
Functional Programming with C++ Template

Metaprograms

Zoltán Porkoláb

Eötvös Loránd University, Faculty of Informatics
Dept. of Programming Languages and Compilers

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
gsd@elte.hu

Abstract. Template metaprogramming is an emerging new direction of
generative programming: with the clever definitions of templates we can
enforce the C++ compiler to execute algorithms at compilation time.
Among the application areas of template metaprograms are the expres-
sion templates, static interface checking, code optimization with adap-
tion, language embedding and active libraries. However, as this feature
of C++ was not an original design goal, the language is not capable
of elegant expression of template metaprograms. The complicated syn-
tax leads to the creation of code that is hard to write, understand and
maintain. Despite that template metaprogramming has a strong rela-
tionship with functional programming paradigm, language syntax and
the existing libraries do not follow these requirements. In this paper we
give a short and incomplete introduction to C++ templates and the ba-
sics of template metaprogramming. We will enlight the role of template
metaprograms, some important and widely used idioms and techniques.

1 Introduction

Templates are key elements of the C++ programming language [3, 32]. They
enable data structures and algorithms to be parameterized by types, thus cap-
turing commonalities of abstractions at compilation time without performance
penalties at runtime [37]. Generic programming [28, 27, 17] is a recently popu-
lar programming paradigm, which enables the developer to implement reusable
codes easily. Reusable components – in most cases data structures and algo-
rithms – are implemented in C++ with the heavy use of templates. The most
notable example, the Standard Template Library [17] is now an unavoidable part
of professional C++ programs.

In C++, in order to use a template with some specific type, an instantiation
is required. This process can be initiated either implicitly by the compiler when a
template with a new type argument is referred, or explicitly by the programmer.
During instantiation the template parameters are substituted with the concrete
arguments, and the generated new code is compiled.

This instantiation mechanism enables us to write smart template codes that
execute algorithms at compilation time. To demonstrate the power of C++ tem-
plates, in 1994 Erwin Unruh wrote a program [36] which displayed a list of prime

numbers as part of the error messages emitted by the compiler during the com-
pilation process. In fact, Unruh used C++ templates and the template instantia-
tion rules to write a program that is “executed” as a side effect of compilation. It
turned out that a cleverly designed C++ code is able to utilize the type-system
of the language and force the compiler to execute a desired algorithm [40]. These
compile-time programs are called C++ Template Metaprograms and later has
been proved to be a Turing-complete sublanguage of C++ [8].

The relationship between C++ template metaprograms and functional pro-
gramming is well-known: most properties of template metaprograms are closely
related to the principles of the functional style programming paradigm. On the
other hand, C++ has a strong heritage of imperative programming (namely
from C and Algol68) influenced by object-orientation (Simula67). Furthermore,
the syntax of the C++ templates is especially ugly. As a result, C++ template
metaprograms are hard to read, understand and often hopeless to maintain.

The rest of the paper is organized as follows. In Section 2 we give a short in-
formal introduction into C++ template mechanism. In Section 3 C++ template
metaprogramming is presented and compared to runtime functional program-
ming. We discuss the fundamental connections between functional programming
and C++ template metaprogramming in Section 4. We overview the possible
application areas in Section 5 including a complete practical metaprogram ex-
ample in subsection 5.6. Debugging and profiling are essential for program de-
velopment. We explain possible techniques in Section 6. In Section 7 we discuss
the possibility of pure functional style programming interface for C++ template
metaprograms. Related works are presented in Section 8.

2 Informal introduction to C++ templates

Templates are essential part of the C++ language, by enabling data structures
and algorithms to be parameterized by types. This abstraction is frequently
needed when using general algorithms like finding an element in a data struc-
ture, or defining data types like a matrix of elements of the same type. The
mechanism behind a matrix containing integer or floating point numbers, or
even strings is essentially the same, it is only the type of the contained objects
that differs. With templates we can express this abstraction in one chunk of code,
avoiding code duplication, thus generic language construct aids code reuse, and
the introduction of higher abstraction levels. The method of abstraction over
type parameters – often called parametric polymorphism – emphasizes that the
variability is supported by compile-time template parameter(s).

In the following we give a very informal introduction to templates in the C++
language. We will sometimes simplify the complex rules of templates for the sake
of general understanding of the whole mechanism. Those, who are interested in
the detailed rules a fundamental source is [37]. For language lawyers the best
source is the C++ standard itself [3]. We will be less rigorous in other C++
syntactical rules too, often omitting headers like <iostream>, and namespace

tags, like std::. For the full, syntactically correct examples see the Appendix
10 notes.

Let us start with a very simple problem: we have to compute the maximum of
two parameters – a rather trivial task in most programming languages. However,
without some kind of abstraction mechanism over the type of the parameters we
soon ended up in a nasty, unmanageable code duplication:

// a max function for "int" type

int max(int a, int b)

{

if (a > b)

return a;

else

return b;

}

// a max function for "double" type

double max(double a, double b)

{

if (a > b)

return a;

else

return b;

}

// and a lot of other overloadings for other parameter types.

While overloading allows us in most modern programming languages to write
the correct, type-safe functions, the result is a number of overloaded versions of
the max() function. Should we modify the algorithm (in a more realistic case),
we have to update all of their overloaded instances in a consistent way.

Moreover, we can write overloading functions only for the already defined
types. If somebody creates a new type with a well-defined less-then operator to
compare the objects, we have to write a new overloading version. We cannot
implement and compile a max() function on type T before creating T, even if we
know how that function will look like. Strongly typed programming languages
allows writing programs using only existing types.

It is tempting to try out non typesafe solutions. For a C/C++ programmer
a precompile macro seems to solve the problem:

#define MAX(a,b) a > b ? a : b

As precompiler macro functions are typeless, this will work not only for the
existing types, but on every type. Unfortunately, precompiler macros are not
the answer for writing generic algorithms over types. Precompiler macros are
replaced before the run of the C++ compiler, therefore we may encounter a huge

number of side-effects and type-safety problems. Apart from that, the attempt
to solve more complex problems with macros is desperate.

To demonstrate this, let us implement a swap function, to change the values
of two parameters. Here is the trivial solution in C++ for parameters of type
int:

void swap(int& x, int& y)

{

int temp = x;

x = y;

y = temp;

}

This is fairly simple. The & symbols in the parameter list denotes that the pa-
rameter passing should happen by reference, therefore x and y inside the function
body yield the original values which we want to swap via the temporary variable
temp. Variable temp should have the same type as the function parameters.

At this point we are in trouble. Since precompiler macros are replaced before
the C++ compiler itself starts, we cannot use any type inference information
from the C++ compiler. We are not able to identify the type of the parameters
of the swap macro in an automated way 1. What we need is an intelligent macro-
like feature working together with the type system of the C++ language. This
language element in C++ is called template.

With templates we are able to write both the max and swap in a fairly generic
way in one code snippet working over different types:

template <typename T>

void swap(T& x, T& y)

{

T temp = x;

x = y;

y = temp;

}

template <class T>

T max(T a, T b)

{

if (a > b)

return a;

else

return b;

}

1 The new C++ standard, C++0x provides us the auto keyword, which will allow
us to define a variable of the specific type corresponding to the actual initializer.
This is a nice feature, but does not invalidate our message here on the lack of type
inference regarding macros.

The typename and the class keywords are interchangeble in the template def-
initions and declarations, but we should apply them for all parameters. As an
example for the inconsistent syntax, using the stuct keyword is invalid here.

It is important to understand that templated swap and max are not func-
tions in the traditional sense. They are not compiled and they will be not called
during the execution of the program. Templates are rather skeletons, describ-
ing manufacturing process of real functions instantiated by the compiler in an
automated way during the compilation process. Thus we call them: function
templates rather than template functions.

The automated instantiation process is the most remarkable feature of the
C++ templates. In the following example we apply this process to the function
template max():

i = 3, j = 4, k;

double x = 3.14, y = 4.14, z;

const int ci = 6;

k = max(i, j); // -> max(int, int)

z = max(x, y); // -> max(double, double)

k = max(i, ci); // -> max(int, int)

The compilation of the above code snippet requires a number of distinct actions
from the compiler. In the first step, the compiler has to decide, whether a func-
tion template is applicable at the calling sites of max(). Then the parameter
type(s) should be decided. Parameter types are normally decided on the bases
of actual arguments: i,j,x,y,ci. This process is called template parameter de-
duction. In our example the first and third call of max leads to call an instance of
max(int,int), while the second indicates to call max(double,double). These
concrete versions of templates are called specializations.

When a specialization is not available, the compiler generates it. Thus one
max function with two int parameters, and one with two double parameters
are created, and will be called. Let us recognize that the first and third call will
refer the same specialization. The concrete implementation process may compiler
dependent, and later we will see, that we should be extremely careful with such
situations.

Which specialization will be called in the following case?

z = max(i, x); // syntax error

Under the parameter deduction process, from the type of the argument i the
compiler supposes the template parameter type T to be int. However, the sec-
ond argument x contradicts this, suggesting a double parameter. Therefore, the
parameter deduction process will fail and the compiler raises a syntax error.

How can we fix this problem? As you might expect, templates may be defined
with two or more type parameters too. Thus we can provide an other templated
max(), accepting two different type parameters:

template <typename T, typename S>

T max(T a, S b)

{

if (a > b)

return a;

else

return b;

}

int i = 3;

double x = 3.14;

z = max(i, x); // -> max(int, double)

std::cout << z << std::endl;

At the first sight, everything has been solved. The parameter deduction iden-
tifies parameter T as int and parameter S as double based on the types of
actual arguments i and x. The instantiation process creates max(int,double)

specialization, and the right function will be called in run-time.
However, the result printed to the output will be 3 and not 3.14 as we may

expect. This is a consequence of the template mechanism we discussed above.
When parameters have been decided in the deduction process, also the return
value has been determined. Yielded by T in the code of max, it will be int as
well as the type of the first parameter. When the function is called in run-time,
a > b evaluates as false, correctly, and 3.14 is about to return. However, as
the return type has been decided in compile time as int, this 3.14 value will
be converted to integer, and thus we get 3 assigned to z. It is clear, that any
attempt to change the role of parameters T and S could lead us to the same
problem.

It is also irrelevant, that the return value will be assigned to z – a variable
of type double. Programming languages rarely provide overloading on return
types, and never do parameter deduction on them.

Can we construct a better max(), a template which returns with the type
of the greater value? Unfortunately, not in a strongly typed programming lan-
guage like C++. In such languages, types are fully decided during compile time:
in run-time we cannot change them anymore. As templates are totally compile
time language features, once the template parameter deduction decides template
parameters, these decisions are final. Whether the first or the second argument
of the max(i,x) call is greater, is completely run-time property. Compilation
time and run-time are fundamentally separated in strongly typed, compiled pro-
gramming languages.

Even if we understand this fenomenon, it may be a bit embarassing. Looking
at the actual code it seems natural for the programmer to define double as the
return type of max function called with an integer and a floating point argument.
Programmers understand that double is ”wider” then int. Why we were not
able to tell this to the compiler?

The root of the problem is, that when speaking about templates, we have to
consider not only two stages – compile time and run-time – of the full process,
but also the very first one: the definition time of the template function. When
we had defined templated max(T,S) with two different type parameters T and
S, we had no idea about it’s usage environment. We had to decide whether the
type T or S or some other value would be the appropriate return value. At that
point, however, we had no information whether the actual arguments in a call
environment would be a type of int, double or something else. We still had to
make final decisions.

In the next stage, in compile time, the compiler instantiates the code of
max(i,x), with actual i and x arguments. Now the compiler apprehends the
environment of the call, recognises the actual types of i and x, but cannot
overrule the decisions made in template definition time.

Finally, in run-time the program works with the given set of types and rules,
and is able only to decide, whether the value of i or x is the greater, but is
unable to overrule the type and the conversion rules regarding the return value.

In the next table we summarized the main stages of programming with tem-
plates.

Stage Template definition Compilation time Run-time

Role Design of algorithms Template instantiation Run of the algorithm
The templated code Types used in the program Program evaluates

has been defined is being decided expressions

Example Return type of max(T,S) Parameter deduction Greater argument value
has been decided determines T and S is chosen to return

Table 1. Programming with templates

The two fundamental problems we have: (1) the gap between template defini-
tion time and compilation/template instantiation time: this inhibits to choose
the “better” return type out of int and double, and (2) the gap between com-
pilation and run-time: this inhibits to choose the type of the greater value to
return. Dynamic and script languages sometimes can help in the second prob-
lem. Template metaprograms will give us the power to bridge the first gap in
C++.

Before we proceed with template metaprograms, we have to learn some more
technicalities on templates.

We may be attempted to improve our max() template with a third type
parameter, which yields the return type:

template <class R, class T, class S>

R max(T a, S b)

{

if (a > b)

return a;

else

return b;

}

Unfortunately, the parameter deduction will fail, as there is no information about
type R. There is a number of reasons why template parameters are not deducted
based on return values, but to understand the potential problems consider the
following example:

int i = 3;

double x = 3.14, z;

z = max(i, x); // (1)

cout << max(i, x); // (2)

As deduction (theoretically) may work in case (1), but there is no reasonable
way to choose the correct return type in case (2). However, inventive C++
programmers found the way to smuggle the return type into ordinary arguments,
to make it deductible:

template <class R, class T, class S>

R max(T a, S b, R)

{

if (a > b)

return a;

else

return b;

}

double z = max(i, x, 0.0);

The extra argument works, but it is ugly and possibly misleading. The C++
standard committee recognized this requirement, and introduced a syntactically
more readable notation:

template <class R, class T, class S>

R max(T a, S b)

{

if (a > b)

return a;

else

return b;

}

double z = max<double>(i, x);

long l = max<long, int, long>(i, x);

This syntax above is called explicit specialization. In the first case max() will be
instantiated with template parameters: R=double given explicitly, and T=int,
and S=double deduced from function arguments. In the second case, all the
parameters are given explicitly: R=long, S=int, and T=long. Actual parameter
x will be converted to long as well as the return value. The shortage of this
solution is that we have to decide the actual type parameters manually.

We can further specialize templates by eliminating all the template parame-
ters.

template <> const char *max(const char *s1, const char *s2)

{

return strcmp(s1, s2) < 0;

}

char *s1 = "Hello";

char *s2 = "world";

cout << max(s1, s3);

It is clear, that the original algorithm of max() would work improper way when
comparing the pointer values, rather than the contents of the char arrays. We
provided user specialization for defining an exceptional behavior of the maximum
algorithm for character arrays.

Different template definitions may exist with the same name: overloading of
templates are possible. Hence, we may define all previously discussed versions of
max in the same time.

template <typename T> T max(T,T);

template <typename R, typename T, typename S> R max(T,S);

template <> const char *max(const char *s1, const char *s2);

When instantiating a call of max, the compiler will choose the most specific
version of template definitions applicable for the actual call.

Up to this point we mainly discussed function templates. Class templates
play a similarly important role when implementing abstract data structures, like
list, generalized array, matrix, etc. In the rest of this section we will discuss class
templates in details as they form the bases of template metaprogramming.

The following code snippet defines a matrix class template. The typename of
the matrix elements yielded by T is the parameter of the class. Apart from the
usual set of constructor, copy constructor, destructor and assignment operator
we have methods to retrieve size parameters with rows, and cols parameters,
and accessing elements with the pair of at methods.

C++ uses value semantics, i.e. when copying a matrix we have to copy each
stored element one by one. We implement the copy semantic with the help of
the private copy method.

template <typename T>

class matrix

{

public:

matrix(int i, int j);

matrix(const matrix &other);

~matrix();

matrix& operator=(const matrix &other);

int rows() const { return x; }

int cols() const { return y; }

T& at(int i, int j);

T at(int i, int j) const;

matrix& operator+=(const matrix &other);

private:

int x;

int y;

T *v;

void copy(const matrix &other);

};

matrix<T>& matrix<T>::operator+=(const matrix &other);

Please consider, that each method of a class template is a function template it-
self. This seems natural for methods explicitly referring the template parameter,
like the at method, but also holds for other member functions like rows() and
cols(), they are also templated by T.

As object constructors’ parameters do not hold relevant information on class
template parameters, objects of class templates are instantiated explicitly speci-
fying their type parameters. Here we define matrix objects with type parameter
int, double, and matrix<double> respectively:

matrix<int> im;

matrix<double> dm;

matrix<matrix<double> > dmm;

A possible implementation of the matrix allocates x*y objects of type T dynam-
ically. This is a fair solution unless T is (logically) very small. Allocating an x*y

length array of type bool does not neccessary give what ones expect. In some
implementions bool type has size of 4 bytes (for compatibility with int type).
Even if sizeof(bool)==1, we can work out a better implementation storing 8
boolean values on every single byte.

Naturally, this economicial solution may require a totally different repre-
sentation. Additional attributes, methods, different function bodies should be
implemented in class specialization.

template <>

class matrix<bool>

{

// a totally different implementation

};

matrix<bool>& matrix<bool>::operator+=(const matrix &other);

The specialization and the original template only share their names, otherwise
they are considered as separate classes. A specialization does not need to provide
the same functionality, interface, or implementation as the original one. It is
possible, but generally a very bad idea to change the public interface between
specializations.

We have to mention, that not only typenames, but constant expressions of
certain types (bool, int, etc..) are also allowed as template arguments:

template <typename T, int SIZE>

class array

{

T t[SIZE];

//...

};

With a partial specialization we can record one or more type of arguments (like
the int in the full specialization) or their properties (like being pointer types):

template<class T, class U>

class A { ... };

template <class U>

class A<int,U> { ... };

This partial specialization will be selected by the compiler if A is instantiated
with its first argument being int.

3 C++ Template Metaprograms

In 1994 Erwin Unruh wrote and circulated at a C++ standards committee meet-
ing a very interesting C++ program. The program was not even compiled, but
when the compiler printed error messages, part of them the prime numbers ap-
peared in increasing order.

// Erwin Unruh, untitled program,

// ANSI X3J16-94-0075/ISO WG21-462, 1994.

template <int i>

struct D

{

D(void *);

operator int();

};

template <int p, int i>

struct is_prime

{

enum { prim = (p%i) && is_prime<(i>2?p:0), i>::prim };

};

template <int i>

struct Prime_print

{

Prime_print<i-1> a;

enum { prim = is_prime<i,i-1>::prim };

void f() { D<i> d = prim; }

};

struct is_prime<0,0> { enum { prim = 1 }; };

struct is_prime<0,1> { enum { prim = 1 }; };

struct Prime_print<2>

{

enum { prim = 1 };

void f() { D<2> d = prim; }

};

void foo()

{

Prime_print<10> a;

}

// output:

// unruh.cpp 30: conversion from enum to D<2> requested in Pri..

// unruh.cpp 30: conversion from enum to D<3> requested in Pri..

// unruh.cpp 30: conversion from enum to D<5> requested in Pri..

// unruh.cpp 30: conversion from enum to D<7> requested in Pri..

// unruh.cpp 30: conversion from enum to D<11> requested in Pri..

// unruh.cpp 30: conversion from enum to D<13> requested in Pri..

// unruh.cpp 30: conversion from enum to D<17> requested in Pri..

// unruh.cpp 30: conversion from enum to D<19> requested in Pri..

Erwin Unruh’s prime number computing template demonstrated that it is pos-
sible to use the C++ template system to write compile-time programs. Such
programs are called template metaprograms. A metaprogram is a program that
manipulates other programs; for example, compilers, partial evaluators, parser
generators and so forth are metaprograms. Template metaprograms are special
ones in the sense that they are self-containing: the program which manipulates
the code is the C++ compiler itself.

The canonical template metaprogram to show the basic behaviour is the
compile time evaluation of factorial numbers. Let us compare a run-time solution
and the metaprogram version.

The run-time version is straitforward. Basically the similar code could be
implemented in various programming languages from FORTRAN to Pascal.

// runtime recursion

int Factorial(int N)

{

if (1 == N) return 1;

return N * Factorial(N-1);

};

int main()

{

int r = Factorial(5);

cout << r << endl;

return 0;

}

There are other possibilities to implement the algorithm: especially we may use
loop instead of recursion.

The template metaprogram solution takes two template definitions: one for
the generic solution of Factorial, and an other for the specialization of the
parameter value 1.

// compile-time recursion

template <int N>

struct Factorial

{

enum { value = N * Factorial<N-1>::value };

}

template<>

struct Factorial<1>

{

enum { value = 1 };

};

int main()

{

int r = Factorial<5>::value;

cout << r << endl;

return 0;

}

Let us analyze what happens here. The main() function is used to start the in-
stantiation steps. When the assignment expression refers to Factorial<5>::value

the compiler is forced to instantiate the Factorial template with argument 5.
As we have a correspondent template definition, the compiler starts the instan-
tiation, and reaches the initialisation of enumeration value inside Factorial.
Here we refer to Factorial<5>::value. The instantiation of Factorial<5> is
suspended and the compiler turns to instantiate Factorial<4>::value. This
way we imitate recursion, wich will descent down to the instantiation request
of Factorial<1>. Here the compiler can find a full specialization template for
Factorial with argument value 1, which is “more specialized” than the generic
one. Therefore the full specialization is used to generate the requested class, and
instantiation of Factorial<1> completes.

From this point we are coming back from the instantiation chain. In this
process Factorial<1>::value is used to finalize Factorial<2>, etc... The sus-
pended instantiations are completed in the reverse order. At the end, we result
in generating five classes; four of them instantiated from the generic template
definition and one from the template specialization.

As the compiler has Factorial<5>::value in hand, it simply replaces the
right hand side of the assignment in main(). In run-time, we will execute only
the output statement. Hence, we “executed” the factorial algorithm – a C++
template metaprogram – in compilation time.

Two important template rules have been tacitly used here: (1) Templates
wich are not referred wont be instantiated – C++ template mechanism is lazy.
(2) Constant expressions – which can be evaluated in compilation time, must be
evaluated in compilation time. Such a constant expression appears on the left
side of the enumeration initialisation of value in class Factorial.

Lazyness is essential for writing template metaprograms. Let us consider the
following example:

template <bool condition, class Then, class Else>

struct IF

{

typedef Then RET;

};

template <class Then, class Else>

struct IF<false, Then, Else>

{

typedef Else RET;

};

int main()

{

IF< sizeof(int)<sizeof(long), long, int>::RET i;

cout << sizeof(i) << endl;

return 0;

}

This seems a bit more criptic than the factorial example. First let’s draw up
an inventory. We have a generic version of a template called IF and a partial
specialization for it. It is partial, since only one, the leftmost argument has been
specialized to false boolean value. The first type parameter of the class IF is a
(constant) value, the remaining arguments are type parameters.

When we instantiate the IF template, we provide a boolean expression as
the first argument. In our example this is sizeof(int)<sizeof(long). The
expression is evaluated in compilation time. If this is true, then the generic
template is instantiated, and hence the typedef Then RET is in effect. With
the actual arguments this defines RET as long. However, when the expression
is evaluated as false, we have a “better” specialization, and typedef Else RET

means RET is defined as int. As a result, based on whether the size of int is
smaller than the size of long, we define i as variable of type of the widest type.

The construct is simmetric – it would be an equally working solution to define
the generic function typedefing the Else branch, and writing a specialization for
the true value as the first parameter.

The IF construct – the generic template and the specialization – works like a
branching metaprogram. Having recursion and branching with pattern matching
we have a full featured programming language – executing programs in compila-
tion time. In 1966 Bohm and Jacopini proved, that Turing machine implementa-
tion is equivalent to the exsistence of conditional and looping control structures.
C++ template metaprograms form a Turing complete programming language
executed in compilation time [42].

Now we can revisit the max() function we discussed about earlier:

template <class T, class S>

IF< sizeof(T)<sizeof(S), S, T>::RET max(T x, S y)

{

if (x > y)

return x;

else

return y;

}

This version of max() is able tho choose the “widest” of the argument types and
defines it as the return type. In the template definition we did not committed
ourselves to the return type. Instead of choosing one of the argument types, we
defined a small metaprogram which will be executed in compilation, i.e. template
instantiation time. When the template is instantiated the actual types of T and
S are known and the metaprogram is evaluated. Either T or S will be selected as
typedef of IF<...>::RET, based on the metaprogram’s algorithms.

When this template is instantiated with argument types int and double,
the return value will be double. Similarly, when the arguments are short and
long, the later will be chosen as the return type.

It is important to understand two facts. First, we cheated a bit. The “widest”
type – which has the greater sizeof value – is not always the best return type.

Sometimes the size of a class is unrelated to the arithmetical representation – this
is true especially for classes allocating extra space in the heap. But conceptually
this is not a problem for us: anyway, we are in a Turing complete language, so
we are able to define as complex algorithms as we wish.

Second, we were still not able to choose the type of the greater value, we have
chosen the type which seemed better under compilation. It is still possible that
double has been chosen as return type, but the int run-time value is greater.
In such a situation the return type value will be converted to double.

In other words, we are not breaking the rules of strongly typed program-
ming languages. Types are not selected in run-time. What we added to the
earlier version of max is the possibility of selecting the return type not in tem-
plate definitin/design time, but later, in compilation time, when the template
is instantiated. We delegated an algorithm written in design time, executed in
compilation time which – based on the actual types of the template arguments
– was able to select the better return type. This has happened in an automated
way by the execution of a small and simple template metaprogram.

Stage Template definition Compilation time Run-time

Role Design of algorithms Template instantiation Run of the algorithm
The templated code Parameter deduction happen Program evaluates

has been defined Metaprograms are executed expressions

Example Return type of max(T,S) Parameter deduction Greater argument value
defined with metaprogram determines T and S. is chosen to return

IF<T,S>::RET is selected

Table 2. Programming with template metaprograms

4 Connection between functional programming and C++
template metaprograms

In our context the notion template metaprogram stands for the collection of
templates, their instantiations, and specializations, whose purpose is to carry out
operations in compile-time. Their expected behavior might be either emitting
messages or generating special constructs for the runtime execution. Henceforth
we will call a runtime program any kind of runnable code, including those which
are the results of template metaprograms. Executing programs in either way
means executing pre-defined actions on certain entities. It is useful to compare
those actions and entities between runtime programs and metaprograms.

C++ template metaprogram actions are defined in the form of template defi-
nitions and they are “executed” when the compiler instantiates them. Templates
can refer to other templates, therefore their instantiation can instruct the com-
piler to execute other instantiations. This way we get an instantiation chain

very similar to a call stack of a runtime program. Recursive instantiations are
not only possible, but regular in template metaprograms to model loops.

In metaprograms we use static const and enumeration values to store
quantitative information. Results of computations during the execution of a
metaprogram are stored either in other constants or enumerations. Furthermore,
the execution of a metaprogram may trigger the creation of new types by the
compiler. These types may hold information that influences the further execution
of the metaprogram [44].

However, there is a fundamental difference between usual runtime programs
and C++ template metaprograms: once a certain entity (constant, enumeration
value, type) has been evaluated or constructed, it will be immutable. There is no
way to change its value or meaning. When we initialized a constant or enumera-
tion we are not able to change its value. When a type has been constructed, it is
not possible to redefine it. Therefore metaprogram assignment does not exist. In
this sense metaprograms are similar to pure functional programming languages,
where referential transparency is obtained. That is the reason why we use recur-
sion and specialization to implement loops: we are not able to change the value
of any loop variable. Immutability – as in functional languages – has a positive
effect too: unwanted side effects do not occur.

Based on this observations we can say that C++ template metaprogram-
ming is part of the functional programming paradigm. In the following table we
summarized the main similarities, tools, and language features.

Runtime functional program C++ template metaprogram

values run-time data static const and
(constant, literal) enum class members

variables variables symbolic names
(typenames, typedefs)

initialization constants static const initialisation
generators enum definition

assignment no no

i/o helpers monads warnings, error messages
no interactive input

branching pattern matching pattern matching
function specialization template specialization

looping recursive functions recursive templates

subprogram function (template) class

data types abstract data structures typelists, boost::vector

types type class (Haskell) concepts

Table 3. Comparison of functional programs and template metaprograms

Abrahams and Gurtovoy [1] defined the term template metafunction as a special
template class: the arguments of the metafunction are the template parameters

of the class, the value of the function is a nested type of the template called
type.

Metafunctions – as we can expect in a functional programming language
– are first class citizens in C++ template metaprogramming. In the following
example we show a metaprogram Accumulate which summarizes the value of a
function given as a parameter at points in the intervall 0..N. The function will
be a metaprogram itself, and it can be specified as an argument of Accumulate.

// Accumulate(n,f) := f(0) + f(1) + ... + f(n)

template <int n, template<int> class F>

struct Accumulate

{

enum { RET = Accumulate<n-1,F>::RET + F<n>::RET };

};

template <template<int> class F>

struct Accumulate<0,F>

{

enum { RET = F<0>::RET };

};

template <int n>

struct Square

{

enum { RET = n*n };

};

int main()

{

cout << Accumulate<3,Square>::RET << endl;

return 0;

}

Previous examples show that there are sophisticated ways to build up, pass as
parameter, and execute functions in compilation time. We have similar profes-
sional tools to express lists, vectors, etc. as compile time data structures.

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree
structures, or sequences. Tree structures are the favourite implementation forms
of expression templates [41]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost::mpl library [50].

We define a typelist with the following recursive template:

class NullType {};

struct EmptyType {}; // could be instantiated

typedef Typelist< char, Typelist<signed char,

Typelist<unsigned char, NullType> > > Charlist;

In the example we store the three character types in a typelist. We can use helper
macro definitions to make the syntax more readable.

#define TYPELIST_1(x) Typelist< x, NullType>

#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>

#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>

#define TYPELIST_4(x, y, z, w) Typelist< x, TYPELIST_3(y,z,w)>

// ...

typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Essential helper functions – like Length to compute the size of a list in compile
time – have been defined in the Alexandrescu’s Loki library[2] in pure func-
tional programming style. Let us consider the typical template metaprogram
components. We began with the declaration of the one type-parmeter Length

template. This is followed by the specific version of Length applicable for the
empty list as a specialization for NullType. This template will be instantiated
only at the end of a typelist. Finally, we define the generic case on template
parameter Typelist<T,U> with further recursion on U.

/

// Length

//

template <class TList> struct Length;

template <>

struct Length<NullType>

{

enum { value = 0 };

};

template <class T, class U>

struct Length <Typelist<T,U> >

{

enum { value = 1 + Length<U>::value };

};

Length reads the size of the list. The IndexOf metafunction takes a type param-
eter and returns the position of that parameter in the list. If the actual argument
is not found in the list it returns the value -1.

template <class TList, class T> struct IndexOf;

template <class T>

struct IndexOf< NullType, T>

{

enum { value = -1 };

};

template <class T, class Tail>

struct IndexOf< Typelist<Head, Tail>, T>

{

private:

enum { temp = IndexOf<Tail, T>::value };

public:

enum { value = (temp == -1) ? -1 : 1+temp };

};

Similar data structures and algorithms can be found in boost::mpl.

5 Applications of template metaprogramming

In this section we will overview the most important application fields of C++
template metaprogramming. Since 1994 template metaprograms are used in
various environments from essential components in high speed mathematical
libraries – like Blitz++ [46] – to the automatic configuration of boost::tr1

mathematical functions [49].

5.1 Expression templates

The earliest applications of template metaprogramming aimed to eliminate the
overhead of object-oriented programming in numerical computations. To under-
stand the root of the problem, consider the following scenario.

We want to implement numerical computations with the help of the well-
designed class Array, which encapsulates a vector of floating point numbers, and
basic operations like addition and multiplication. With the help of the operator
overloading we can write the following code:

class Array;

Array a,b,c,d;

a = b + c + d;

Unfortunately, when we execute the above operation, certain ineffective events
will happen. The operation b + c will produce a temporary Array as the result,
and this temporary will be added to d, which produces an other temporary.
Temporary Array objects will allocate space in the heap – a relatively slow
operation, and will copy a huge number of bytes. Not to forget the destruction,
we end up with something similar to the following pseudocode:

double* _t1 = new double[N]; // b+c

for (int i=0; i<N; ++i)

_t1[i] = b[i] + c[i];

double* _t2 = new double[N]; // _t1+d

for (int i=0; i<N; ++i)

_t2[i] = _t1[i] + d[i];

for (int i=0; i<N; ++i) // a = _t2

a[i] = _t2[i];

delete [] _t2;

delete [] _t1;

Veldhuizen measured 50 – 500 percentage of performance loss due to extra heap
operations, memory access, etc. [41]. Meanwhile, a FORTRAN-style code could
keep the high performance when implementing the following algorithm:

for(int i=0; i<N; ++i)

a[i] = b[i] + c [i] + d[i];

It seems we have to choose between manageable object-oriented style code and
efficient FORTRAN style. Expression templates invented independently by Todd
Veldhuizen [41] and David Vandevoorde [37] are possible modus vivendi for this
problem.

Expression templates are recursive templates which are used to represent
(typically arithmetic) expressions. Building up the parser tree and delaying com-
putations instead of immediately evaluating the expression gives us more chances
to eliminate temporaries and to optimize the execution process. The real eval-
uation happens later when we refer to a certain element of the result. This
technique is often called lazy evaluation. In the following we discuss expression
templates using an example originated to Veldhuizen.

In the core of the expression template we find such a template class:

// the node in the parse tree.

template <typename Left, typename Op, typename Right>

struct Node

{

Left left;

Right right;

Node(Left t1, Right t2) : left(t1), right(t2) { }

double operator[](int i)

{

return Op::apply(left[i], right[i]);

}

};

struct Array

{

// constructor

Array(double *data, int N) : data_(data), N_(N) { }

// assign an expression to the array

template <typename Left, typename Op, typename Right>

void operator=(X<Left,Op,Right> expr)

{

for (int i = 0; i < N_; ++i)

data_[i] = expr[i];

}

double operator[](int i)

{

return data_[i];

}

double *data_;

int N_;

};

Class Node will represent a node in the expression tree. The Left and Right

parameters refer to the left-hand side and to the right-hand side nodes below the
current one. These template parameters can be instantiated as another instances
of class Node or – in case of a leaf in the tree – as the user’s class (Array in our
example). The constructor just builds up the expression, while operator[] will
evaluate the expression itself executing Op’s apply function.

The middle parameter Op represents the operation we execute in this node
of the expression. Most cases we do not need to store objects of class Op, as the
operation is executed via static methods:

// this class encapsulates the "+" operation.

struct plus

{

static double apply(double a, double b)

{

return a+b;

}

};

We can build up the expression tree manually or we can use a generator template
for this purpose:

template <typename Left>

X<Left, plus, Array> operator+(Left a, Array b)

{

return X<Left, plus, Array>(a,b);

}

We write the application code as we would do it in pure object-oriented style.
However, the generator function operator+ will expand the expression A+B and
starts to build up the expression tree.

Array A(...); // fill A

Array B(...); // fill B

Array C(...); // fill C

Array D(...); // allocate D

D = A + B + C;

After a few steps we get the following code:

void D.operator=(X<X<Array,plus,Array>,plus,Array>(

X<Array,plus,Array>(A,B),C) expr)

{

for (int i = 0; i < N_; ++i)

data_[i] = expr[i];

}

Inlining X::expr[i] with its body leads to

for (int i = 0; i < N_; ++i)

D.data_[i] = A.data_[i] + B.data_[i] + C.data_[i];

which is equivalent to the FORTRAN style solution. We wrote the code in object-
oriented style, but the expression templates transformed it into the most efficient
implementation.

5.2 Language extension

In C++ integer values can be expressed by constants in form of decimal, octal
or hexadecimal literals. The syntax is defined by the C++ language standard
and is not extendable. However, in certain cases we would like to write integer
values in binary form. As in most programming languages, in C++ writing a
function which converts it’s string argument forming a binary number is trivial.
Unfortunately, this function will be executed in run-time, which has a number
of shortages:

– It consumes run-time resources, even if the string argument is known in
compile time.

– It is repeatedly called when evaluating the same literal.
– The return value is not known in compile time. Apart from optimization

questions that fact denies declaring arrays with the size of the return value.
– When non-binary characters appear in the literal, the error is reported in

run-time instead of compilation time.

int main()

{

const int di = 12;

const int oi = 014;

const int hi = 0xc;

const int bi0 = binary_value("1100");

const int bi1 = binary<1100>::value;

}

A clever C++ template metaprogram can solve all of these problems. Let us
consider the following template definition:

template <unsigned long N>

struct binary

{

static unsigned const value = 2*binary<N/10>::value + N%10;

};

When we specify binary<1100>::value in a C++ source file a compiler in-
stantiates the generic version of the binary<N> template with 1100 as an in-
teger argument. The instantiation will refer to binary<110>::value and then
binary<11>::value and so on until we reach binary<0>::value. Then a spe-
cialization is required to stop the recursion:

template <>

struct binary<0>

{

static unsigned const value = 0;

};

After creating five classes, we finish to construct the topmost instance and
binary<1100>::value will be 12 as a compile time constant. We can suppose
that binary<1100> appears in other parts of the source. In that case the com-
piler need not repeat the whole instantiation process. C++ templates use mem-
oisation, i.e. ones instantiated templates will be kept during the compilation
process, and will be re-used rather than re-instantiated. (Memoisation is not
always a good feature. It also means that we have to keep the unused imme-
diate classes too during compilation. In most cases this is just wasting critical
resources during the whole compilation process.)

5.3 Concept checking

Modern programming languages have tools to express parametric polymorphism,
i.e. functions or data structures parameterized by types. Generics in Ada, Eiffel,
Java or C#, templates in C++ are such constructs. However, it is clear that
generic constructs can not always accept arbitrary type parameters. For example,
abstract priority queues should contain types which are comparable, accumulator

functions additive types. These assumptions are restrictions against genericity.
In some programming languages the constraints could be expressed explicitly by
the language. Java’s wildcards [35], the inheritance hierarchy in Eiffel and the
with keyword in Ada serves this purpose. If we break the constraints, we get
clear and straightforward error messages from the compiler.

C++ has no language-level support to describe explicit requirements for cer-
tain template properties, i.e. C++ templates are not constrained. When we pass
a type without proper comparison methods to an abstract priority queue, we do
not experience an immediate syntax error. In contrast, the instantiation process
starts and it will fail only when the lacking method is explicitly referred, in most
cases somewhere deeply in the chain of instantiations.

The canonical example is the standard template library (STL), where al-
gorithms require certain types of iterators. E.g. the sort algorithm requires
parameters in form of random access iterators. When sort is called with pa-
rameters only satisfying the criteria of forward iterators we end up with a few
pages of error messages and neither of them will explicitly tell us the root of the
problem.

Due to lack of compiler support, the problem had to be remedied on library
level. Complex language constructs have been created to inspct the characteris-
tics of types. Existence of certain attributes or methods, usage of polymorphism,
inheritance relationships, etc. can be determined in compilation time using tem-
plate metaprograms [45]. Based on the inspections, in case of breaking rules, the
designer of the program may decide to abort compilation. This area of research
is called static interface checking or concept checking [21, 26].

A compilation of such language constructs, the Boost Concept Checking
Library (BCCL)[47] uses template mechanisms to provide a wide variety of
compile-time checks, and produce human-readable error messages when a cri-
terion is not met by a type:

// Library function with constraints to T

template <class T>

void generic_library_function(T x)

{

function_requires< EqualityComparableConcept<T> >();

// ...

}

// user code

class foo

{

// ...

};

int main()

{

foo f;

generic_library_function(f);

return 0;

}

When class foo does not fulfill the requirement of EqualityComparableConcept,
the call of generic_library_function(f)will cause a compilation error, with a
hopefully human-understandable error message about the missing requirement.

Concept checking algorithms are often complex and compiler dependent. In
the last ten years lots of effort has been spent to develop high quality concept
libraries. During the years it turned out that library-based solutions have signif-
icant shortages compared to language-based concepts. Therefore the ANSI C++
committee started to work on a proposal to extend C++ with language-based
concepts. With the help of concepts [25] programmers could specify the require-
ments agains template parameters of classes and functions in a clear syntax, and
could separate concept checking from the instantiation process.

Unfortunately, this enhancement requires enourmous amount of work – es-
pecially reimplementing existing libraries by the enrichment of concepts. In the
summer of 2009 the C++ standardization committee excluded concepts from
the already late C++0X standard. Concepts are not forgotten but it is hard
to predict when they will be part of the official C++ standard. Until then, we
may utilize library based concepts implemented mostly by means of template
metaprograms.

5.4 Active libraries

With the development of programming languages, user libraries also became
more complex. FORTRAN programs already relied heavily on programming
libraries implementing solutions for re-occuring tasks. With the emerging of
object-oriented programming languages the libraries also transformed: the sets
of functions were replaced by collections of classes and inheritance hierarchies.
However, these libraries are still passive: the writer of the library has to make
substantial decisions about the types and algorithms at the time of the library’s
creation. In some cases this constraint is a serious disadvantage. Contrarily, an
active library [38] acts dynamically, makes decisions in compile-time based on the
calling context, chooses algorithms, and optimizes code. These libraries are not
passive collections of functions or objects, as are traditional libraries, but take
an active role in generating code. Active libraries provide higher abstractions
and can optimize those abstractions themselves. In C++ active libraries are
implemented with the help of template metaprogramming techniques.

In the following we present an example for active libraries based on our own
research. We will implement a Final State Machine (FSM) with the help of a
State Transition Table (STT). As soon as the STT is defined, in compilation
time, algorithms and transformations can be executed on it, and also optimiza-
tions and sanity checking of the whole state transition table can be done. There-
fore we decided using template metaprograms to provide automatic operations
at compile-time on the FSM. Our goal is to develop an inital study that:

– carries out compound examinations and transformation on the state transi-
tion table,

– and shows the relationship between Finite State Machines and Active Li-
braries over a template metaprogram implementation of the Moore reduction
procedure.

The library is based on a simplified version of Boost::Statechart ’s State Tran-
sition Table. In our model the State Transition Table defines a directed graph.
We implemented the Moore reduction procedure, used the Breadth-First Search
(BFS) algorithm to isolate the graph’s main strongly connected component and
with the help of a special “Error” state we made it complete.

Much like the Boost::Statechart’s STT, in our implementation states and
events are represented by classes, structs or any built-in types. The STT’s im-
plementation based on the Boost::MPL::List compile-time container is described
in Figure 1:

template< typename T, typename From, typename Event, typename To,

bool (T::* transition_func)(Event const&)>

struct transition

{

typedef T fsm_t;

typedef From from_state_t;

typedef Event event_t;

typedef To to_state_t;

typedef typename Event::base_t base_event_t;

static bool do_transition(T& x, base_event_t const& e)

{

return (x.*transition_func)(static_cast<event_t const &>(e));

}

};

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >

// +-----------+----------+-------------+----------------------+

>::type sample_transition_table; // end of transition table

Fig. 1. Implementation of our State Transition Table.

A transition table built at compile-time behaves similarly to a counterpart
built in runtime. The field transition func pointer to member function repre-
sents the tasks to be carried out when a state transition happens. The member

function do transition() is responsible for the iteration over the table. The
state appearing in the first row is considered the starting state.

In the following we present a simple use case. Let us imagine that we want
to implement a simple CD player, and the behavior is implemented by a state
machine. The state transition table skeleton can be seen in Figure 2. To demon-
strate the compile time actions, we intentionally put duplicated functionalities
and unreachable states to our STT.

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >,

trans < Playing , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

// ... duplicated functionality ...

trans < Stopped , play , Running , &p::start_running >,

trans < Running , stop , Stopped , &p::stop_running >,

trans < Running , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

// ... unreachable states ...

trans < Recording , pause , Pause_rec , &p::pause_recording>,

trans < Paused_rec, resume , Recording , &p::resume_rec >

// +-----------+----------+-------------+----------------------+

>::type sample_trans_table; // end of transition table

Fig. 2. Sample State Transition Table

The programmer first starts to implement the Stopped, Playing, and Paused
states’ related transitions. After implementing a huge amount of other transi-
tions, eventually he forgets that a Playing state has already been added, so he
adds it again under the name Running. This is an unnecessary redundancy, and
in generaly could indicate an error or sign of a bad design. A few weeks later it
turns out, that a recording functionality needs to be added, so the programmer
adds the related transitions. Unfortunately, the programmer forgot to add a few
transitions, so the Recording and Paused state cannot be reached. In general
that also could indicate an error. On the other hand if the state transition ta-
ble contains many unreacheable states, these appear in the program’s memory
footprint and can cause runtime overhead.

Our library can address these cases by emitting warnings, errors messages, or
by eliminating unwanted redundancy and unreacheable states. The result table
of the reduction algorithm can be seen here:

template struct fsm_algs::reduction< sample_trans_table >;

After this forced template instantiation, the enhanced_table typedef within
this struct holds an optimized transition table is described in Figure 3:

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >,

trans < Playing , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

... duplicated functionality has been removed ...

... unreachable states have been removed too ...

// +-----------+----------+-------------+----------------------+

>::type sample_trans_table; // end of transition table

Fig. 3. Reduced Transition Table

In the following we present the minimization algorithm implemented in our
active library.

Locating strongly connected components The first algorithm executed be-
fore the Moore reduction procedure is the localization of the strongly connected
component of the STT’s graph from i a given vertex. We use Breadth-First
Search to determine the strongly connected components. After we have located
the main strongly connected component from a given state, we can emit a warn-
ing / error message if there is more than one component (unreachable states
exist) or we can simply delete them. The latter technique can be seen in Figure
4 (several lines of code have been removed):

Making the STT’s graph complete The Moore reduction algorithm requires
a complete STT graph, so the second algorithm that will be executed before the
Moore reduction procedure is making the graph complete. We introduce a special
“Error” state, which will be the destination for every undefined state-event pair.
We test every state and event and if we find an undefined event for a state, we
add a new row to the State Transition Table. (Figure 5.)

The destination state is the “Error” state. We can also define an error-handler
function object[17]. After this step, if the graph was not complete, we’ve intro-
duced a lot of extra transitions. If they are not needed by the user of the state
machine, these can be removed after the reduction. The result after the previ-
ously executed two steps is a strongly connected, complete graph. Now we are
able to introduce the Moore reduction procedure.

// Breadth-First Search

template < typename Tlist, typename Tstate, typename Treached,

// STT ^ Start state ^ Reached states ^

typename Tresult = typename mpl::clear<Tlist>::type,

// ^ Result list is initialized with empty list

bool is_empty = mpl::empty<Treached>::value >

struct bfs

{

// Processing the first element of the reached list

typedef typename mpl::front<Treached>::type process_trans;

typedef typename process_transition::to_state_t next_state;

// (...) Removing first element

typedef typename mpl::pop_front<Treached>::type

tmp_reached_list;

// (...) Adding recently processed state table rows

// to the already processed (reachead) list

typedef typename merge2lists<tmp_result_list, tmp_reached_list>

::result_list tmp_check_list;

// (...) Recursively instantiates the bfs class template

typedef typename bfs< Tlist, next_state, reached_list,

tmp_result_list, mpl::empty<reached_list>::value>

::result_list result_list;

};

Fig. 4. Implementation of Breadth-First Search

The Moore reduction procedure Most of the algorithms and methods used
by the reduction procedure have already been implemented in the previous two
steps.

First we suppose that all states may be equivalent i.e. may be combined
into every other state. Next we group non-equivalent states into different groups
called equivalence partitions. When no equivalence partitions have states with
different properties, states in the same group can be combined. We refer to
equivalent partitions as sets of states having the same properties.

We have simulated partitions and groups with Boost::MPL’s compile time
type lists. Every partition’s groups are represented by lists in lists. The outer
list represents the current partition, the inner lists represent the groups. Within
two steps we mark group elements that need to be reallocated. These elements
will be reallocated before the next step into a new group (currently list).

After the previous three steps the result is a reduced, complete FSM whose
STT has only one strongly connected component. All of these algorithms are
executed at compile time, so in run-time we are working with a minimized state
machine.

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stop , pause , Error , &p::handle_error >

Fig. 5. Adding new transition.

For more implementatational details refer to [13].

5.5 DSL-based language extentions

Domain specific languages are dedicated to some special problems, like database
related tasks, or expressing regular expressions in an effective way. They are
often incorporated into some general purpose host language. The main problem
is to provide type safety and consistency between the host language and the
embedded language. One way to implement this in C++ is to use template
metaprograms.

AraRat system [12] is an example which implements a domain specific lan-
guage using C++ template metaprograms. AraRat provides a type safe SQL
interface for queries. It uses operator overloading over types generated based
on the actual database schema. When expressions violate schema rules or used
inconsistent way communicating with host C++ environment a compile-time
error is generated.

The boost:xpressive library [48] is used for compile time checking of regular
expressions. In most regex libraries, the patterns are represented as string literals
or variables and the syntax of the regular expressions (i.e. each parantheses has a
closing symbol, etc.) are checked only in run-time. The boost:xpressive library
allows creating and compile time checking certain regular expressions. This way
we can detect some syntactically bogus patterns in compilation time.

5.6 Traits, policy classes

In Section 3 we shortly discussed a matrix template. As this template uses
a buffer allocated in the heap to store the elements, we have to provide copy
constructor and assignment operator to ensure the meaningful copy of matrix

elements. The textbook example for such copy operators looks similar to this:

template <class T>

matrix<T> matrix<T>::operator=(const matrix &other)

{

if (this != &other)

{

delete [] v;

copy(other);

}

return *this;

}

template <class T>

void matrix<T>::copy(const matrix &other)

{

x = other.x;

y = other.y;

v = new T[x*y];

for (int i = 0; i < x*y; ++i)

v[i] = other.v[i];

}

The most expensive part of the function is the loop for copying the elements.
However, there will be a serious mistake to replace the loop with an otherwise
much faster bitwise copy function, like memcpy(). Since the type argument T

could be any copyable type, in the generic solution we have to call the assignment
operator of type T to ensure the correct copy behavior for the content of the
matrix. Exactly that happens in the line v[i] = other.v[i].

With the loop we created a safe copy. However, it is possible that in most of
the cases we will store elements of type int or double the matrix, i.e. elements
which are completely safe to copy with functions, like memcpy(). Such types are
called Plain Old Data (POD) types in C++. Can we somehow accomodate safety
with efficiency? Can we use memcpy() when copying POD types, and apply the
loop on other cases?

We can start with the most essential template tool we have: specializa-
tion. Let us specialize copy for some POD types (like long and double) using
memcpy() and leave the generic solution (with loop) for the rest of the types:

template <class T>

void matrix<T>::copy(const matrix &other) // generic version

{

x = other.x;

y = other.y;

v = new T[x*y];

for (int i = 0; i < x*y; ++i)

v[i] = other.v[i];

}

template <>

void matrix<long>::copy(const matrix &other) // specialization

{

x = other.x;

y = other.y;

v = new long[x*y];

memcpy(v, other.v, sizeof(long)*x*y);

}

// similar copy() for double, ...

This works, but quickly leads to unmanagable code. Type specific template spe-
cializations are scattered across the code and we have to repeat this procedure
for all new types we want to copy in the optimal way.

To modularize type-specific codes we can use trait classses. Traits in C++
provide a convenient way to associate related types, values, and functions with
a template parameter type without requiring that they be defined as members
of the type [2, 19]. This is extremely useful when we do not want to or not able
to add new members to an existing class.

One well-known application field of traits is the extension of non-class types,
such built-in types or pointers. For example, when an iterator is implemented
in the means of a C++ class, like vector::iterator we can define associated
types, like difference type or value type as members. However, this is impos-
sible for non-class types, like pointers which otherwise should behave similarly
for iterators. The solution is the iterator traits<> template, where we can
specify essential information for an iterator class:

template <class Iterator> struct iterator_traits;

template <class Iterator>

struct iterator_traits

{

typedef typename Iterator::value_type value_type;

typedef typename Iterator::reference reference;

typedef typename Iterator::pointer pointer;

typedef typename Iterator::difference_type difference_type;

typedef typename Iterator::iterator_category iterator_category;

// ...

};

template <>

struct iterator_traits<T*>

{

typedef T value_type;

typedef T& reference;

typedef T* pointer;

typedef ptrdiff_t difference_type;

typedef random_access_iterator_tag iterator_category;

// ...

};

Applications can access iterator’s features via the iterator traits class. Thus
we eliminate the difference between class types and built-in types.

template <class ForwardIter1, class ForwardIter2>

void iter_swap(ForwardIter1 it1, ForwardIter2 it2)

{

typename terator_traits<ForwardIter1>::value_type tmp = *it1;

*it1 = *it2;

*it2 = tmp;

}

A similarly important application of traits is the char traits<> template, where
we can collect essential extra information on the actual character type. The
char traits as a generic template class itself is defined, but never used. There
are several specializations for specific character types, like char traits<char>,
where fundamental features of the template argument type (here char) is de-
scribed. When generic templates, like basic string<> are about to use a char-
acter type, the appropriate traits class is the source of the implementational
details.

Traits provide an upward-compatible technique to allow greater flexibility,
even at runtime, at no cost in convenience or efficiency. We will use traits to
describe and to gather together copy-related informations in the matrix example.

We will create a generic trait class to handle the general case: copying with
loop applying the assignment operator of the template argument type. For indi-
vidual POD types we create copy trait specializations where the copy() function
is defined by the means of memcpy().

template <typename T>

struct copy_trait

{

static void copy(T* to, const T* from, int n)

{

for(int i = 0; i < n; ++i) // generic trait

to[i] = from[i];

}

};

template <>

struct copy_trait<long>

{

static void copy(long* to, const long* from, int n)

{

memcpy(to, from, n*sizeof(long)); // specialization

}

};

template <>

struct copy_trait<double>

{

static void copy(double* to, const double* from, int n)

{

memcpy(to, from, n*sizeof(double)); // specialization

}

};

template <class T, class Cpy = copy_trait<T> >

class matrix

{

//...

};

// ...

template <class T, class Cpy>

void matrix<T,Cpy>::copy(const matrix &other)

{

x = other.x;

y = other.y;

v = new T[x*y];

Cpy::copy(v, other.v, x*y);

}

We added an extra argument to class matrix as the trait class to describe the
expected behaviour in case of copying the object. When the matrix template is
about to be instantiated with a certain argument type X, the second argument
will be copy trait<X>. For those X parameters which has no trait specializations
the generic version of copy trait<> will be used. This will execute the loop-
based copy. For those X parameters we specialized copy traits we will execute
copy trait<X>::copy().

All type-specific functionalities can be concentrated into the appropriate trait
class. In the same time, class matrix does not include any type-specific code
anymore. Specifying new types to use memcpy() requires creating a new trait
class, i.e. we still have to repeat specializations, but at least we can modulize
them.

We can consider, that the copy we execute on long and double has essentially
the same code. In other words, our decision does not depend on the exact type
argument anymore. We have to know only that they are both POD types. Can
we generalize our solution based on this fact?

While traits contain basically collected information on a specific type ar-
gument, policy classes manifest strategies typically applicable for several types
[2].

We will define is pod class to hold information whether its type argument
is a POD type or not. Teh default value in the generic template will be false,
as we may not suppose PODness for unknown types. Declaring POD types is
expressed by specializations of is pod:

template <typename T>

struct is_pod

{

enum { value = false };

};

template <>

struct is_pod<long>

{

enum { value = true };

};

template <>

struct is_pod<double>

{

enum { value = true };

};

// other POD types...

Basically, that is the all type-specific part of the policy-based solution. The rest
of the code does not contain variations on different types and does not need to
modify when adding new POD types to the system.

Class copy policy retrieves information on the POD status of its template
argument and the matrix class will instantiate the appropriate copy policy au-
tomatically deduced from its first template argument.

template <typename T, bool B>

struct copy_policy

{

static void copy(T* to, const T* from, int n)

{

for(int i = 0; i < n; ++i)

to[i] = from[i];

}

};

template <typename T>

struct copy_policy<T, true>

{

static void copy(T* to, const T* from, int n)

{

memcpy(to, from, n*sizeof(T));

}

};

template <class T, class Cpy = copy_policy<T,is_pod<T>::value> >

class matrix

{

// ...

};

Here we impoved the solution separating two policies: copying POD types, and
non-POD types. To define a type as POD type we simply create a specialization
of is pod<> for that type. Thus, adding new POD types is done in a very
declarative way.

But we can still improve the solution using typelists. In the following solution
we simply declare the required POD types in a typelist and everything else is

done automatically. Compile time alogorithms, like Loki’s IndexOf, discussed in
section 4 is able to detect whether a type is member of a typelist.

typedef TYPELIST_4(char, int, long, double) Pod_types;

template <typename T>

struct is_pod

{

enum { value = ::Loki::TL::IndexOf<Pod_types,T>::value != -1 };

};

struct copy_trait

{

static void copy(T* to, const T* from, int n)

{

for(int i = 0; i < n; ++i)

to[i] = from[i];

}

};

template <typename T>

struct copy_trait<T, true>

{

static void copy(T* to, const T* from, int n)

{

memcpy(to, from, n*sizeof(T));

}

};

template <class T, class Cpy = copy_trait<T,is_pod<T>::value> >

class matrix

{

//...

};

Further automatization is compiler dependent. Using boost::type traits li-
brary, we can apply the boost::type traits::is pod<> template, which re-
turns true for POD types only. This functionality, however, uses highly sophis-
ticated template tricks and often depends on non-standard compiler intrinsics.

6 Debugging template metaprograms

Programming is a human activity to understand a problem, make design deci-
sions, and express our intentions for the computer. In most cases the last step
is writing code in a certain programming language. The compiler then tries to
interpret the source code through lexical, syntactic, and semantic analysis. In
case the source code is syntactically correct, the compiler takes further steps to
generate runnable code.

However, in numerous cases the code accepted by the compiler will not work
as we had expected, and intended. The causes vary from simple typos – that
(unfortunately) do not affect the syntax – to serious design problems. There are
various methods to decrease the possibility of writing software diverging from its
specification, nevertheless in many cases we have made some error, and we have
to fix it. For this we have to recognise that the bug exists, isolate its nature, and
find the place of the error to apply the fix. This procedure is called debugging.

Debuggers are software tools to help the debugging process. The main ob-
jective of a debugger is to help us understand the hidden sequence of events
that led to the error. In most cases this means following the program’s control
flow, retrieving information on memory locations, and showing the execution
context. Debuggers also offer advanced functionality to improve efficiency of the
debugging process. These include stopping the execution on a certain breakpoint,
continuing the running step by step, step into, step out, or step over functions,
etc. Still, debugging can be one of the most difficult and frustrating tasks for a
programmer.

In this section we describe possible debugging stategies for C++ template
metaprograms. First we discuss the ontology of template metaprogram errors,
than we overview possible implementation strategies for debugging template
metaprograms.

6.1 Ontology of template metaprogram errors

As we have seen in section 3, Unruh’s first template metaprogram emitted error
messages to print prime numbers. The program is errorneous in the traditional
sense, as it would not compile and therefore is unable to run. Was this program
correct or errorneous as a template metaprogram? As the goal of the program –
printing prime numbers – has been achieved, we should consider Unruh’s code
as a correct metaprogram. This example points out the difference of the no-
tions correct and erroneous behaviour between traditional runtime programs
and template metaprograms.

Let us examine the Factorial metaprogram described in Section 3, and let
us suppose that the template specialization Factorial<1> has a syntactic error:
a semicolon is missing at the end of the class definition.

template <int N>

class Factorial

{

public:

enum { value = N*Factorial<N-1>::value };

};

template<>

class Factorial<1>

{

public:

enum { value = 1 };

} // ; missing

This is an ill-formed template metaprogram, with a diagnostic message. The
metaprogram has not been run: no template instantiation happened. Another
ill-formed template metaprogram with diagnostic message is shown in the next
example. However, it starts to ”run”, i.e. the compiler starts to instantiate the
Factorial classes, but the metaprogram aborts (in compilation time).

template <int N>

class Factorial

{

public:

enum { value = N*Factorial<N-1>::value };

};

template<>

class Factorial<1>

{

// public: missing

enum { value = 1 };

};

int main ()

{

const int f = Fibonacci<4>::value;

const int r = Factorial<5>::value;

}

As the full specialization for Factorial<1> is written in form of a class, the
default visibility rule for a class is private. Thus enum { value=1 } is a private
member, so we receive a compile-time error when the compiler tries to acquire the
value of Factorial<1>::value, when Factorial<2> is being instantiated. The
main difference from the earlier ill-formed example is that here instantiations
are started. For example, the Fibonacci<4>::value is computed.

In our next example we remove the full specialization Factorial<1>:

template <int N>

struct Factorial

{

enum { value = N*Factorial<N-1>::value };

};

// specialization for N==1 is missing

int main ()

{

const int r = Factorial<5>::value;

}

As the Factorial template has no explicit specialization, the Factorial<N-1>

expression will trigger the instantiations of Factorial<1> followed by the instan-
tiation of Factorial<0>, Factorial<-1> etc. We have written a compile-time

infinite recursion. This is an ill-formed template metaprogram with no diagnostic
message, equivalent to infinite loops of run-time programs.

The C++ standard requires a minimum of 17 level of recursive template in-
stantiations. Therefore portable metaprograms must not exceed this limit. How-
ever, different compilers have rather diverse behavior.

Compiler g++ 3.4 halts the compilation process after the 17 levels of im-
plicit instantiations is reached, as defined by the C++ standard. This limit can
be modified by compiler flags. The MSVC 6 compiler runs until its resources are
exhausted (reached Factorial<-1308> in our test). MSVC 7.1 halted the com-
pilation reaching a certain recursion depth. The error message received was fatal
error C1202: recursive type or function dependency context too complex.

However, some compilers, like g++ can be parameterised to accept deeper
instantiation levels. In this case the compiler continues the instantiation risking
that the resources will be exhausted. In that unfortunate situation the compiler
will crash.

6.2 Debugging techniques

Tools we use in run-time programming for debugging are not available in the
well–known way, when dealing with metaprograms. We have no command for
printing to the screen (in fact we have practically no commands at all), we
have no framework to manage running code. On the other hand, we still have
some options. Having a set of good debugging tools in the runtime world and a
strong analogue between the runtime and compile-time realm we can attempt to
implement a template metaprogram debugging framework. In the following we
explain the structure of templight, a template metaprogram debugger framework.

A common property of debugging tools is that they analyse a specific execu-
tion of the program. In the case of debugging C++ template metaprograms our
goal is to retrieve the chain of template instantiations with as much additional
information (template parameters, etc.) as we can.

In the most favourable case the execution does not depend on the usage of
the debugging tool. In such cases it does not matter whether we are using the
tool on the running program itself or we analyse a previously generated trace of
its runtime steps. Most compilers generate additional information for debuggers
and profilers. Obviously the simplest way for providing trace information on in-
stantiations would be the implementation of another compiler feature. However,
an immediate and more portable solution is to use external tools cooperating
with standard C++ language elements. The appropriate compiler support could
be an ideal long-term solution.

Without the modification of the compiler the only way of obtaining any in-
formation during compilation is generating informative warning messages that
contain the details we are looking for [1]. Therefore the task is the instrumenta-
tion of the source, i.e. its transformation into a functionally equivalent modified
form that triggers the compiler to emit talkative warning messages. The concept
of such instrumentation is a usual idea in the field of debuggers, profilers and
program slicers. Everytime the compiler starts to instantiate a template, defines

an inner type etc. the inserted code fragments generate detailed information on
the actual template-related event. Similar warnings should be emitted when we
reach the end of the template. Embedded start and end markers unambigously
identifies the chain of template instantiations – similarly to the stack frames of
run-time programs. We have to gather the desired information from the corre-
sponding warning messages in the compilation output and form a trace file. A
front-end tool may use this information to implement various debugging features
and visualization of the instantiations.

The input of the process is a C++ source file and the output is a trace file,
a list of events like instantiation of template X began, instantiation of template
X ended, typedef definition found etc. The procedure begins with the execution
of the preprocessor with exactly the same options as if we were to compile the
program. As a result we acquire a single file, containing all #included template
definitions and the original code fragment we are debugging. The preprocessor
decorates its output with #line directives to mark where the different sections
of the file come from. This information is essential for a precise jump to the
original source file positions as we step through the compilation while debugging
in an IDE for example. To simplify the process we handle the mapping of the
locations in the single processed file to the original source files in a separate
thread. Simple filter scripts move the location information from #line directives
into a separate mapping file and delete #line directives.

At this point we have a single preprocessed C++ source file, that we trans-
form into a C++ token sequence. To make our framework as portable and self-
containing as possible we apply the boost::wave C++ parser. Note that even
though boost::wave supports preprocessing, we still use the original preproces-
sor tool of the compilation environment to eliminate the chance of bugs occurring
due to different tools being used. Our aim is to insert warning-generating code
fragments at the instrumentation points. As wave does no semantic analysis
we can only recognise these places by searching for specific token patterns. We
go through the token sequence and look for patterns like template keyword +
arbitrary tokens + class or struct keyword + arbitrary tokens + { to identify
template definitions. The end of a template class or function is only a } token
that can appear in quite many contexts, so we should track all { and } tokens
in order to correctly determine where the template contexts actually end. This
pattern matching step is called annotating, its output is an XML file containing
annotation entries in a hierarchical structure following the scope.

The instrumentation takes this annotation and the single source and inserts
the warning-generating code fragments for each annotation at its correspond-
ing location in the source thus producing a source that emits warnings at each
annotation point during its compilation. The next step is the execution of the
compiler to have these warning messages generated. The inserted code fragments
are intentionally designed to generate warnings that contain enough information
about the context and details of the actual event. Since the compiler may pro-
duce output independently of our instrumentation, it is important for debugger
warnings to have a distinct format that differentiates them. This is the step

where we ask the compiler for valuable information from its internals. Here the
result is simply the build output as a text file. The warning translator takes the
build output, looks for the warnings with the aforementioned special format and
generates an event sequence with all the details. The result is an XML file that
lists the events that occurred during the compilation in chronological order. The
annotations and the events can be paired. Each event signals that the compiler
went through the corresponding annotation point. We can say events are actual
occurrences of the annotation points in the compilation process. More technical
details on templight can be found in [24].

6.3 Profiling

Unfortunately, implementations of template metaprograms are typically far from
optimal [1]. One reason is that compilers are optimized to generate efficient run-
time code and not designed to maximize efficiency of the compilation process
itself. Another reason is that programmers are not familiar with all the back-
ground costs of the metaprogram constructs. This may result in a very long
compilation time and huge memory usage. With a profiling tool we should be
able to identify these ”noisy” code segments, which hold up the compilation
process. Since traditional profiler tools are unapplicable to metaprograms run-
ning in compile-time, the development of metaprogram-specific profiling tools is
crucial. Unfortunately, today there are no C++ template metaprogram profiling
tools available. In this subsection we describe methods for template metapro-
gram profiling, which could serve as foundations of an optimization process.

Measuring compilation units The most available method to measure com-
pile time performance is measuring full compilation of units. Compilation of
full source files does not require code modification, thus this is a non-intrusive
method, and do not add overhead or significant distorsion. Although filtering
out all perturbations is not easy, most of the operating systems provide us fair
tools to measure the experienced real-time, user and system times on the run of
a compilation session.

In most cases locating, loading, and parsing header files is a non-trivial ef-
fort. To filter out this effect we can run the precompiler in a separate session
and measure only further compilation stages. Figure 6 shows that separating
precompiler tasks changes the compilation times significantly.

Compiling full programs or compilation units can reveal significant behavioural
patterns of programs or template constructs. Abrahams and Gurtovoy measured
template metaprogram constructs in [1] with this method and could point to
fundametal differences in strategy and tactics of different compilers. They have
shown the effect of certain techniques, like memoisation and have measured
structural complexity of metaprograms.

However, measuring full compilation time has shortages. It is not always
trivial to write wrapper programs around specific template constructs without
seriously distort measurement results. The full session of compilation includes ac-
tivities we are not interested in: initializations, outputting, solving non-template

in one step
already preprocessed

separate preprocessing

Fig. 6. Compilation time with separate precompilation

related tasks. Code generation, optimization steps produce significant overload
too. When we analyse the results we have the compilation times, but no implica-
tions on how this gross time splits among different code components. Measuring
full compilation is great to prove concepts but hard to use for analysis.

Measuring with instrumenting Most compilers generate additional infor-
mation for profilers. An appropriate compiler support for measuring template
metaprogram profiles would be the ideal solution. However, as this support is
unavailable as of now, an immediate and portable method is to use external tools
cooperating with standard C++ language elements.

A natural choice is using the templight tool, described in subsection 6.2, to
instrument the source code providing profiling information. With the templight
framework we have to execute only one compilation that emits warnings for each
instantiation, and a post processing pipelined tool memorizes the timestamps
whenever a warning occures. This way we have timestamps for each template-
related event, and the processing time of a certain template instance can be easily
computed by subtracting the timestamps stored at the corresponding template-
begin and template-end events (warning messages).

A factor of distortion is the way we add timestamps to the emitted warning
messages. Compilers do not decorate warnings with timestamp info. In the sim-
plest solution an external program reads compiler output and records the actual
time whenever it sees some of our special warning messages being produced by
the instrumented fragments. In this case the delay between the warning is gen-
erated and timestamped can be sigificant. Better way, if timestamp is generated
inside the compiler when constructing the warning message, this delay can be
eliminated. But this requires the modification of the compiler.

Using templight there is a special attention have to be paid to inheritance
relationship. As warnings emitted by the injected code appear at the begin and
end of templated code, the end marker of the base class will be emitted before the
begin marker of the derived class. This could be solved by the extra decoration
of the (first) base class.

template <typename T>

class Derived : public ReportInherit<Derived<T>, Base<T> >::Base

{

/* skipping this instrumentation point */

// ..

/* remaining instrumentation point */

};

Modification of the compiler The most accurate way of evaluating com-
pilation times is by acquiring timing information from the compiler itself. As
our metaprogram is executed on a meta-level from the viewpoint of C++, a
meta-level profiler is needed, i.e. one measuring the compiler’s action times. The
näıve approach – to use a profiler tool (like gprof) and measure the compiler’s
runtime – does not work, since we cannot identify which metaprogram elements
of the subject code are under compilation at a certain moment. Even though we
would be able to measure some kind of compiler method’s running time in gen-
eral, we could not disambiguate certain instantiations. In other words, we could
acquire the sum of all instaniation times, but would not be able to measure each
instantiation separately.

raw

corrected

Fig. 7. Compile time with the time spent for warnings (raw) and without it (corrected)
in a test of increasing template depth

To gain the required detailed data on particular instantiations we have to modify
the compiler fur the purpose. We instrument the code with templight, but gen-
erate warnings decorated with timestamps via the modified compiler. In Figure
7 we show the compile time after we instrumented GNU g++ compiler (version
3.4.3) The modification consists of generating timestamps when entering and
exiting these functions and adding it to the emitted message. We used this ap-
proach to eliminate the distortion of generating the warning itself. Experiments
showed, that in many cases the time we spent in these functions is significant.

The measured code contains a recursive template instantiated with a large
parameter. The raw data shows the observed times, i.e. the compilation time the
compiler spent on instantiating up to 2500 instances of the measured class plus
the time of the warning generation due to code instrumentation. The corrected
data has been constructed by subtracting the time the compiler spent with
warning generation from the observed time.

7 Functional interface for template metaprograms

Writing programs today is largely supported by various automated tools, like
code generators mapping UML notations to source code, model driven archi-
tectures, cross-compilers, RAD tools, etc. Coding, however, is still considerably
influenced by personal experiences, conventions, traditions, and customs. The
syntax and the semantics of the programming language is a major factor as
it seriously drives the programmer’s attitude. It is possible, but not easy to
program in a style which is not directly supported by the actual programming
language. Even worse if the required programming approach is not a supported
paradigm. Similarly, as the spoken language has impact on human perception,
the programming language may drive programmer’s style. In an ideal situation
the applied programming language supports the paradigm the task have to be
solved in.

C++ templates has been designed to express genericity on data structures
and algorithms – i.e. parametric polymorphism. Template metaprogramming
has been discovered almost as a side effect, and template syntax that time has
already been formulated. That syntax is far to be expressive regarding template
metaprograms.

Let’s examine the following C++ template metaprogram which decides in
compile time whether it’s parameter is a prime number.

#include <iostream>

namespace { int helper_begin(char*); }

template <int n>

struct Print { enum{ helper_begin_=sizeof(helper_begin(""))}; };

template <bool condition, class True, class False>

struct If : True {};

template <class True, class False>

struct If<false, True, False> : False {};

template <bool b>

struct Bool { static const bool value = b; };

template <class a, class b>

struct And : Bool<a::value && b::value> {};

template <int from, int to, int n>

struct IsPrimeImpl : If< from <= to,

And< Bool<n%from!=0>,

IsPrimeImpl<from+1,to,n>

>,

Bool<true>

> {};

template <int n>

struct IsPrime {

static const bool value=IsPrimeImpl<2,n/2,n>::value;

};

struct Nop {};

template <int n>

struct PrintIfPrime : If< IsPrime<n>::value,

Print<n>,

Nop

> {};

template <class A, class B>

struct Sequence

{

A a;

B b;

};

template <int from, int to>

struct PrintPrimes : If< from <= to,

Sequence<PrintIfPrime<from>,

PrintPrimes<from+1,to>

>, Nop> {};

int main()

{

std::cout << IsPrime<337>::value << std::endl;

}

As we have seen in Section 4, C++ template metaprograms’ behaviour and their
programming are very close to functional programming paradigm. Although, this
relationship is well-known, current C++ template metaprogramming libraries
does not support functional programming directly. Metaprogram implementors
are forced to use alien techniques and extremely intricate syntax to implement

their own concepts. This often leads to cryptic, unmanageable and fragile code
as the sample above.

In this Section we propose a functional programming interface for C++ tem-
plate metaprograms. Using this idea metaprogram developers write embedded
Haskell code to express compile time algorithms and data structures inside C++
host language. These Haskell fragments are automatically translated to native
C++ code, which then can be compiled by any standard compliant C++ com-
piler. Haskell snippets can communicate with the surrounding C++ environment
and – via the host language – to each other.

With the help of such a translator we can write the previous prime-decider
program in the following way:

#include <lambda.h>

__BEGIN(Haskell)

divides b a = (a ‘mod‘ b == 0)

hasDivider n from to = (from <= to) && ((divides from n) ||

(hasDivider n (from + 1) to));

isPrime 1 = False;

isPrime n = not (hasDivider n 2 (n ‘div‘ 2));

main = print (isPrime 1);

__END(Haskell)

#include <iostream>

int main()

{

cout << lambda::Reduce< HaskellMain >::type::value << endl;

}

To implementing this idea we use a step-wise transformation using intermediate
languages. Intermediate languages not only make the implementation more sta-
ble but also useful to execute everyday tasks, like debugging. Our experimental
transformator uses Yhc.Core, the York Haskell Compiler’s core language [55]
as the first intermediate language, and Lambda language, our own language to
express lambda expressions [29] as the second intermediate language. Therefore
the transformation takes three major steps. First Haskell code is translated to
Yhc.Core with the Yhc compiler. In the second step the Yhc.Core is adjusted
to our Lambda language. In the last step, Lambda is used to generate standard
compliant C++ source. Then users may compile the final result with any recent
C++ compiler.

There are other possible transformation schemas. Instead of Yhc, one can
consider using the Glasgow Haskell Compiler [54] to utilize better parsing pos-
sibilities.

C++

Haskell

Haskell Yhc.Core

Yhc.Core

C++
C++

Lambda

Lambda

Lambda

C++native

Template

Template

Template

metaprog.

metaprog.

metaprog.

Lambda gen. C++ Template
metaprog. gen.

Yhc

Fig. 8. Transformation schema of embedded Haskell to template metaprograms

Another experimental project uses EClean a subset of the Clean functional lan-
guage [15, 23]. A Clean to Template Metaprogram translator has been written,
and tested on varoius applications [30].

7.1 Generating Yhc.Core code

Yhc.Core [16, 55] is a core Haskell-like language all Haskell programs can be
expressed in. It uses a small amount of structures making it easy to process
programs further. Haskell programs can be transformed into Yhc.Core using the
York Haskell Compiler using the --showcore argument. It generates a human
readable code which is easy to use for further processing. The Core language can
be treated as a subset of Haskell with restrictions:

– Case statements examine their outermost constructor

– Does not contain type classes

– Does not contain where statements

– Has only top level functions

– Fully qualified names

– Constructors and primitives are fully applied

Currently lambda expressions are guaranteed not to appear in the output of
the Haskell to Core transformation. The syntax of Yhc Core is found in [16].

7.2 Generating lambda expressions

We defined our Lambda language to express lambda expressions in a handy way.
Lambda is a full-featured language. Programmers may embed Lambda code into
C++ [29] and generate C++ template metaprograms. However, in this case
Lambda is used as an intermediate language.

We use the definition of non-typed enriched lambda expressions from [22]. We
express the λ symbol with the \ character. As you can see our solution supports
naming lambda expressions. The syntax is the following:

<named lambda expression> ::=

__lambda <name> = <expression>;

<expression> ::=

<constant> | <variable> |

<expression> <expression> |

\ <name> . <expression> |

(<expression>);

Decimal numbers and built-in operators are valid constants. Supported opera-
tors are: +, −, ∗, /, %, <, >, <=, >=, <>, =, $. (These operators have the
usual meanings, % is modulo and $ is the fix point operator). We restrict the
form of a general lambda abstraction allowing only one variable, i.e. the expres-
sion \xy.E should be written in form of \x.\y.E. This restriction doesn’t affect
expressiveness.

The code generated by Yhc contains a list of function definitions. Each func-
tion definition is converted into a named lambda expression with a correspond-
ing name. Functions taking arguments are converted into lambda abstractions: a
new abstraction is introduced for each argument of the function. These lambda
abstractions wrap each other in their order of appearance in the argument list.
The lambda abstraction generated for the leftmost argument is the outermost.
The innermost lambda abstraction encapsulates the body of the function.

Function applications are handled by our lambda expressions. The let ex-
pressions and the case expressions are transformed into lambda expressions
supported by our syntax based on the transformation techniques described in
[22].

7.3 Generating template metaprograms

We have another tool transforming lambda expressions into C++ template
metaprograms which can be compiled by any standard C++ compiler. These
metaprograms have access to directly implemented template metaprograms mak-
ing interoperability between lambda expressions (and Haskell functions) and di-
rectly implemented template metaprograms possible.

During the execution of the generated template metaprograms the C++
compiler builds the graph of the expression and reduces it lazily. Our compiler
compiles named lambda expressions into C++ classes (metafunction classes [1])
implementing the lambda expression. The names of the classes are the names
of the lambda expressions indicating that names have to be valid C++ names.
Since these expressions are translated into C++ classes they can be at any part
of the code where classes can be defined [3] indicating that Haskell code can be
embedded at any part of the C++ code where classes can be defined.

Lazy and eager evaluation Our compiler supports lazy evaluation of lambda
expressions: every (sub)expression is evaluated only when it’s value is needed.

It makes implementation of infinite data structures (such as infinite lists) pos-
sible. Eager evaluation is supported by the classes implementing the lambda
expressions in C++ but are not supported directly in the lambda expressions
themselves: they are always evaluated lazily indicating that Haskell functions
are always evaluated lazily.

Currying Currying is supported: when the number of elements applied to a
function symbol is less than the number of elements required by the function
symbol the result is a new function symbol. For example: we have an anonymous
function requiring two elements to be applied to it: \x.\y. + x y. When only
one element is applied to this function the result is a new function requiring one
element to be applied to it. (\x.\y. + x y) 5 is equivalent to \y. + 5 y.

Haskell function applications are translated into applications of lambda ex-
pressions indicating that the template metaprograms generated from Haskell
functions support currying and are evaluated using currying.

Constants Constants are implemented by a class. Currently two types of con-
stants are supported: integral constants and types. Types are implemented by
themselves, for example the type int is implemented by int. Integral constants
are implemented by a wrapper class, such as the wrappers from boost::mpl.
Currently Haskell code can’t reference types, it has access to integral constants
only.

Lambda abstractions Lambda abstractions are implemented by metafunction
classes whose embedded apply metafunction takes exactly one argument. The
name of the argument is the name of the variable the lambda abstraction bounds.

For example here is a lambda expression and it’s implementation:

// The lambda expression

__lambda I = \x. y;

// It’s implementation

struct I {

template <class x>

struct apply {

typedef y type;

};

};

Variables Variables are implemented by their name. A name symbol from the
lambda expression becomes a name symbol in C++. Binding of the names in
lambda abstractions is done by the C++ compiler. As we could see it in the pre-
vious example the lambda expression y becomes typedef y type in the C++
template metaprogram. The example has a lambda abstraction binding x. This

lambda abstraction is represented by a template metafunction taking one argu-
ment called x. When this metafunction is instantiated the x symbols in it’s body
(if there are any) are replaced by the class the metafunction is instantiated with.

Eagerly evaluated applications Eager application of a lambda expression to
a lambda abstraction is implemented by the evaluation of the apply metafunc-
tion. The C++ compiler does β conversion during the instantiation because the
name of the bounded variable is the name of the argument of the nested apply

metafunction (and the variables are implemented by their names).
The I lambda expression defined in the previous code example can be evalu-

ated either in an eager or lazy way. To specify eager evaluation, the user should
use the following C++ construct:

typedef I::apply<I>::type ApplicationOfIToItself;

Currying in built-in functions Built-in in functions (such as the arithmeti-
cal or logical operators) have more than one arguments. Their implementation
has to support currying. They have to be implemented as lambda abstractions.
For example applying an element to the plus operator has to evaluate to an-
other lambda abstraction, applying another element to that has to evaluate to
a constant (and the value of it has to be the sum of the arguments). It can be
implemented easily using nested types and templates. As an example here is the
implementation of the plus operator:

struct OperatorPlus {

template <class a>

struct apply {

struct type {

template <class b>

struct apply {

// ... implementation of addition,

// possibly by boost::mpl

};

};

};

}

We assume that every built-in function supports partial evaluation (to a lambda
abstraction).

7.4 Lazy application

Applications in lambda expressions (and in Haskell) are evaluated only when
their value is needed, they can’t be translated into eager applications. We use
the following template to implement lazy application:

template <class left, class right>

struct Application {};

Using this metafunction lazily evaluated template expressions can be built as
binary trees of applications: the instances of the Application template represent
the application nodes of the tree, the left and right arguments represent the
sub trees of the application nodes.

We define a metafunction implementing reduction of expressions to weak
head normal form [5]. Standalone lambda abstractions, constants and built-in
functions are in weak head normal form. Lazy applications are never in weak
head normal form, since we assume that every built-in function supports partial
evaluation. These considerations simplify the reduction algorithm:

while (the top level element is a lazy application)

reduce the left side of the top level element to

weak head normal form

evaluate the top level application

We implemented this in a metafunction called Reduce:

template <class T> struct Reduce {typedef T type;};

template <class left, class right>

struct Reduce< Application<left, right> > {

typedef

typename Reduce<

typename

Reduce<left>::type::template

apply<right>::type

>::type type;

};

The general case handles lambda expressions which are already in weak head nor-
mal form, there is a specialization of the template for reducing lazy applications
in normal order reduction: it reduces the left sub-expression of the application to
weak head normal form (typename Reduce<left>::type) after which the left
side is in weak head normal form, so the next redex is this application:

typename Reduce<left>::type::template apply<right>::type

Finally the resulting expression is reduced as well.

7.5 Interoperability with directly implemented C++ metafunctions

Lambda expressions are translated to their C++ equivalents. The generated code
is valid C++ sources with template definitions. Such templates can be written
directly, without implementing their Lambda equivalents. Directly implemented
Lambda expressions can be used in generated Lambda expressions as constants.
For example:

struct DirectLambdaExpression {

// implementation...

};

__lambda f = \n. DirectLambdaExpression 2 n;

It makes extension of the built-in operators possible and parts of the expressions
can be implemented using other techniques.

Lambda expressions can be used by directly implemented C++ template
metaprograms as well since lambda expressions are compiled into template metapro-
grams. After they are compiled into template metaprograms there is no difference
between a directly implemented lambda expression and a compiled one: the com-
piled one can be used as a directly implemented one. Lambda expressions can
be used as built-in functions in other lambda expressions, for example:

__lambda add = \a.\b. + a b;

__lambda f = \n. * n (add 6 7);

Lambda expressions can be used in their own definition simplifying the creation
of recursive expressions:

__lambda rec = \n. (< n 1) 13 (rec (- n 1));

Due to the visibility rules of C++ [3] lambda expressions are visible after their
declaration. For example the following code wouldn’t compile because b is defined
after a:

__lambda a = \n. b n;

__lambda b = \n. + 1 n;

Our compiler supports forward declaration of lambda expressions by ensuring
that every lambda expression compiled to C++ will be implemented as a struct.
In the previous example b can be declared before a is defined:

struct b;

__lambda a = \n. b n;

__lambda b = \n. + 1 n;

Haskell functions are visible in the whole Haskell block, to support this our
Yhc.Core to lambda expression transformation tool adds forward declaration
of the named lambda expressions to the beginning of each lambda expression
list generated from an embedded Haskell block. Note that this makes functions
visible to each other within an embedded Haskell block. Visibility of functions
defined in separate Haskell blocks depend on the C++ visibility rules [3] because
Haskell functions are transformed into C++ classes.

7.6 Evaluation

Ideally, the syntax of a programming language should match the paradigm the
program is written in. Template metaprogramming, a Turing-complete subset
of the C++ language, is many times regarded as a pure functional language.
Unfortunately, the current way of writing metaprograms is far from the ideal,
mainly due to the complicated template syntax and the different original design
goals of C++.

In this section we described a method which makes metaprogram developers
able to express their intentions directly in functional style using Haskell syntax.
Haskell code snippets are embedded into the C++ program and are translated
into native C++ code. The translation process uses a stepwise approach; and
the last step generates C++ template metaprogramsi which could be compiled
by any standard conformant C++ compiler.

We have shown that using embedded Haskell simplifies template metapro-
grams, make them easier to write and maintain. The developer can focus on the
functionality of the metaprogram, reusing a huge number of existing algorithms
and data structures implemented as Haskell libraries make them available to the
C++ metaprogramming community.

8 Related work

8.1 FC++

FC++ is a C++ library providing runtime support for functional programming
[20]. Using the tools the library provides functional programs can be written in
C++ from which the expression graph is built and evaluated at runtime. They
don’t require any external tool (such as a translator) they use standard language
features only. The library focuses on runtime execution.

8.2 Boost metaprogramming library

Boost has a template metaprogramming library called boost::mpl which im-
plements several data types and algorithms following the logic of STL [14]. Our
solution is designed to be compatible with it (the lambda expressions produced
by our compiler are designed to be template metafunction classes taking one
argument).

Boost::mpl has lambda expression support: the library provides tools to
create lambda abstractions easily: placeholders (1, 2, etc.) are provided and
arguments of metafunctions can be replaced by them. The result of evaluating
a metafunction with one (or more) placeholder argument is not directly usable,
a metafunction called lambda generates a metafunction class from them. Using
these lambda abstractions partial function applications can be implemented, but
since lambda bounds every placeholder lambda abstractions with other lambda
abstractions as their value can’t be defined. For example λx.λy.+xy can’t be
expressed (and neither can be the Y fixpoint operator).

8.3 Boost lambda library

Boost has a library for implementing lambda abstractions in C++ [51]. It’s main
motivation is simplifying the creation of function objects for generic algorithms
(such as STL algorithms). With the library function objects can be built from
expressions (using placeholders). The lambda abstractions built using this library
can be used at runtime.

8.4 Haskell type classes

Zalewski et al. defined a mapping from generic Haskell specifications to C++
with concepts [43]. Haskell multi-parameter type classes with functional depen-
dencies have been translated to ConceptC++, an experimental implementation
of the concept feauture of C++0x. The translation process consists of three
major parts: the division of Haskell class variables i nto ConceptC++ concept
parameters and associated types, the corresponding division of superclasses in
the context of a type class, and the flattening of Haskell AST to the concrete syn-
tax of ConceptC++. The main motivation of the authors was to model software
components in Haskell and implemented in C++ automated the translation.

8.5 Debugging and profiling

Template metaprogramming was first investigated in Veldhuizen’s articles [40].
Static interface checking was introduced by McNamara [21] and Siek [26]. The
compile-time assertion appeared in Alexandrescu’s work [2]. Vandevoorde and
Josuttis introduced the concept of a tracer, which is a specially designed class
that emits runtime messages when its operations are called [37]. When this type
is passed to a template as an argument, the messages show in what order and how
often the operations of that argument class are called. The authors also defined
the notion of an archetype for a class whose sole purpose is checking that the
template does not set up undesired requirements on its parameters. In their book
[1] Abrahams and Gurtovoy devoted a whole section to diagnostics, where the
authors showed methods for generating textual output in the form of warning
messages. They implemented the compile-time equivalent of the aforementioned
runtime tracer (mpl::print, see [50]).

9 Conclusion

Ideally, the syntax of a programming language should match to the paradigm the
program is written in. Template metaprogramming, a Turing-complete subset of
the C++ language for implementing compile-time algorithms via cleverly placed
templates, is many times regarded as a pure functional language. Unfortunately,
the current way of writing metaprograms is far from the ideal, mainly due to
the complicated template syntax and the different original design goals of C++.

In this paper we gave a brief and noncomplete introduction to C++ templates
and C++ template metaprogramming. We learned the base techniques of writing

metaprograms, and using a motivating example we followed how deeply can we
automatize code adoption using metaprograms.

10 Examples

The examples come here.

References

1. David Abrahams, Aleksey Gurtovoy: C++ template metaprogramming, Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley, Boston, 2004.

2. Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

3. ANSI/ISO C++ Committee. Programming Languages – C++. ISO/IEC
14882:1998(E). American National Standards Institute, 1998.

4. T. H. Brus, C. J. D. van Eekelen, M. O. van Leer, M. J. Plasmeijer, CLEAN:
A language for functional graph rewriting, Proc. of a conference on Functional
programming languages and computer architecture, Springer-Verlag, 1987, pp.364-
384.

5. Zoltán Csörnyei and Gergely Dévai, An introduction to the lambda-calculus, Lec-
ture Notes in Computer Science, Springer-Verlag, LNCS Vol. 5161, pp. 87-111 ISSN
0302-9743, ISBN 3-540-88058-5

6. Olaf Chitil, Zoltán Horváth, Viktória Zsók (Eds.): Implementation and Application
of Functional Languages, Springer, 2008, [273], ISBN: 978-3-540-85372-5

7. K. Czarnecki, U. W. Eisenecker, R. Glck, D. Vandevoorde, T. L. Veldhuizen, Gen-
erative Programming and Active Libraries, Springer-Verlag, 2000.

8. Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods,
Tools and Applications. Addison-Wesley (2000)

9. Ulrich W. Eisenecker, Frank Blinn and Krzysztof Czarnecki: A Solution to the
Constructor-Problem of Mixin-Based Programming in C++. In First C++ Tem-
plate Programming Workshop, October 2000, Erfurt.

10. David Flanagan, Yukihiro Matsumoto: The Ruby Programming Language O’Reilly
Media, Inc. (January 25, 2008) ISBN-10: 0596516177, ISBN-13: 978-0596516178

11. Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock:
A Comparative Study of Language Support for Generic Programming. Proceedings
of the 18th ACM SIGPLAN OOPSLA 2003, pp. 115-134.

12. Yossi Gil, Keren Lenz, Simple and Safe SQL queries with C++ templates In:
Charles Consela and Julia L. Lawall (eds), Generative Programming and Compo-
nent Engineering, 6th International Conference, GPCE 2007, Salzburg, Austria,
October 1-3, 2007, pp.13-24.

13. Zoltn Juhsz, dm Sipos, Zoltn Porkolb, Implementation of a Finite State Machine
with Active Libraries in C++. In: Ralf Lammel, Joost Visser, Joao Saraiva (Eds.):
Generative and Transformational Techniques in Software Engineering II, Inter-
national Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Lecture
Notes in Computer Science 5235 Springer 2008, ISBN 978-3-540-88642-6., pp. 474-
488.

14. Björn Karlsson: Beyond the C++ Standard Library, A Introduction to Boost.
Addison-Wesley, 2005.

15. P. Koopman, R. Plasmeijer, M. van Eeekelen, S. Smetsers, Functional programming
in Clean, 2002

16. N. Mitchell, C. Runciman: A Supercompiler for Core Haskell. In Chitil et al. Imple-
mentation and Application of Functional Languages: 19th International Workshop,
IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers,
Springer-Verlag, Berlin, Heidelberg, 2008

17. David R. Musser and Alexander A. Stepanov: Algorithm-oriented Generic Li-
braries. Software-practice and experience, 27(7) July 1994, pp. 623-642.

18. David R. Musser and Alexander A. Stepanov: The Ada Generic Library: Linear
List Processing Packages. Springer Verlag, New York, 1989.

19. Nathan Myers: Traits: a new and useful template technique. C++ Report, June
1995.

20. B. McNamara, Y. Smaragdakis: Functional programming in C++, Proceedings
of the fifth ACM SIGPLAN international conference on Functional programming,
pp.118-129, 2000.

21. Brian McNamara, Yannis Smaragdakis: Static interfaces in C++. In First C++
Template Programming Workshop, October 2000, Erfurt.

22. Simon L. Peyton Jones: The Implementation of Functional Languages. Prentice
Hall, 1987, [445], ISBN: 0-13-453333-9 Pbk

23. R. Plasmeijer, M. van Eeekelen, Clean Language Report, 2001.
24. Zoltán Porkoláb, József Mihalicza, Ádám Sipos, Debugging C++ template

metaprograms, In: Stan Jarzabek, Douglas C. Schmidt, Todd L. Veldhuizen (Eds.):
Generative Programming and Component Engineering, 5th International Confer-
ence, GPCE 2006, Portland, Oregon, USA, October 22-26, 2006, Proceedings. ACM
2006, ISBN 1-59593-237-2, pp. 255-264.

25. Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, Gabriel Dos Reis, Bjarne Strous-
trup, and Andrew Lumsdaine: Concepts: Linguistic Support for Generic Program-
ming in C++. In Proceedings of the 2006 ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (OOPSLA’06), Octo-
ber 2006.

26. Jeremy Siek and Andrew Lumsdaine: Concept checking: Binding parametric poly-
morphism in C++. In First C++ Template Programming Workshop, October
2000, Erfurt.

27. Jeremy Siek and Andrew Lumsdaine: Essential Language Support for Generic Pro-
gramming. Proceedings of the ACM SIGPLAN 2005 conference on Programming
language design and implementation, New York, NY, USA, pp 73-84.

28. Jeremy Siek: A Language for Generic Programming. PhD thesis, Indiana Univer-
sity, August 2005.

29. Ábel Sinkovics, Zoltán Porkoláb: Expressing C++ Template Metaprograms as
Lambda expressions. In Tenth symposium on Trends in Functional Programming
(TFP ’09, Zoltán Horváth, Viktória Zsók, Peter Achten, Pieter Koopman, eds.)
Jun 2 - 4, Komarno, Slovakia 2009., pp. 97-111.

30. Ádám Sipos, Zoltán Porkoláb, Viktória Zsók: Meta<fun> – Towards a functional-
style interface for C++ template metaprograms, In Frentiu et al ed.: Studia Uni-
versitatis Babes-Bolyai Informatica LIII, 2008/2, Cluj-Napoca, 2008, pp. 55-66.

31. Ádám Sipos: Effective development of C++ Template Metaprograms. PhD thesis.
Eötvös Loránd University, Budapest, Hungary, 2009.

32. Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-
Wesley (2000)

33. Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley (1994)

34. Gabriel Dos Reis, Bjarne Stroustrup: Specifying C++ concepts. Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2006: pp. 295-308.

35. M. Torgersen, C. P. Hansen, E. Ernst, P. Ahe, G. Bracha, N. Gafter: Adding Wild-
cards to the Java Programming Language Proceedings of the 2004 ACM Sympo-
sium on Applied Computing (SAC) 2004, pp. 1289-1296.

36. Erwin Unruh: Prime number computation. ANSI X3J16-94-0075/ISO WG21-462.
37. David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The Complete Guide.

Addison-Wesley (2003)
38. Todd L. Veldhuizen and Dennis Gannon: Active libraries: Rethinking the roles of

compilers and libraries. In Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientic and Engineering Computing (OO’98). SIAM
Press, 1998 pp. 21–23

39. Todd Veldhuizen: Five compilation models for C++ templates. In First Workshop
on C++ Template Metaprogramming, October 2000

40. Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4,
1995, pp. 36-43.

41. Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5, 1995, pp. 26-31.
42. T. Veldhuizen, C++ Templates are Turing Complete
43. M. Zalewski, A. P. Priesnitz, C. Ionescu, N. Botta, and S. Schupp, Multi-language

library development: From Haskell type classes to C++ concepts. In MPOOL 2007
Ecoop workshp, 2007.

44. István Zólyomi, Zoltán Porkoláb, Tamás Kozsik: An extension to the subtype re-
lationship in C++. GPCE 2003, LNCS 2830 (2003), pp. 209 - 227.

45. István Zólyomi, Zoltán Porkoláb: Towards a template introspection library. LNCS
Vol.3286 pp.266-282 2004.

46. The Blitz++ library.
www.oonumerics.org/blitz

47. Boost Concept checking.
http://www.boost.org/libs/concept check/concept check.htm

48. The boost xpressive regular library.
http://www.boost.org/doc/libs/1 40 0/doc/html/xpressive.html.

49. Boost tr1 mathematical functions.
http://www.boost.org/doc/libs/1 40 0/libs/math/doc/html

50. Boost Metaprogramming library.
http://www.boost.org/libs/mpl/doc/index.html

51. The boost lambda library.
http://www.boost.org/doc/libs/1 40 0/doc/html/lambda.html

52. Boost Preprocessor library.
http://www.boost.org/libs/preprocessor/doc/index.html

53. Boost Static assertion.
http://www.boost.org/regression-logs/cs-win32 metacomm/doc/html/boost staticassert.html

54. Glasgow Haskell Compiler.
http://www.haskell.org/ghc/

55. York Haskell Compiler.
http://community.haskell.org/˜ndm/yhc/

