ECOOP 2007 - Author Response form for Papers

lof 4

ECOOP 2007 - Author Response form for Papers

http://cyberchairpro.borbal a.net/cgi-ecoop-papers/genAuthorRespon...

Note 1: Netscape 4.x users: Do not resize your browser’'s window once you've started to fill out this form! You will lose what you
typed.
Note 2: Responses consisting of more than 500 words will NOT be stored! Please enable JavaScript to use a word counter.

| Title |Towards More Sophisticated Access Control in C++
Jozsef Mihalicza, Eotvos Lorand University, jmihalicza@gmail.com
authors Norbert Pataki, Eotvos Lorand University, patakino@elte.hu
Adam Sipos, Eotvos Lorand University, shp@elte.hu
Zoltan Porkolab, Eotvos Lorand University, gsd@elte.hu
First >>> Sunmmary of the submission <<<
reviewer'’s) S N
review The paper discusses "sophisticated" access control nechani sns not

directly supported by C++ (access groups, roles, and inheritance
driven) and shows how they can be expressed using tenplate

nmet a- progranmm ng. The techni ques are for "l arge-scale projects where
fine-tumed access is crucial."

Their solutions require that callers and callees foll ow sone
guidelines in witing code to benefit fromthe refined access control
nechani sm The sol ution inposes no run-tine overhead in nobst scenarios
whi | e adding sone mininmal run-time overhead in a few cases. G eat
attention is paid to non-intrusiveness of the approach and the support
of increnmental devel opnent.

>>> Eval uati on <<<

My main problemwi th the paper is that it takes the need for

"sophi sticated access control" for "large projects" for granted. The
opposi ng view (as expressed in nmost progranm ng | anguage designs) is
that for a technique to scale it has to be sinple. Except for a brief
reference to Eiffel, no argunent is nade for the need for the added

compl exity of the access rules ("added conplexity" is sinply another
way of saying "sophisticated" with a different enotional 1npact).

Gven that | consider the need for nore sophisticated/ conpl ex access
rul es unproven (and counter to ny experience), | would have liked to
see a serious argument or at least a few specific reference to serious
work on that topic.

Basically the survey in section 1 and 2 is superficial and presupposes
the answer (i.e., that sophisticated/conpl ex nechani smare good or
necessary). If the paper is accepted, these sections nust be rewitten
to be less value laden (in statements and vocabul ary) or |oaded with
references to research supporting the value judgenents mnade.

Section 4.1: The criticsnms that a friend grants access to a whol e
class rather to a specified subset of a class is crucial. If it is
true, many of the needs addressed follows. The opposing view is that
it is neaningless to grant access to a subset of a representation
because if you could wite separate invariants for the subsets then
the class is really an ill-designed conglonerate of roles. This point
shoul d be addressed explicitly.

Should the following be read as prinarily related to operations
(functions) and nmenber types? O are refinenents of access control to
data nenbers al so consi dered val uabl e?

Wiy can’t we just say ‘‘If you want access to a subset of the
functions of a class, either define a superclass with a restricted
interface or an independent "access class" wth forwarding
functions?’ Are the nmechanisns for automating sophisticated/ conpl ex
access controls necessary?

Fromthis point on, | will assune that there is a need for the
sophi sti cat ed/ conpl ex mechani sns:

Basically, the way the language is used to express access policies is
sound, though | would have liked to see a real argunment about why it
woul d scale to projects involving dozens of people. How can it be
taught ? How are mi suses detected and corrected? |Is the quality of
error reporting adequate for real exanples? How does the techniques
scale in terns of conpile tine?

The use of language facilities to enulate access control (at least to
this extent) is reasonable novel and reasonably well done. My guess is
that the inplenmentation of the ideas could be refined based on user
experience (though I'’mnot willing to guess in which way).

Has the set of nechani sns ever been used by others than its authors?
If so, please give exanples and sone idea of the experience.

The expl anation in section 3 of why friendship relation is neither
inherited nor transitive is rather inconplete and needs to be inproved
upon. Also the explanation in section 4.5 of simlarity between
exception specification and the rel ationship between enlisted
privileged clients and inheritance is not clear and needs to be

revi ewed.

The di scussion of access by role in 4.6 nmisses out howroles will be

2007-01-26 11:24

ECOOP 2007 - Author Response form for Papers

20of 4

granted: it seems that any newly added class can be granted any role
it wants and hence get access to any nmenber with role based access
control.

Section 5: The discussion of simlarities between inproper usage of
const_cast etc. and inproper usage of proposed refined access control
mechani sm seemto be an interesting one and should not be skipped in
one sentence.

Using nmacros to hide inplenentation is common, but widely considered
undesi r abl e.

Section 5.2 talks about limtation of the approach with the key,
however it is not clear fromthe subsequent text what those
limtations are. Please el aborate.

The exposition needs work: it could be much clearer throughout.

Typos:

Page 3: the inplenentation is based ON tenpl ate netaprogranm ng techni ques.
Page 3: Since all the visibillTy controls happen...

Page 3: In C++ we can use keyword friend TO GRANT access to private...

Page 4: access control is determined dynamically AT runtine...

Page 5: C# al so supports ADDI NG access nodifier to global classes.

Page 8: protected inheritance is simlar to private inheritance IN many ways.
Page 8: "the derived classes of the direved class" can be rephrased better.
Page 8: in programm ng | anguages like __ C++ IT is possible to define...

Page 8: frequently called as "nanespace functions" - not sure about the

term nol ogy used here, please provide references to other works,

where they are called like this in your context.
Page 9: I N sonme cases the reason is technical,
Page 11: IN sonme cases the derived class ...
Page 11: Methods in THE base class ... thus not accessible for the derived
Page 15: to inplenment__ the |slnNanespace predicate for a given nanespace.
Page 16: In the exanple in 6.1 it is not clear that tenplate function
restricted

is actually a tenplated nmenber function, because the definition of

class C was renoved fromthe source.
Page 19: ... mechanisns separately, but they often haVE to be used together.
Pages 2, 6, 7, 11: use of "an other" should probably be changed to "another"
A ot of missing citations.

http://cyberchairpro.borbal a.net/cgi-ecoop-papers/genAuthorRespon...

Second
reviewer’s
review

>>> Summary of the subm ssion <<<

Thi s paper introduces a nore sophisticated access control mechanismfor the

| anguage C++. It is notivated by the inmportance of encapsulation to OO
progranmm ng and the fact that the traditional C++ access control mechani sm does
not support the fine granularity that is needed for providing strong

encapsul ation in nore advanced exanpl es.

After giving an overview of access strategies in various OO progranm ng

| anguages and illustrating the reqgiurements for a fine-grained access control
nmechani sm usi ng several exanples, the authors introduce their advanced access
nechani smfor C++. This nechanismis based on tennplates and does not require
any nodifications of the |anguage/conpiler. As an evaluation, the authors then
revisit the requirements stated previously and show how t hey are addressed by
t he proposed sol ution.

>>> Eval uati on <<<

This paper is witten in a pretty concrete and direct manner, which nakes it
easy to read. It contains all the pieces that are needed for a solid paper: It
addresses a clear problemthat is illustrated using several exanples, there is
a pretty pragmatic solution that is actually inplenmented, and finally there is
an eval uation of the solution against the requirenments derived fromthe

probl ens.

The main limtation of this paper is the fact that the solution is quite
specific as it only applies to C++. Furthernore, the the solution is creative,
it doesn’'t seemthe nost ground-braking inprovement to progranm ng. The authors
nmake a fair effort to conpensate for this by making other parts of the paper as
general Iy useful as possible. For exanple, they give a relatively conprehensive
overvi ew of encapsulation in other QO | anguages, and they derive a general

catal og of requirements that should be fulfilled by a good encapsul ati on
nmechani sm

However, | think that this could be nmade nore explicit/useful by restructuring
the paper a bit so that the distinction between the general part and the
C++-specific part gets even nore clear. Currently, the discussion/eval uation of
t he encapsul ati on nechani sns of various QO | anguages is distributed over
nultiple sections (nobstly 2 and 7, but also 4 and 1) and are inter-mxed with
the problem statenent and the requirements for the solution. | think that the
paper woul d benefit a lot if there would be a clearer separation.

Al so, | would suggest not only a disucssion of the various encapsul ation
features of the different |anguages, but also an evaluation that shows which of
the requirenents stated in section 4 are actually supported by the discussed

| anguages (including a summarizing table). This would not only strengthen the
suggested C++-solution (by showing that not many | anguages actual ly support
such a flexible encapsul ati on nechanisn), but it would al so naeke the paper nore

2007-01-26 11:24

ECOOP 2007 - Author Response form for Papers

3of 4

useful for people who are not necessarily interested in the C++-specific part.

Whil e the authors give an overvi ew of encapsul ati on approaches in other OO

| anguages, they do not really mention a |ot about related work on a nore
scientific level. For exanple, | mssed the discussion of object-based (rather
than cl ass-based) encapsulation in the context of this paper. Wile this
concept is not (yet) supported by many mainstream | anguages, there has been a
lot of research activity around this topic and it certainly seens rel evant when
tal ki ng about nore fine-grained encapsul ati on nechani sns. As a reference, the
authors could for exanple have a | ook at "Qbject-based Encpasul ation for

oj ect-oriented | anguages” (Schaerli, Black, Ducasse), which nmentions quite a
bit of the work in this area and al so proposes a concept sinmlar to "access by
role" as proposed in this paper

http://cyberchairpro.borbal a.net/cgi-ecoop-papers/genAuthorRespon...

Third
reviewer’s
review

>>> Summary of the subm ssion <<<

The context of this paper is |anguage engi neering, nore specifically C++

| anguage engi neering. The probl em addressed by this paper is the addition of
nore sophisticated (Eiffel-like) efficient access control in C++ w thout
changi ng the conpiler. This goal was achi eved by using tenplate
neta-programming in conbination with the client passing an explicit argunent
such that at conpile time (or even runtime for dynamic checks) it can be
verifier whether or not the client has the right to use a particular nethod or
class. The approach is illustrated with various usage scenarios

>>> Eval uati on <<<

The probl em addressed by this paper fits the ECOOP conference and is
interesting. The paper is well structured: it has a logic built-up and the
authors try to be didactic. It has however to be noted that the quality of
English could really be inproved, and preferably a native speaker should have a
|l ook at it (several paragraphs throughout the paper are nearly

i nconprehensible). Wth sone effort | was able to read and understand the
conpl ete paper, so this was not added as a point against the paper. Newer
versions of the paper should be nade clearer though. Regarding the structure
just had the feeling that the easier parts of access control in the beginning
of the paper were slightly too long, while sone of the tenplate

net a- programm ng tricks could be a bit better explained

The core of the approach as | understood it is to add an extra paraneter
whenever invoking a method or using a class that has a controlled visibility.
Note that this approach will work for any object-oriented | anguage (and even
beyond), fromold | anguages |like Smalltal k through Python, Ruby, Java, C++ or
Ci. The paper could therefore be made stronger than it is currently fornul ated
wi t hout much effort. The current validation by using tenplate neta-progranm ng
in C++ can just be kept without any problens. It is clear that somebody who
woul d like to use the proposed approach in another |anguage will have to use
otger | anguage features to inplenment it, but that is no problemfor the claim
made.

What | did not |ike about the proposed solution is the overhead it inposes. The
paper states a nunber of times that the approach requires a mnimal syntactic
overhead, but | found it to be actually quite heavy. Both the inplenenter’s
side and the client side are inpacted. | found it very hard to understand the
access-controll ed code and easily spot the protections it inplenented. One
could argue that this is the price to pay to get nore sophisticated protection
but that (supposedly |ightweight) solution then has to rely on a convention
This is where for ne the approach fails to become truly interesting, and where
I do not think that it will be used very nmuch in practice. The key-based
approach is nore secure but even heavier.

Moreover | think that the problens nentioned in the previous paragraphs are not
specific to C++, in which case one could argue that the realisation of the
approach in C++ is feasible but not ideal fromthe syntactic point of view (
do like the fact that it is efficient though, which will be hard to achieve in
ot her | anguages). But since the core of the approach is to add an argunment and
use that argument to inplenent access control, | think that it is the approach
itself is quite heavy. Luckily we could always add the extra argunent (for any
net hod called), and then the approach woul d beconme nuch nore interesting. This
woul d require work on the conpiler or VM (depending on the |anguage), but the
results would be much nicer. An extra (quite sinple) pre-processing step for
C++ woul d probably al ready be enough

The part of the paper where nore work is needed is in the related work section
Beta, Mbdul a-3 and Ji gsaw have features that can be used to do partia

revel ation, and that are of interest to this paper, as well a paper of Ecoop’ 04
on encapsul ation policies. Note also that a number of references are not
conplete (4, 7, 8, 14 and 15), |acking years or publication venues. Throughout
the text a nunber of references were put as ?, so possibly a nunber of papers
d:d not make it into the references section. Definitely something to check and
cl ean.

Sorme small er remarks encountered while reading the paper:

- page 1, Introduction section, line 4: '... possible services or messages the
class offers to its clients.’” : nmessages should be nethods here (a class can
only offer nethods).

- The next sentence 'Messages are specified...’ is inconprehensible, but
nessages are a runtinme aspect and hence cannot be specified by a signature

- page 2, line 5 and page 4, the description in Smalltalk: In Snalltalk
instance variables are protected (methods in subclasses can access then), not
private.

- Page 8, first paragraph of section 4: says that nost results can be
generalized to nost of the statically typed nodern QOO | anguages: | think that

2007-01-26 11:24

ECOOP 2007 - Author Response form for Papers http://cyberchairpro.borbal a.net/cgi-ecoop-papers/genAuthorRespon...

you do not have to limt yourself to statically typed | anguages, and that they
al so apply to dynami cally typed | anguages.

- Page 9, end of first paragraph ('’ Thus no other possibility but defining
nanespace operators remains’): virtual methods and a common superclass do the
trick, and are actually much nore OO, The problens faced by C++ in this area
are all due to the fact that it is actually a multi-paradi gm|anguage and that
there are problens due to having both procedures (global functions) and nethods
(menber functions) around, as well as base types (non-objects) and objects.

Thi s why sone conbi nati ons work, and some don’t. A proper explanation of this
shoul d be given instead of a nunber of exanples.

- Page 9, string and char[] exanple: This exanple is specific for string and
char[]. If a proper explanation of the underlying problemis given it is not
needed (except to show a case where the system does sone kind of mangling for
you in a nunber of cases, like this one).

- Page 9, section 4.2: '...hard to argue why we woul d attach the operation to
any of the classes as a nenber nethod.’. This is because operators (procedures,
a non- 00 concept) do not mx that well with objects. The OO solution is to have
operators as nethods, and then the confusion goes away. A nethod + taking one
argunent into account can be inplenented on Matrix if one wants to be able to
sum sonething with a matrix. Likew se for vector when you want it to be
symmetrical. This is sinple to argue: straightforward OO senanti cs.

- Page 10, first sentence: | do not agree with the remark on coupling. If you
want to be able to sumvectors and nmatrices then conceptually they will be
coupl ed, even when using a nanespace function (renmoving the vector class wll

i nvalidate the global function). Wrse, when the operation is inplemented as a
nanespace function the coupling just becones harder to see (but iIs there).

- Page 10, second paragraph: Java (nor C#, for that matter) is not a pure OO

| anguage. Base types are non-objects, and operators are, exactly like in C++,
procedures (and not nethods). The difference with C++ is that end-users cannot
add procedures thenmsel ves (no operator overloading, which is the nechani smused
in C+t+ to add procedures to user-defined types). Note that the + should be

i mpl emented on both Java cl asses (when associ ative one inplenmentation can call
the other to avoid code duplication). A double dispatch schene can be used to
avoi d giving access to the private data.

- Page 12, section 5: | suppose that one could also use RTTI (runtinme type
identification) to achieve the sane. This would be nore costly but easier to
i npl enent .

Points In Favour

- Useful problem
- Possible solution fornul ated

Poi nt s Agai nst

- Heavy solution that either depends on convention or becones even heavier
- Related work section quite weak

Note: This (optional) response form is to be used *only* to make corrections to *factual* errors
Response in reviews, if any, or to answer specific reviewer questions. The limit is 500 words! For better
(Optional) readability for the reviewers, please use newlines near the right side of the text box, instead of
using your browser’s automatic linefeed.

‘ Count Words|

Submit Author Respons{

Note that feedback will appear in another window!
Responses consisting of more than 500 words will not be stored!

In case of problems, please contact Richard van de Stadt.

CyberChairPRq)Copyright © by Richard van de Stadt (Borbala Online Conference Servi%t#s

40f 4 2007-01-26 11:24

