
Domain-spe
i�
 Language Intergrationwith Compile-time Parser Generator LibraryZoltán Porkoláb and Ábel Sinkovi
sEötvös Loránd University, Fa
ulty of Informati
s,Dept. of Programming Languages and CompilersPázmány Péter sétány 1/CH-1117 Budapest, Hungary{gsd|abel}�elte.huAbstra
t. Smoothless integration of domain-spe
i�
 languages into ageneral purpose programming language requires to absorb domain
odewritten in arbitrary syntax. The integration should
ause minimal syn-ta
ti
al and semanti
al overhead and ideally introdu
es a minimal de-penden
y on external tools. In this paper we introdu
e a DSL integra-tion te
hnique for C++ programming language. The solution is basedon
ompile-time parsing of the DSL
ode. The parser generator is im-plemented as a C++ template metaprogram library and the full parsingphase is exe
uted when the host program is
ompiled. Therefore the hostlanguage
an make
ompile-time adaptions depending the parsed DSL
ode. The library uses only standard C++ language features, thus oursolution is highly portable.1 Introdu
tionModern general purpose programming languages have the ability to express regu-lar programming idioms in a fairly
onvenient way: fun
tions, types,
lasses and
lass hierar
hies, et
. are used to express the programmer's intention. Mostlythese tools are applied when the programmer transfers a solution from a spe-
i�
 problem domain. Su
h transformations require not only good programmerskills in the means of the
lassi
al programming language terms but a profoundunderstanding of the spe
i�
 problem domain.As an opposite, Domain-spe
i�
 languages (DSLs) are
reated to expressproblems in parti
ular domains only. Using DSLs in spe
i�
 problem areas havemany advantages. DSLs are regularly more expressive in the intended problemdomain. As an example, the SQL language is perfe
t to express relational databaserelated problems while features of general purpose languages la
k this
larity. Thespe
ial syntax of a DLS is able to
at
h errors spe
i�
 to the problem domain.DSLs often invent new
onstru
ts to des
ribe domain poroblems or they evenapply di�rent programming paradigm. SQL as an example follows de
larativeparadigm. Thus the syntax of a DSL may re�e
t the usual notations of thedomain, make its usage a

essible for the domain experts.

Although DSLs are indispensible in their domain, vast majority of the pro-grams will exe
ute most of their a
tions out of this domain. SQL might be aperfe
t solution for des
ribing operations related relational databases, databaseservers will
reate threads, open network
onne
tions,
ommuni
ate with theoperating system in the means of a general purpose programming language. Theusual solution is that the desired Domain-spe
i�
 language or languages are usedtogether a general purpose programming language. Most
ases the integrationof these languages happens embedding the DSL(s) into the general purpose lan-guage with or without some synta
ti
al quotation.However, this integration should
ause minimal synta
ti
al and semanti
aloverhead on the proje
t. There are many strategies exist to provide the smooth-less integration of domain languages and the host language. Some of them appliesexternal framework for integration, others are build on language extensions. Afew solution is based on standard programming language features like ma
ros orgenerative language elements.Not all of these solutions
an be applied in industrial environment. Extrenaltools may introdu
e unwanted dependen
y on 3rd party software developers.Language extensions require translators, pre
ompilers or the modi�
ation of the
ompiler. These are fragile solutions when new language or
ompiler versions ap-peair. The most portable, manageable solution is based purely standard languagefeatures.In this paper we introdu
e a DSL integration te
hnique for C++ program-ming language. The solution is based on
ompile-time parsing of the DSL
ode.The parser generator is implemented as a C++ template metaprogram library,and the full parsing phase is exe
uted when the host program is
ompiled. There-fore the host language
an make
ompile-time adaptions depending the parsedDSL
ode. The library uses only standard C++ language features, thus oursolution is highly portable.The rest of the paper is organized as follows. In Se
tion 2 we overview C++template metaprogramming. Current DSL embedding te
hnologies are dis
ussedin Se
tion 3 with their advantages and shortages. In Se
tion 4 we argue for a
ompile-time parser presenting a number of motivating examples. We explain ourtemplate metaprogram based parser in Se
tion 5 with su�
ient implementationaldetails. In Se
tion 6 we evaluate our solution with the help of examples. Ourpaper
on
ludes in Se
tion 7.2 C++ Template MetaprogrammingTemplates are key language elements for the C++ programming language [3℄.They are essential for
apturing
ommonalities of abstra
tions without perfor-man
e penalties at runtime. The most notable example is the Standard TemplateLibrary [8℄ whi
h is now an unavoidable part of professional C++ programs. In1994 Erwin Unruh wrote a heavily templated program [17℄ in C++ whi
h didn't
ompile, however, the error messages emitted by the
ompiler during the
om-pilation pro
ess displayed a list of prime numbers. Unruh used C++ templates

and the template instantiation rules to write a program that is �exe
uted� as aside e�e
t of
ompilation. It turned out that a
leverly designed C++
ode isable to utilize the type-system of the language and for
e the
ompiler to exe
utea desired algorithm [20℄. These
ompile-time programs are
alled C++ Tem-plate Metaprograms and later has been proved to be form a Turing-
ompletesub language of C++ [5℄.C++ template metaprogram a
tions are de�ned in the form of templatede�nitions and are �exe
uted� when the
ompiler instantiates these templates.Their instantiations
an instru
t the
ompiler to exe
ute other instantiations,sin
e templates
an refer to other templates. This way we get an instantiation
hain very similar to a
all sta
k of a runtime program. Re
ursive instantiationsare not only possible but regular in template metaprograms to model loops:template <int N>
lass Fa
torial{publi
:enum { value = N*Fa
torial<N-1>::value };};template<>
lass Fa
torial<1>{publi
:enum { value = 1 };};int main (){
onst int r = Fa
torial<5>::value;}Two important template rules have been ta
itly used here: (1) Templates whi
hare not referred must not be instantiated � C++ template me
hanism is lazy.(2) Constant expressions � whi
h
an be evaluated at
ompilation time � mustbe evaluated at
ompilation time. Su
h
onstant expression appears on the leftside of the enumeration initialization of value in
lass Fa
torial.Lazyness is essential for writing template metaprograms. Let us
onsider thefollowing example:template <bool
ondition,
lass Then,
lass Else>stru
t IF{ typedef Then RET;};

template <
lass Then,
lass Else>stru
t IF<false, Then, Else>{ typedef Else RET;};int main(){ IF< sizeof(int)<sizeof(long), long, int>::RET i;
out << sizeof(i) << endl;return 0;}This seems a bit more
rypti
 than the fa
torial example. First let us draw upan inventory. We have a generi
 version of a template
alled IF and a partialspe
ialization for it. It is partial, sin
e only one, the leftmost argument has beenspe
ialized to the false boolean value. The �rst type parameter of the
lass IFis a (
onstant) value, the remaining arguments are type parameters.When we instantiate the IF template, we provide a boolean expression asthe �rst argument. In our example this is sizeof(int)<sizeof(long). Theexpression is evaluated at
ompilation time. If this is true, then the generi
template is instantiated, and hen
e the typedef Then RET is in e�e
t. Withthe a
tual arguments this de�nes RET as long. However, when the expressionis evaluated as false, we have a �better� spe
ialization, and typedef Else RETmeans RET is de�ned as int. As a result, based on whether the size of int issmaller than the size of long, we de�ne i as a variable of the widest type.The
onstru
t is symmetri
 � it would be an equally working solution to de�nethe generi
 fun
tion typede�ng the Else bran
h, and writing a spe
ialization forthe true value as the �rst parameter.The IF
onstru
t � the generi
 template and the spe
ialization � works like abran
hing metaprogram. Having re
ursion and bran
hing with pattern mat
hingwe have a
omplete programming language � exe
uting programs at
ompilationtime. In 1966 Bohm and Ja
opini proved, that Turing ma
hine implementation isequivalent to the existen
e of
onditional and looping
ontrol stru
tures in a pro-gramming language. C++ template metaprograming forms a Turing
ompleteprogramming language exe
uted at
ompilation time [5℄.Templates be overloaded and the
ompiler has to
hoose the narrowest ap-pli
able template to instantiate. Subprograms in ordinary C++ programs
anbe used as data via fun
tion pointers or fun
tor
lasses. Metaprograms are �rst
lass
itizens in template metaprograms, as they
an be passed as parametersfor other metaprograms [1℄.Conditional statements, stopping re
ursions, and
ompile-time de
isions areimplemented with template spe
ializations. Even with a relatively simple tem-plate and its spe
ializations we are able to write useful metaprograms. Thefollowing metaprogram determines whether its two type arguments are equal.

template <
lass T1,
lass T2>stru
t IsSameType{ stati

onst bool value = false;};template <
lass T>stru
t IsSameType<T,T>{ stati

onst bool value = true;};bool b1 = IsSameType<long, int>::value;bool b2 = IsSameType<int, int>::value;In the general
ase, when IsSameType is
alled with two distin
t types, the �rst,more general template is instantiated. The IsSameType<long,int>::value ex-pression's value equals false. On the other hand, when the arguments referto the same type, the
ompiler dedu
es that the partial spe
ialization of theIsSameType template is required to instantiate. Thus the metaprogram's �re-turn value� is true.Similarly template metaprogram
onstru
ts for de
isions on the
lass inheri-tan
e hierar
hy
ould be implemented [2℄.bool b = IsSuperClass<Bank,InternetBank>::value;The
ompile-time de
isions
an dire
tly a�e
t the
ompilation itself. A stati
assert is
apable of halting the
ompilation of a program at the point of theerror's dete
tion, thus we
an avoid an in
orre
t program to
ome into being.At the same time, we aspire to
reate a stati
 assert that
ontains some sensibleerror message, thus it is easier for the programmer to �nd the bug. The simplestway to exe
ute this
he
ks is by using a ma
ro de�ned in [7℄, whose simpli�edvesrion is as follows:template <bool> stru
t STATIC_ASSERT_FAILURE;template<> stru
t STATIC_ASSERT_FAILURE<true>{};template<int x> stru
t stati
_assert_test{};#define STATIC_ASSERT(B, error) \typedef stati
_assert_test< \sizeof(STATIC_ASSERT_FAILURE<(bool)(B), error>) \> stati
_assert_typedef_;If the expression B is true, the existing spe
ialization ofSTATIC_ASSERTION_FAILURE is used as the sizeof's argument. Otherwise themissing spe
ialization for false
auses a
ompile-time error. In the error argu-ment a typename has to be provided that passes messages for the programmer:

stru
t CALLER_IS_NOT_DERIVED_FROM_BANK {};STATIC_ASSERT(IsSuperClass<Bank,Caller>::value,CALLER_IS_NOT_DERIVED_FROM_BANK)Stati
 asserts are widely used for type
he
kings in C++ programs using tem-plates [2℄. Integration of domain-spe
i�
 languages requires these te
hniques todete
t invalid states in the domain spa
e and to raise
ustom errors.Today programmers write metaprograms for various reasons, like implement-ing expression templates [21℄, where we
an repla
e runtime
omputations with
ompile-time a
tivities to enhan
e runtime performan
e; stati
 interfa
e
he
k-ing, whi
h in
reases the ability of the
ompile-time to
he
k the requirementsagainst template parameters, i.e. they form
onstraints on template parameters[9, 11℄; a
tive libraries [19℄, a
ting dynami
ally during
ompile-time, making de-
isions and optimizations based on programming
ontexts. Other appli
ations in-volve embedded domain spe
i�
 languages as the AraRarat system [6℄ for typedsafe SQL interfa
e and boost:xpressive [29℄ for regular expressions.3 DSL integration te
hniquesIn this se
tion we overview
ommon patterns in te
hnologies
urrently used forintegration domain-spe
i�
 languages.3.1 External frameworksIn the following we dis
uss a few notable solution for language integration usingexternal frameworks. The
ommon feature of these approa
hes that they intentto use some language independent solution. Most
ases the sour
e
ode written ina spe
i�
 syntax is transformed into a language-neutral internal representation.Transformation steps take pla
e in this format. The result of the integration
ould be a

essed by re-generation of the program in the desired syntax.Stratego/XT The Stratego/XT developed in TU Delft is one of the mostpromising program transformation system using external toolset to integrateDSLs. The Stratego/XT metaprogram system [31, 22℄ is
ontaining the Strategolanguage des
ribing the program trasformations and the XT toolset, whi
h exe-
utes the transformations and provides a framework for
onstru
ting stand-aloneprogram transformation systems.Sor
e
ode written in arbitrary syntax
an be parsed into Annotated TermFormat (ATF), an internal representation form to bridge the di�eren
es be-tween synta
ti
al diversity. Step of transformations are exe
uted on ATF beforea pretty printer generates the output sour
e
ode on the required language. Pars-ing and pretty printing is language dependent based on an external des
ription,therefore the set of available language syntaxes are extensible. Some languages(like C++ and Java) are already supported.

The Stratego language is based on strategi
 term rewriting. Transformationde�nitions have two parts: rewriting rules and strategies. Rewriting rules de-s
ribe basi
 transformation steps. Appli
ation of 0these rules are
ontrolled us-ing strategies. Rewriting rules
an de de�ned in a language independent wayin the form of the internal representation. This form, however, is often lenghtytherefore a subsistem
alled Metaborg exists to des
ribe the rewriting rules inthe sour
e language.Intentional programming Current software development often uses high level,domain-spe
i�
 notations in the design phase, but is almost always ends up im-plementing the program in some programming language. This last step is notonly
ostly and error-prone, but
auses re
oding the software when some domain-spe
i�

ontent
hanges. The idea behind intentional programming [14, 30℄ is toseparate the domain
ontents of the software from its implementations in a spe-
i�
 programming language and automati
ally regenerate the software as itsdomain
ontents
hange.Intentional programming makes allow to express a porgram in a heterogeneussyntax, i.e. the
ode
ould be appear in the syntax a general purpose program-ming language while some of its part
an be expressed in a domain notation whenthat is more expressive. Lazy evaluation strategies avoid unne
essary parsing-unparsing steps to improve e�
ien
y.Domain
ontents
an be extended behind
lassi
al programming idioms.Comments, version
ontrol informations or even the full do
umentation
ouldbe integrated into the program and
an be visualize on request.3.2 Language extensionsLanguage extensions are attra
tive solutions for embedding domain-spe
i�
 lan-guages. They keep the most of host language syntax and therefore have zeroimpa
t on those
ode parts where DSL is not used. Keywords or even variablesfrom the domain-spe
i�
 language
ould be used without any quotation or syn-ta
ti
al marker.However, there are several problems have to be solved when more then onedomain language is used in the host language: keywords may
ollide, domain syn-tax
an be ambigous, et
. Spe
ial parsing and
ontext-aware s
anning algorithmsirequired in whi
h the s
anner uses
ontextual information to disambiguate lex-i
al syntax [23℄. Van Wyk and others shown the appli
ability of the extensionme
hanism.Language extensions are fragile in many ways. They require either the modi�-
ation of the
ompiler or an extensive set of translators or pre
ompilers. Althougfor some languages like Java there exists a set of te
hniques and frameworks tomake language extension less painfull, other languages � espe
ially C++ � arevery hard to extend when
onforman
e to the existing language, stability, ande�
ien
y of the generated
ode are all targeted.

3.3 Generativ approa
hExpression Templates are an advan
ed te
hnique that C++ library developersuse to de�ne embedded mini-languages that target spe
i�
 problem domains.The te
hnique has been used to
reate e�
ient and easy-to-use libraries for linearalgebra as well as to de�ne C++ parser generators with a readable syntax. Butdeveloping su
h a library involves writing an inordinate amount of unreadableand unmaintainable template
ode.In the following we overview three appli
ation examples of expression tem-plates to implementing domain-spe
i�
 language integration.AraRat The AraRat system targets one of the most important domain; itdemonstrate the integration of relational algebra language into C++ [6℄. Use ofthe system makes it possible to generate typesafe SQL queries and generatinge�e
tive POD types for storing query results.The system works in a two step way. In the �rst step a little external toolis used to dis
over the database s
hema and to generate a set of C++ typesand operator overloads to re�e
t the s
hema information. In the host language,relational expressions are represented as C++ expressions using the overloadedoperators. Template metaprogram te
hniques are used to
he
k
onsisten
y ofrelational operations and generating result sets in e�e
tive way.However its idea is impressive, the AraRat system has serious
onstraints. Itsdomain is restri
ted to relational algebra domain, moreover mainly for (typesafe)sele
tions. The domain language has to follow valid C++ expression syntax.Boost::Xpressive The boost::xpressive library is an advan
ed, obje
t-orientedregular expression template library for C++ [29℄. Regular expressions
an bewritten as strings that are parsed at run-time, or as expression templates thatare parsed at
ompile-time. Regular expressions
an refer to ea
h other and tothemselves re
ursively, allowing you to build arbitrarily
ompli
ated grammarsout of them.Regular expressions are a paragon of domain-spe
i�
 languages. They areused for a very spe
ial purpose � text manipulation � and have a spe
i�
 (usu-ally implementation-independent) syntax. Regular experssions are used mostlyin some host language environment implemented as a library. Classi
al regularexpression libraries (like boost::regex) are powerful and �exible; patterns arerepresented as strings whi
h
an be spe
i�ed at runtime. However, that meansthat syntax errors are likewise not dete
ted until runtime. Also, regular expres-sions are ill-suited to advan
ed text pro
essing tasks su
h as mat
hing balan
ed,nested tags.boost::xpressive brings these two approa
hes seamlessly together and o
-
upies a unique ni
he in the world of C++ text pro
essing. With xpressive,user
an represent regular expressions as strings, or
an use it as C++ expres-sion templates. In this
ase writing regular expressions are stati
ally bound �hard-
oded and syntax-
he
ked by the
ompiler � and others are dynami
ally

bound and spe
i�ed at runtime. These regular expressions
an refer to ea
hother re
ursively, mat
hing patterns in strings that ordinary regular expressions
annot.While boost::xpressive behaves similarly to our solution integrating adomain-spe
i�
 language in
ompile time and performing syntax
he
ks on it,its purpose is limited to a pre-de�ned domain: text manipulation.Boost::Proto The boost::proto library advan
es one step forward from xpressiveto provide a framework for building Domain Spe
i�
 Embedded Languages inC++ [28℄. It provides tools for
onstru
ting, type-
he
king, transforming andexe
uting domain-spe
i�
 languages expressible as expression templates. Protoprovides data stru
ture for representing the expression and a me
hanism forgiving additional behaviors and members to them.Expression trees are built from an expression of the domain-spe
i�
 languageusing operator overloads. Utilities for de�ning the grammar to whi
h an expres-sion must
onform and an extensible set of me
hanism for immediately exe
utingand for tree transformations are also provided. The use of boost::proto to de-�ne the primitives of a domain-spe
i�
 language radi
ally simpli�es the task ofintegrating a DSL.The boost::proto library is one of the most general existing solution forembedding a domain-spe
i�
 language into C++. Unfortunatelly, proto has itsown restri
tions. As the expression tree is built up with the help of operator over-loads, the domain-spe
i�
 language has to follow valid C++ expression syntax,i.e. keywords or variables have to be
onne
ted with overloaded C++ operators.This is a serious restri
tion when speaking on general purpose domain languages.In return no quotations should be applied to identify domain language
ode.4 Type-safe printf: a motivating example4.1 The problemThough the printf fun
tion of the standard C library is e�
ient and easy touse, it's not type-safe, hen
e mistakes of the programmer may
ause unde�nedbehaviour at runtime. Some
ompilers � su
h as g

 � type
he
k printf
allsand emit warnings in
ase they are in
orre
t, but this method is not widelyavailable. To over
ome the problem, C++ introdu
ed streams as a repla
ementof printf, whi
h are type-safe, but they have runtime and synta
ti
al overhead.In most
ases the pattern of printf is a stati
 string
onstant, its valueis available at
ompile-time, thus the
ompiler
ould do type-
he
king and it
ould spot misuses of the fun
tion. boost::mpl (TODO
ite) supports
ompile-time strings whi
h
ould be used to represent the format string. A safe printf
ould be implemented as a template fun
tion taking the format string as atemplate argument and the values to be inserted into the format string as runtimearguments. This fun
tion
ould evaluate a template-metafun
tion at
ompiletime, whi
h
ould try to verify the number and type of the arguments and in

ase this veri�
ation fails, it
ould emit a
ompilation error. On the other hand,if the veri�
ation su

eeds it
ould
all printf with the same arguments that thesafe printf was
alled with. The template metafun
tion verifying the arguments
annot have a runtime overhead, only a
ompile time overhead. The body of thesafe printf
onsists of a
all to printf, whi
h is likely to be in-lined, thus, usingthis safe printf has no runtime overhead
ompared to printf and has the samerun-time performan
e.Stroustrup wrote a type-safe printf using variadi
 template fun
tions (TODO
ite), whi
h are part of the up
oming standard C++0x (TODO
ite). His im-plementation uses runtime format string and transforms printf
alls to writeC++ streams at runtime.See the example:printf("Hello %s!", "John");Stroustrup's method does the following at runtime:std::
out<< 'H' << 'e' << 'l' << 'l'<< 'o' << ' ' << "John" << '!';This solution was primarily written to demonstrate the power of variadi
templates, that is why printing the format string is done
hara
ter by
hara
-ter, making the pro
ess extremely slow. This method
an be optimised in thefollowing, more e�
ient way:std::
out << "Hello " << "John" << "!";We have measured the speed of these operations and of the normal printfused by our implementation. We printed the following and its std::
out equiv-alents:printf("Test %d stuff\n", i);The text was printed 100 000 times and the speed using the time
ommandon a Linux
onsole was measured. The average time of the pro
ess
an be seen inTable 1. The printf fun
tion, whi
h
ould be used by the type-safe implemen-tation, is almost four times faster than the example at (TODO
ite Stroustr)and more than two times faster than the optimised version of the example.Method used Timestd::
out for ea
h
hara
ter 0,573 snormal std::
out 0,321 sprintf 0,152 sTable 1. Elapsed time

The grammar of the format strings is
omplex and the validator metafun
tionhas to parse them, thus the implementation of a type-safe printf requires a
ompile-time parser.4.2 Embedded SQLAny language
an be embedded into C++ sour
e
ode by using
ompile-timeparsers. The embedded sour
e
ode
an be a
ompile-time string parsed by ametaprogram as part of the
ompilation pro
ess. For example SQL queries
anbe validated and the
orresponding C++
lasses
an be built from them. ForexampleSELECT name, age FROM people WHERE department = "%s"
an be automati
ally transformed intostd::string exampleSqlQuery(
onst std::string& a1){ std::ostringstream s;s << "SELECT name, age FROM people WHERE department = \""<< sql_es
ape(a1)<< "\"";return s.str();s}where the string returned by exampleSqlQuery is guaranteed to be a validSQL query and it
an provide safety against SQL inje
tion as well.The translators and validators presented in this
hapter
an be implementedas C++ template metafun
tions, these extensions use the C++ standard anddon't require any translator, thus they are easily portable.5 Our solutionOur solution is based on the parser des
ribed in (TODO
ite). The paper de-s
ribes a Haskell parser generator library in detail. We implemented the samelibrary in C++ template metaprogramming and the result is a
ompile-timeparser generator library for C++. In this se
tion we present the details of thetranslation.5.1 Syntax for embedding sour
e
odesThe input of the parser is the text to parse represented as a string. In Haskell it'sa string, whi
h is a list of
hara
ters (TODO
ite). In C++ template metapro-gramming it's a list of
hara
ters as well (TODO
ite). For example the stringHello World! in Haskell is

"Hello World!"in a C++ template metaprogram it'slist_
<
har, 'H','e','l','l','o',' ','W','o','r','l','d','!'>boost::mpl has a tool for string de�nition whi
h simpli�es the de
laration of
ompile time strings:string<'Hell', 'o Wo', 'rld!'>By using an external translator it
an be simpli�ed to_S("Hello World!")Support for user-de�ned literals has been proposed to be in
luded in the up
om-ing C++ standard, C++0x. This proposal
ontains solution for the
onversion ofa string literal to the instantiation of a variadi
 template (TODO
ite) fun
tionwith the
hara
ters of the string as template arguments. With the
ombinationof this, de
ltype (TODO
ite) and the C++ pre-
ompiler the external trans-lator
ould be simulated: we
ould get the same behaviour without using anyexternal tool, thus we'd remain portable.We present how we implemented those features of Haskell whi
h are used bythe library. Be
ause of the size of the library we don't des
ribe every part of thetranslation, we fo
us only on the key elements.5.2 Algebrai
 typesAlgebrai
 data types in Haskell have the following form:data <name> [<type arguments>℄ =<
onstru
tor name> <
onstru
tor arguments> |<
onstru
tor name> <
onstru
tor arguments> |...We implement ea
h
onstru
tor with a C++ template. The
onstru
tor argu-ments are the template arguments. For example the
onstru
tor Div Expr Expris implemented astemplate <
lass Expr1,
lass Expr2>stru
t Div {};We
ouldn't express Haskell types in C++ template metaprograms, the type ofthe arguments is always
lass. Algebrai
 data types and their arguments have nodire
t representation in C++ template metaprogramming, only the
onstru
torsare implemented.In Haskell the
onstru
tors of algebrai
 data types a
t as fun
tions to
on-stru
t obje
ts. We need to turn their C++ template metaprogramming imple-mentations into fun
tions as well. We
an do it by turning them into nullarytemplate metafun
tions evaluating to themselves. For example the Div fun
tion
ould the enhan
ed the following way:

template <
lass Expr1,
lass Expr2>stru
t Div{ typedef Div<Expr1, Expr2> type;};This template works with fun
tions expe
ting a data-type and it works withfun
tions expe
ting a nullary template metafun
tion as well. It behaves as ex-pe
ted in both situations.As an example for translating algebrai
 data types we present our translationof Haskell's Maybe. In Haskell it'sMaybe a = Nothing | Just aIn C++ template metaprogramming it'sstru
t Nothing{ typedef Nothing type;};template <
lass a>stru
t Just{ typedef Just<a> type;};5.3 Fun
tionsHaskell builds on
urrying to represent fun
tions, a fun
tion takes exa
tly oneargument. Fun
tions taking multiple arguments are implemented as fun
tionstaking 1 argument and returning other fun
tions. For example a fun
tion taking3 arguments is implemented as a fun
tion taking 1 argument and returninga fun
tion taking another argument and returning a fun
tion taking a thirdargument returning the value of the 3 argument fun
tion.In our C++ template metaprogramming representation of the Haskell fun
-tions we didn't represent
urrying: we implemented Haskell fun
tions as fun
tionstaking multiple arguments. Haskell fun
tions have the form off :: <arg 1> -> <arg 2> -> <arg 3> -> ... -> <arg n> -> <result type>whi
h we implemented in C++ template metaprogramming with template meta-fun
tions or template metafun
tion
lasses depending on how we wanted to usethem:template <
lass arg1,
lass arg2, ...,
lass argn>stru
t f

// ...{};// orstru
t f{ template <
lass arg1,
lass arg2, ...,
lass argn>stru
t apply// ...{};};The result of the fun
tion is the value of the template metafun
tion or meta-fun
tion
lass. Fun
tions are �rst-
lass
itizens in Haskell, they
an be passedaround as data values. In C++ template metaprogramming we
an do the samewith template metafun
tion
lasses. Thus fun
tions in the library that werearguments or values of other fun
tions we implemented as template metafun
-tion
lasses, not as simple template metafun
tions. boost::mpl provides toolswhi
h
an transform template metafun
tions into template metafun
tion
lassesin
ases we need to turn a template metafun
tion into a �rst-
lass
itizen.5.4 ParsersParsers are fun
tions with the following signature:type Parser a = String -> Maybe (a, String)A parser takes the input string as its argument and returns a parsed obje
t andthe remaining part of the input when it a

epts a pre�x of the input string andreturns Nothing when it reje
ts the input string. Note that the se
ond elementof the tuple is always a post�x of the input string.A tuple with two elements
an be implemented with a pair of
lasses. boost::mplhas a pair data stru
ture whi
h we
an use. A parser is a fun
tion in the Haskelllibrary, so it's a template metafun
tion in C++ template metaprogramming.Here is the de�nition of one of the basi
 parsers in Haskell:
har :: Parser Char
har (
:
s) = Just (
,
s)
har [℄ = Nothingand in C++ template metaprogramming:stru
t one_
har{ template <
lass s>apply :

eval_if<typename empty<s>::type,Nothing,Just<build_pair<front<s>, pop_front<s> > >>{};};Note that in C++ we had to
all it one_
har be
ause
har is a reserved word.build_pair is a helper metafun
tion taking nullary metafun
tions as argumentsand building a pair stru
ture from them. We had to use eval_if instead ofpattern mat
hing. Even though C++ templates have ex
ellent pattern mat
hingsupport (TODO
ite) when we're
onstru
ting
ode from the building blo
ksboost::mpl provides we
an't use it. To be able to pass one_
har to parser
ombinators, whi
h are template metafun
tions, we had to implement it as atemplate metafun
tion
lass.Some parsers have arguments. The Haskell library builds on
urrying inHaskell: parsers taking arguments are fun
tions with multiple arguments andthe input string is always the last argument. By applying all arguments ex
eptthe input string to these fun
tions we get a parser: a fun
tion taking an inputstring as an argument and parsing it. For example return is a parser with anargument:return :: a -> Parser areturn a
s = Just(a,
s)Its C++ template metaprogramming implementation has to be a metafun
tionreturning a parser, whi
h is a metafun
tion:template <
lass a>stru
t return_{ stru
t type{ template <
lass
s>stru
t apply : Just<pair<a,
s> > {};};};5.5 Parser
ombinatorsComplex parsers are built by
ombining basi
 parsers. The Haskell library usesparser
ombinators whi
h are parsers taking other parsers as arguments. Forexample the Haskell library de�nes an ? operator whi
h is an in�x operator: it'sleft argument is a parser, it's right argument is a predi
ate providing a booleanvalue for ea
h result of the parser. We implemented it with a metafun
tion takingtwo metafun
tion
lasses (a parser and a predi
ate) as arguments and returninga parser:

template <
lass m,
lass p>stru
t a

ept_when{ // This metafun
tion
lass is the value// of the a

ept_when metafun
tionstru
t type{ template <
lass
s>stru
t apply :lazy_eval_if<equal_to<typename apply<m,
s>::type,Nothing>,nothing,lazy_eval_if<apply<p, just_value<apply<m,
s> > >,apply<m,
s>,nothing>>{};};};Note that the appli
ation of an argument to a fun
tion in Haskell, whi
h iswriting the fun
tion and the operand after ea
h other,
an be implemented usingthe apply metafun
tion in template metaprogramming.This fun
tion
an be used the same way it's used in the Haskell library. Forexample we
an implement the digit fun
tion with it:template <
lass
s>stru
t digit : a

ept_when<one_
har, isDigit>::type {};isDigit's C++ template metaprogramming implementation is straight forwardbut lengthy, we're not going to present it here.5.6 Re
ursive fun
tionsRe
ursive fun
tions
an be translated as well, template metafun
tions
an
allthemselves. We present our implementation of iter here as an example, otherre
ursive fun
tions
an be translated similarly. The Haskell implementation ofit isiter :: Parser a -> Parser [a℄iter m = m # iter m >->
ons ! return [℄

while our translated implementation isstru
t iter{ template <
lass m>stru
t apply :parser::one_of< // !parser::transform< // >->parser::sequen
e< // #m,boost::mpl::apply<parser::iter, m>>,parser::
ons>,parser::return_<boost::mpl::list<> >>{};};Note that we
ombined the C++ template metaprogramming implementationsof the operators the Haskell implementation uses the same way the Haskell
odedoes it. In the example above we added the original names of the operators as
omments to the fun
tions.The whole Haskell library
an be translated to C++ template metaprogramsfollowing this approa
h, we don't present every step here. As a result we get thesame fun
tionality at
ompile time in C++ the Haskell library provides.6 EvaluationEmbedded languages
an be
ompiled as part of the C++
ompilation pro
essusing template metaprograms. We have built a library for
onstru
ting these
ompile-time parsers. We present two grammars and
ompile-time parsers forthem built using our library.6.1 Hellon worldn grammarFirst we present how to build a parser for the following grammar:S ::= hello S world | hello worldIt a

epts inputs su
h as hello world, hello hello world world, and so on.The number of hello and world words have to be equal. Here is a parser for it:
lass Hello {};
lass World {};

stru
t Extend{ template <
lass L>stru
t apply :boost::mpl::push_front<typename boost::mpl::push_ba
k<L, World>::type,Hello> {};};typedef parser::token<parser::keyword<`hello`, Hello> > A

eptHello;typedef parser::token<parser::keyword<`world`, World> > A

eptWorld;stru
t S :parser::one_of<parser::always<parser::sequen
e<A

eptHello, A

eptWorld>,boost::mpl::deque<Hello, World>>,parser::transform<parser::keep_middle<A

eptHello, S, A

eptWorld>,Extend>>{};typedef parser::build_parser<S> HelloParser;It
onstru
ts a
ompile-time sequen
e of Hello and World
lasses as a result ofparsing the input string. For example the expressionHelloParser::apply<`hello hello world world`>::typeis redu
ed to the following at
ompile-time:boost::mpl::deque<Hello, Hello, World, World>But when we try
ompiling an invalid embedded
ode, su
h asHelloParser::apply<`hello hello world`>::typeit generates an error and breaks the C++
ompilation pro
ess.We've measured the
ompilation speed of this parser. We were using g++4.4.1 on a Linux PC. We measured the
ompilation time for di�erent number ofhello and world words. Figure 1 shows the
ompilation times. The horizontalaxis is the number of hello and world words in the embedded sour
e
ode, theverti
al axis is the number of se
onds spent on
ompilation.

Fig. 1. Compilation time6.2 Alternation at
ompile-timeThe type
onstru
ted as the result of the parsing depends on the embededd
ode.We
an easily
onstru
t a parser that takes a number as it's input and returnsthe int or double type, depending on whi
h type of variable
ould store thenumber. Here is the parser:typedefparser::keep_se
ond<parser::any1<parser::digit>,parser::if_<parser::sequen
e<parser::lit_
<'.'>,parser::any<parser::digit>>,double,int>>S;typedef parser::build_parser<S> Num;And here is how it
an be used:Num::apply<`13`>::type // intNum::apply<`11.13`>::type // double

7 Con
lusionSmoothless integration of domain-spe
i�
 languages into a general purpose pro-gramming language is not an easy task. A domain spe
i�
 language is intendedto express the domain knowledge in the best possible way, thus its syntax mayradi
ally di�er from the ones of the host language. A general
ase of language in-tegration therefore
ould be solve only applying a full-featured parser infrastru
-ture. Extrenal tools, and frameworks exists for the problem but they introdu
eunwanted dependen
y on third party tools. The best self-
ontaining solutionshould use only standard language features and should use only a minimal setof external tools other then the
ompiler of the host language.Our solution ful�lls most of these requirements. We
reated a C++ tem-plate metaprogram library with the meaningful translation of a similar Haskellrun-time tool, whi
h implements a full-featured parser infrastru
ture. Domain-spe
i�
 language
ode is presented for the parser as template arguments andevaluated during the
ompilation of the host
ode. The result of the parsingpro
ess is a set of C++
lasses whi
h
ould be used for further
ompile-timede
isions in template metaprogramming environment. We presented a numberof examples to show the usability of our library.The library uses only standard C++ language features, thus our solutionis highly portable. Current presentation has a minimal synta
ti
al overheadwhi
h
an be eliminated by a trivial transformation on the sour
e
ode. Thistransformation later
ould be avoided as the next C++ standard will introdu
euser-de�ned
ustom literals whi
h supports the straitforward presentation of theembedded domain-spe
i�
 language syntax.Referen
es1. D. Abrahams, A. Gurtovoy, C++ template metaprogramming, Con
epts, Tools,and Te
hniques from Boost and Beyond, Addison-Wesley, Boston, 2004.2. A. Alexandres
u, Modern C++ Design: Generi
 Programming and Design PatternsApplied, Addison-Wesley, 2001.3. ANSI/ISO C++ Committee, Programming Languages � C++, ISO/IEC14882:1998(E), Ameri
an National Standards Institute, 1998.4. K. Czarne
ki, U. W. Eisene
ker, R. Glü
k, D. Vandevoorde, T. Veldhuizen, Gen-erative Programming and A
tive Libraries, Springer-Verlag, 2000.5. K. Czarne
ki, U. W. Eisene
ker, Generative Programming: Methods, Tools andAppli
ations, Addison-Wesley, 2000.6. Y. Gil, K. Lenz, Simple and Safe SQL queries with C++ templates, In: CharlesConsela and Julia L. Lawall (eds), Generative Programming and Component En-gineering, 6th International Conferen
e, GPCE 2007, Salzburg, Austria, O
tober1-3, 2007, pp.13-24.7. B. Karlsson, Beyond the C++ Standard Library, An Introdu
tion to Boost,Addison-Wesley, 2005.8. D. R. Musser, A. A. Stepanov, Algorithm-oriented Generi
 Libraries, Software-pra
ti
e and experien
e 27(7), 1994, pp.623-642.

9. B. M
Namara, Y. Smaragdakis: Stati
 interfa
es in C++. In First Workshop onC++ Template Metaprogramming, O
tober 200010. Z. Porkoláb, J. Mihali
za, Á. Sipos, Debugging C++ template metaprograms, In:Stan Jarzabek, Douglas C. S
hmidt, Todd L. Veldhuizen (Eds.): Generative Pro-gramming and Component Engineering, 5th International Conferen
e, GPCE 2006,Portland, Oregon, USA, O
tober 22-26, 2006, Pro
eedings. ACM 2006, ISBN 1-59593-237-2, pp. 255-264.11. J. Siek and A. Lumsdaine: Con
ept
he
king: Binding parametri
 polymorphismin C++, In First Workshop on C++ Template Metaprogramming, O
tober 200012. J. Siek, A. Lumsdaine, Essential Language Support for Generi
 Programming,Pro
eedings of the ACM SIGPLAN 2005
onferen
e on Programming languagedesign and implementation, New York, USA, pp 73-84.13. D. Gregor, J. Järvi, J.G. Siek, G. Dos Reis, B. Stroustrup, A. Lumsdaine, Con
epts:Linguisti
 Support for Generi
 Programming in C++, In Pro
eedings of the 2006ACM SIGPLAN
onferen
e on Obje
t-oriented programming, systems, languages,and appli
ations (OOPSLA'06), O
tober 2006.14. C. Simonyi, M. Christerson, S. Cli�ord, Intentional software, In Pro
eedings of the21st annual ACM SIGPLAN
onferen
e on Obje
t-oriented programming systems,languages, and appli
ations, O
tober 22-26, 2006, Portland, Oregon, USA, pp.451�465.15. B. Stroustrup, The C++ Programming Language Spe
ial Edition, Addison-Wesley,2000.16. G. Dos Reis, B. Stroustrup, Spe
ifying C++
on
epts, Pro
eedings of the 33rdACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages(POPL), 2006, pp. 295-308.17. E. Unruh, Prime number
omputation, ANSI X3J16-94-0075/ISO WG21-462.18. D. Vandevoorde, N. M. Josuttis, C++ Templates: The Complete Guide, Addison-Wesley, 2003.19. T. Veldhuizen, D. Gannon, A
tive libraries: Rethinking the roles of
ompilers andlibraries. In Pro
eedings of the SIAM Workshop on Obje
t Oriented Methods forInter-operable S
ienti
 and Engineering Computing (OO'98). SIAM Press, 1998pp. 21�2320. T. Veldhuizen, Using C++ Template Metaprograms, C++ Report vol. 7, no. 4,1995, pp. 36-43.21. T. Veldhuizen, Expression Templates, C++ Report vol. 7, no. 5, 1995, pp. 26-31.22. E. Visser, Program Transformation with Stratego/XT: Rules, Strategies, Tools,and Systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Spe
i�
Program Generation, vol. 3016 of Le
ture Notes in Computer S
ien
e, pp. 216�238. Spinger-Verlag, June 2004.23. E.R. Van Wyk, A.C. S
hwerdfeger, Context-aware s
anning for parsing extensi-ble languages, Pro
eedings of the 6th international
onferen
e on Generative pro-gramming and
omponent engineering, O
tober 01-03, 2007, Salzburg, Austria, pp.63-72.24. M. Zalewski, A. P. Priesnitz, C. Iones
u, N. Botta, and S. S
hupp, Multi-languagelibrary development: From Haskell type
lasses to C++
on
epts, In MPOOL 2007E
oop workshp, 2007.25. I. Zólyomi, Z. Porkoláb, Towards a template introspe
tion library, LNCS Vol.3286(2004), pp.266-282.26. The boost lambda library.http://www.boost.org/do
/libs/1_39_0/do
/html/lambda.html

27. The boost metaprogram libraries.http://www.boost.org/do
/libs/1_39_0/libs/mpl/do
/index.html28. The boost proto library. http://www.boost.org/do
/libs/1_37_0/do
/html/proto.html29. The boost xpressive regular library.http://www.boost.org/do
/libs/1_38_0/do
/html/xpressive.html.30. The Intentional Software. http://intentsoft.
om/31. The Stratego Program Transformation Language. http://strategoxt.org/

