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Abstract. Smoothless integration of domain-specific languages into a
general purpose programming language requires to absorb domain code
written in arbitrary syntax. The integration should cause minimal syn-
tactical and semantical overhead and ideally introduces a minimal de-
pendency on external tools. In this paper we introduce a DSL integra-
tion technique for C++ programming language. The solution is based
on compile-time parsing of the DSL code. The parser generator is im-
plemented as a C++ template metaprogram library and the full parsing
phase is executed when the host program is compiled. Therefore the host
language can make compile-time adaptions depending the parsed DSL
code. The library uses only standard C++ language features, thus our
solution is highly portable.

1 Introduction

Modern general purpose programming languages have the ability to express regu-
lar programming idioms in a fairly convenient way: functions, types, classes and
class hierarchies, etc. are used to express the programmer’s intention. Mostly
these tools are applied when the programmer transfers a solution from a spe-
cific problem domain. Such transformations require not only good programmer
skills in the means of the classical programming language terms but a profound
understanding of the specific problem domain.

As an opposite, Domain-specific languages (DSLs) are created to express
problems in particular domains only. Using DSLs in specific problem areas have
many advantages. DSLs are regularly more expressive in the intended problem
domain. As an example, the SQL language is perfect to express relational database
related problems while features of general purpose languages lack this clarity. The
special syntax of a DLS is able to catch errors specific to the problem domain.
DSLs often invent new constructs to describe domain poroblems or they even
apply diffrent programming paradigm. SQL as an example follows declarative
paradigm. Thus the syntax of a DSL may reflect the usual notations of the
domain, make its usage accessible for the domain experts.



Although DSLs are indispensible in their domain, vast majority of the pro-
grams will execute most of their actions out of this domain. SQL might be a
perfect solution for describing operations related relational databases, database
servers will create threads, open network connections, communicate with the
operating system in the means of a general purpose programming language. The
usual solution is that the desired Domain-specific language or languages are used
together a general purpose programming language. Most cases the integration
of these languages happens embedding the DSL(s) into the general purpose lan-
guage with or without some syntactical quotation.

However, this integration should cause minimal syntactical and semantical
overhead on the project. There are many strategies exist to provide the smooth-
less integration of domain languages and the host language. Some of them applies
external framework for integration, others are build on language extensions. A
few solution is based on standard programming language features like macros or
generative language elements.

Not all of these solutions can be applied in industrial environment. Extrenal
tools may introduce unwanted dependency on 3rd party software developers.
Language extensions require translators, precompilers or the modification of the
compiler. These are fragile solutions when new language or compiler versions ap-
peair. The most portable, manageable solution is based purely standard language
features.

In this paper we introduce a DSL integration technique for C++ program-
ming language. The solution is based on compile-time parsing of the DSL code.
The parser generator is implemented as a C++ template metaprogram library,
and the full parsing phase is executed when the host program is compiled. There-
fore the host language can make compile-time adaptions depending the parsed
DSL code. The library uses only standard C++ language features, thus our
solution is highly portable.

The rest of the paper is organized as follows. In Section 2 we overview C++
template metaprogramming. Current DSL embedding technologies are discussed
in Section 3 with their advantages and shortages. In Section 4 we argue for a
compile-time parser presenting a number of motivating examples. We explain our
template metaprogram based parser in Section 5 with sufficient implementational
details. In Section 6 we evaluate our solution with the help of examples. Our
paper concludes in Section 7.

2 C++ Template Metaprogramming

Templates are key language elements for the C++ programming language [3].
They are essential for capturing commonalities of abstractions without perfor-
mance penalties at runtime. The most notable example is the Standard Template
Library [8] which is now an unavoidable part of professional C++ programs. In
1994 Erwin Unruh wrote a heavily templated program [17] in C++ which didn’t
compile, however, the error messages emitted by the compiler during the com-
pilation process displayed a list of prime numbers. Unruh used C++ templates



and the template instantiation rules to write a program that is “executed” as a
side effect of compilation. It turned out that a cleverly designed C++ code is
able to utilize the type-system of the language and force the compiler to execute
a desired algorithm [20]. These compile-time programs are called C++ Tem-
plate Metaprograms and later has been proved to be form a Turing-complete
sub language of C++ [5].

C++ template metaprogram actions are defined in the form of template
definitions and are “executed” when the compiler instantiates these templates.
Their instantiations can instruct the compiler to execute other instantiations,
since templates can refer to other templates. This way we get an instantiation
chain very similar to a call stack of a runtime program. Recursive instantiations
are not only possible but regular in template metaprograms to model loops:

template <int N>
class Factorial
{
public:
enum { value = N*Factorial<N-1>::value };

};

template<>
class Factorial<1>
{
public:
enum { value = 1 };

};

int main ()
{

const int r = Factorial<b>::value;

}

Two important template rules have been tacitly used here: (1) Templates which
are not referred must not be instantiated — C++ template mechanism is lazy.
(2) Constant expressions — which can be evaluated at compilation time — must
be evaluated at compilation time. Such constant expression appears on the left
side of the enumeration initialization of value in class Factorial.

Lazyness is essential for writing template metaprograms. Let us consider the
following example:

template <bool condition, class Then, class Else>
struct IF
{
typedef Then RET;
};



template <class Then, class Else>
struct IF<false, Then, Else>

{
typedef Else RET;
1
int main()
{
IF< sizeof (int)<sizeof(long), long, int>::RET i;
cout << sizeof(i) << endl;
return 0;
}

This seems a bit more cryptic than the factorial example. First let us draw up
an inventory. We have a generic version of a template called IF and a partial
specialization for it. It is partial, since only one, the leftmost argument has been
specialized to the false boolean value. The first type parameter of the class IF
is a (constant) value, the remaining arguments are type parameters.

When we instantiate the IF template, we provide a boolean expression as
the first argument. In our example this is sizeof (int)<sizeof (long). The
expression is evaluated at compilation time. If this is true, then the generic
template is instantiated, and hence the typedef Then RET is in effect. With
the actual arguments this defines RET as long. However, when the expression
is evaluated as false, we have a “better” specialization, and typedef Else RET
means RET is defined as int. As a result, based on whether the size of int is
smaller than the size of long, we define i as a variable of the widest type.

The construct is symmetric — it would be an equally working solution to define
the generic function typedefing the Else branch, and writing a specialization for
the true value as the first parameter.

The IF construct the generic template and the specialization works like a
branching metaprogram. Having recursion and branching with pattern matching
we have a complete programming language — executing programs at compilation
time. In 1966 Bohm and Jacopini proved, that Turing machine implementation is
equivalent to the existence of conditional and looping control structures in a pro-
gramming language. C++ template metaprograming forms a Turing complete
programming language executed at compilation time [5].

Templates be overloaded and the compiler has to choose the narrowest ap-
plicable template to instantiate. Subprograms in ordinary C++ programs can
be used as data via function pointers or functor classes. Metaprograms are first
class citizens in template metaprograms, as they can be passed as parameters
for other metaprograms [1].

Conditional statements, stopping recursions, and compile-time decisions are
implemented with template specializations. Even with a relatively simple tem-
plate and its specializations we are able to write useful metaprograms. The
following metaprogram determines whether its two type arguments are equal.



template <class T1l, class T2>
struct IsSameType

{

static const bool value = false;

};

template <class T>
struct IsSameType<T,T>
{

static const bool value = true;

};

bool bl = IsSameType<long, int>::value;
bool b2 = IsSameType<int, int>::value;

In the general case, when IsSameType is called with two distinct types, the first,
more general template is instantiated. The IsSameType<long,int>::value ex-
pression’s value equals false. On the other hand, when the arguments refer
to the same type, the compiler deduces that the partial specialization of the
IsSameType template is required to instantiate. Thus the metaprogram’s “re-
turn value” is true.

Similarly template metaprogram constructs for decisions on the class inheri-
tance hierarchy could be implemented [2].

bool b = IsSuperClass<Bank,InternetBank>::value;

The compile-time decisions can directly affect the compilation itself. A static
assert is capable of halting the compilation of a program at the point of the
error’s detection, thus we can avoid an incorrect program to come into being.
At the same time, we aspire to create a static assert that contains some sensible
error message, thus it is easier for the programmer to find the bug. The simplest
way to execute this checks is by using a macro defined in [7], whose simplified
vesrion is as follows:

template <bool> struct STATIC_ASSERT_FAILURE;
template<> struct STATIC_ASSERT_FAILURE<true>{};
template<int x> struct static_assert_test{};

#define STATIC_ASSERT(B, error) \
typedef static_assert_test< \

sizeof (STATIC_ASSERT_FAILURE<(bool) (B), error>) \
> static_assert_typedef_;

If the expression B is true, the existing specialization of

STATIC_ASSERTION_FAILURE is used as the sizeof’s argument. Otherwise the
missing specialization for false causes a compile-time error. In the error argu-
ment a typename has to be provided that passes messages for the programmer:



struct CALLER_IS_NOT_DERIVED_FROM_BANK {};
STATIC_ASSERT (IsSuperClass<Bank,Caller>::value,
CALLER_IS_NOT_DERIVED_FROM_BANK)

Static asserts are widely used for type checkings in C++ programs using tem-
plates [2]. Integration of domain-specific languages requires these techniques to
detect invalid states in the domain space and to raise custom errors.

Today programmers write metaprograms for various reasons, like implement-
ing expression templates [21], where we can replace runtime computations with
compile-time activities to enhance runtime performance; static interface check-
ing, which increases the ability of the compile-time to check the requirements
against template parameters, i.e. they form constraints on template parameters
[9, 11]; active libraries [19], acting dynamically during compile-time, making de-
cisions and optimizations based on programming contexts. Other applications in-
volve embedded domain specific languages as the AraRarat system [6] for typed
safe SQL interface and boost:xpressive [29] for regular expressions.

3 DSL integration techniques

In this section we overview common patterns in technologies currently used for
integration domain-specific languages.

3.1 External frameworks

In the following we discuss a few notable solution for language integration using
external frameworks. The common feature of these approaches that they intent
to use some language independent solution. Most cases the source code written in
a specific syntax is transformed into a language-neutral internal representation.
Transformation steps take place in this format. The result of the integration
could be accessed by re-generation of the program in the desired syntax.

Stratego/XT The Stratego/XT developed in TU Delft is one of the most
promising program transformation system using external toolset to integrate
DSLs. The Stratego/XT metaprogram system [31,22] is containing the Stratego
language describing the program trasformations and the XT toolset, which exe-
cutes the transformations and provides a framework for constructing stand-alone
program transformation systems.

Sorce code written in arbitrary syntax can be parsed into Annotated Term
Format (ATF), an internal representation form to bridge the differences be-
tween syntactical diversity. Step of transformations are executed on ATF before
a pretty printer generates the output source code on the required language. Pars-
ing and pretty printing is language dependent based on an external description,
therefore the set of available language syntaxes are extensible. Some languages
(like C++ and Java) are already supported.



The Stratego language is based on strategic term rewriting. Transformation
definitions have two parts: rewriting rules and strategies. Rewriting rules de-
scribe basic transformation steps. Application of Othese rules are controlled us-
ing strategies. Rewriting rules can de defined in a language independent way
in the form of the internal representation. This form, however, is often lenghty
therefore a subsistem called Metaborg exists to describe the rewriting rules in
the source language.

Intentional programming Current software development often uses high level,
domain-specific notations in the design phase, but is almost always ends up im-
plementing the program in some programming language. This last step is not
only costly and error-prone, but causes recoding the software when some domain-
specific content changes. The idea behind intentional programming [14, 30] is to
separate the domain contents of the software from its implementations in a spe-
cific programming language and automatically regenerate the software as its
domain contents change.

Intentional programming makes allow to express a porgram in a heterogeneus
syntax, i.e. the code could be appear in the syntax a general purpose program-
ming language while some of its part can be expressed in a domain notation when
that is more expressive. Lazy evaluation strategies avoid unnecessary parsing-
unparsing steps to improve efficiency.

Domain contents can be extended behind classical programming idioms.
Comments, version control informations or even the full documentation could
be integrated into the program and can be visualize on request.

3.2 Language extensions

Language extensions are attractive solutions for embedding domain-specific lan-
guages. They keep the most of host language syntax and therefore have zero
impact on those code parts where DSL is not used. Keywords or even variables
from the domain-specific language could be used without any quotation or syn-
tactical marker.

However, there are several problems have to be solved when more then one
domain language is used in the host language: keywords may collide, domain syn-
tax can be ambigous, etc. Special parsing and context-aware scanning algorithms
irequired in which the scanner uses contextual information to disambiguate lex-
ical syntax [23]. Van Wyk and others shown the applicability of the extension
mechanism.

Language extensions are fragile in many ways. They require either the modifi-
cation of the compiler or an extensive set of translators or precompilers. Althoug
for some languages like Java there exists a set of techniques and frameworks to
make language extension less painfull, other languages — especially C++ — are
very hard to extend when conformance to the existing language, stability, and
efficiency of the generated code are all targeted.



3.3 Generativ approach

Expression Templates are an advanced technique that C++ library developers
use to define embedded mini-languages that target specific problem domains.
The technique has been used to create efficient and easy-to-use libraries for linear
algebra as well as to define C++ parser generators with a readable syntax. But
developing such a library involves writing an inordinate amount of unreadable
and unmaintainable template code.

In the following we overview three application examples of expression tem-
plates to implementing domain-specific language integration.

AraRat The AraRat system targets one of the most important domain; it
demonstrate the integration of relational algebra language into C++ [6]. Use of
the system makes it possible to generate typesafe SQL queries and generating
effective POD types for storing query results.

The system works in a two step way. In the first step a little external tool
is used to discover the database schema and to generate a set of C++ types
and operator overloads to reflect the schema information. In the host language,
relational expressions are represented as C++ expressions using the overloaded
operators. Template metaprogram techniques are used to check consistency of
relational operations and generating result sets in effective way.

However its idea is impressive, the AraRat system has serious constraints. Its
domain is restricted to relational algebra domain, moreover mainly for (typesafe)
selections. The domain language has to follow valid C++ expression syntax.

Boost:: Xpressive The boost::zpressive library is an advanced, object-oriented
regular expression template library for C++ [29]. Regular expressions can be
written as strings that are parsed at run-time, or as expression templates that
are parsed at compile-time. Regular expressions can refer to each other and to
themselves recursively, allowing you to build arbitrarily complicated grammars
out of them.

Regular expressions are a paragon of domain-specific languages. They are
used for a very special purpose text manipulation and have a specific (usu-
ally implementation-independent) syntax. Regular experssions are used mostly
in some host language environment implemented as a library. Classical regular
expression libraries (like boost: :regex) are powerful and flexible; patterns are
represented as strings which can be specified at runtime. However, that means
that syntax errors are likewise not detected until runtime. Also, regular expres-
sions are ill-suited to advanced text processing tasks such as matching balanced,
nested tags.

boost: :xpressive brings these two approaches seamlessly together and oc-
cupies a unique niche in the world of C++ text processing. With xpressive,
user can represent regular expressions as strings, or can use it as C++ expres-
sion templates. In this case writing regular expressions are statically bound —
hard-coded and syntax-checked by the compiler and others are dynamically



bound and specified at runtime. These regular expressions can refer to each
other recursively, matching patterns in strings that ordinary regular expressions
cannot.

While boost: :xpressive behaves similarly to our solution integrating a
domain-specific language in compile time and performing syntax checks on it,
its purpose is limited to a pre-defined domain: text manipulation.

Boost::Proto The boost::proto library advances one step forward from xpressive
to provide a framework for building Domain Specific Embedded Languages in
C++ [28]. It provides tools for constructing, type-checking, transforming and
executing domain-specific languages expressible as expression templates. Proto
provides data structure for representing the expression and a mechanism for
giving additional behaviors and members to them.

Expression trees are built from an expression of the domain-specific language
using operator overloads. Utilities for defining the grammar to which an expres-
sion must conform and an extensible set of mechanism for immediately executing
and for tree transformations are also provided. The use of boost: :proto to de-
fine the primitives of a domain-specific language radically simplifies the task of
integrating a DSL.

The boost: :proto library is one of the most general existing solution for
embedding a domain-specific language into C++. Unfortunatelly, proto has its
own restrictions. As the expression tree is built up with the help of operator over-
loads, the domain-specific language has to follow valid C+-+ expression syntax,
i.e. keywords or variables have to be connected with overloaded C++ operators.
This is a serious restriction when speaking on general purpose domain languages.
In return no quotations should be applied to identify domain language code.

4 Type-safe printf: a motivating example

4.1 The problem

Though the printf function of the standard C library is efficient and easy to
use, it’s not type-safe, hence mistakes of the programmer may cause undefined
behaviour at runtime. Some compilers such as gcc  type check printf calls
and emit warnings in case they are incorrect, but this method is not widely
available. To overcome the problem, C++ introduced streams as a replacement
of printf, which are type-safe, but they have runtime and syntactical overhead.

In most cases the pattern of printf is a static string constant, its value
is available at compile-time, thus the compiler could do type-checking and it
could spot misuses of the function. boost: :mpl (TODO cite) supports compile-
time strings which could be used to represent the format string. A safe printf
could be implemented as a template function taking the format string as a
template argument and the values to be inserted into the format string as runtime
arguments. This function could evaluate a template-metafunction at compile
time, which could try to verify the number and type of the arguments and in



case this verification fails, it could emit a compilation error. On the other hand,
if the verification succeeds it could call printf with the same arguments that the
safe printf was called with. The template metafunction verifying the arguments
cannot have a runtime overhead, only a compile time overhead. The body of the
safe printf consists of a call to printf, which is likely to be in-lined, thus, using
this safe printf has no runtime overhead compared to printf and has the same
run-time performance.

Stroustrup wrote a type-safe printf using variadic template functions (TODO
cite), which are part of the upcoming standard C++0x (TODO cite). His im-
plementation uses runtime format string and transforms printf calls to write
C++ streams at runtime.

See the example:
printf ("Hello %s!", "John");
Stroustrup’s method does the following at runtime:

std: :cout
<< 7H? << ’e? K< 717 k< ]2
<< 70?7 << 7 7 << "John" << 17

This solution was primarily written to demonstrate the power of variadic
templates, that is why printing the format string is done character by charac-
ter, making the process extremely slow. This method can be optimised in the
following, more efficient way:

std::cout << "Hello " << "John" << "!I";

We have measured the speed of these operations and of the normal printf
used by our implementation. We printed the following and its std: : cout equiv-
alents:

printf ("Test %d stuff\n", i);

The text was printed 100 000 times and the speed using the time command
on a Linux console was measured. The average time of the process can be seen in
Table 1. The printf function, which could be used by the type-safe implemen-
tation, is almost four times faster than the example at (TODO cite Stroustr)
and more than two times faster than the optimised version of the example.

Method used Time
std::cout for each character|0,573 s
normal std::cout 0,321 s
printf 0,152 s

Table 1. Elapsed time



The grammar of the format strings is complex and the validator metafunction
has to parse them, thus the implementation of a type-safe printf requires a
compile-time parser.

4.2 Embedded SQL

Any language can be embedded into C++ source code by using compile-time
parsers. The embedded source code can be a compile-time string parsed by a
metaprogram as part of the compilation process. For example SQL queries can
be validated and the corresponding C++ classes can be built from them. For
example

SELECT name, age FROM people WHERE department = "Js"
can be automatically transformed into

std::string exampleSqlQuery(const std::string& al)
{
std::ostringstream s;
s
<< "SELECT name, age FROM people WHERE department = \""
<< sql_escape(al)
<< ll\llll;
return s.str();s

}

where the string returned by exampleSqlQuery is guaranteed to be a valid
SQL query and it can provide safety against SQL injection as well.

The translators and validators presented in this chapter can be implemented
as C++ template metafunctions, these extensions use the C++ standard and
don’t require any translator, thus they are easily portable.

5 Our solution

Our solution is based on the parser described in (TODO cite). The paper de-
scribes a Haskell parser generator library in detail. We implemented the same
library in C++ template metaprogramming and the result is a compile-time
parser generator library for C++. In this section we present the details of the
translation.

5.1 Syntax for embedding source codes

The input of the parser is the text to parse represented as a string. In Haskell it’s
a string, which is a list of characters (TODO cite). In C++ template metapro-
gramming it’s a list of characters as well (TODO cite). For example the string
Hello World! in Haskell is



"Hello World!'"
in a C++ template metaprogram it’s
1ist_c<char’ 7H7’7e,,,17’717’7o7’7 7’7w7’707’7r7’71,,7d,,7!7>

boost: :mpl has a tool for string definition which simplifies the declaration of
compile time strings:

string<’Hell’, ’o Wo’, ’rld!’>
By using an external translator it can be simplified to
_S("Hello World!")

Support for user-defined literals has been proposed to be included in the upcom-
ing C++ standard, C++0x. This proposal contains solution for the conversion of
a string literal to the instantiation of a variadic template (TODO cite) function
with the characters of the string as template arguments. With the combination
of this, decltype (TODO cite) and the C++ pre-compiler the external trans-
lator could be simulated: we could get the same behaviour without using any
external tool, thus we’d remain portable.

We present how we implemented those features of Haskell which are used by
the library. Because of the size of the library we don’t describe every part of the
translation, we focus only on the key elements.

5.2 Algebraic types
Algebraic data types in Haskell have the following form:

data <name> [<type arguments>] =
<constructor name> <constructor arguments> |
<constructor name> <constructor arguments> |

We implement each constructor with a C++ template. The constructor argu-
ments are the template arguments. For example the constructor Div Expr Expr
is implemented as

template <class Exprl, class Expr2>
struct Div {};

We couldn’t express Haskell types in C++ template metaprograms, the type of
the arguments is always class. Algebraic data types and their arguments have no
direct representation in C++ template metaprogramming, only the constructors
are implemented.

In Haskell the constructors of algebraic data types act as functions to con-
struct objects. We need to turn their C++ template metaprogramming imple-
mentations into functions as well. We can do it by turning them into nullary
template metafunctions evaluating to themselves. For example the Div function
could the enhanced the following way:



template <class Exprl, class Expr2>
struct Div

{

typedef Div<Exprl, Expr2> type;
s

This template works with functions expecting a data-type and it works with
functions expecting a nullary template metafunction as well. It behaves as ex-
pected in both situations.

As an example for translating algebraic data types we present our translation
of Haskell’s Maybe. In Haskell it’s

Maybe a = Nothing | Just a
In C++ template metaprogramming it’s

struct Nothing

{

typedef Nothing type;
s

template <class a>
struct Just

{

typedef Just<a> type;
s

5.3 Functions

Haskell builds on currying to represent functions, a function takes exactly one
argument. Functions taking multiple arguments are implemented as functions
taking 1 argument and returning other functions. For example a function taking
3 arguments is implemented as a function taking 1 argument and returning
a function taking another argument and returning a function taking a third
argument returning the value of the 3 argument function.

In our C++ template metaprogramming representation of the Haskell func-
tions we didn’t represent currying: we implemented Haskell functions as functions
taking multiple arguments. Haskell functions have the form of

f :: <arg 1> -> <arg 2> -> <arg 3> -> ... -> <arg n> -> <result type>

which we implemented in C++ template metaprogramming with template meta-
functions or template metafunction classes depending on how we wanted to use
them:

template <class argl, class arg2, ..., class argn>
struct f



//
{};

// or

struct f
{
template <class argl, class arg2, ..., class argn>
struct apply
//
i}
s

The result of the function is the value of the template metafunction or meta-
function class. Functions are first-class citizens in Haskell, they can be passed
around as data values. In C++ template metaprogramming we can do the same
with template metafunction classes. Thus functions in the library that were
arguments or values of other functions we implemented as template metafunc-
tion classes, not as simple template metafunctions. boost: :mpl provides tools
which can transform template metafunctions into template metafunction classes
in cases we need to turn a template metafunction into a first-class citizen.

5.4 Parsers

Parsers are functions with the following signature:
type Parser a = String -> Maybe (a, String)

A parser takes the input string as its argument and returns a parsed object and
the remaining part of the input when it accepts a prefix of the input string and
returns Nothing when it rejects the input string. Note that the second element
of the tuple is always a postfix of the input string.

A tuple with two elements can be implemented with a pair of classes. boost: :mpl
has a pair data structure which we can use. A parser is a function in the Haskell
library, so it’'s a template metafunction in C++ template metaprogramming.
Here is the definition of one of the basic parsers in Haskell:

char :: Parser Char
char (c:cs) = Just (c, cs)
char [] = Nothing

and in C++ template metaprogramming:

struct one_char

{

template <class s>
apply :



eval _if<
typename empty<s>::type,
Nothing,
Just<build_pair<front<s>, pop_front<s> > >
>
{};
s

Note that in C++ we had to call it one_char because char is a reserved word.
build_pair is a helper metafunction taking nullary metafunctions as arguments
and building a pair structure from them. We had to use eval_if instead of
pattern matching. Even though C++ templates have excellent pattern matching
support (TODO cite) when we're constructing code from the building blocks
boost: :mpl provides we can’t use it. To be able to pass one_char to parser
combinators, which are template metafunctions, we had to implement it as a
template metafunction class.

Some parsers have arguments. The Haskell library builds on currying in
Haskell: parsers taking arguments are functions with multiple arguments and
the input string is always the last argument. By applying all arguments except
the input string to these functions we get a parser: a function taking an input
string as an argument and parsing it. For example return is a parser with an
argument:

return :: a -> Parser a
return a cs = Just(a, cs)

Its C++ template metaprogramming implementation has to be a metafunction
returning a parser, which is a metafunction:

template <class a>
struct return_

{
struct type
{
template <class cs>
struct apply : Just<pair<a, cs> > {};
s
s

5.5 Parser combinators

Complex parsers are built by combining basic parsers. The Haskell library uses
parser combinators which are parsers taking other parsers as arguments. For
example the Haskell library defines an 7 operator which is an infix operator: it’s
left argument is a parser, it’s right argument is a predicate providing a boolean
value for each result of the parser. We implemented it with a metafunction taking
two metafunction classes (a parser and a predicate) as arguments and returning
a parser:



template <class m, class p>
struct accept_when

{
// This metafunction class is the value
// of the accept_when metafunction
struct type
{
template <class cs>
struct apply :
lazy_eval_if<
equal_to<
typename apply<m, cs>::type,
Nothing
>’
nothing,
lazy_eval_if<
apply<p, just_value<apply<m, cs> > >,
apply<m, cs>,
nothing
>
>
i}
};
3

Note that the application of an argument to a function in Haskell, which is
writing the function and the operand after each other, can be implemented using
the apply metafunction in template metaprogramming.

This function can be used the same way it’s used in the Haskell library. For
example we can implement the digit function with it:

template <class cs>
struct digit : accept_when<one_char, isDigit>::type {};

isDigit’s C++ template metaprogramming implementation is straight forward
but lengthy, we’re not going to present it here.

5.6 Recursive functions

Recursive functions can be translated as well, template metafunctions can call
themselves. We present our implementation of iter here as an example, other
recursive functions can be translated similarly. The Haskell implementation of
it is

iter :: Parser a -> Parser [a]
iter m = m # iter m >-> cons ! return []



while our translated implementation is

struct iter
{
template <class m>
struct apply :
parser: :one_of< // !
parser: :transform< // >->
parser: :sequence< // #
m,
boost: :mpl::apply<parser::iter, m>

>9
parser::cons
>’
parser::return_<boost::mpl::list<> >
>
{};

};

Note that we combined the C++ template metaprogramming implementations
of the operators the Haskell implementation uses the same way the Haskell code
does it. In the example above we added the original names of the operators as
comments to the functions.

The whole Haskell library can be translated to C++ template metaprograms
following this approach, we don’t present every step here. As a result we get the
same functionality at compile time in C++ the Haskell library provides.

6 Evaluation

Embedded languages can be compiled as part of the C+-+ compilation process
using template metaprograms. We have built a library for constructing these
compile-time parsers. We present two grammars and compile-time parsers for
them built using our library.

6.1 Hello™ world™ grammar

First we present how to build a parser for the following grammar:
S ::= hello S world | hello world

It accepts inputs such as hello world, hello hello world world, and so on.
The number of hello and world words have to be equal. Here is a parser for it:

class Hello {};
class World {};



struct Extend
{
template <class L>
struct apply :
boost: :mpl::push_front<
typename boost::mpl::push_back<L, World>::type,
Hello
> {};
s

typedef parser::token<parser::keyword<‘hello‘, Hello> > AcceptHello;
typedef parser::token<parser::keyword<‘world‘, World> > AcceptWorld;

struct S
parser::one_of<

parser::always<
parser: :sequence<AcceptHello, AcceptWorld>,
boost: :mpl::deque<Hello, World>

>

parser::transform<
parser: :keep_middle<AcceptHello, S, AcceptWorld>,
Extend

>
{};

typedef parser::build_parser<S> HelloParser;

It constructs a compile-time sequence of Hello and World classes as a result of
parsing the input string. For example the expression

HelloParser: :apply<‘hello hello world world‘¢>: :type
is reduced to the following at compile-time:
boost: :mpl::deque<Hello, Hello, World, World>
But when we try compiling an invalid embedded code, such as
HelloParser: :apply<‘hello hello world‘>::type

it generates an error and breaks the C++ compilation process.

We’ve measured the compilation speed of this parser. We were using g++
4.4.1 on a Linux PC. We measured the compilation time for different number of
hello and world words. Figure 1 shows the compilation times. The horizontal
axis is the number of hello and world words in the embedded source code, the
vertical axis is the number of seconds spent on compilation.
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6.2 Alternation at compile-time

The type constructed as the result of the parsing depends on the embededd code.
We can easily construct a parser that takes a number as it’s input and returns
the int or double type, depending on which type of variable could store the
number. Here is the parser:

typedef
parser: :keep_second<
parser::anyl<parser::digit>,
parser::if <
parser: :sequence<
parser::1lit_c<’.’>,
parser::any<parser::digit>

>’
double,
int
>
>
S;

typedef parser::build_parser<S> Num;
And here is how it can be used:

Num: :apply<¢13¢>::type // int
Num: :apply<¢11.13¢>::type // double



7 Conclusion

Smoothless integration of domain-specific languages into a general purpose pro-
gramming language is not an easy task. A domain specific language is intended
to express the domain knowledge in the best possible way, thus its syntax may
radically differ from the ones of the host language. A general case of language in-
tegration therefore could be solve only applying a full-featured parser infrastruc-
ture. Extrenal tools, and frameworks exists for the problem but they introduce
unwanted dependency on third party tools. The best self-containing solution
should use only standard language features and should use only a minimal set
of external tools other then the compiler of the host language.

Our solution fulfills most of these requirements. We created a C+-+ tem-
plate metaprogram library with the meaningful translation of a similar Haskell
run-time tool, which implements a full-featured parser infrastructure. Domain-
specific language code is presented for the parser as template arguments and
evaluated during the compilation of the host code. The result of the parsing
process is a set of C++ classes which could be used for further compile-time
decisions in template metaprogramming environment. We presented a number
of examples to show the usability of our library.

The library uses only standard C+-+ language features, thus our solution
is highly portable. Current presentation has a minimal syntactical overhead
which can be eliminated by a trivial transformation on the source code. This
transformation later could be avoided as the next C++ standard will introduce
user-defined custom literals which supports the straitforward presentation of the
embedded domain-specific language syntax.
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