
Domain-spei� Language Intergrationwith Compile-time Parser Generator LibraryZoltán Porkoláb and Ábel SinkovisEötvös Loránd University, Faulty of Informatis,Dept. of Programming Languages and CompilersPázmány Péter sétány 1/CH-1117 Budapest, Hungary{gsd|abel}�elte.huAbstrat. Smoothless integration of domain-spei� languages into ageneral purpose programming language requires to absorb domain odewritten in arbitrary syntax. The integration should ause minimal syn-tatial and semantial overhead and ideally introdues a minimal de-pendeny on external tools. In this paper we introdue a DSL integra-tion tehnique for C++ programming language. The solution is basedon ompile-time parsing of the DSL ode. The parser generator is im-plemented as a C++ template metaprogram library and the full parsingphase is exeuted when the host program is ompiled. Therefore the hostlanguage an make ompile-time adaptions depending the parsed DSLode. The library uses only standard C++ language features, thus oursolution is highly portable.1 IntrodutionModern general purpose programming languages have the ability to express regu-lar programming idioms in a fairly onvenient way: funtions, types, lasses andlass hierarhies, et. are used to express the programmer's intention. Mostlythese tools are applied when the programmer transfers a solution from a spe-i� problem domain. Suh transformations require not only good programmerskills in the means of the lassial programming language terms but a profoundunderstanding of the spei� problem domain.As an opposite, Domain-spei� languages (DSLs) are reated to expressproblems in partiular domains only. Using DSLs in spei� problem areas havemany advantages. DSLs are regularly more expressive in the intended problemdomain. As an example, the SQL language is perfet to express relational databaserelated problems while features of general purpose languages lak this larity. Thespeial syntax of a DLS is able to ath errors spei� to the problem domain.DSLs often invent new onstruts to desribe domain poroblems or they evenapply di�rent programming paradigm. SQL as an example follows delarativeparadigm. Thus the syntax of a DSL may re�et the usual notations of thedomain, make its usage aessible for the domain experts.



Although DSLs are indispensible in their domain, vast majority of the pro-grams will exeute most of their ations out of this domain. SQL might be aperfet solution for desribing operations related relational databases, databaseservers will reate threads, open network onnetions, ommuniate with theoperating system in the means of a general purpose programming language. Theusual solution is that the desired Domain-spei� language or languages are usedtogether a general purpose programming language. Most ases the integrationof these languages happens embedding the DSL(s) into the general purpose lan-guage with or without some syntatial quotation.However, this integration should ause minimal syntatial and semantialoverhead on the projet. There are many strategies exist to provide the smooth-less integration of domain languages and the host language. Some of them appliesexternal framework for integration, others are build on language extensions. Afew solution is based on standard programming language features like maros orgenerative language elements.Not all of these solutions an be applied in industrial environment. Extrenaltools may introdue unwanted dependeny on 3rd party software developers.Language extensions require translators, preompilers or the modi�ation of theompiler. These are fragile solutions when new language or ompiler versions ap-peair. The most portable, manageable solution is based purely standard languagefeatures.In this paper we introdue a DSL integration tehnique for C++ program-ming language. The solution is based on ompile-time parsing of the DSL ode.The parser generator is implemented as a C++ template metaprogram library,and the full parsing phase is exeuted when the host program is ompiled. There-fore the host language an make ompile-time adaptions depending the parsedDSL ode. The library uses only standard C++ language features, thus oursolution is highly portable.The rest of the paper is organized as follows. In Setion 2 we overview C++template metaprogramming. Current DSL embedding tehnologies are disussedin Setion 3 with their advantages and shortages. In Setion 4 we argue for aompile-time parser presenting a number of motivating examples. We explain ourtemplate metaprogram based parser in Setion 5 with su�ient implementationaldetails. In Setion 6 we evaluate our solution with the help of examples. Ourpaper onludes in Setion 7.2 C++ Template MetaprogrammingTemplates are key language elements for the C++ programming language [3℄.They are essential for apturing ommonalities of abstrations without perfor-mane penalties at runtime. The most notable example is the Standard TemplateLibrary [8℄ whih is now an unavoidable part of professional C++ programs. In1994 Erwin Unruh wrote a heavily templated program [17℄ in C++ whih didn'tompile, however, the error messages emitted by the ompiler during the om-pilation proess displayed a list of prime numbers. Unruh used C++ templates



and the template instantiation rules to write a program that is �exeuted� as aside e�et of ompilation. It turned out that a leverly designed C++ ode isable to utilize the type-system of the language and fore the ompiler to exeutea desired algorithm [20℄. These ompile-time programs are alled C++ Tem-plate Metaprograms and later has been proved to be form a Turing-ompletesub language of C++ [5℄.C++ template metaprogram ations are de�ned in the form of templatede�nitions and are �exeuted� when the ompiler instantiates these templates.Their instantiations an instrut the ompiler to exeute other instantiations,sine templates an refer to other templates. This way we get an instantiationhain very similar to a all stak of a runtime program. Reursive instantiationsare not only possible but regular in template metaprograms to model loops:template <int N>lass Fatorial{publi:enum { value = N*Fatorial<N-1>::value };};template<>lass Fatorial<1>{publi:enum { value = 1 };};int main (){ onst int r = Fatorial<5>::value;}Two important template rules have been taitly used here: (1) Templates whihare not referred must not be instantiated � C++ template mehanism is lazy.(2) Constant expressions � whih an be evaluated at ompilation time � mustbe evaluated at ompilation time. Suh onstant expression appears on the leftside of the enumeration initialization of value in lass Fatorial.Lazyness is essential for writing template metaprograms. Let us onsider thefollowing example:template <bool ondition, lass Then, lass Else>strut IF{ typedef Then RET;};



template <lass Then, lass Else>strut IF<false, Then, Else>{ typedef Else RET;};int main(){ IF< sizeof(int)<sizeof(long), long, int>::RET i;out << sizeof(i) << endl;return 0;}This seems a bit more rypti than the fatorial example. First let us draw upan inventory. We have a generi version of a template alled IF and a partialspeialization for it. It is partial, sine only one, the leftmost argument has beenspeialized to the false boolean value. The �rst type parameter of the lass IFis a (onstant) value, the remaining arguments are type parameters.When we instantiate the IF template, we provide a boolean expression asthe �rst argument. In our example this is sizeof(int)<sizeof(long). Theexpression is evaluated at ompilation time. If this is true, then the generitemplate is instantiated, and hene the typedef Then RET is in e�et. Withthe atual arguments this de�nes RET as long. However, when the expressionis evaluated as false, we have a �better� speialization, and typedef Else RETmeans RET is de�ned as int. As a result, based on whether the size of int issmaller than the size of long, we de�ne i as a variable of the widest type.The onstrut is symmetri � it would be an equally working solution to de�nethe generi funtion typede�ng the Else branh, and writing a speialization forthe true value as the �rst parameter.The IF onstrut � the generi template and the speialization � works like abranhing metaprogram. Having reursion and branhing with pattern mathingwe have a omplete programming language � exeuting programs at ompilationtime. In 1966 Bohm and Jaopini proved, that Turing mahine implementation isequivalent to the existene of onditional and looping ontrol strutures in a pro-gramming language. C++ template metaprograming forms a Turing ompleteprogramming language exeuted at ompilation time [5℄.Templates be overloaded and the ompiler has to hoose the narrowest ap-pliable template to instantiate. Subprograms in ordinary C++ programs anbe used as data via funtion pointers or funtor lasses. Metaprograms are �rstlass itizens in template metaprograms, as they an be passed as parametersfor other metaprograms [1℄.Conditional statements, stopping reursions, and ompile-time deisions areimplemented with template speializations. Even with a relatively simple tem-plate and its speializations we are able to write useful metaprograms. Thefollowing metaprogram determines whether its two type arguments are equal.



template <lass T1, lass T2>strut IsSameType{ stati onst bool value = false;};template <lass T>strut IsSameType<T,T>{ stati onst bool value = true;};bool b1 = IsSameType<long, int>::value;bool b2 = IsSameType<int, int>::value;In the general ase, when IsSameType is alled with two distint types, the �rst,more general template is instantiated. The IsSameType<long,int>::value ex-pression's value equals false. On the other hand, when the arguments referto the same type, the ompiler dedues that the partial speialization of theIsSameType template is required to instantiate. Thus the metaprogram's �re-turn value� is true.Similarly template metaprogram onstruts for deisions on the lass inheri-tane hierarhy ould be implemented [2℄.bool b = IsSuperClass<Bank,InternetBank>::value;The ompile-time deisions an diretly a�et the ompilation itself. A statiassert is apable of halting the ompilation of a program at the point of theerror's detetion, thus we an avoid an inorret program to ome into being.At the same time, we aspire to reate a stati assert that ontains some sensibleerror message, thus it is easier for the programmer to �nd the bug. The simplestway to exeute this heks is by using a maro de�ned in [7℄, whose simpli�edvesrion is as follows:template <bool> strut STATIC_ASSERT_FAILURE;template<> strut STATIC_ASSERT_FAILURE<true>{};template<int x> strut stati_assert_test{};#define STATIC_ASSERT(B, error) \typedef stati_assert_test< \sizeof(STATIC_ASSERT_FAILURE<(bool)(B), error>) \> stati_assert_typedef_;If the expression B is true, the existing speialization ofSTATIC_ASSERTION_FAILURE is used as the sizeof's argument. Otherwise themissing speialization for false auses a ompile-time error. In the error argu-ment a typename has to be provided that passes messages for the programmer:



strut CALLER_IS_NOT_DERIVED_FROM_BANK {};STATIC_ASSERT(IsSuperClass<Bank,Caller>::value,CALLER_IS_NOT_DERIVED_FROM_BANK)Stati asserts are widely used for type hekings in C++ programs using tem-plates [2℄. Integration of domain-spei� languages requires these tehniques todetet invalid states in the domain spae and to raise ustom errors.Today programmers write metaprograms for various reasons, like implement-ing expression templates [21℄, where we an replae runtime omputations withompile-time ativities to enhane runtime performane; stati interfae hek-ing, whih inreases the ability of the ompile-time to hek the requirementsagainst template parameters, i.e. they form onstraints on template parameters[9, 11℄; ative libraries [19℄, ating dynamially during ompile-time, making de-isions and optimizations based on programming ontexts. Other appliations in-volve embedded domain spei� languages as the AraRarat system [6℄ for typedsafe SQL interfae and boost:xpressive [29℄ for regular expressions.3 DSL integration tehniquesIn this setion we overview ommon patterns in tehnologies urrently used forintegration domain-spei� languages.3.1 External frameworksIn the following we disuss a few notable solution for language integration usingexternal frameworks. The ommon feature of these approahes that they intentto use some language independent solution. Most ases the soure ode written ina spei� syntax is transformed into a language-neutral internal representation.Transformation steps take plae in this format. The result of the integrationould be aessed by re-generation of the program in the desired syntax.Stratego/XT The Stratego/XT developed in TU Delft is one of the mostpromising program transformation system using external toolset to integrateDSLs. The Stratego/XT metaprogram system [31, 22℄ is ontaining the Strategolanguage desribing the program trasformations and the XT toolset, whih exe-utes the transformations and provides a framework for onstruting stand-aloneprogram transformation systems.Sore ode written in arbitrary syntax an be parsed into Annotated TermFormat (ATF), an internal representation form to bridge the di�erenes be-tween syntatial diversity. Step of transformations are exeuted on ATF beforea pretty printer generates the output soure ode on the required language. Pars-ing and pretty printing is language dependent based on an external desription,therefore the set of available language syntaxes are extensible. Some languages(like C++ and Java) are already supported.



The Stratego language is based on strategi term rewriting. Transformationde�nitions have two parts: rewriting rules and strategies. Rewriting rules de-sribe basi transformation steps. Appliation of 0these rules are ontrolled us-ing strategies. Rewriting rules an de de�ned in a language independent wayin the form of the internal representation. This form, however, is often lenghtytherefore a subsistem alled Metaborg exists to desribe the rewriting rules inthe soure language.Intentional programming Current software development often uses high level,domain-spei� notations in the design phase, but is almost always ends up im-plementing the program in some programming language. This last step is notonly ostly and error-prone, but auses reoding the software when some domain-spei� ontent hanges. The idea behind intentional programming [14, 30℄ is toseparate the domain ontents of the software from its implementations in a spe-i� programming language and automatially regenerate the software as itsdomain ontents hange.Intentional programming makes allow to express a porgram in a heterogeneussyntax, i.e. the ode ould be appear in the syntax a general purpose program-ming language while some of its part an be expressed in a domain notation whenthat is more expressive. Lazy evaluation strategies avoid unneessary parsing-unparsing steps to improve e�ieny.Domain ontents an be extended behind lassial programming idioms.Comments, version ontrol informations or even the full doumentation ouldbe integrated into the program and an be visualize on request.3.2 Language extensionsLanguage extensions are attrative solutions for embedding domain-spei� lan-guages. They keep the most of host language syntax and therefore have zeroimpat on those ode parts where DSL is not used. Keywords or even variablesfrom the domain-spei� language ould be used without any quotation or syn-tatial marker.However, there are several problems have to be solved when more then onedomain language is used in the host language: keywords may ollide, domain syn-tax an be ambigous, et. Speial parsing and ontext-aware sanning algorithmsirequired in whih the sanner uses ontextual information to disambiguate lex-ial syntax [23℄. Van Wyk and others shown the appliability of the extensionmehanism.Language extensions are fragile in many ways. They require either the modi�-ation of the ompiler or an extensive set of translators or preompilers. Althougfor some languages like Java there exists a set of tehniques and frameworks tomake language extension less painfull, other languages � espeially C++ � arevery hard to extend when onformane to the existing language, stability, ande�ieny of the generated ode are all targeted.



3.3 Generativ approahExpression Templates are an advaned tehnique that C++ library developersuse to de�ne embedded mini-languages that target spei� problem domains.The tehnique has been used to reate e�ient and easy-to-use libraries for linearalgebra as well as to de�ne C++ parser generators with a readable syntax. Butdeveloping suh a library involves writing an inordinate amount of unreadableand unmaintainable template ode.In the following we overview three appliation examples of expression tem-plates to implementing domain-spei� language integration.AraRat The AraRat system targets one of the most important domain; itdemonstrate the integration of relational algebra language into C++ [6℄. Use ofthe system makes it possible to generate typesafe SQL queries and generatinge�etive POD types for storing query results.The system works in a two step way. In the �rst step a little external toolis used to disover the database shema and to generate a set of C++ typesand operator overloads to re�et the shema information. In the host language,relational expressions are represented as C++ expressions using the overloadedoperators. Template metaprogram tehniques are used to hek onsisteny ofrelational operations and generating result sets in e�etive way.However its idea is impressive, the AraRat system has serious onstraints. Itsdomain is restrited to relational algebra domain, moreover mainly for (typesafe)seletions. The domain language has to follow valid C++ expression syntax.Boost::Xpressive The boost::xpressive library is an advaned, objet-orientedregular expression template library for C++ [29℄. Regular expressions an bewritten as strings that are parsed at run-time, or as expression templates thatare parsed at ompile-time. Regular expressions an refer to eah other and tothemselves reursively, allowing you to build arbitrarily ompliated grammarsout of them.Regular expressions are a paragon of domain-spei� languages. They areused for a very speial purpose � text manipulation � and have a spei� (usu-ally implementation-independent) syntax. Regular experssions are used mostlyin some host language environment implemented as a library. Classial regularexpression libraries (like boost::regex) are powerful and �exible; patterns arerepresented as strings whih an be spei�ed at runtime. However, that meansthat syntax errors are likewise not deteted until runtime. Also, regular expres-sions are ill-suited to advaned text proessing tasks suh as mathing balaned,nested tags.boost::xpressive brings these two approahes seamlessly together and o-upies a unique nihe in the world of C++ text proessing. With xpressive,user an represent regular expressions as strings, or an use it as C++ expres-sion templates. In this ase writing regular expressions are statially bound �hard-oded and syntax-heked by the ompiler � and others are dynamially



bound and spei�ed at runtime. These regular expressions an refer to eahother reursively, mathing patterns in strings that ordinary regular expressionsannot.While boost::xpressive behaves similarly to our solution integrating adomain-spei� language in ompile time and performing syntax heks on it,its purpose is limited to a pre-de�ned domain: text manipulation.Boost::Proto The boost::proto library advanes one step forward from xpressiveto provide a framework for building Domain Spei� Embedded Languages inC++ [28℄. It provides tools for onstruting, type-heking, transforming andexeuting domain-spei� languages expressible as expression templates. Protoprovides data struture for representing the expression and a mehanism forgiving additional behaviors and members to them.Expression trees are built from an expression of the domain-spei� languageusing operator overloads. Utilities for de�ning the grammar to whih an expres-sion must onform and an extensible set of mehanism for immediately exeutingand for tree transformations are also provided. The use of boost::proto to de-�ne the primitives of a domain-spei� language radially simpli�es the task ofintegrating a DSL.The boost::proto library is one of the most general existing solution forembedding a domain-spei� language into C++. Unfortunatelly, proto has itsown restritions. As the expression tree is built up with the help of operator over-loads, the domain-spei� language has to follow valid C++ expression syntax,i.e. keywords or variables have to be onneted with overloaded C++ operators.This is a serious restrition when speaking on general purpose domain languages.In return no quotations should be applied to identify domain language ode.4 Type-safe printf: a motivating example4.1 The problemThough the printf funtion of the standard C library is e�ient and easy touse, it's not type-safe, hene mistakes of the programmer may ause unde�nedbehaviour at runtime. Some ompilers � suh as g � type hek printf allsand emit warnings in ase they are inorret, but this method is not widelyavailable. To overome the problem, C++ introdued streams as a replaementof printf, whih are type-safe, but they have runtime and syntatial overhead.In most ases the pattern of printf is a stati string onstant, its valueis available at ompile-time, thus the ompiler ould do type-heking and itould spot misuses of the funtion. boost::mpl (TODO ite) supports ompile-time strings whih ould be used to represent the format string. A safe printfould be implemented as a template funtion taking the format string as atemplate argument and the values to be inserted into the format string as runtimearguments. This funtion ould evaluate a template-metafuntion at ompiletime, whih ould try to verify the number and type of the arguments and in



ase this veri�ation fails, it ould emit a ompilation error. On the other hand,if the veri�ation sueeds it ould all printf with the same arguments that thesafe printf was alled with. The template metafuntion verifying the argumentsannot have a runtime overhead, only a ompile time overhead. The body of thesafe printf onsists of a all to printf, whih is likely to be in-lined, thus, usingthis safe printf has no runtime overhead ompared to printf and has the samerun-time performane.Stroustrup wrote a type-safe printf using variadi template funtions (TODOite), whih are part of the upoming standard C++0x (TODO ite). His im-plementation uses runtime format string and transforms printf alls to writeC++ streams at runtime.See the example:printf("Hello %s!", "John");Stroustrup's method does the following at runtime:std::out<< 'H' << 'e' << 'l' << 'l'<< 'o' << ' ' << "John" << '!';This solution was primarily written to demonstrate the power of variaditemplates, that is why printing the format string is done harater by hara-ter, making the proess extremely slow. This method an be optimised in thefollowing, more e�ient way:std::out << "Hello " << "John" << "!";We have measured the speed of these operations and of the normal printfused by our implementation. We printed the following and its std::out equiv-alents:printf("Test %d stuff\n", i);The text was printed 100 000 times and the speed using the time ommandon a Linux onsole was measured. The average time of the proess an be seen inTable 1. The printf funtion, whih ould be used by the type-safe implemen-tation, is almost four times faster than the example at (TODO ite Stroustr)and more than two times faster than the optimised version of the example.Method used Timestd::out for eah harater 0,573 snormal std::out 0,321 sprintf 0,152 sTable 1. Elapsed time



The grammar of the format strings is omplex and the validator metafuntionhas to parse them, thus the implementation of a type-safe printf requires aompile-time parser.4.2 Embedded SQLAny language an be embedded into C++ soure ode by using ompile-timeparsers. The embedded soure ode an be a ompile-time string parsed by ametaprogram as part of the ompilation proess. For example SQL queries anbe validated and the orresponding C++ lasses an be built from them. ForexampleSELECT name, age FROM people WHERE department = "%s"an be automatially transformed intostd::string exampleSqlQuery(onst std::string& a1){ std::ostringstream s;s << "SELECT name, age FROM people WHERE department = \""<< sql_esape(a1)<< "\"";return s.str();s}where the string returned by exampleSqlQuery is guaranteed to be a validSQL query and it an provide safety against SQL injetion as well.The translators and validators presented in this hapter an be implementedas C++ template metafuntions, these extensions use the C++ standard anddon't require any translator, thus they are easily portable.5 Our solutionOur solution is based on the parser desribed in (TODO ite). The paper de-sribes a Haskell parser generator library in detail. We implemented the samelibrary in C++ template metaprogramming and the result is a ompile-timeparser generator library for C++. In this setion we present the details of thetranslation.5.1 Syntax for embedding soure odesThe input of the parser is the text to parse represented as a string. In Haskell it'sa string, whih is a list of haraters (TODO ite). In C++ template metapro-gramming it's a list of haraters as well (TODO ite). For example the stringHello World! in Haskell is



"Hello World!"in a C++ template metaprogram it'slist_<har, 'H','e','l','l','o',' ','W','o','r','l','d','!'>boost::mpl has a tool for string de�nition whih simpli�es the delaration ofompile time strings:string<'Hell', 'o Wo', 'rld!'>By using an external translator it an be simpli�ed to_S("Hello World!")Support for user-de�ned literals has been proposed to be inluded in the upom-ing C++ standard, C++0x. This proposal ontains solution for the onversion ofa string literal to the instantiation of a variadi template (TODO ite) funtionwith the haraters of the string as template arguments. With the ombinationof this, deltype (TODO ite) and the C++ pre-ompiler the external trans-lator ould be simulated: we ould get the same behaviour without using anyexternal tool, thus we'd remain portable.We present how we implemented those features of Haskell whih are used bythe library. Beause of the size of the library we don't desribe every part of thetranslation, we fous only on the key elements.5.2 Algebrai typesAlgebrai data types in Haskell have the following form:data <name> [<type arguments>℄ =<onstrutor name> <onstrutor arguments> |<onstrutor name> <onstrutor arguments> |...We implement eah onstrutor with a C++ template. The onstrutor argu-ments are the template arguments. For example the onstrutor Div Expr Expris implemented astemplate <lass Expr1, lass Expr2>strut Div {};We ouldn't express Haskell types in C++ template metaprograms, the type ofthe arguments is always lass. Algebrai data types and their arguments have nodiret representation in C++ template metaprogramming, only the onstrutorsare implemented.In Haskell the onstrutors of algebrai data types at as funtions to on-strut objets. We need to turn their C++ template metaprogramming imple-mentations into funtions as well. We an do it by turning them into nullarytemplate metafuntions evaluating to themselves. For example the Div funtionould the enhaned the following way:



template <lass Expr1, lass Expr2>strut Div{ typedef Div<Expr1, Expr2> type;};This template works with funtions expeting a data-type and it works withfuntions expeting a nullary template metafuntion as well. It behaves as ex-peted in both situations.As an example for translating algebrai data types we present our translationof Haskell's Maybe. In Haskell it'sMaybe a = Nothing | Just aIn C++ template metaprogramming it'sstrut Nothing{ typedef Nothing type;};template <lass a>strut Just{ typedef Just<a> type;};5.3 FuntionsHaskell builds on urrying to represent funtions, a funtion takes exatly oneargument. Funtions taking multiple arguments are implemented as funtionstaking 1 argument and returning other funtions. For example a funtion taking3 arguments is implemented as a funtion taking 1 argument and returninga funtion taking another argument and returning a funtion taking a thirdargument returning the value of the 3 argument funtion.In our C++ template metaprogramming representation of the Haskell fun-tions we didn't represent urrying: we implemented Haskell funtions as funtionstaking multiple arguments. Haskell funtions have the form off :: <arg 1> -> <arg 2> -> <arg 3> -> ... -> <arg n> -> <result type>whih we implemented in C++ template metaprogramming with template meta-funtions or template metafuntion lasses depending on how we wanted to usethem:template <lass arg1, lass arg2, ..., lass argn>strut f



// ...{};// orstrut f{ template <lass arg1, lass arg2, ..., lass argn>strut apply// ...{};};The result of the funtion is the value of the template metafuntion or meta-funtion lass. Funtions are �rst-lass itizens in Haskell, they an be passedaround as data values. In C++ template metaprogramming we an do the samewith template metafuntion lasses. Thus funtions in the library that werearguments or values of other funtions we implemented as template metafun-tion lasses, not as simple template metafuntions. boost::mpl provides toolswhih an transform template metafuntions into template metafuntion lassesin ases we need to turn a template metafuntion into a �rst-lass itizen.5.4 ParsersParsers are funtions with the following signature:type Parser a = String -> Maybe (a, String)A parser takes the input string as its argument and returns a parsed objet andthe remaining part of the input when it aepts a pre�x of the input string andreturns Nothing when it rejets the input string. Note that the seond elementof the tuple is always a post�x of the input string.A tuple with two elements an be implemented with a pair of lasses. boost::mplhas a pair data struture whih we an use. A parser is a funtion in the Haskelllibrary, so it's a template metafuntion in C++ template metaprogramming.Here is the de�nition of one of the basi parsers in Haskell:har :: Parser Charhar (:s) = Just (, s)har [℄ = Nothingand in C++ template metaprogramming:strut one_har{ template <lass s>apply :



eval_if<typename empty<s>::type,Nothing,Just<build_pair<front<s>, pop_front<s> > >>{};};Note that in C++ we had to all it one_har beause har is a reserved word.build_pair is a helper metafuntion taking nullary metafuntions as argumentsand building a pair struture from them. We had to use eval_if instead ofpattern mathing. Even though C++ templates have exellent pattern mathingsupport (TODO ite) when we're onstruting ode from the building bloksboost::mpl provides we an't use it. To be able to pass one_har to parserombinators, whih are template metafuntions, we had to implement it as atemplate metafuntion lass.Some parsers have arguments. The Haskell library builds on urrying inHaskell: parsers taking arguments are funtions with multiple arguments andthe input string is always the last argument. By applying all arguments exeptthe input string to these funtions we get a parser: a funtion taking an inputstring as an argument and parsing it. For example return is a parser with anargument:return :: a -> Parser areturn a s = Just(a, s)Its C++ template metaprogramming implementation has to be a metafuntionreturning a parser, whih is a metafuntion:template <lass a>strut return_{ strut type{ template <lass s>strut apply : Just<pair<a, s> > {};};};5.5 Parser ombinatorsComplex parsers are built by ombining basi parsers. The Haskell library usesparser ombinators whih are parsers taking other parsers as arguments. Forexample the Haskell library de�nes an ? operator whih is an in�x operator: it'sleft argument is a parser, it's right argument is a prediate providing a booleanvalue for eah result of the parser. We implemented it with a metafuntion takingtwo metafuntion lasses (a parser and a prediate) as arguments and returninga parser:



template <lass m, lass p>strut aept_when{ // This metafuntion lass is the value// of the aept_when metafuntionstrut type{ template <lass s>strut apply :lazy_eval_if<equal_to<typename apply<m, s>::type,Nothing>,nothing,lazy_eval_if<apply<p, just_value<apply<m, s> > >,apply<m, s>,nothing>>{};};};Note that the appliation of an argument to a funtion in Haskell, whih iswriting the funtion and the operand after eah other, an be implemented usingthe apply metafuntion in template metaprogramming.This funtion an be used the same way it's used in the Haskell library. Forexample we an implement the digit funtion with it:template <lass s>strut digit : aept_when<one_har, isDigit>::type {};isDigit's C++ template metaprogramming implementation is straight forwardbut lengthy, we're not going to present it here.5.6 Reursive funtionsReursive funtions an be translated as well, template metafuntions an allthemselves. We present our implementation of iter here as an example, otherreursive funtions an be translated similarly. The Haskell implementation ofit isiter :: Parser a -> Parser [a℄iter m = m # iter m >-> ons ! return [℄



while our translated implementation isstrut iter{ template <lass m>strut apply :parser::one_of< // !parser::transform< // >->parser::sequene< // #m,boost::mpl::apply<parser::iter, m>>,parser::ons>,parser::return_<boost::mpl::list<> >>{};};Note that we ombined the C++ template metaprogramming implementationsof the operators the Haskell implementation uses the same way the Haskell odedoes it. In the example above we added the original names of the operators asomments to the funtions.The whole Haskell library an be translated to C++ template metaprogramsfollowing this approah, we don't present every step here. As a result we get thesame funtionality at ompile time in C++ the Haskell library provides.6 EvaluationEmbedded languages an be ompiled as part of the C++ ompilation proessusing template metaprograms. We have built a library for onstruting theseompile-time parsers. We present two grammars and ompile-time parsers forthem built using our library.6.1 Hellon worldn grammarFirst we present how to build a parser for the following grammar:S ::= hello S world | hello worldIt aepts inputs suh as hello world, hello hello world world, and so on.The number of hello and world words have to be equal. Here is a parser for it:lass Hello {};lass World {};



strut Extend{ template <lass L>strut apply :boost::mpl::push_front<typename boost::mpl::push_bak<L, World>::type,Hello> {};};typedef parser::token<parser::keyword<`hello`, Hello> > AeptHello;typedef parser::token<parser::keyword<`world`, World> > AeptWorld;strut S :parser::one_of<parser::always<parser::sequene<AeptHello, AeptWorld>,boost::mpl::deque<Hello, World>>,parser::transform<parser::keep_middle<AeptHello, S, AeptWorld>,Extend>>{};typedef parser::build_parser<S> HelloParser;It onstruts a ompile-time sequene of Hello and World lasses as a result ofparsing the input string. For example the expressionHelloParser::apply<`hello hello world world`>::typeis redued to the following at ompile-time:boost::mpl::deque<Hello, Hello, World, World>But when we try ompiling an invalid embedded ode, suh asHelloParser::apply<`hello hello world`>::typeit generates an error and breaks the C++ ompilation proess.We've measured the ompilation speed of this parser. We were using g++4.4.1 on a Linux PC. We measured the ompilation time for di�erent number ofhello and world words. Figure 1 shows the ompilation times. The horizontalaxis is the number of hello and world words in the embedded soure ode, thevertial axis is the number of seonds spent on ompilation.



Fig. 1. Compilation time6.2 Alternation at ompile-timeThe type onstruted as the result of the parsing depends on the embededd ode.We an easily onstrut a parser that takes a number as it's input and returnsthe int or double type, depending on whih type of variable ould store thenumber. Here is the parser:typedefparser::keep_seond<parser::any1<parser::digit>,parser::if_<parser::sequene<parser::lit_<'.'>,parser::any<parser::digit>>,double,int>>S;typedef parser::build_parser<S> Num;And here is how it an be used:Num::apply<`13`>::type // intNum::apply<`11.13`>::type // double



7 ConlusionSmoothless integration of domain-spei� languages into a general purpose pro-gramming language is not an easy task. A domain spei� language is intendedto express the domain knowledge in the best possible way, thus its syntax mayradially di�er from the ones of the host language. A general ase of language in-tegration therefore ould be solve only applying a full-featured parser infrastru-ture. Extrenal tools, and frameworks exists for the problem but they introdueunwanted dependeny on third party tools. The best self-ontaining solutionshould use only standard language features and should use only a minimal setof external tools other then the ompiler of the host language.Our solution ful�lls most of these requirements. We reated a C++ tem-plate metaprogram library with the meaningful translation of a similar Haskellrun-time tool, whih implements a full-featured parser infrastruture. Domain-spei� language ode is presented for the parser as template arguments andevaluated during the ompilation of the host ode. The result of the parsingproess is a set of C++ lasses whih ould be used for further ompile-timedeisions in template metaprogramming environment. We presented a numberof examples to show the usability of our library.The library uses only standard C++ language features, thus our solutionis highly portable. Current presentation has a minimal syntatial overheadwhih an be eliminated by a trivial transformation on the soure ode. Thistransformation later ould be avoided as the next C++ standard will introdueuser-de�ned ustom literals whih supports the straitforward presentation of theembedded domain-spei� language syntax.Referenes1. D. Abrahams, A. Gurtovoy, C++ template metaprogramming, Conepts, Tools,and Tehniques from Boost and Beyond, Addison-Wesley, Boston, 2004.2. A. Alexandresu, Modern C++ Design: Generi Programming and Design PatternsApplied, Addison-Wesley, 2001.3. ANSI/ISO C++ Committee, Programming Languages � C++, ISO/IEC14882:1998(E), Amerian National Standards Institute, 1998.4. K. Czarneki, U. W. Eiseneker, R. Glük, D. Vandevoorde, T. Veldhuizen, Gen-erative Programming and Ative Libraries, Springer-Verlag, 2000.5. K. Czarneki, U. W. Eiseneker, Generative Programming: Methods, Tools andAppliations, Addison-Wesley, 2000.6. Y. Gil, K. Lenz, Simple and Safe SQL queries with C++ templates, In: CharlesConsela and Julia L. Lawall (eds), Generative Programming and Component En-gineering, 6th International Conferene, GPCE 2007, Salzburg, Austria, Otober1-3, 2007, pp.13-24.7. B. Karlsson, Beyond the C++ Standard Library, An Introdution to Boost,Addison-Wesley, 2005.8. D. R. Musser, A. A. Stepanov, Algorithm-oriented Generi Libraries, Software-pratie and experiene 27(7), 1994, pp.623-642.
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