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t. Smoothless integration of domain-spe
i�
 languages into ageneral purpose programming language requires to absorb domain 
odewritten in arbitrary syntax. The integration should 
ause minimal syn-ta
ti
al and semanti
al overhead and ideally introdu
es a minimal de-penden
y on external tools. In this paper we introdu
e a DSL integra-tion te
hnique for C++ programming language. The solution is basedon 
ompile-time parsing of the DSL 
ode. The parser generator is im-plemented as a C++ template metaprogram library and the full parsingphase is exe
uted when the host program is 
ompiled. Therefore the hostlanguage 
an make 
ompile-time adaptions depending the parsed DSL
ode. The library uses only standard C++ language features, thus oursolution is highly portable.1 Introdu
tionModern general purpose programming languages have the ability to express regu-lar programming idioms in a fairly 
onvenient way: fun
tions, types, 
lasses and
lass hierar
hies, et
. are used to express the programmer's intention. Mostlythese tools are applied when the programmer transfers a solution from a spe-
i�
 problem domain. Su
h transformations require not only good programmerskills in the means of the 
lassi
al programming language terms but a profoundunderstanding of the spe
i�
 problem domain.As an opposite, Domain-spe
i�
 languages (DSLs) are 
reated to expressproblems in parti
ular domains only. Using DSLs in spe
i�
 problem areas havemany advantages. DSLs are regularly more expressive in the intended problemdomain. As an example, the SQL language is perfe
t to express relational databaserelated problems while features of general purpose languages la
k this 
larity. Thespe
ial syntax of a DLS is able to 
at
h errors spe
i�
 to the problem domain.DSLs often invent new 
onstru
ts to des
ribe domain poroblems or they evenapply di�rent programming paradigm. SQL as an example follows de
larativeparadigm. Thus the syntax of a DSL may re�e
t the usual notations of thedomain, make its usage a

essible for the domain experts.



Although DSLs are indispensible in their domain, vast majority of the pro-grams will exe
ute most of their a
tions out of this domain. SQL might be aperfe
t solution for des
ribing operations related relational databases, databaseservers will 
reate threads, open network 
onne
tions, 
ommuni
ate with theoperating system in the means of a general purpose programming language. Theusual solution is that the desired Domain-spe
i�
 language or languages are usedtogether a general purpose programming language. Most 
ases the integrationof these languages happens embedding the DSL(s) into the general purpose lan-guage with or without some synta
ti
al quotation.However, this integration should 
ause minimal synta
ti
al and semanti
aloverhead on the proje
t. There are many strategies exist to provide the smooth-less integration of domain languages and the host language. Some of them appliesexternal framework for integration, others are build on language extensions. Afew solution is based on standard programming language features like ma
ros orgenerative language elements.Not all of these solutions 
an be applied in industrial environment. Extrenaltools may introdu
e unwanted dependen
y on 3rd party software developers.Language extensions require translators, pre
ompilers or the modi�
ation of the
ompiler. These are fragile solutions when new language or 
ompiler versions ap-peair. The most portable, manageable solution is based purely standard languagefeatures.In this paper we introdu
e a DSL integration te
hnique for C++ program-ming language. The solution is based on 
ompile-time parsing of the DSL 
ode.The parser generator is implemented as a C++ template metaprogram library,and the full parsing phase is exe
uted when the host program is 
ompiled. There-fore the host language 
an make 
ompile-time adaptions depending the parsedDSL 
ode. The library uses only standard C++ language features, thus oursolution is highly portable.The rest of the paper is organized as follows. In Se
tion 2 we overview C++template metaprogramming. Current DSL embedding te
hnologies are dis
ussedin Se
tion 3 with their advantages and shortages. In Se
tion 4 we argue for a
ompile-time parser presenting a number of motivating examples. We explain ourtemplate metaprogram based parser in Se
tion 5 with su�
ient implementationaldetails. In Se
tion 6 we evaluate our solution with the help of examples. Ourpaper 
on
ludes in Se
tion 7.2 C++ Template MetaprogrammingTemplates are key language elements for the C++ programming language [3℄.They are essential for 
apturing 
ommonalities of abstra
tions without perfor-man
e penalties at runtime. The most notable example is the Standard TemplateLibrary [8℄ whi
h is now an unavoidable part of professional C++ programs. In1994 Erwin Unruh wrote a heavily templated program [17℄ in C++ whi
h didn't
ompile, however, the error messages emitted by the 
ompiler during the 
om-pilation pro
ess displayed a list of prime numbers. Unruh used C++ templates



and the template instantiation rules to write a program that is �exe
uted� as aside e�e
t of 
ompilation. It turned out that a 
leverly designed C++ 
ode isable to utilize the type-system of the language and for
e the 
ompiler to exe
utea desired algorithm [20℄. These 
ompile-time programs are 
alled C++ Tem-plate Metaprograms and later has been proved to be form a Turing-
ompletesub language of C++ [5℄.C++ template metaprogram a
tions are de�ned in the form of templatede�nitions and are �exe
uted� when the 
ompiler instantiates these templates.Their instantiations 
an instru
t the 
ompiler to exe
ute other instantiations,sin
e templates 
an refer to other templates. This way we get an instantiation
hain very similar to a 
all sta
k of a runtime program. Re
ursive instantiationsare not only possible but regular in template metaprograms to model loops:template <int N>
lass Fa
torial{publi
:enum { value = N*Fa
torial<N-1>::value };};template<>
lass Fa
torial<1>{publi
:enum { value = 1 };};int main (){ 
onst int r = Fa
torial<5>::value;}Two important template rules have been ta
itly used here: (1) Templates whi
hare not referred must not be instantiated � C++ template me
hanism is lazy.(2) Constant expressions � whi
h 
an be evaluated at 
ompilation time � mustbe evaluated at 
ompilation time. Su
h 
onstant expression appears on the leftside of the enumeration initialization of value in 
lass Fa
torial.Lazyness is essential for writing template metaprograms. Let us 
onsider thefollowing example:template <bool 
ondition, 
lass Then, 
lass Else>stru
t IF{ typedef Then RET;};



template <
lass Then, 
lass Else>stru
t IF<false, Then, Else>{ typedef Else RET;};int main(){ IF< sizeof(int)<sizeof(long), long, int>::RET i;
out << sizeof(i) << endl;return 0;}This seems a bit more 
rypti
 than the fa
torial example. First let us draw upan inventory. We have a generi
 version of a template 
alled IF and a partialspe
ialization for it. It is partial, sin
e only one, the leftmost argument has beenspe
ialized to the false boolean value. The �rst type parameter of the 
lass IFis a (
onstant) value, the remaining arguments are type parameters.When we instantiate the IF template, we provide a boolean expression asthe �rst argument. In our example this is sizeof(int)<sizeof(long). Theexpression is evaluated at 
ompilation time. If this is true, then the generi
template is instantiated, and hen
e the typedef Then RET is in e�e
t. Withthe a
tual arguments this de�nes RET as long. However, when the expressionis evaluated as false, we have a �better� spe
ialization, and typedef Else RETmeans RET is de�ned as int. As a result, based on whether the size of int issmaller than the size of long, we de�ne i as a variable of the widest type.The 
onstru
t is symmetri
 � it would be an equally working solution to de�nethe generi
 fun
tion typede�ng the Else bran
h, and writing a spe
ialization forthe true value as the �rst parameter.The IF 
onstru
t � the generi
 template and the spe
ialization � works like abran
hing metaprogram. Having re
ursion and bran
hing with pattern mat
hingwe have a 
omplete programming language � exe
uting programs at 
ompilationtime. In 1966 Bohm and Ja
opini proved, that Turing ma
hine implementation isequivalent to the existen
e of 
onditional and looping 
ontrol stru
tures in a pro-gramming language. C++ template metaprograming forms a Turing 
ompleteprogramming language exe
uted at 
ompilation time [5℄.Templates be overloaded and the 
ompiler has to 
hoose the narrowest ap-pli
able template to instantiate. Subprograms in ordinary C++ programs 
anbe used as data via fun
tion pointers or fun
tor 
lasses. Metaprograms are �rst
lass 
itizens in template metaprograms, as they 
an be passed as parametersfor other metaprograms [1℄.Conditional statements, stopping re
ursions, and 
ompile-time de
isions areimplemented with template spe
ializations. Even with a relatively simple tem-plate and its spe
ializations we are able to write useful metaprograms. Thefollowing metaprogram determines whether its two type arguments are equal.



template <
lass T1, 
lass T2>stru
t IsSameType{ stati
 
onst bool value = false;};template <
lass T>stru
t IsSameType<T,T>{ stati
 
onst bool value = true;};bool b1 = IsSameType<long, int>::value;bool b2 = IsSameType<int, int>::value;In the general 
ase, when IsSameType is 
alled with two distin
t types, the �rst,more general template is instantiated. The IsSameType<long,int>::value ex-pression's value equals false. On the other hand, when the arguments referto the same type, the 
ompiler dedu
es that the partial spe
ialization of theIsSameType template is required to instantiate. Thus the metaprogram's �re-turn value� is true.Similarly template metaprogram 
onstru
ts for de
isions on the 
lass inheri-tan
e hierar
hy 
ould be implemented [2℄.bool b = IsSuperClass<Bank,InternetBank>::value;The 
ompile-time de
isions 
an dire
tly a�e
t the 
ompilation itself. A stati
assert is 
apable of halting the 
ompilation of a program at the point of theerror's dete
tion, thus we 
an avoid an in
orre
t program to 
ome into being.At the same time, we aspire to 
reate a stati
 assert that 
ontains some sensibleerror message, thus it is easier for the programmer to �nd the bug. The simplestway to exe
ute this 
he
ks is by using a ma
ro de�ned in [7℄, whose simpli�edvesrion is as follows:template <bool> stru
t STATIC_ASSERT_FAILURE;template<> stru
t STATIC_ASSERT_FAILURE<true>{};template<int x> stru
t stati
_assert_test{};#define STATIC_ASSERT(B, error) \typedef stati
_assert_test< \sizeof(STATIC_ASSERT_FAILURE<(bool)(B), error>) \> stati
_assert_typedef_;If the expression B is true, the existing spe
ialization ofSTATIC_ASSERTION_FAILURE is used as the sizeof's argument. Otherwise themissing spe
ialization for false 
auses a 
ompile-time error. In the error argu-ment a typename has to be provided that passes messages for the programmer:



stru
t CALLER_IS_NOT_DERIVED_FROM_BANK {};STATIC_ASSERT(IsSuperClass<Bank,Caller>::value,CALLER_IS_NOT_DERIVED_FROM_BANK)Stati
 asserts are widely used for type 
he
kings in C++ programs using tem-plates [2℄. Integration of domain-spe
i�
 languages requires these te
hniques todete
t invalid states in the domain spa
e and to raise 
ustom errors.Today programmers write metaprograms for various reasons, like implement-ing expression templates [21℄, where we 
an repla
e runtime 
omputations with
ompile-time a
tivities to enhan
e runtime performan
e; stati
 interfa
e 
he
k-ing, whi
h in
reases the ability of the 
ompile-time to 
he
k the requirementsagainst template parameters, i.e. they form 
onstraints on template parameters[9, 11℄; a
tive libraries [19℄, a
ting dynami
ally during 
ompile-time, making de-
isions and optimizations based on programming 
ontexts. Other appli
ations in-volve embedded domain spe
i�
 languages as the AraRarat system [6℄ for typedsafe SQL interfa
e and boost:xpressive [29℄ for regular expressions.3 DSL integration te
hniquesIn this se
tion we overview 
ommon patterns in te
hnologies 
urrently used forintegration domain-spe
i�
 languages.3.1 External frameworksIn the following we dis
uss a few notable solution for language integration usingexternal frameworks. The 
ommon feature of these approa
hes that they intentto use some language independent solution. Most 
ases the sour
e 
ode written ina spe
i�
 syntax is transformed into a language-neutral internal representation.Transformation steps take pla
e in this format. The result of the integration
ould be a

essed by re-generation of the program in the desired syntax.Stratego/XT The Stratego/XT developed in TU Delft is one of the mostpromising program transformation system using external toolset to integrateDSLs. The Stratego/XT metaprogram system [31, 22℄ is 
ontaining the Strategolanguage des
ribing the program trasformations and the XT toolset, whi
h exe-
utes the transformations and provides a framework for 
onstru
ting stand-aloneprogram transformation systems.Sor
e 
ode written in arbitrary syntax 
an be parsed into Annotated TermFormat (ATF), an internal representation form to bridge the di�eren
es be-tween synta
ti
al diversity. Step of transformations are exe
uted on ATF beforea pretty printer generates the output sour
e 
ode on the required language. Pars-ing and pretty printing is language dependent based on an external des
ription,therefore the set of available language syntaxes are extensible. Some languages(like C++ and Java) are already supported.



The Stratego language is based on strategi
 term rewriting. Transformationde�nitions have two parts: rewriting rules and strategies. Rewriting rules de-s
ribe basi
 transformation steps. Appli
ation of 0these rules are 
ontrolled us-ing strategies. Rewriting rules 
an de de�ned in a language independent wayin the form of the internal representation. This form, however, is often lenghtytherefore a subsistem 
alled Metaborg exists to des
ribe the rewriting rules inthe sour
e language.Intentional programming Current software development often uses high level,domain-spe
i�
 notations in the design phase, but is almost always ends up im-plementing the program in some programming language. This last step is notonly 
ostly and error-prone, but 
auses re
oding the software when some domain-spe
i�
 
ontent 
hanges. The idea behind intentional programming [14, 30℄ is toseparate the domain 
ontents of the software from its implementations in a spe-
i�
 programming language and automati
ally regenerate the software as itsdomain 
ontents 
hange.Intentional programming makes allow to express a porgram in a heterogeneussyntax, i.e. the 
ode 
ould be appear in the syntax a general purpose program-ming language while some of its part 
an be expressed in a domain notation whenthat is more expressive. Lazy evaluation strategies avoid unne
essary parsing-unparsing steps to improve e�
ien
y.Domain 
ontents 
an be extended behind 
lassi
al programming idioms.Comments, version 
ontrol informations or even the full do
umentation 
ouldbe integrated into the program and 
an be visualize on request.3.2 Language extensionsLanguage extensions are attra
tive solutions for embedding domain-spe
i�
 lan-guages. They keep the most of host language syntax and therefore have zeroimpa
t on those 
ode parts where DSL is not used. Keywords or even variablesfrom the domain-spe
i�
 language 
ould be used without any quotation or syn-ta
ti
al marker.However, there are several problems have to be solved when more then onedomain language is used in the host language: keywords may 
ollide, domain syn-tax 
an be ambigous, et
. Spe
ial parsing and 
ontext-aware s
anning algorithmsirequired in whi
h the s
anner uses 
ontextual information to disambiguate lex-i
al syntax [23℄. Van Wyk and others shown the appli
ability of the extensionme
hanism.Language extensions are fragile in many ways. They require either the modi�-
ation of the 
ompiler or an extensive set of translators or pre
ompilers. Althougfor some languages like Java there exists a set of te
hniques and frameworks tomake language extension less painfull, other languages � espe
ially C++ � arevery hard to extend when 
onforman
e to the existing language, stability, ande�
ien
y of the generated 
ode are all targeted.



3.3 Generativ approa
hExpression Templates are an advan
ed te
hnique that C++ library developersuse to de�ne embedded mini-languages that target spe
i�
 problem domains.The te
hnique has been used to 
reate e�
ient and easy-to-use libraries for linearalgebra as well as to de�ne C++ parser generators with a readable syntax. Butdeveloping su
h a library involves writing an inordinate amount of unreadableand unmaintainable template 
ode.In the following we overview three appli
ation examples of expression tem-plates to implementing domain-spe
i�
 language integration.AraRat The AraRat system targets one of the most important domain; itdemonstrate the integration of relational algebra language into C++ [6℄. Use ofthe system makes it possible to generate typesafe SQL queries and generatinge�e
tive POD types for storing query results.The system works in a two step way. In the �rst step a little external toolis used to dis
over the database s
hema and to generate a set of C++ typesand operator overloads to re�e
t the s
hema information. In the host language,relational expressions are represented as C++ expressions using the overloadedoperators. Template metaprogram te
hniques are used to 
he
k 
onsisten
y ofrelational operations and generating result sets in e�e
tive way.However its idea is impressive, the AraRat system has serious 
onstraints. Itsdomain is restri
ted to relational algebra domain, moreover mainly for (typesafe)sele
tions. The domain language has to follow valid C++ expression syntax.Boost::Xpressive The boost::xpressive library is an advan
ed, obje
t-orientedregular expression template library for C++ [29℄. Regular expressions 
an bewritten as strings that are parsed at run-time, or as expression templates thatare parsed at 
ompile-time. Regular expressions 
an refer to ea
h other and tothemselves re
ursively, allowing you to build arbitrarily 
ompli
ated grammarsout of them.Regular expressions are a paragon of domain-spe
i�
 languages. They areused for a very spe
ial purpose � text manipulation � and have a spe
i�
 (usu-ally implementation-independent) syntax. Regular experssions are used mostlyin some host language environment implemented as a library. Classi
al regularexpression libraries (like boost::regex) are powerful and �exible; patterns arerepresented as strings whi
h 
an be spe
i�ed at runtime. However, that meansthat syntax errors are likewise not dete
ted until runtime. Also, regular expres-sions are ill-suited to advan
ed text pro
essing tasks su
h as mat
hing balan
ed,nested tags.boost::xpressive brings these two approa
hes seamlessly together and o
-
upies a unique ni
he in the world of C++ text pro
essing. With xpressive,user 
an represent regular expressions as strings, or 
an use it as C++ expres-sion templates. In this 
ase writing regular expressions are stati
ally bound �hard-
oded and syntax-
he
ked by the 
ompiler � and others are dynami
ally



bound and spe
i�ed at runtime. These regular expressions 
an refer to ea
hother re
ursively, mat
hing patterns in strings that ordinary regular expressions
annot.While boost::xpressive behaves similarly to our solution integrating adomain-spe
i�
 language in 
ompile time and performing syntax 
he
ks on it,its purpose is limited to a pre-de�ned domain: text manipulation.Boost::Proto The boost::proto library advan
es one step forward from xpressiveto provide a framework for building Domain Spe
i�
 Embedded Languages inC++ [28℄. It provides tools for 
onstru
ting, type-
he
king, transforming andexe
uting domain-spe
i�
 languages expressible as expression templates. Protoprovides data stru
ture for representing the expression and a me
hanism forgiving additional behaviors and members to them.Expression trees are built from an expression of the domain-spe
i�
 languageusing operator overloads. Utilities for de�ning the grammar to whi
h an expres-sion must 
onform and an extensible set of me
hanism for immediately exe
utingand for tree transformations are also provided. The use of boost::proto to de-�ne the primitives of a domain-spe
i�
 language radi
ally simpli�es the task ofintegrating a DSL.The boost::proto library is one of the most general existing solution forembedding a domain-spe
i�
 language into C++. Unfortunatelly, proto has itsown restri
tions. As the expression tree is built up with the help of operator over-loads, the domain-spe
i�
 language has to follow valid C++ expression syntax,i.e. keywords or variables have to be 
onne
ted with overloaded C++ operators.This is a serious restri
tion when speaking on general purpose domain languages.In return no quotations should be applied to identify domain language 
ode.4 Type-safe printf: a motivating example4.1 The problemThough the printf fun
tion of the standard C library is e�
ient and easy touse, it's not type-safe, hen
e mistakes of the programmer may 
ause unde�nedbehaviour at runtime. Some 
ompilers � su
h as g

 � type 
he
k printf 
allsand emit warnings in 
ase they are in
orre
t, but this method is not widelyavailable. To over
ome the problem, C++ introdu
ed streams as a repla
ementof printf, whi
h are type-safe, but they have runtime and synta
ti
al overhead.In most 
ases the pattern of printf is a stati
 string 
onstant, its valueis available at 
ompile-time, thus the 
ompiler 
ould do type-
he
king and it
ould spot misuses of the fun
tion. boost::mpl (TODO 
ite) supports 
ompile-time strings whi
h 
ould be used to represent the format string. A safe printf
ould be implemented as a template fun
tion taking the format string as atemplate argument and the values to be inserted into the format string as runtimearguments. This fun
tion 
ould evaluate a template-metafun
tion at 
ompiletime, whi
h 
ould try to verify the number and type of the arguments and in




ase this veri�
ation fails, it 
ould emit a 
ompilation error. On the other hand,if the veri�
ation su

eeds it 
ould 
all printf with the same arguments that thesafe printf was 
alled with. The template metafun
tion verifying the arguments
annot have a runtime overhead, only a 
ompile time overhead. The body of thesafe printf 
onsists of a 
all to printf, whi
h is likely to be in-lined, thus, usingthis safe printf has no runtime overhead 
ompared to printf and has the samerun-time performan
e.Stroustrup wrote a type-safe printf using variadi
 template fun
tions (TODO
ite), whi
h are part of the up
oming standard C++0x (TODO 
ite). His im-plementation uses runtime format string and transforms printf 
alls to writeC++ streams at runtime.See the example:printf("Hello %s!", "John");Stroustrup's method does the following at runtime:std::
out<< 'H' << 'e' << 'l' << 'l'<< 'o' << ' ' << "John" << '!';This solution was primarily written to demonstrate the power of variadi
templates, that is why printing the format string is done 
hara
ter by 
hara
-ter, making the pro
ess extremely slow. This method 
an be optimised in thefollowing, more e�
ient way:std::
out << "Hello " << "John" << "!";We have measured the speed of these operations and of the normal printfused by our implementation. We printed the following and its std::
out equiv-alents:printf("Test %d stuff\n", i);The text was printed 100 000 times and the speed using the time 
ommandon a Linux 
onsole was measured. The average time of the pro
ess 
an be seen inTable 1. The printf fun
tion, whi
h 
ould be used by the type-safe implemen-tation, is almost four times faster than the example at (TODO 
ite Stroustr)and more than two times faster than the optimised version of the example.Method used Timestd::
out for ea
h 
hara
ter 0,573 snormal std::
out 0,321 sprintf 0,152 sTable 1. Elapsed time



The grammar of the format strings is 
omplex and the validator metafun
tionhas to parse them, thus the implementation of a type-safe printf requires a
ompile-time parser.4.2 Embedded SQLAny language 
an be embedded into C++ sour
e 
ode by using 
ompile-timeparsers. The embedded sour
e 
ode 
an be a 
ompile-time string parsed by ametaprogram as part of the 
ompilation pro
ess. For example SQL queries 
anbe validated and the 
orresponding C++ 
lasses 
an be built from them. ForexampleSELECT name, age FROM people WHERE department = "%s"
an be automati
ally transformed intostd::string exampleSqlQuery(
onst std::string& a1){ std::ostringstream s;s << "SELECT name, age FROM people WHERE department = \""<< sql_es
ape(a1)<< "\"";return s.str();s}where the string returned by exampleSqlQuery is guaranteed to be a validSQL query and it 
an provide safety against SQL inje
tion as well.The translators and validators presented in this 
hapter 
an be implementedas C++ template metafun
tions, these extensions use the C++ standard anddon't require any translator, thus they are easily portable.5 Our solutionOur solution is based on the parser des
ribed in (TODO 
ite). The paper de-s
ribes a Haskell parser generator library in detail. We implemented the samelibrary in C++ template metaprogramming and the result is a 
ompile-timeparser generator library for C++. In this se
tion we present the details of thetranslation.5.1 Syntax for embedding sour
e 
odesThe input of the parser is the text to parse represented as a string. In Haskell it'sa string, whi
h is a list of 
hara
ters (TODO 
ite). In C++ template metapro-gramming it's a list of 
hara
ters as well (TODO 
ite). For example the stringHello World! in Haskell is



"Hello World!"in a C++ template metaprogram it'slist_
<
har, 'H','e','l','l','o',' ','W','o','r','l','d','!'>boost::mpl has a tool for string de�nition whi
h simpli�es the de
laration of
ompile time strings:string<'Hell', 'o Wo', 'rld!'>By using an external translator it 
an be simpli�ed to_S("Hello World!")Support for user-de�ned literals has been proposed to be in
luded in the up
om-ing C++ standard, C++0x. This proposal 
ontains solution for the 
onversion ofa string literal to the instantiation of a variadi
 template (TODO 
ite) fun
tionwith the 
hara
ters of the string as template arguments. With the 
ombinationof this, de
ltype (TODO 
ite) and the C++ pre-
ompiler the external trans-lator 
ould be simulated: we 
ould get the same behaviour without using anyexternal tool, thus we'd remain portable.We present how we implemented those features of Haskell whi
h are used bythe library. Be
ause of the size of the library we don't des
ribe every part of thetranslation, we fo
us only on the key elements.5.2 Algebrai
 typesAlgebrai
 data types in Haskell have the following form:data <name> [<type arguments>℄ =<
onstru
tor name> <
onstru
tor arguments> |<
onstru
tor name> <
onstru
tor arguments> |...We implement ea
h 
onstru
tor with a C++ template. The 
onstru
tor argu-ments are the template arguments. For example the 
onstru
tor Div Expr Expris implemented astemplate <
lass Expr1, 
lass Expr2>stru
t Div {};We 
ouldn't express Haskell types in C++ template metaprograms, the type ofthe arguments is always 
lass. Algebrai
 data types and their arguments have nodire
t representation in C++ template metaprogramming, only the 
onstru
torsare implemented.In Haskell the 
onstru
tors of algebrai
 data types a
t as fun
tions to 
on-stru
t obje
ts. We need to turn their C++ template metaprogramming imple-mentations into fun
tions as well. We 
an do it by turning them into nullarytemplate metafun
tions evaluating to themselves. For example the Div fun
tion
ould the enhan
ed the following way:



template <
lass Expr1, 
lass Expr2>stru
t Div{ typedef Div<Expr1, Expr2> type;};This template works with fun
tions expe
ting a data-type and it works withfun
tions expe
ting a nullary template metafun
tion as well. It behaves as ex-pe
ted in both situations.As an example for translating algebrai
 data types we present our translationof Haskell's Maybe. In Haskell it'sMaybe a = Nothing | Just aIn C++ template metaprogramming it'sstru
t Nothing{ typedef Nothing type;};template <
lass a>stru
t Just{ typedef Just<a> type;};5.3 Fun
tionsHaskell builds on 
urrying to represent fun
tions, a fun
tion takes exa
tly oneargument. Fun
tions taking multiple arguments are implemented as fun
tionstaking 1 argument and returning other fun
tions. For example a fun
tion taking3 arguments is implemented as a fun
tion taking 1 argument and returninga fun
tion taking another argument and returning a fun
tion taking a thirdargument returning the value of the 3 argument fun
tion.In our C++ template metaprogramming representation of the Haskell fun
-tions we didn't represent 
urrying: we implemented Haskell fun
tions as fun
tionstaking multiple arguments. Haskell fun
tions have the form off :: <arg 1> -> <arg 2> -> <arg 3> -> ... -> <arg n> -> <result type>whi
h we implemented in C++ template metaprogramming with template meta-fun
tions or template metafun
tion 
lasses depending on how we wanted to usethem:template <
lass arg1, 
lass arg2, ..., 
lass argn>stru
t f



// ...{};// orstru
t f{ template <
lass arg1, 
lass arg2, ..., 
lass argn>stru
t apply// ...{};};The result of the fun
tion is the value of the template metafun
tion or meta-fun
tion 
lass. Fun
tions are �rst-
lass 
itizens in Haskell, they 
an be passedaround as data values. In C++ template metaprogramming we 
an do the samewith template metafun
tion 
lasses. Thus fun
tions in the library that werearguments or values of other fun
tions we implemented as template metafun
-tion 
lasses, not as simple template metafun
tions. boost::mpl provides toolswhi
h 
an transform template metafun
tions into template metafun
tion 
lassesin 
ases we need to turn a template metafun
tion into a �rst-
lass 
itizen.5.4 ParsersParsers are fun
tions with the following signature:type Parser a = String -> Maybe (a, String)A parser takes the input string as its argument and returns a parsed obje
t andthe remaining part of the input when it a

epts a pre�x of the input string andreturns Nothing when it reje
ts the input string. Note that the se
ond elementof the tuple is always a post�x of the input string.A tuple with two elements 
an be implemented with a pair of 
lasses. boost::mplhas a pair data stru
ture whi
h we 
an use. A parser is a fun
tion in the Haskelllibrary, so it's a template metafun
tion in C++ template metaprogramming.Here is the de�nition of one of the basi
 parsers in Haskell:
har :: Parser Char
har (
:
s) = Just (
, 
s)
har [℄ = Nothingand in C++ template metaprogramming:stru
t one_
har{ template <
lass s>apply :



eval_if<typename empty<s>::type,Nothing,Just<build_pair<front<s>, pop_front<s> > >>{};};Note that in C++ we had to 
all it one_
har be
ause 
har is a reserved word.build_pair is a helper metafun
tion taking nullary metafun
tions as argumentsand building a pair stru
ture from them. We had to use eval_if instead ofpattern mat
hing. Even though C++ templates have ex
ellent pattern mat
hingsupport (TODO 
ite) when we're 
onstru
ting 
ode from the building blo
ksboost::mpl provides we 
an't use it. To be able to pass one_
har to parser
ombinators, whi
h are template metafun
tions, we had to implement it as atemplate metafun
tion 
lass.Some parsers have arguments. The Haskell library builds on 
urrying inHaskell: parsers taking arguments are fun
tions with multiple arguments andthe input string is always the last argument. By applying all arguments ex
eptthe input string to these fun
tions we get a parser: a fun
tion taking an inputstring as an argument and parsing it. For example return is a parser with anargument:return :: a -> Parser areturn a 
s = Just(a, 
s)Its C++ template metaprogramming implementation has to be a metafun
tionreturning a parser, whi
h is a metafun
tion:template <
lass a>stru
t return_{ stru
t type{ template <
lass 
s>stru
t apply : Just<pair<a, 
s> > {};};};5.5 Parser 
ombinatorsComplex parsers are built by 
ombining basi
 parsers. The Haskell library usesparser 
ombinators whi
h are parsers taking other parsers as arguments. Forexample the Haskell library de�nes an ? operator whi
h is an in�x operator: it'sleft argument is a parser, it's right argument is a predi
ate providing a booleanvalue for ea
h result of the parser. We implemented it with a metafun
tion takingtwo metafun
tion 
lasses (a parser and a predi
ate) as arguments and returninga parser:



template <
lass m, 
lass p>stru
t a

ept_when{ // This metafun
tion 
lass is the value// of the a

ept_when metafun
tionstru
t type{ template <
lass 
s>stru
t apply :lazy_eval_if<equal_to<typename apply<m, 
s>::type,Nothing>,nothing,lazy_eval_if<apply<p, just_value<apply<m, 
s> > >,apply<m, 
s>,nothing>>{};};};Note that the appli
ation of an argument to a fun
tion in Haskell, whi
h iswriting the fun
tion and the operand after ea
h other, 
an be implemented usingthe apply metafun
tion in template metaprogramming.This fun
tion 
an be used the same way it's used in the Haskell library. Forexample we 
an implement the digit fun
tion with it:template <
lass 
s>stru
t digit : a

ept_when<one_
har, isDigit>::type {};isDigit's C++ template metaprogramming implementation is straight forwardbut lengthy, we're not going to present it here.5.6 Re
ursive fun
tionsRe
ursive fun
tions 
an be translated as well, template metafun
tions 
an 
allthemselves. We present our implementation of iter here as an example, otherre
ursive fun
tions 
an be translated similarly. The Haskell implementation ofit isiter :: Parser a -> Parser [a℄iter m = m # iter m >-> 
ons ! return [℄



while our translated implementation isstru
t iter{ template <
lass m>stru
t apply :parser::one_of< // !parser::transform< // >->parser::sequen
e< // #m,boost::mpl::apply<parser::iter, m>>,parser::
ons>,parser::return_<boost::mpl::list<> >>{};};Note that we 
ombined the C++ template metaprogramming implementationsof the operators the Haskell implementation uses the same way the Haskell 
odedoes it. In the example above we added the original names of the operators as
omments to the fun
tions.The whole Haskell library 
an be translated to C++ template metaprogramsfollowing this approa
h, we don't present every step here. As a result we get thesame fun
tionality at 
ompile time in C++ the Haskell library provides.6 EvaluationEmbedded languages 
an be 
ompiled as part of the C++ 
ompilation pro
essusing template metaprograms. We have built a library for 
onstru
ting these
ompile-time parsers. We present two grammars and 
ompile-time parsers forthem built using our library.6.1 Hellon worldn grammarFirst we present how to build a parser for the following grammar:S ::= hello S world | hello worldIt a

epts inputs su
h as hello world, hello hello world world, and so on.The number of hello and world words have to be equal. Here is a parser for it:
lass Hello {};
lass World {};



stru
t Extend{ template <
lass L>stru
t apply :boost::mpl::push_front<typename boost::mpl::push_ba
k<L, World>::type,Hello> {};};typedef parser::token<parser::keyword<`hello`, Hello> > A

eptHello;typedef parser::token<parser::keyword<`world`, World> > A

eptWorld;stru
t S :parser::one_of<parser::always<parser::sequen
e<A

eptHello, A

eptWorld>,boost::mpl::deque<Hello, World>>,parser::transform<parser::keep_middle<A

eptHello, S, A

eptWorld>,Extend>>{};typedef parser::build_parser<S> HelloParser;It 
onstru
ts a 
ompile-time sequen
e of Hello and World 
lasses as a result ofparsing the input string. For example the expressionHelloParser::apply<`hello hello world world`>::typeis redu
ed to the following at 
ompile-time:boost::mpl::deque<Hello, Hello, World, World>But when we try 
ompiling an invalid embedded 
ode, su
h asHelloParser::apply<`hello hello world`>::typeit generates an error and breaks the C++ 
ompilation pro
ess.We've measured the 
ompilation speed of this parser. We were using g++4.4.1 on a Linux PC. We measured the 
ompilation time for di�erent number ofhello and world words. Figure 1 shows the 
ompilation times. The horizontalaxis is the number of hello and world words in the embedded sour
e 
ode, theverti
al axis is the number of se
onds spent on 
ompilation.



Fig. 1. Compilation time6.2 Alternation at 
ompile-timeThe type 
onstru
ted as the result of the parsing depends on the embededd 
ode.We 
an easily 
onstru
t a parser that takes a number as it's input and returnsthe int or double type, depending on whi
h type of variable 
ould store thenumber. Here is the parser:typedefparser::keep_se
ond<parser::any1<parser::digit>,parser::if_<parser::sequen
e<parser::lit_
<'.'>,parser::any<parser::digit>>,double,int>>S;typedef parser::build_parser<S> Num;And here is how it 
an be used:Num::apply<`13`>::type // intNum::apply<`11.13`>::type // double



7 Con
lusionSmoothless integration of domain-spe
i�
 languages into a general purpose pro-gramming language is not an easy task. A domain spe
i�
 language is intendedto express the domain knowledge in the best possible way, thus its syntax mayradi
ally di�er from the ones of the host language. A general 
ase of language in-tegration therefore 
ould be solve only applying a full-featured parser infrastru
-ture. Extrenal tools, and frameworks exists for the problem but they introdu
eunwanted dependen
y on third party tools. The best self-
ontaining solutionshould use only standard language features and should use only a minimal setof external tools other then the 
ompiler of the host language.Our solution ful�lls most of these requirements. We 
reated a C++ tem-plate metaprogram library with the meaningful translation of a similar Haskellrun-time tool, whi
h implements a full-featured parser infrastru
ture. Domain-spe
i�
 language 
ode is presented for the parser as template arguments andevaluated during the 
ompilation of the host 
ode. The result of the parsingpro
ess is a set of C++ 
lasses whi
h 
ould be used for further 
ompile-timede
isions in template metaprogramming environment. We presented a numberof examples to show the usability of our library.The library uses only standard C++ language features, thus our solutionis highly portable. Current presentation has a minimal synta
ti
al overheadwhi
h 
an be eliminated by a trivial transformation on the sour
e 
ode. Thistransformation later 
ould be avoided as the next C++ standard will introdu
euser-de�ned 
ustom literals whi
h supports the straitforward presentation of theembedded domain-spe
i�
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