
Encapsulation in Object-Oriented Programming:
Comparison & Evaluation

W. Al-Ahmad
University of Sharjah, Department of Management Information Systems

P.O.Box 27272 Sharjah
walahmad@sharjah.ac.be

Abstract
This paper discusses the concept of encapsulation from object-oriented programming viewpoint. In addition to
briefly reviewing issues relevant to the concept, I present an overview of the support that major object-oriented
languages such as C++ [1], Eiffel [2], Smalltalk [3],and Java [4] offer to accommodate it. This support is
explained, critically compared, and then evaluated to assess its adequacy. Finally, I propose some heuristics
and guidelines with respect to an adequate support for the concept.

1. Introduction
Given appropriate formalisms for specifying the object representation and the object behavior, how
should the integration of the representation and behavior be achieved in a way that will ease the
maintenance problem of software? Current object-oriented programming languages (OOPLs for short)
adopt the principle of encapsulation or information hiding to achieve this goal. In general, encapsula-
tion means the ability to hide the implementation behind a single interface. Implementation may refer
to an operation, a class, a subsystem, a component, or a complete application. In object-oriented
programming (OOP), the basic idea behind encapsulation is to hide a great deal of details that are
irrelevant for the clients of the class. In OOP, the focus of encapsulation is on hiding the representation
of objects from the potential clients of a class. In this way, changes to the representation of objects
only influence the implementation of the corresponding class. Hence, modifications to a class do not
affect the users of the class, which is a major advantage of the encapsulation principle. In fact, in their
interaction with objects of a given class, clients will only use the specification of the messages under-
stood by those objects. In this way, both the representation of the objects and the details concerning the
actual processing of messages by the receiving objects are hidden from the clients.

This paper is structured as follows: section 2 briefly explains the principles underlying the notion of
encapsulation. Section 3 illustrates the concepts offered by the languages C++, Eiffel, Smalltalk, and
Java to support encapsulation. Section 4 discusses encapsulation in the context of inheritance. Section
5 then evaluates the different approaches adopted by these languages and proposes an adequate
support for encapsulation in OOPLs. Finally, section 6 introduces some recommendations and conclu-
sions.

2. Techniques of Encapsulation
This section introduces concepts relevant to encapsulation in OOP. Actually, these concepts can be
considered as a framework for encapsulation in OOP.

2.1. Specification versus Implementation
In OOP, the notion of encapsulation distinguishes between the specification of a class and its imple-
mentation. The specification of a class, or class interface, focuses on the services or messages the class
has to offer to its clients. Typically, the specification of a message in the class interface consists of its
signature and an informal description of its effect. The implementation of a class focuses on how the
class will serve its clients. Basically the implementation introduces a proper method for responding to
each of the messages offered by a class. It also includes the internal representation of the objects of the
class. It is often said that the specification of a class focuses on the "what", whereas the implementa-
tion of a class focuses on the "how". Evidently, the specification of a class must somehow be related to
its implementation. One way is to verify whether each message specified in the class interface is
complemented with a proper method in the implementation of the class. There is a consensus within

the object-oriented community about the need to separate the specification of a class from its imple-
mentation. This is the first requirement of encapsulation in OOP.

2.2. Assertions
The specification of a class plays the role of a contract. Sine contracts need to be clear and concise, it
is useful to use the concept of programming by contract introduced by Meyer [2] to specify them. The
use of assertions should be the second requirement of encapsulation in OOP. Here are some of the
techniques used in the programming by contract approach.

2.2.1. Preconditions
Whenever a client of a class needs to send a message to some object, and the method used to imple-
ment that message is hidden, the client must somehow be informed of the information to supply.
Evidently, part of that information is available in the signature of the message. In an untyped language
like Smalltalk, the signature only informs about the number of arguments to be supplied. In typed
languages like C++, Eiffel, and Java, the user is also informed about the types of arguments to be
supplied. However, even in a typed language, the clients of a class need more information concerning
the arguments. As an example, although the signature of a message may indicate an integer number for
a particular argument, a client may be further restricted to supply only positive values for that argu-
ment.

In general, the specification of a message should include a section in which all conditions are specified
that must be fulfilled when applying the message. These conditions are commonly referred to as
preconditions; the section in which they are specified is typically called the require-clause in the
specification.

2.2.2. Postconditions
Another equally important part in the specification of a message serves to describe the effect of
applying the message. Postconditions establish assertions to be guaranteed upon completion of a
method. Postconditions establish rights for the clients of a class, and at the same time duties for the
implementers of a class. In particular, a client of a class, sending a message to one of its objects, is
guaranteed the entire effect stated in the postconditions, provided all the preconditions of the message
have been respected.

In general, the specification of a message should include a section in which all postconditions are
specified. Such a section is typically called the effect-clause in the specification.

2.2.3. Class Invariants
Preconditions and postconditions specify semantics of individual messages offered by a class. More-
over, the objects of a class will be subjected to a number of general restrictions that apply to each of
them at all stable times. These restrictions are commonly referred to as class invariants. The invariants
of a class are specified in a general clause, which is part of the overall description of the class itself.
Class invariants imply rights and duties for the clients and the implementers of the class. The imple-
menter must guarantee that upon completion all the objects involved in the message satisfy their
invariants. In this way, clients of a class can immediately forward other messages to these objects
without a need to check whether they satisfy their invariants.

2.5. Access Rights
A class usually has a number of potential clients. In the first generations of OOPLs, all these clients
were treated in a uniform way. In these languages, each client is granted access to the same set of
messages offered by a class. Contemporary OOPLs tend to distinguish between the possible clients of
a class. Some privileged clients are granted access to a more extended set of messages and maybe to
the representation of the objects. Some less privileged clients are granted access to only a restricted
portion of the messages offered by a class and maybe no access to the representation of the objects. In
its most general form, this leads to formalisms in which the developer of a class can state which
messages offered by a given class are available in methods associated with messages of other classes.
None of the languages covered in section 3 offers such a general formalism. The specification of

- 2 -

access rights is another important requirement of encapsulation in OOP. There is a consensus within
the object-oriented community about restricting access to the object representation (attributes of a
class).

3. Practice of Encapsulation
This section discusses in detail the concepts for supporting encapsulation in each of the OOPLs C++,
Eiffel, Smalltalk, and Java in light of the concepts introduced in the previous section. Listing 1 shows
a partial specification for the class of persons. Notice that only aspects related to the marital status of
persons have been included. The specification is given in Java language. The pre/postconditions and
class invariants will not be repeated in the other code listings.

/** A class of persons involving a spouse relationship.
 * invariants Two married persons must be each other’s spouse.
 this.getSpouse().getSpouse() = this */
class PERSON {
 /** Register a marriage between this person and partner.
 * require Effective Partner: partner ≠ 0
 * Different Persons: partner ≠ this
 * Unmarried Persons: (not IsMarried()) and (not partner→IsMarried())
 * effect This person and partner become each other’s spouse.
 * (getSpouse() = partner) and (partner→getSpouse() = this) */
 public void Marry (PERSON partner);

 /** Register a divorce between this person and its spouse.
 * require Married Person: IsMarried()
 * effect This person and its spouse are no longer married.
 * (not IsMarried()) and (not old→getSpouse()→IsMarried()) */
 public void Divorce ();

 /** Return a pointer to the spouse of this person.
 * result The spouse of this person if married, a null pointer otherwise. */
 public PERSON getSpouse ();

 /** Check whether this person is married.
 * result True if this person is married, false otherwise.
 * getSpouse() ≠ 0 */
 public boolean IsMarried ();

 /** Register partner as the spouse of this person.
 * effect Partner becomes the spouse of this person (partner may be null).
 * getSpouse() = partner */
 private void SetSpouse (PERSON partner);
}

Listing 1: Class Specification with Pre/Postconditions and class invariants.

Notice that preconditions, postconditions and class invariants have been worked out both informally
and formally through the primitive inspector getSpouse. The formal specifications may be left out,
sticking to informal descriptions of the semantics of the messages offered by a class. Evidently, one
may prefer to use only informal descriptions of assertions.

3.1 Encapsulation in C++
In C++, the development of the class interface is separated from the implementation of the class. Yet,
some aspects related to the representation of objects must be provided in the definition of the class.
The implementation of each of the member functions offered by a class is principally deferred to the
implementation of the class. Only for so-called inline functions, the C++ programmer is offered the
choice whether their implementation is directly available in the definition of the class or in its imple-
mentation. In specifying access rights, the language basically distinguishes between a public section in
the definition of a class and a private section. The public section introduces aspects available to all the
clients of a class; the private section introduces aspects that are in principle only available to the

- 3 -

implementers of the class. However, the notion of friends of a class is introduced to grant certain
classes or certain member functions access to the private section of a class.

The definition of a class typically includes the signature of the member functions, and the representa-
tion of the characteristics to be retained for each of its objects. Encapsulation is primarily obtained
through a separation of the class definition in a public interface and a private interface . Typically, the
public interface will contain a specification of all the member functions applicable to the objects of the
class. The private interface will then be restricted to a specification of the representation of the objects,
together with a specification of a number of auxiliary functions. The basic aspects of the concepts
offered by C++ in developing the definition of a class are illustrated in listing 2. The implementation,
usually in separate file, is not shown.

class PERSON {
public:
 void Marry (PERSON *partner);
 void Divorce ();
 PERSON* getSpouse () const;
 bool IsMarried () const;
private:
 void SetSpouse (PERSON *partner);
 PERSON *spouse;
}

Listing 2: Class Specification in C++.

The private part defines the data member for referring to the spouse of a person. This data member is
only accessible to the implementer of the class, and its friends, as will be explained later. Similarly, the
SetSpouse function can only be used in implementing more complicated functions offered by the
class of persons. Indeed, contrary to the public functions Marry and Divorce, this function is
considered unsafe because it only registers the relationship for one of the parties involved. As long as
the link is not established from the other side, the application will be in an inconsistent state. This
explains why the auxiliary function is part of the private interface of the class, thereby prohibiting
ordinary clients of the class from invoking it.

In some cases, restricting access to only the public data members may hamper an efficient and elegant
coding of other member functions involved in an application. For that purpose, C++ introduces the
notion of friends of a class. Two levels of friendship must be distinguished at this point:

• Any function, including member functions of a given class A, can be granted access to the private
interface of another class B by specifying this function as a friend of class B.

• Whenever a class A has a tight relationship with another class B, the entire class A can be qualified as a
friend of class B. In that case, the implementer of class A is granted complete access to the private
interface of the friend class B.
The notion of friends of a class is illustrated in listing 3 using the relationship between the class of cars
and the class of persons. Notice, the relationship involving cars and their owners is assumed to be bi-
directional. In this way, the example is similar to the bi-directional spouse-relationship involving
persons, except for the fact that the relationship now involves objects of different classes.

class PERSON {
public:
 void Buy (CAR *car) {SetCar(car); car→SetOwner(this);}
 void Sell () {ownedCar→SetOwner(0); SetOwner(0);}
 CAR* getCar () const {return ownedCar; }
private:
 void SetCar (CAR *car) {ownedCar = car; }
 CAR *ownedCar;
}

class CAR {
 friend void PERSON::Buy (CAR *car);

- 4 -

 friend void PERSON::Sell ();
public:
 PERSON* getOwner () const {return owner;}
private:
 void SetOwner (PERSON *person) { owner = person;}
 PERSON *owner;
}

Listing 3: Function Friends in C++.

The public member functions Buy and Sell are declared friends of the class of cars. Consequently
these member functions have access to the auxiliary member function SetOwner and to the data
member owner introduced in the private interface of the class of cars. Instead of declaring individual
member functions of the class of cars as friends of the class of persons, the programmer can declare
the entire class of cars a friend of the class of persons.

3.2. Encapsulation Eiffel
In Eiffel, the specification and the implementation of the operations applicable to the objects of a
given class are developed together. Eiffel offers a tool, called short, which extracts the interface of a
given class from its entire description. Furthermore, it is worth mentioning that Eiffel is one of the few
programming languages ever developed, in which an attempt is made to specify the semantics of
operations using preconditions, postconditions and class invariants. Unfortunately, the formalism is
not powerful enough for expressing the more important properties of class interfaces being developed.
Typically, specifications in Eiffel restrict themselves to the more obvious semantics of the operations
involved.

Encapsulation in Eiffel is obtained by supplying additional information in the class interface. In
specifying features offered by a class, one will designate the classes that may access those features.
Basically, the list of classes that is granted access can be specified in three different ways. First, a
given set of features can be exported to all possible classes using the {ANY} construct. Second, a set of
features can be hidden from all possible classes using the {NONE} construct. Finally, access to a set of
features can be restricted to a dedicated set of classes by listing their names between braces { and }.
This mechanism is referred to as selective export: it resembles to some extent the notion of friends in
C++. The basic aspects of the concepts offered by Eiffel for developing class interfaces are illustrated
in listing 4.

class PERSON feature
 Marry (partner: PERSON) is
 require Effective Partner: partner ≠ null;
 Different Persons: partner ≠ Current;
 Unmarried Persons: (not IsMarried) -- and (not partner.IsMarried)
 do SetSpouse(partner); partner.SetSpouse(Current)
 ensure (spouse = partner) and (partner.spouse = Current)
 end; -- Marry
 Divorce is
 require Married Person: IsMarried
 do spouse.SetSpouse(Void); SetSpouse(Void)
 ensure (not IsMarried) –- and not (old spouse).IsMarried;
 end; -- Divorce
 spouse : PERSON;
 IsMarried : BOOLEAN is
 do Result := spouse /= Void
 ensure Result = (spouse /= Void)
 end; -- IsMarried
feature { }
 SetSpouse (partner: PERSON) is
 do spouse := partner
 ensure spouse = partner

- 5 -

 end; -- SetSpouse
-- invariant IsMarried and then Current = spouse.spouse
end -- PERSON

Listing 4: Class Specification in Eiffel.

The first feature-clause does not explicitly list a set of classes to which its features are exported. These
features are available to all potential clients of the class. An equivalent way of obtaining this kind of
export status is to add {ANY} after the feature-clause. The feature SetSpouse is not exported to any
other class; it can only be used within the implementation of the class of persons itself. An even more
restrictive form of exporting features consists in exporting them to no class at all, not even to the class
being defined. This can be achieved by adding {NONE} after the feature-clause. In this case, the
features can only be applied to the current object and not to any other object of the given class. The
feature SetSpouse has to be exported to the class of persons. Otherwise, it would be impossible to
apply it to the partner of the person having received a message to marry, respectively to divorce.
Finally, notice that exporting an attribute such as spouse corresponds to offering a function by
means of which the current value of the associated characteristic can be retrieved. Consequently,
assignment to the attributes of a class can only be performed within the class itself (read-only attrib-
ute). The selective export mechanism is illustrated in listing 5 in the context of the relationship be-
tween the class of persons and the class of cars. For reasons of simplicity, we assume that a person
cannot own more than one car at the same time.

class PERSON feature
 Buy (theCar: CAR) is ... end;
 Sell is … end; -- Sell
 car : CAR;
feature { PERSON, CAR }
 SetCar (theCar: CAR) is … end;
end -- PERSON

class CAR feature
 owner : PERSON;
feature { CAR, PERSON }
 SetOwner (person: PERSON) is … end;
 end -- CAR

Listing 5: Selective Export in Eiffel.

Here, access to the procedure SetCar is restricted to the class of cars and to the class of persons
itself. These restrictions are imposed because these features may leave the system in an unsafe state,
that is, the underlying relationship is only accomplished from one side. In the same way, the specifica-
tion of the class of cars delimits access to the procedure SetOwner to the class of persons and to the
class of cars. Because the features for linking cars to their owners, and vice versa, cannot be hidden
from all possible clients of the classes involved, one cannot formulate a class invariant that requires
the underlying relationship to be registered in both directions at all stable times. Indeed, a successful
call to the exported feature SetOwner from within the class of cars, for example, would require both
the postcondition of that routine and the class invariant to be satisfied. Clearly, the latter would not be
satisfied because the relationship is only registered in one direction. This explains why the entire
invariant-clause has been included as a comment.

3.3. Encapsulation in Smalltalk
In Smalltalk, the specification of the messages understood by the objects of a given class is not
developed separate from their implementation. The environment offers a tool which extracts the
specification of a class, referred to as the class protocol, from its definition. The protocol includes a
specification of all the messages applicable to the objects of the given class. Because Smalltalk does
not include any concepts for specifying the semantics of operations, the class protocol enumerates the
signatures of the messages it offers. The support for encapsulation in Smalltalk is rather primitive. By
definition, all the instance variables of a given class are hidden from all its clients. On the other hand,

- 6 -

all the messages introduced in the class definition are available to all potential clients. The concepts
offered by Smalltalk for developing class definitions are illustrated in listing 6.

PERSON class
InstanceVariableNames:
 ' spouse '

Instance Methods
 Marry: partner
 self SetSpouse: partner.
 partner SetSpouse: self
 Divorce
 spouse SetSpouse(nil).
 self SetSpouse(nil)
 IsMarried
 ↑(spouse notNil)
 GetSpouse
 ↑spouse
 SetSpouse: partner
 spouse := partner

Listing 6: Class Specification in Smalltalk.

Notice that it is impossible to restrict the scope of the primitive message SetSpouse to the class
itself, such that only the implementer of the class can use them. In this way, ordinary clients of the
class can easily violate the invariant stating that the spouse relationship must be registered in both
directions.
Finally, notice that none of the instance variables of the class of persons is accessible to the clients of
the class. In fact, only the instance variables of the person receiving a message (self) are available.
In the method for responding to the message Marry, for example, it is impossible to access the
instance variables of the additional argument partner. Again, this is strongly related to the policy of
untyped variables in Smalltalk. From the signature of the message, one cannot conclude that part-
ner will refer an object of the class of persons. Consequently, it would be unsafe to allow access to
some of its instance variables. This immediately explains the need for the auxiliary message
SetSpouse in the definition of the class of persons.

3.4. Encapsulation in Java
In Java, the specification of the class, or class interface, is integrated with its implementation in a
single file. A typical programming environment for Java will offer a tool, called javadoc, to extract
the interface of a class from its entire definition (see listing 1). In specifying access rights, the lan-
guage offers the qualifiers public, private and protected. A public method or instance
variable can be accessed by any client of the class; a private method or instance variable can only be
accessed within the definition of the class itself. The meaning of unqualified methods and instance
variables is explained in the context of the grouping of classes into packages. Finally, the meaning of
protected methods and instance variables is related to inheritance. As for most OOPLs, Java does not
offer any concepts supporting the specification of the methods applicable to the objects of a class.
Principally, the interface of a class is restricted to a specification of the signature of the methods it
offers.

The definition of each class in Java is principally stored in a separate file. The language offers the
ability to group several classes into a package. Whereas the definition of a class corresponds to a file, a
package will correspond to a directory in which the definitions of each of its classes are stored.
Basically strongly related classes should be grouped into packages. As an example, one might intro-
duce a package in which all classes representing the business logic of a banking system are grouped.
This package would then include classes such as bank accounts, savings accounts and bankcards.
Classes residing in the same package can be given some privileges in accessing instance variables and
methods of other classes in that package. Such variables and methods will not be qualified public,
private or protected.

- 7 -

4. Encapsulation and Inheritance
The previous section reviewed support for encapsulation in OOPLs in isolation from inheritance.
Inheritance imposes its own requirements for encapsulation. This section briefly introduces such
requirements and the support our OOPLs provide for it. No code examples are given due to the limits
in space.

4.1. The C++ Approach
C++ offers three different types of derivations for controlling access to the member functions and data
members inherited from the base class. In public derivation, both public and protected members of the
base class are inherited to become public and protected members in the derived class, respectively.
Private members are inaccessible at the level the derived class. In protected derivation, both the public
members of the base class and its protected members are inherited to become protected members in the
derived class. Consequently, ordinary clients of the derived class have no access to any of these
members. In private derivation both the public and protected members of the base class members are
inherited to become private members in the derived class. Consequently, neither ordinary clients of the
derived class, nor classes subsequently derived from it have access to any of these members. Private
derivation is default in C++.

A derived class is never granted access to the private interface of its base classes. In general, a derived
class is only granted access to member functions and data members introduced in the public or pro-
tected section of its base class. It is already stated that direct access to the representation of the objects
of a class must be restricted as much as possible. In view of this general principle, a base class should
never grant derived classes direct access to its data members. In C++, this can be realized in an elegant
way by introducing all the data members of a class in its private section.

4.2. The Eiffel Approach
An heir class inherits all the features offered by its parent class, regardless of whether or not they are
exported by the parent class. Consequently, the software engineer responsible for the implementation
of an heir class has direct access to the representation established at the level of the parent classes. As
a consequence, instead of using primitive procedures for setting attributes introduced at the level of a
parent class, it is possible to assign to the underlying variables directly in the implementation of
routines at the level of heir classes. However, it is commonly accepted that the representation of
objects of a class must be hidden as much as possible. It is definitely not wise to offer subclasses
access to the representation established at the level of its superclasses.
Eiffel supports the concept of descendant hiding which is the ability for an heir class to hide a feature
exported by one of its parents. The use of descendant hiding is problematic when combined with
polymorphism, though. In this case the Liskov substitution principle is violated [5].

4.3. The SmallTalk Approach
A subclass in Smalltalk not only inherits all the messages understood by its superclass, the instance
variables of the superclass are also inherited and they are directly accessible to the software engineer
implementing the subclass. The rule of encapsulation easily generalizes towards inheritance: a client
of a subclass has access to all the messages understood by the subclass itself, by the superclass of the
subclass, by the superclass of the superclass of the subclass, etc. In other words, the public interface
(messages) of the direct and indirect superclasses are inherited to become part of the public interface
of the subclass; the private interface (instance variables) of the direct and indirect superclasses are
inherited to become part of the private interface of the subclass.

4.4. The Java Approach
A subclass always has access to the public and protected instance methods and instance variables
introduced by its superclass. In Java, as in C++, the principle of encapsulation can be realized in terms
of private and protected instance variables and methods. In Java, a subclass cannot change the access
right inherited from the superclass, i.e., the subclass cannot change a protected instance method to a
public one. The access right of the inherited method or variable is preserved. A subclass can access a

- 8 -

package access right of an inherited method only if the subclass resides in the same package as the
superclass.

5. Evaluation of Object Encapsulation
Having explored the concepts offered by the OOPLs C++, Eiffel, Smalltalk, and Java to support
encapsulation, I evaluate the notion of encapsulation as supported in these languages and propose an
adequate support for encapsulation.

5.1. Interfaces versus Implementations
All current OOPLs somehow recognize the roles class interfaces and class implementations have in
structuring a given application. Smalltalk, Eiffel and Java tend to integrate both descriptions. This
approach is justified by the observation that implementing a given class is just providing additional
information concerning its specification. The approach adopted in C++ more or less shifts the burden
from integrating the interface of a class with its implementation towards the programmer. In particular,
the programmer is forced to repeat the specification once more in developing the implementation of
the class. Moreover, each time a class appeals to another class, the programmer is responsible for
including the interface of that class. Managing header files in C++ is also a serious problem, especially
in large end complex systems. Eiffel, Smalltalk and Java all impose the availability of a tool for
extracting the specification of a class from its entire definition. In this respect, the approach adopted
by these languages is clearly superior to that of C++. Therefore, an adequate support for encapsulation
should allow the separation between class interface and class implementation. The class definition
should combine the specification and implementation and a tool should be provided to extract the
specification from the class definition.

5.2. Formal Versus Informal Specifications
Proper documentation of software systems has always been a serious problem. Most programmers
experience major difficulties in producing meaningful comments concerning the software they de-
velop. Often, documentation is therefore completely left out, resulting in software systems that are
extremely difficult to maintain. One of the problems concerning the production of proper documenta-
tion concerns the lack of a proper notation which imposes some structure in the documentation to be
produced. In this respect, the approach adopted by Eiffel is definitely a promising one. Regardless of
the formalism, the documentation of a class must be structured in a number of sections, each section
focusing on a particular aspect of the class or one of its components. In such formalisms, precondi-
tions, postconditions and class invariants are crucial instruments. Additional sections may be consid-
ered in documenting the implementation of a class, such as loop variants and invariants, and represen-
tation invariants. The use of each of these elements in documenting classes in any object-oriented
programming language is therefore recommended. In the current state of the art, a full formal specifi-
cation of the messages understood by a class is still out of reach. Nevertheless, formal specifications
can have a considerable influence on the reliability of software systems. First of all, it is relatively
easy to verify aspects of formal specifications at run-time. In Eiffel, preconditions, postconditions and
class invariants can be verified during the execution of a program. Needless to say that such a verifica-
tion can reveal a great number of errors in an early stage of development. In the long run, one may
hope for tools that are able to verify statically whether the specification of (parts of) a software system
is consistent with its implementation. Therefore, an adequate support for encapsulation should allow
the specification of a class formally using the programming by contract approach. However, even if
the semantics of a class should be completely defined in a formal notation, informal descriptions can
still be used along with the formal specifications for software engineers who were not trained to use
formal specifications.

5.3. Partial Encapsulation
Some client classes indeed need privileges in accessing certain parts in the definition of other classes.
A typical example is the case when two classes are related with bi-directional association. In Java
privileges can only be granted to classes residing in the same package. This seems to introduce some
conflicting design goals. Packages are principally introduced for grouping classes in a particular
application domain. Privileged access to certain aspects of a class should not be tied to their grouping
into packages. Indeed, this would imply that all classes implementing a bi-directional relation must

- 9 -

reside in the same package. There is a general agreement that access to the representation of the
objects of a class must not be exposed outside the scope of the class. In fact, it may be wise to restrict
access to the internal representation to some of the more primitive messages offered by a class (acces-
sor methods). More complicated messages will then be implemented in terms of these primitive
messages. Therefore, encapsulation in OOPLs must answer the question which of the messages
offered by a class can be used in the implementation of other messages. In this respect, the most
flexible formalism enables the listing of all the messages that may use a particular message. Therefore,
full support for encapsulation should completely encapsulate the attributes (representation) of the
object and provide access methods to manipulate them.

5.4. Access Rights for Subclasses
In C++, access rights can only be strengthened using the notions of public derivations, protected
derivations and private derivations. For example, an inherited public member can be redefined to
become a protected or a private member in the derived class. The language further introduces the
notion of exemption as a simple mechanism to preserve the inherited access right. In Eiffel, access
rights can be changed at will. In particular, a feature hidden from the clients of a parent class can
become accessible to the clients of an heir class, and a feature available to the clients of a parent class
can be hidden from the clients of an heir class. In Smalltalk, the access rights concerning the messages
inherited from the superclass cannot be changed at the level of the subclass. In particular, all the
messages applicable to the objects of the superclass are equally applicable to the objects of the sub-
class. In Java, the access rights concerning the methods and instance variables inherited from a
superclass cannot be changed. The need for hiding certain facilities from the clients of subclasses is
merely due to the lack of expressiveness in performing specialization inheritance. Indeed, if software
engineers can effectively specialize the behavior inherited from superclasses, the need for hiding some
of the inherited messages from the clients of the specialized class would completely disappear. It is to
be expected that the next generation of OOPLs will be equipped with more powerful formalisms for
expressing relationships between messages of superclasses and subclasses. In literature, it widely
accepted that access to the representation of the objects of a class must be restricted as much as
possible. C++ and Java offer the ability to hide certain aspects in the definition of a superclass from all
subclasses. It is rather remarkable to see that languages such as Smalltalk and Eiffel do not offer the
ability to hide the representation of the objects of a superclass from its subclasses. Especially Eiffel is
a language with a very strict encapsulation policy. Contrary to C++ and Java, attributes cannot be
qualified public, in the sense to allow clients to modify them, in Eiffel or Smalltalk. Eiffel and Small-
talk are superior to Java and C++ in this regard. In view of this strong policy, one would have ex-
pected rules in these languages that would simply forbid a subclass to have direct access to attributes
inherited from its superclass. Unfortunately, such a policy is not imposed in these languages.

A full support of encapsulation should allow the distinction between public and private interfaces of a
class. The private interface should include the representation of the objects and some auxiliary meth-
ods. The distinction between subclasses and other classes in terms of access rights is not really neces-
sary. There is no need for protected access rights. All clients can access superclass information via
simple accessor methods. In terms of efficiency, this will cause a little bit of overhead comparable to
dynamic dispatch of methods. I also do not see the benefits of the selective or friends access rights.
The change of inherited access rights such as the descendant hiding mechanism should not be allowed.

5.5. Abstract Classes
Abstract classes are classes that contain common behavior which should be implemented at the level
of subclasses. An abstract class must have at least one method without implementation. Abstract
classes introduce another level of encapsulation. It does not only hide the implementation of so-called
abstract methods, but also hide the different variations behind the abstract concept. In object-oriented
software development, abstract classes play very important role and they proved to be very useful.
C++, Eiffel, and Java fully support the notion of abstract classes. Smalltalk, on the other hand, does
not provide any support for the concept. This is more or less in line with the philosophy of the lan-
guage that, apart from some syntactical controls, all checking should be performed during execution of
the given application. However, the notion of abstract classes can be simulated to some extent in the

- 10 -

sense that one can postpone the implementation of certain messages to be understood by the instances
of a given class to subclasses.

5.6. Adequate Support
The following table summarizes the features an object-oriented programming language should have to
fully support encapsulation. The table also shows which of our selected languages provide support for
the required features.

Feature / language support C++ Eiffel SmallTalk Java
Separate specification & implementation yes yes yes yes
Formal specification of operations no partial no no
Private/public access rights yes partial partial yes
Abstract classes yes yes no yes
Accessor methods for manipulating attributes no partial partial no

6. Conclusions
This paper reviewed OOP support for a very important principle of software engineering, encapsula-
tion. The support major OOPLs provide for this concept was compared and evaluated. While most
OOPLs provide support for encapsulation, they differ in the way they do it and the level of encapsula-
tion they provide. An OOPL must provide language constructs and mechanisms to restrict access to
the representation of objects. There is no need to distinguish between different clients of a class
regarding access rights to the features of the class. Abstract classes are useful and provide another
level of encapsulation. Some formalism such as the contract paradigm is also required to specify the
interface of a class. This will improve their robustness and reliability of class specifications.

References
[1] Stroustrup B., The C++ Programming Language, Addison-Wesley, Reading (Mass.), 1994.
[2] Meyer B., Object-Oriented Software Construction, 2nd Ed., Prentice-Hall, New Jersey, 1997.
[3] Goldberg A., Smalltalk-80: The Language and its Implementation, Addison-Wesley, Reading

(Mass.), 1983.
[4] Flanagan D., Java in a Nutshell, 2nd Ed., O’Reilly & Associates, Cambridge, 1997.
[5] Alan Snyder, Encapsulation and Inheritance in Object-Oriented Programming Languages,

Proceedings OOPSLA’86.

- 11 -

