluated either in an eager or lazy way. To specify eager
evaluation, the user should use the following C++ construct:

typedef I::apply<I>::type ApplicationOfIToItself;

We will discuss lazy evaluation in subsection 4.4.
Currying in built-in functions Built-in in functions (such as the
arithmetical or logical operators) have more than one arguments.
Their implementation has to support currying. They have to be
implemented as a lambda abstraction. For example applying an
element on the plus operator has to evaluate to another lambda
abstraction, applying another element on that has to evaluate to a
constant (and the value of it has to be the sum of the arguments). It
can be implemented easily using nested types and templates. As an
example here is the implementation of the plus operator:

struct OperatorPlus {
template <class a>
struct apply {
struct type {

template <class b>
struct apply {
// ... native implementation of addition,
// possibly by boost::mpl

};
};

};
}

We assume that every built-in function supports partial evaluation
(to a lambda abstraction).

4.4 Lazy application
Applications in lambda expressions (and in Haskell) are evaluated
only when their value is needed, they can’t be translated into eager
applications. We use the following template to implement lazy
application:

template <class left, class right>
struct Application {};

Using this template expressions for lazy evaluation can be built
as binary trees of applications: the instances of the Application
template represent the application nodes of the tree, the left and
right arguments represent the sub trees of the application nodes.

We define a metafunction implementing reduction of expres-
sions to weak head normal form [5]. Stand alone lambda abstrac-
tions, constants and built-in functions are in weak head normal
form. Lazy applications are never in weak head normal form, since
we assume that every built-in function supports partial evaluation.
These considerations simplify the reduction algorithm:

while (the top level element is a lazy application)
reduce the left side of the top level element to

weak head normal form
evaluate the top level application

We implemented this in a metafunction called Reduce:

template <class T> struct Reduce {typedef T type;};

template <class left, class right>
struct Reduce< Application<left, right> > {
typedef

typename Reduce<
typename
Reduce<left>::type::template
apply<right>::type

>::type type;
};

The general case handles lambda expressions which are already in
weak head normal form, there is a specialisation of the template for
reducing lazy applications in normal order reduction: it reduces the
left sub-expression of the application to weak head normal form
(typename Reduce<left>::type) after which the left side is in
weak head normal form, so the next redex is this application:

typename
Reduce<left>::type::template apply<right>::type

Finally the resulting expression is reduced as well.
In the following example we present the whole generation pro-

cess. This simple Haskell code

f x = 2 * x

is transformed into the following Yhc.Core code:

Main;f v219 v220 =
let ATOM221 = (Prelude;fromInteger v219) 2
in ((Prelude;*) v219) ATOM221 v220

Our tool transforms it to

Main_f = \v219. \v220.
(\ATOM221. * v219 ATOM221 v220)
(Prelude_fromInteger v219 2)

4.5 Interoperability with native C++ metafunctions
Lambda expressions have C++ equivalents and they can be imple-
mented natively as well. Natively implemented lambda expressions
can be used in lambda expressions (as constants). For example:

struct NativeLambdaExpression {
// native implementation...

};

__lambda f = \n. NativeLambdaExpression 2 n;

It makes extension of the built-in operators possible and parts of
the expressions can be implemented using other techniques.

Lambda expressions can be used by native C++ template
metaprograms as well since lambda expressions are compiled into
template metaprograms. After they are compiled into template
metaprograms there is no difference between a natively imple-
mented lambda expression and a compiled one: the compiled one
can be used as a natively implemented one. Lambda expressions
can be used as built-in functions in other lambda expressions, for
example:

__lambda add = \a.\b. + a b;
__lambda f = \n. * n (add 6 7);

Lambda expressions can be used in their own definition simplifying
the creation of recursive expressions:

__lambda rec = \n. (< n 1) 13 (rec (- n 1));

Due to the visibility rules of C++ [3] lambda expressions are visible
after their declaration. For example the following code wouldn’t
compile because b is defined after a:

__lambda a = \n. b n;
__lambda b = \n. + 1 n;

Our compiler supports forward declaration of lambda expressions
by ensuring that every lambda expression compiled to C++ will
be implemeneted as a struct. The previous example b can be
declared before a:

struct b;
__lambda a = \n. b n;
__lambda b = \n. + 1 n;

Haskell functions are visible in the whole compilation unit, to
support this our Yhc.Core to lambda expression transformation
tool adds forward declaration of the named lambda expressions
to the beginning of each lambda expression list generated from
an embedded Haskell block. Note that this makes function visible
to each other within an embedded Haskell block. Visibility of
functions defined in separate Haskell blocks depend on the C++
visibility rules [3] because Haskell functions are transformed into
C++ classes.

5. Evaluation
We solved the same problem with a hand-written C++ Template
Metaprogram and with embedded Haskell. The task was determin-
ing about an natural number wether it’s a prim or not. We used a
simple linear algorithm: for a natural number n we test whether
numbers [2..n/2] are dividers of n or not. During the tests we
run the algorithm for primes only to ensure that all numbers in the
[2..n/2] range are tested. Using greater primes the number of
tests done by the algorithm grows letting us see how each of the
tools scale.

5.1 Code size
We have compared the length of the code to write (debug and main-
tain) by counting the effective lines of code. Our native implemen-
tation was 42 lines long while the solution using embedded Haskell
was only 9 lines long. It means that using embedded Haskell re-
duces the length of the code - in our experiment the difference was
significant.

5.2 Template depth
We have compared how deep template depth the two solutions
require. The embedded Haskell solution exceeded the (default)

Figure 2. Compilation time

maximum template depth of the GNU C++ compiler for primes
greater than 193 while the native implementation exceeded the
maximum only for primes greater than 331. As we can see the
limit of the embedded Haskell solution is lower (because embedded
Haskell is based on currying).

5.3 Compilation time
We have measured compilation time of generated metaprograms
and compared it with a native implementation (using the same
algorithm). We run the tests on a Linux PC with 1 GB memory and
a 2.6 GHz Celeron CPU. We used the 4.2.4 version of the GNU
C++ compiler with default options. We used the time command to
measure compilation time and used the user part of it’s output.

Figure 2 shows the compilation times (the horizontal axis is the
length of the interval (the first element of the interval was always
2), the vertical axis shows the seconds spent on compilation.

6. Essential tools
Maintaining multiparadigm, multilanguage solutions face a number
of difficulties. Designers and implementors have to think according
to more than one programming paradigms. Developers have to
be familiar with multiple languages. Defining a good interface
between languages and paradigms is not trivial either.

Debugging mixed language programs is one of the major chal-
lenges. Our solution doesn’t make debugging metaprograms eas-
ier, the error messages are about the C++ templates representing
the lambda expressions. But having a translation of lambda expres-
sions to template metaprograms gives opportunities of extending
the translated code with information about the original lambda ex-
pression making error messages more descriptive for developers.

Let suppose the following Lambda code, which has a hard to
detect bug.

#include <lambda.h>
#include <iostream>

__lambda fib =
\n.

(== n 0)
1
(
(== n 1)

1
(+ (fib (- n 1)) (fib (- n 2)))

)
;

__lambda fib5 = fib 5;

int main()

{
std::cout << lambda::Reduce<fib5>::type::value

<< std::endl;
}

The root of the problem is that the equal operator = has been written
as ==. As our Lambda language is not typed, the problem has not
been detected until the generated C++ metaprogram is executed,
i.e. the C++ compiler starts to instantiate them.

The compilation process will produce the following diagnostics:

./lambda.h: In instantiation of ’lambda::Operator
Equals::apply<lambda::OperatorEquals>::type::apply
<lambda::Constant<int, 5> >’:
./lambda.h:174: instantiated from ’lambda::Reduce
<lambda::Application<lambda::Application<lambda::
OperatorEquals, lambda::OperatorEquals>, lambda::
Constant<int, 5> > >’
./lambda.h:174: instantiated from ’lambda::Reduce
<lambda::Application<lambda::Application<lambda::
Application<lambda::OperatorEquals, lambda::
OperatorEquals>, lambda::Constant<int, 5> >, lambda
::Constant<int, 1> > >’

//.. other 50 lines ...

./lambda.h:174: instantiated from ’lambda::Reduce
<lambda::Application<fib, lambda::Constant<int, 5>
> >’
./lambda.h:146: instantiated from ’lambda::
ReduceBase<fib5>’
./lambda.h:45: instantiated from ’lambda::If<true,
lambda::ReduceBase<fib5>, lambda::Identity<fib5> >’
./lambda.h:159: instantiated from ’lambda::
Reduce<fib5>’
tmp.cpp:29: instantiated from here
./lambda.h:280: error: ’value’ is not a member of
’lambda::OperatorEquals’
tmp.cpp: In function ’int main()’:
tmp.cpp:29: error: ’struct lambda::Reduce<fib5>::
type’ is not a class or namespace

These errors are not really human readable. However, every lines
in the messages above represent one reduction step of the Lambda
language. An automatic process is able to parse these messages and
able to reproduce the Lambsa source. For example,

struct lambda::Reduce<fib5>::type

in the last line identifies fib5 Lambda symbolum. The previous
line

lambda::Reduce<lambda::Application<
fib,lambda::Constant<int,5> > >

identifies Lambda expression fib 5. From the error messages
above our debugger is able to reproduce the original Lambda code.

= = 5
= = 5 1
= = 5 1 1
= = 5 1 1 (+ (fib (- 5 1)) (fib (- 5 2)))
= 5 0 1 (= = 5 1 1 (+ (fib (- 5 1)) (fib (- 5 2))))
fib 5
fib5

The restriction of this solution is that it shows the reduction steps
of the only problematic part of the core Haskell code. Those reduc-
tions, which does not generate error messages.

To emit diagnostics for all the instantiation steps we can use ex-
ternal tools, like templight, a C++ template metaprogram debugger
[18]. Templight instruments C++ code – here the final one, gen-
erated from code with embedded Haskell – and injects small tem-
plated snippets, which emit warnings on instantiations. These warn-
ings can be collected, analyzed and used to reproduce the original
instantiation chain.

Merging the facilities of templight and embedded Haskell trans-
lation is one of the most important future work.

7. Related work
7.1 FC++
FC++ is a C++ library providing runtime support for functional
programming [25]. Using the tools the library provides functional
programs can be written in C++ from which the expression graph
is built and evaluated at runtime. They don’t require any external
tool (such as a translator) they use standard language features only.
The library focuses on runtime execution.

7.2 Boost metaprogramming library
Boost has a template metaprogramming library called boost::mpl
which implements several data types and algorithms following the
logic of STL [12]. Our solution is designed to be compatible with
it (the lambda expressions produced by our compiler are designed
to be template metafunction classes taking one argument).

Boost::mpl has lambda expression support: the library pro-
vides tools to create lambda abstractions easily: placeholders (1,
2, etc.) are provided and arguments of metafunctions can be re-

placed by them. The result of evaluating a metafunction with one
(or more) placeholder argument is not directly usable, a metafunc-
tion called lambda generates a metafunction class from them. Us-
ing these lambda abstractions partial function applications can be
implemented, but since lambda bounds every placeholder lambda
abstractions with other lambda abstractions as their value can’t be
defined. For example λx.λy.+xy can’t be expressed (and neither
can be the Y fixpoint operator).

7.3 Boost lambda library
Boost has a library for implementing lambda abstractions in C++
[39]. It’s main motivation is simplifying the creation of function
objects for generic algorithms (such as STL algorithms). With
the library function objects can be built from expressions (using
placeholders). The lambda abstractions built using this library can
be used at runtime.

7.4 Haskell type classes
Zalewski et al. defined a mapping from generic Haskell specifi-
cations to C++ with concepts [35]. Haskell multi-parameter type
classes with functional dependencies have been translated to Con-
ceptC++, an experimental implementation of the concept feauture
of C++0x. The translation process consists of three major parts: the
division of Haskell class variables i nto ConceptC++ concept pa-
rameters and associated types, the corresponding division of super-
classes in the context of a type class, and the flattening of Haskell
AST to the concrete syntax of ConceptC++. The main motivation
of the authors was to model software components in Haskell and
implemented in C++ automated the translation.

7.5 Projects based on Yhc.Core
There are a number of other projects are based on Yhc.Core. Most
notably, YCR2JS is a Converter of Yhc Core to Javascript [38]

which generates Java Script from Haskell, similarly as we generate
C++ code.

7.6 EClean
Our solution is not the first attempt to express template metapro-
grams using a functional language. A Clean to Template Metapro-
gram translator has been written [28]. It uses a subset of Clean
(EClean) as the source language which it creates template metapro-
grams from.

8. Conclusion
Ideally, the syntax of a programming language should match to the
paradigm the program is written in. Template metaprogramming,
a Turing-complete subset of the C++ language for implementing
compile-time algorithms via cleverly placed templates, is many
times regarded as a pure functional language. Unfortunately, the
current way of writing metaprograms is far from the ideal, mainly
due to the complicated template syntax and the different original
design goals of C++.

In this paper we introduced a method which makes metapro-
gram developers able to express their intentions directly in func-
tional style using Haskell syntax. Haskell code snippets are em-
bedded into the C++ program and are translated into native C++
code. The translation process uses a stepwise approach; first com-
pile Haskell to Yhc.Core using Yhc compiler, then our tool gener-
ates lambda expressions as an intermediate representation of core
Haskell. In the last step lambda expressions are used to generate
C++ template metaprograms. This way we get a homogeneus C++
program which could be compiled by any standard C++ compiler.

As maintaining multiparadigm and embedded languages always
a challenge, we provided some essential tools to debug the gener-
ated C++ metaprograms help controlling the transformation pro-
cess. Especially, we provided a “debugger” which displays the re-
duction steps of errorneous core Haskell.

We have shown that using embedded Haskell simplifies tem-
plate metaprograms, make them easier to write and maintain.
The developer can focus on the functionality of the metaprogram,
reusing a huge number of existing algorithms and data structures
make them available to the C++ metaprogramming community.

References
[1] D. Abrahams, A. Gurtovoy, C++ template metaprogramming,

Concepts, Tools, and Techniques from Boost and Beyond, Addison-
Wesley, Boston, 2004.

[2] A. Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied, Addison-Wesley, 2001.

[3] ANSI/ISO C++ Committee, Programming Languages – C++,
ISO/IEC 14882:1998(E), American National Standards Institute,
1998.

[4] T. H. Brus, C. J. D. van Eekelen, M. O. van Leer, M. J. Plasmeijer,
CLEAN: A language for functional graph rewriting, Proc. of a
conference on Functional programming languages and computer
architecture, Springer-Verlag, 1987, pp.364-384.

[5] Zoltán Csörnyei and Gergely Dévai, An introduction to the lambda-
calculus, Lecture Notes in Computer Science, Springer-Verlag, LNCS
Vol. 5161, pp. 87-111 ISSN 0302-9743, ISBN 3-540-88058-5

[6] Zoltán Csörnyei, Lambda kalkulus – A funkcionális programozá
alapjai Typotex, 2007, Budapest, ISBN: 978-963-9664-46-3

[7] Olaf Chitil, Zoltán Horváth, Viktória Zsók (Eds.): Implementation
and Application of Functional Languages, Springer, 2008, [273],
ISBN: 978-3-540-85372-5

[8] K. Czarnecki, U. W. Eisenecker, R. Glück, D. Vandevoorde, T. L.
Veldhuizen, Generative Programming and Active Libraries, Springer-
Verlag, 2000.

[9] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods,
Tools and Applications, Addison-Wesley, 2000.

[10] Yossi Gil, Keren Lenz, Simple and Safe SQL queries with C++
templates In: Charles Consela and Julia L. Lawall (eds), Generative
Programming and Component Engineering, 6th International Confer-
ence, GPCE 2007, Salzburg, Austria, October 1-3, 2007, pp.13-24.

[11] Zoltán Horváth, Rinus Plasmeijer, Anna Soós, Viktória Zsók (Eds.):
Central European Functional Programming School, Springer, 2008,
[301], ISBN: 978-3-540-88058-5

[12] B. Karlsson, Beyond the C++ Standard Library, An Introduction to
Boost, Addison-Wesley, 2005.

[13] P. Koopman, R. Plasmeijer, M. van Eeekelen, S. Smetsers, Functional
programming in Clean, 2002

[14] Brian McNamara, Yannis Smaragdakis: Static interfaces in C++. In
First Workshop on C++ Template Metaprogramming, October 2000

[15] N. Mitchell, C. Runciman, A Supercompiler for Core Haskell,
In Chitil et al. Implementation and Application of Functional
Languages: 19th International Workshop, IFL 2007, Freiburg,
Germany, September 27-29, 2007. Revised Selected Papers, Springer-
Verlag, Berlin, Heidelberg, 2008

[16] D. R. Musser, A. A. Stepanov, Algorithm-oriented Generic Libraries,
Software-practice and experience 27(7), 1994, pp.623-642.

[17] R. Plasmeijer, M. van Eeekelen, Clean Language Report, 2001.

[18] Zoltán Porkoláb, József Mihalicza, Ádám Sipos, Debugging C++
template metaprograms, In: Stan Jarzabek, Douglas C. Schmidt,
Todd L. Veldhuizen (Eds.): Generative Programming and Component
Engineering, 5th International Conference, GPCE 2006, Portland,
Oregon, USA, October 22-26, 2006, Proceedings. ACM 2006, ISBN
1-59593-237-2, pp. 255-264.

[19] Jeremy Siek and Andrew Lumsdaine: Concept checking: Binding
parametric polymorphism in C++. In First Workshop on C++
Template Metaprogramming, October 2000

[20] J. Siek, A. Lumsdaine, Essential Language Support for Generic
Programming, Proceedings of the ACM SIGPLAN 2005 conference
on Programming language design and implementation, New York,
USA, pp 73-84.

[21] Douglas Gregor, Jaakko Jrvi, Jeremy G. Siek, Gabriel Dos Reis,
Bjarne Stroustrup, and Andrew Lumsdaine: Concepts: Linguistic
Support for Generic Programming in C++. In Proceedings of the
2006 ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA’06), October 2006.

[22] J. Siek, A Language for Generic Programming, PhD thesis, Indiana
University, 2005.

[23] B. Stroustrup, The C++ Programming Language Special Edition,
Addison-Wesley, 2000.

[24] G. Dos Reis, B. Stroustrup, Specifying C++ concepts, Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2006, pp. 295-308.

[25] B. McNamara, Y. Smaragdakis, Functional programming in C++,
Proceedings of the fifth ACM SIGPLAN international conference on
Functional programming, pp.118-129, 2000.

[26] Simon L. Peyton Jones: The Implementation of Functional Lan-
guages, Prentice Hall, 1987, [445], ISBN: 0-13-453333-9 Pbk

[27] Ábel Sinkovics, Zoltán Porkoláb: Expressing C++ Template
Metaprograms as Lambda expressions, In Tenth symposium on
Trends in Functional Programming (TFP ’09, Zoltn Horvth, Viktria
Zsk, Peter Achten, Pieter Koopman, eds.), Jun 2 - 4, Komarno,
Slovakia 2009., pp. 97-111

[28] Ádám Sipos, Zoltán Porkoláb, Viktória Zsók: Meta<fun> – Towards
a functional-style interface for C++ template metaprograms In
Frentiu et al ed.: Studia Universitatis Babes-Bolyai Informatica LIII,
2008/2, Cluj-Napoca, 2008, pp. 55-66.

[29] E. Unruh, Prime number computation, ANSI X3J16-94-0075/ISO

WG21-462.

[30] D. Vandevoorde, N. M. Josuttis, C++ Templates: The Complete
Guide, Addison-Wesley, 2003.

[31] Todd L. Veldhuizen and Dennis Gannon: Active libraries: Rethinking
the roles of compilers and libraries. In Proceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable Scientic
and Engineering Computing (OO’98). SIAM Press, 1998 pp. 21–23

[32] T. Veldhuizen, Using C++ Template Metaprograms, C++ Report vol.
7, no. 4, 1995, pp. 36-43.

[33] T. Veldhuizen, Expression Templates, C++ Report vol. 7, no. 5, 1995,
pp. 26-31.

[34] T. Veldhuizen, C++ Templates are Turing Complete

[35] M. Zalewski, A. P. Priesnitz, C. Ionescu, N. Botta, and S. Schupp,
Multi-language library development: From Haskell type classes to
C++ concepts. In MPOOL 2007 Ecoop workshp, 2007.

[36] I. Zólyomi, Z. Porkoláb, Towards a template introspection library,
LNCS Vol.3286 (2004), pp.266-282.

[37] The Yhc wiki,
http://www.haskell.org/haskellwiki/Yhc

[38] The Yhcr2js homepage,
http://www.haskell.org/haskellwiki/Yhc/Javascript

[39] Boost Libraries.
http://www.boost.org/

[40] The boost xpressive regular library.
http://www.boost.org/doc/libs/1 38 0/doc/html/xpressive.html.

