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Abstract 
This paper discusses the concept of encapsulation from object-oriented programming viewpoint. In addition to 
briefly reviewing issues relevant to the concept, I present an overview of the support that major object-oriented 
languages such as C++ [1], Eiffel [2], Smalltalk [3],and Java [4] offer to accommodate it. This support is 
explained, critically compared, and then evaluated to assess its adequacy. Finally, I propose some heuristics 
and guidelines with respect to an adequate support for the concept. 

1. Introduction 
Given appropriate formalisms for specifying the object representation and the object behavior, how 
should the integration of the representation and behavior be achieved in a way that will ease the 
maintenance problem of software? Current object-oriented programming languages (OOPLs for short) 
adopt the principle of encapsulation or information hiding to achieve this goal. In general, encapsula-
tion means the ability to hide the implementation behind a single interface. Implementation may refer 
to an operation, a class, a subsystem, a component, or a complete application. In object-oriented 
programming (OOP), the basic idea behind encapsulation is to hide a great deal of details that are 
irrelevant for the clients of the class. In OOP, the focus of encapsulation is on hiding the representation 
of objects from the potential clients of a class. In this way, changes to the representation of objects 
only influence the implementation of the corresponding class. Hence, modifications to a class do not 
affect the users of the class, which is a major advantage of the encapsulation principle. In fact, in their 
interaction with objects of a given class, clients will only use the specification of the messages under-
stood by those objects. In this way, both the representation of the objects and the details concerning the 
actual processing of messages by the receiving objects are hidden from the clients.  
 
This paper is structured as follows: section 2 briefly explains the principles underlying the notion of 
encapsulation. Section 3 illustrates the concepts offered by the languages C++, Eiffel, Smalltalk, and 
Java to support encapsulation. Section 4 discusses encapsulation in the context of inheritance. Section 
5 then evaluates the different approaches adopted by these languages and proposes an adequate 
support for encapsulation in OOPLs. Finally, section 6 introduces some recommendations and conclu-
sions. 
  
2. Techniques of Encapsulation 
This section introduces concepts relevant to encapsulation in OOP. Actually, these concepts can be 
considered as a framework for encapsulation in OOP.  

2.1. Specification versus Implementation 
In OOP, the notion of encapsulation distinguishes between the specification of a class and its imple-
mentation. The specification of a class, or class interface, focuses on the services or messages the class 
has to offer to its clients. Typically, the specification of a message in the class interface consists of its 
signature and an informal description of its effect. The implementation of a class focuses on how the 
class will serve its clients. Basically the implementation introduces a proper method for responding to 
each of the messages offered by a class. It also includes the internal representation of the objects of the 
class. It is often said that the specification of a class focuses on the "what", whereas the implementa-
tion of a class focuses on the "how". Evidently, the specification of a class must somehow be related to 
its implementation. One way is to verify whether each message specified in the class interface is 
complemented with a proper method in the implementation of the class. There is a consensus within 



the object-oriented community about the need to separate the specification of a class from its imple-
mentation. This is the first requirement of encapsulation in OOP. 
 
2.2. Assertions 
The specification of a class plays the role of a contract. Sine contracts need to be clear and concise, it 
is useful to use the concept of programming by contract introduced by Meyer [2] to specify them. The 
use of assertions should be the second requirement of encapsulation in OOP. Here are some of the 
techniques used in the programming by contract approach. 
 
2.2.1. Preconditions 
Whenever a client of a class needs to send a message to some object, and the method used to imple-
ment that message is hidden, the client must somehow be informed of the information to supply. 
Evidently, part of that information is available in the signature of the message. In an untyped language 
like Smalltalk, the signature only informs about the number of arguments to be supplied. In typed 
languages like C++, Eiffel, and Java, the user is also informed about the types of arguments to be 
supplied. However, even in a typed language, the clients of a class need more information concerning 
the arguments. As an example, although the signature of a message may indicate an integer number for 
a particular argument, a client may be further restricted to supply only positive values for that argu-
ment. 

In general, the specification of a message should include a section in which all conditions are specified 
that must be fulfilled when applying the message. These conditions are commonly referred to as 
preconditions; the section in which they are specified is typically called the require-clause in the 
specification. 
 
2.2.2. Postconditions 
Another equally important part in the specification of a message serves to describe the effect of 
applying the message. Postconditions establish assertions to be guaranteed upon completion of a 
method. Postconditions establish rights for the clients of a class, and at the same time duties for the 
implementers of a class. In particular, a client of a class, sending a message to one of its objects, is 
guaranteed the entire effect stated in the postconditions, provided all the preconditions of the message 
have been respected.  

In general, the specification of a message should include a section in which all postconditions are 
specified. Such a section is typically called the effect-clause in the specification. 
 
2.2.3. Class Invariants 
Preconditions and postconditions specify semantics of individual messages offered by a class. More-
over, the objects of a class will be subjected to a number of general restrictions that apply to each of 
them at all stable times. These restrictions are commonly referred to as class invariants. The invariants 
of a class are specified in a general clause, which is part of the overall description of the class itself. 
Class invariants imply rights and duties for the clients and the implementers of the class. The imple-
menter must guarantee that upon completion all the objects involved in the message satisfy their 
invariants. In this way, clients of a class can immediately forward other messages to these objects 
without a need to check whether they satisfy their invariants.  

 
2.5. Access Rights 
A class usually has a number of potential clients. In the first generations of OOPLs, all these clients 
were treated in a uniform way. In these languages, each client is granted access to the same set of 
messages offered by a class. Contemporary OOPLs tend to distinguish between the possible clients of 
a class. Some privileged clients are granted access to a more extended set of messages and maybe to 
the representation of the objects. Some less privileged clients are granted access to only a restricted 
portion of the messages offered by a class and maybe no access to the representation of the objects. In 
its most general form, this leads to formalisms in which the developer of a class can state which 
messages offered by a given class are available in methods associated with messages of other classes. 
None of the languages covered in section 3 offers such a general formalism. The specification of 
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access rights is another important requirement of encapsulation in OOP. There is a consensus within 
the object-oriented community about restricting access to the object representation (attributes of a 
class). 
 
3. Practice of Encapsulation 
This section discusses in detail the concepts for supporting encapsulation in each of the OOPLs C++, 
Eiffel, Smalltalk, and Java in light of the concepts introduced in the previous section. Listing 1 shows 
a partial specification for the class of persons. Notice that only aspects related to the marital status of 
persons have been included. The specification is given in Java language. The pre/postconditions and 
class invariants will not be repeated in the other code listings. 

/** A class of persons involving a spouse relationship. 
  * invariants  Two married persons must be each other’s spouse.    
     this.getSpouse().getSpouse() = this     */ 
class PERSON { 
  /** Register a marriage between this person and partner. 
   * require Effective Partner: partner ≠ 0 
   *   Different Persons: partner ≠ this 
   *   Unmarried Persons: (not IsMarried()) and (not partner→IsMarried()) 
   * effect  This person and partner become each other’s spouse. 
   *   (getSpouse() = partner) and (partner→getSpouse() = this)  */ 
 public void Marry (PERSON partner); 
 
  /** Register a divorce between this person and its spouse. 
   * require  Married Person: IsMarried() 
   * effect  This person and its spouse are no longer married. 
   *   (not IsMarried()) and (not old→getSpouse()→IsMarried())  */ 
 public void Divorce ( ); 
 
  /** Return a pointer to the spouse of this person. 
   * result  The spouse of this person if married, a null pointer otherwise.  */ 
 public PERSON getSpouse ( ); 
 
  /** Check whether this person is married. 
   * result  True if this person is married, false otherwise. 
   *   getSpouse() ≠ 0         */ 
 public boolean IsMarried ( ); 
 
  /** Register partner as the spouse of this person. 
   * effect  Partner becomes the spouse of this person (partner may be null). 
   *   getSpouse() = partner        */ 
 private void SetSpouse (PERSON partner); 
} 

Listing 1: Class Specification with Pre/Postconditions and class invariants. 
 
Notice that preconditions, postconditions and class invariants have been worked out both informally 
and formally through the primitive inspector getSpouse. The formal specifications may be left out, 
sticking to informal descriptions of the semantics of the messages offered by a class. Evidently, one 
may prefer to use only informal descriptions of assertions. 

3.1 Encapsulation in C++  
In C++, the development of the class interface is separated from the implementation of the class. Yet, 
some aspects related to the representation of objects must be provided in the definition of the class. 
The implementation of each of the member functions offered by a class is principally deferred to the 
implementation of the class. Only for so-called inline functions, the C++ programmer is offered the 
choice whether their implementation is directly available in the definition of the class or in its imple-
mentation. In specifying access rights, the language basically distinguishes between a public section in 
the definition of a class and a private section. The public section introduces aspects available to all the 
clients of a class; the private section introduces aspects that are in principle only available to the 
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implementers of the class. However, the notion of friends of a class is introduced to grant certain 
classes or certain member functions access to the private section of a class.  
 
The definition of a class typically includes the signature of the member functions, and the representa-
tion of the characteristics to be retained for each of its objects. Encapsulation is primarily obtained 
through a separation of the class definition in a public interface and a private interface . Typically, the 
public interface will contain a specification of all the member functions applicable to the objects of the 
class. The private interface will then be restricted to a specification of the representation of the objects, 
together with a specification of a number of auxiliary functions. The basic aspects of the concepts 
offered by C++ in developing the definition of a class are illustrated in listing 2. The implementation, 
usually in separate file, is not shown. 

 
class PERSON { 
public: 
 void Marry (PERSON *partner); 
 void Divorce ( ); 
 PERSON* getSpouse ( ) const; 
 bool IsMarried ( ) const; 
private: 
 void SetSpouse (PERSON *partner); 
 PERSON *spouse; 
} 

Listing 2: Class Specification in C++. 
 
The private part defines the data member for referring to the spouse of a person. This data member is 
only accessible to the implementer of the class, and its friends, as will be explained later. Similarly, the 
SetSpouse function can only be used in implementing more complicated functions offered by the 
class of persons. Indeed, contrary to the public functions Marry and Divorce, this function is 
considered unsafe because it only registers the relationship for one of the parties involved. As long as 
the link is not established from the other side, the application will be in an inconsistent state. This 
explains why the auxiliary function is part of the private interface of the class, thereby prohibiting 
ordinary clients of the class from invoking it. 
 
In some cases, restricting access to only the public data members may hamper an efficient and elegant 
coding of other member functions involved in an application. For that purpose, C++ introduces the 
notion of friends of a class. Two levels of friendship must be distinguished at this point: 

• Any function, including member functions of a given class A, can be granted access to the private 
interface of another class B by specifying this function as a friend of class B. 

• Whenever a class A has a tight relationship with another class B, the entire class A can be qualified as a 
friend of class B. In that case, the implementer of class A is granted complete access to the private 
interface of the friend class B. 
The notion of friends of a class is illustrated in listing 3 using the relationship between the class of cars 
and the class of persons. Notice, the relationship involving cars and their owners is assumed to be bi-
directional. In this way, the example is similar to the bi-directional spouse-relationship involving 
persons, except for the fact that the relationship now involves objects of different classes.  

class PERSON { 
public: 
 void Buy (CAR *car) {SetCar(car); car→SetOwner(this);} 
 void Sell ( ) {ownedCar→SetOwner(0); SetOwner(0);} 
 CAR* getCar ( ) const {return ownedCar; } 
private: 
 void SetCar (CAR *car) {ownedCar = car; } 
 CAR *ownedCar; 
} 
 
class CAR { 
 friend void PERSON::Buy (CAR *car); 
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 friend void PERSON::Sell ( ); 
public: 
 PERSON* getOwner ( ) const {return owner;} 
private: 
 void SetOwner (PERSON *person) { owner = person;} 
 PERSON *owner; 
} 

Listing 3: Function  Friends in C++. 
 
The public member functions Buy and Sell are declared friends of the class of cars. Consequently 
these member functions have access to the auxiliary member function SetOwner and to the data 
member owner introduced in the private interface of the class of cars. Instead of declaring individual 
member functions of the class of cars as friends of the class of persons, the programmer can declare 
the entire class of cars a friend of the class of persons. 
  
3.2. Encapsulation Eiffel  
In Eiffel, the specification and the implementation of the operations applicable to the objects of a 
given class are developed together. Eiffel offers a tool, called short, which extracts the interface of a 
given class from its entire description. Furthermore, it is worth mentioning that Eiffel is one of the few 
programming languages ever developed, in which an attempt is made to specify the semantics of 
operations using preconditions, postconditions and class invariants. Unfortunately, the formalism is 
not powerful enough for expressing the more important properties of class interfaces being developed. 
Typically, specifications in Eiffel restrict themselves to the more obvious semantics of the operations 
involved.  
 
Encapsulation in Eiffel is obtained by supplying additional information in the class interface. In 
specifying features offered by a class, one will designate the classes that may access those features. 
Basically, the list of classes that is granted access can be specified in three different ways. First, a 
given set of features can be exported to all possible classes using the {ANY} construct. Second, a set of 
features can be hidden from all possible classes using the {NONE} construct. Finally, access to a set of 
features can be restricted to a dedicated set of classes by listing their names between braces { and }. 
This mechanism is referred to as selective export: it resembles to some extent the notion of friends in 
C++. The basic aspects of the concepts offered by Eiffel for developing class interfaces are illustrated 
in listing 4. 

 
class PERSON feature 
 Marry (partner: PERSON) is 
  require Effective Partner: partner ≠ null; 
    Different Persons: partner ≠ Current; 
    Unmarried Persons: (not IsMarried) -- and (not partner.IsMarried) 
  do  SetSpouse(partner); partner.SetSpouse(Current) 
  ensure (spouse = partner) and (partner.spouse = Current) 
  end; -- Marry 
 Divorce is 
  require Married Person: IsMarried 
  do  spouse.SetSpouse(Void);  SetSpouse(Void) 
  ensure (not IsMarried) –- and not (old spouse).IsMarried; 
  end; -- Divorce 
 spouse : PERSON; 
 IsMarried : BOOLEAN is 
  do  Result := spouse /= Void 
  ensure Result = (spouse /= Void) 
  end; -- IsMarried 
feature { } 
 SetSpouse (partner: PERSON) is 
  do  spouse := partner 
  ensure spouse = partner 
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  end; -- SetSpouse 
-- invariant  IsMarried and then Current = spouse.spouse 
end -- PERSON 

Listing 4: Class Specification in Eiffel. 
 

The first feature-clause does not explicitly list a set of classes to which its features are exported. These 
features are available to all potential clients of the class. An equivalent way of obtaining this kind of 
export status is to add {ANY} after the feature-clause. The feature SetSpouse is not exported to any 
other class; it can only be used within the implementation of the class of persons itself. An even more 
restrictive form of exporting features consists in exporting them to no class at all, not even to the class 
being defined. This can be achieved by adding {NONE} after the feature-clause. In this case, the 
features can only be applied to the current object and not to any other object of the given class. The 
feature SetSpouse has to be exported to the class of persons. Otherwise, it would be impossible to 
apply it to the partner of the person having received a message to marry, respectively to divorce. 
Finally, notice that exporting an attribute such as spouse corresponds to offering a function by 
means of which the current value of the associated characteristic can be retrieved. Consequently, 
assignment to the attributes of a class can only be performed within the class itself (read-only attrib-
ute). The selective export mechanism is illustrated in listing 5 in the context of the relationship be-
tween the class of persons and the class of cars. For reasons of simplicity, we assume that a person 
cannot own more than one car at the same time. 

 
class PERSON feature 
 Buy (theCar: CAR) is ...  end;  
 Sell is  … end; -- Sell 
 car : CAR; 
feature { PERSON, CAR } 
 SetCar (theCar: CAR) is … end;  
end -- PERSON 
 
class CAR feature 
 owner : PERSON; 
feature { CAR, PERSON } 
 SetOwner (person: PERSON) is … end;  
 end -- CAR 

Listing 5: Selective Export in Eiffel. 
 
Here, access to the procedure SetCar is restricted to the class of cars and to the class of persons 
itself. These restrictions are imposed because these features may leave the system in an unsafe state, 
that is, the underlying relationship is only accomplished from one side. In the same way, the specifica-
tion of the class of cars delimits access to the procedure SetOwner to the class of persons and to the 
class of cars. Because the features for linking cars to their owners, and vice versa, cannot be hidden 
from all possible clients of the classes involved, one cannot formulate a class invariant that requires 
the underlying relationship to be registered in both directions at all stable times. Indeed, a successful 
call to the exported feature SetOwner from within the class of cars, for example, would require both 
the postcondition of that routine and the class invariant to be satisfied. Clearly, the latter would not be 
satisfied because the relationship is only registered in one direction. This explains why the entire 
invariant-clause has been included as a comment. 
 
3.3. Encapsulation in Smalltalk 
In Smalltalk, the specification of the messages understood by the objects of a given class is not 
developed separate from their implementation. The environment offers a tool which extracts the 
specification of a class, referred to as the class protocol, from its definition. The protocol includes a 
specification of all the messages applicable to the objects of the given class. Because Smalltalk does 
not include any concepts for specifying the semantics of operations, the class protocol enumerates the 
signatures of the messages it offers. The support for encapsulation in Smalltalk is rather primitive. By 
definition, all the instance variables of a given class are hidden from all its clients. On the other hand, 
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all the messages introduced in the class definition are available to all potential clients. The concepts 
offered by Smalltalk for developing class definitions are illustrated in listing 6.  

  
PERSON class 
InstanceVariableNames: 
 ' spouse ' 
 
Instance Methods 
 Marry: partner 
  self SetSpouse: partner. 
  partner SetSpouse: self 
 Divorce 
  spouse SetSpouse(nil). 
  self SetSpouse(nil) 
 IsMarried 
  ↑(spouse notNil) 
 GetSpouse 
  ↑spouse 
 SetSpouse: partner 
  spouse := partner 

Listing 6: Class Specification in Smalltalk. 
 
Notice that it is impossible to restrict the scope of the primitive message SetSpouse to the class 
itself, such that only the implementer of the class can use them. In this way, ordinary clients of the 
class can easily violate the invariant stating that the spouse relationship must be registered in both 
directions.  
Finally, notice that none of the instance variables of the class of persons is accessible to the clients of 
the class. In fact, only the instance variables of the person receiving a message (self) are available. 
In the method for responding to the message Marry, for example, it is impossible to access the 
instance variables of the additional argument partner. Again, this is strongly related to the policy of 
untyped variables in Smalltalk. From the signature of the message, one cannot conclude that part-
ner will refer an object of the class of persons. Consequently, it would be unsafe to allow access to 
some of its instance variables. This immediately explains the need for the auxiliary message 
SetSpouse in the definition of the class of persons. 
 
3.4. Encapsulation in Java  
In Java, the specification of the class, or class interface, is integrated with its implementation in a 
single file. A typical programming environment for Java will offer a tool, called javadoc, to extract 
the interface of a class from its entire definition (see listing 1). In specifying access rights, the lan-
guage offers the qualifiers public, private and protected. A public method or instance 
variable can be accessed by any client of the class; a private method or instance variable can only be 
accessed within the definition of the class itself. The meaning of unqualified methods and instance 
variables is explained in the context of the grouping of classes into packages. Finally, the meaning of 
protected methods and instance variables is related to inheritance. As for most OOPLs, Java does not 
offer any concepts supporting the specification of the methods applicable to the objects of a class. 
Principally, the interface of a class is restricted to a specification of the signature of the methods it 
offers.  
 
The definition of each class in Java is principally stored in a separate file. The language offers the 
ability to group several classes into a package. Whereas the definition of a class corresponds to a file, a 
package will correspond to a directory in which the definitions of each of its classes are stored. 
Basically strongly related classes should be grouped into packages. As an example, one might intro-
duce a package in which all classes representing the business logic of a banking system are grouped. 
This package would then include classes such as bank accounts, savings accounts and bankcards. 
Classes residing in the same package can be given some privileges in accessing instance variables and 
methods of other classes in that package. Such variables and methods will not be qualified public, 
private or protected.  
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4. Encapsulation and Inheritance 
The previous section reviewed support for encapsulation in OOPLs in isolation from inheritance. 
Inheritance imposes its own requirements for encapsulation. This section briefly introduces such 
requirements and the support our OOPLs provide for it. No code examples are given due to the limits 
in space. 

4.1. The C++ Approach 
C++ offers three different types of derivations for controlling access to the member functions and data 
members inherited from the base class. In public derivation, both public and protected members of the 
base class are inherited to become public and protected members in the derived class, respectively. 
Private members are inaccessible at the level the derived class. In protected derivation, both the public 
members of the base class and its protected members are inherited to become protected members in the 
derived class. Consequently, ordinary clients of the derived class have no access to any of these 
members. In private derivation both the public and protected members of the base class members are 
inherited to become private members in the derived class. Consequently, neither ordinary clients of the 
derived class, nor classes subsequently derived from it have access to any of these members. Private 
derivation is default in C++. 
 
A derived class is never granted access to the private interface of its base classes. In general, a derived 
class is only granted access to member functions and data members introduced in the public or pro-
tected section of its base class. It is already stated that direct access to the representation of the objects 
of a class must be restricted as much as possible. In view of this general principle, a base class should 
never grant derived classes direct access to its data members. In C++, this can be realized in an elegant 
way by introducing all the data members of a class in its private section. 

4.2. The Eiffel Approach 
An heir class inherits all the features offered by its parent class, regardless of whether or not they are 
exported by the parent class. Consequently, the software engineer responsible for the implementation 
of an heir class has direct access to the representation established at the level of the parent classes. As 
a consequence, instead of using primitive procedures for setting attributes introduced at the level of a 
parent class, it is possible to assign to the underlying variables directly in the implementation of 
routines at the level of heir classes. However, it is commonly accepted that the representation of 
objects of a class must be hidden as much as possible. It is definitely not wise to offer subclasses 
access to the representation established at the level of its superclasses. 
Eiffel supports the concept of descendant hiding which is the ability for an heir class to hide a feature 
exported by one of its parents. The use of descendant hiding is problematic when combined with 
polymorphism, though. In this case the Liskov substitution principle is violated [5]. 
 
4.3. The SmallTalk Approach 
A subclass in Smalltalk not only inherits all the messages understood by its superclass, the instance 
variables of the superclass are also inherited and they are directly accessible to the software engineer 
implementing the subclass. The rule of encapsulation easily generalizes towards inheritance: a client 
of a subclass has access to all the messages understood by the subclass itself, by the superclass of the 
subclass, by the superclass of the superclass of the subclass, etc. In other words, the public interface 
(messages) of the direct and indirect superclasses are inherited to become part of the public interface 
of the subclass; the private interface (instance variables) of the direct and indirect superclasses are 
inherited to become part of the private interface of the subclass. 
 
 
 
4.4. The Java Approach 
A subclass always has access to the public and protected instance methods and instance variables 
introduced by its superclass. In Java, as in C++, the principle of encapsulation can be realized in terms 
of private and protected instance variables and methods. In Java, a subclass cannot change the access 
right inherited from the superclass, i.e., the subclass cannot change a protected instance method to a 
public one. The access right of the inherited method or variable is preserved. A subclass can access a 
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package access right of an inherited method only if the subclass resides in the same package as the 
superclass. 

5. Evaluation of Object Encapsulation 
Having explored the concepts offered by the OOPLs C++, Eiffel, Smalltalk, and Java to support 
encapsulation, I evaluate the notion of encapsulation as supported in these languages and propose an 
adequate support for encapsulation. 

 
5.1. Interfaces versus Implementations 
All current OOPLs somehow recognize the roles class interfaces and class implementations have in 
structuring a given application. Smalltalk, Eiffel and Java tend to integrate both descriptions. This 
approach is justified by the observation that implementing a given class is just providing additional 
information concerning its specification. The approach adopted in C++ more or less shifts the burden 
from integrating the interface of a class with its implementation towards the programmer. In particular, 
the programmer is forced to repeat the specification once more in developing the implementation of 
the class. Moreover, each time a class appeals to another class, the programmer is responsible for 
including the interface of that class. Managing header files in C++ is also a serious problem, especially 
in large end complex systems. Eiffel, Smalltalk and Java all impose the availability of a tool for 
extracting the specification of a class from its entire definition. In this respect, the approach adopted 
by these languages is clearly superior to that of C++. Therefore, an adequate support for encapsulation 
should allow the separation between class interface and class implementation. The class definition 
should combine the specification and implementation and a tool should be provided to extract the 
specification from the class definition. 
 
5.2. Formal Versus Informal Specifications 
Proper documentation of software systems has always been a serious problem. Most programmers 
experience major difficulties in producing meaningful comments concerning the software they de-
velop. Often, documentation is therefore completely left out, resulting in software systems that are 
extremely difficult to maintain. One of the problems concerning the production of proper documenta-
tion concerns the lack of a proper notation which imposes some structure in the documentation to be 
produced. In this respect, the approach adopted by Eiffel is definitely a promising one. Regardless of 
the formalism, the documentation of a class must be structured in a number of sections, each section 
focusing on a particular aspect of the class or one of its components. In such formalisms, precondi-
tions, postconditions and class invariants are crucial instruments. Additional sections may be consid-
ered in documenting the implementation of a class, such as loop variants and invariants, and represen-
tation invariants. The use of each of these elements in documenting classes in any object-oriented 
programming language is therefore recommended. In the current state of the art, a full formal specifi-
cation of the messages understood by a class is still out of reach. Nevertheless, formal specifications 
can have a considerable influence on the reliability of software systems. First of all, it is relatively 
easy to verify aspects of formal specifications at run-time. In Eiffel, preconditions, postconditions and 
class invariants can be verified during the execution of a program. Needless to say that such a verifica-
tion can reveal a great number of errors in an early stage of development. In the long run, one may 
hope for tools that are able to verify statically whether the specification of (parts of) a software system 
is consistent with its implementation. Therefore, an adequate support for encapsulation should allow 
the specification of a class formally using the programming by contract approach. However, even if 
the semantics of a class should be completely defined in a formal notation, informal descriptions can 
still be used along with the formal specifications for software engineers who were not trained to use 
formal specifications. 
 
5.3. Partial Encapsulation 
Some client classes indeed need privileges in accessing certain parts in the definition of other classes. 
A typical example is the case when two classes are related with bi-directional association. In Java 
privileges can only be granted to classes residing in the same package. This seems to introduce some 
conflicting design goals. Packages are principally introduced for grouping classes in a particular 
application domain. Privileged access to certain aspects of a class should not be tied to their grouping 
into packages. Indeed, this would imply that all classes implementing a bi-directional relation must 
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reside in the same package. There is a general agreement that access to the representation of the 
objects of a class must not be exposed outside the scope of the class. In fact, it may be wise to restrict 
access to the internal representation to some of the more primitive messages offered by a class (acces-
sor methods). More complicated messages will then be implemented in terms of these primitive 
messages. Therefore, encapsulation in OOPLs must answer the question which of the messages 
offered by a class can be used in the implementation of other messages. In this respect, the most 
flexible formalism enables the listing of all the messages that may use a particular message. Therefore, 
full support for encapsulation should completely encapsulate the attributes (representation) of the 
object and provide access methods to manipulate them.  
 
5.4. Access Rights for Subclasses 
In C++, access rights can only be strengthened using the notions of public derivations, protected 
derivations and private derivations. For example, an inherited public member can be redefined to 
become a protected or a private member in the derived class. The language further introduces the 
notion of exemption as a simple mechanism to preserve the inherited access right. In Eiffel, access 
rights can be changed at will. In particular, a feature hidden from the clients of a parent class can 
become accessible to the clients of an heir class, and a feature available to the clients of a parent class 
can be hidden from the clients of an heir class. In Smalltalk, the access rights concerning the messages 
inherited from the superclass cannot be changed at the level of the subclass. In particular, all the 
messages applicable to the objects of the superclass are equally applicable to the objects of the sub-
class. In Java, the access rights concerning the methods and instance variables inherited from a 
superclass cannot be changed. The need for hiding certain facilities from the clients of subclasses is 
merely due to the lack of expressiveness in performing specialization inheritance. Indeed, if software 
engineers can effectively specialize the behavior inherited from superclasses, the need for hiding some 
of the inherited messages from the clients of the specialized class would completely disappear. It is to 
be expected that the next generation of OOPLs will be equipped with more powerful formalisms for 
expressing relationships between messages of superclasses and subclasses. In literature, it widely 
accepted that access to the representation of the objects of a class must be restricted as much as 
possible. C++ and Java offer the ability to hide certain aspects in the definition of a superclass from all 
subclasses. It is rather remarkable to see that languages such as Smalltalk and Eiffel do not offer the 
ability to hide the representation of the objects of a superclass from its subclasses. Especially Eiffel is 
a language with a very strict encapsulation policy. Contrary to C++ and Java, attributes cannot be 
qualified public, in the sense to allow clients to modify them, in Eiffel or Smalltalk. Eiffel and Small-
talk are superior to Java and C++ in this regard. In view of this strong policy, one would have ex-
pected rules in these languages that would simply forbid a subclass to have direct access to attributes 
inherited from its superclass. Unfortunately, such a policy is not imposed in these languages. 
 
A full support of encapsulation should allow the distinction between public and private interfaces of a 
class. The private interface should include the representation of the objects and some auxiliary meth-
ods. The distinction between subclasses and other classes in terms of access rights is not really neces-
sary. There is no need for protected access rights. All clients can access superclass information via 
simple accessor methods. In terms of efficiency, this will cause a little bit of overhead comparable to 
dynamic dispatch of methods. I also do not see the benefits of the selective or friends access rights. 
The change of inherited access rights such as the descendant hiding mechanism should not be allowed. 
 
 
5.5. Abstract Classes 
Abstract classes are classes that contain common behavior which should be implemented at the level 
of subclasses. An abstract class must have at least one method without implementation. Abstract 
classes introduce another level of encapsulation. It does not only hide the implementation of so-called 
abstract methods, but also hide the different variations behind the abstract concept. In object-oriented 
software development, abstract classes play very important role and they proved to be very useful. 
C++, Eiffel, and Java fully support the notion of abstract classes. Smalltalk, on the other hand, does 
not provide any support for the concept. This is more or less in line with the philosophy of the lan-
guage that, apart from some syntactical controls, all checking should be performed during execution of 
the given application. However, the notion of abstract classes can be simulated to some extent in the 
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sense that one can postpone the implementation of certain messages to be understood by the instances 
of a given class to subclasses.  
 
5.6. Adequate Support 
The following table summarizes the features an object-oriented programming language should have to 
fully support encapsulation. The table also shows which of our selected languages provide support for 
the required features. 
 

Feature / language support C++ Eiffel SmallTalk Java 
Separate specification & implementation  yes yes yes yes 
Formal specification of operations no partial no no 
Private/public access rights yes partial partial yes 
Abstract classes yes yes no yes 
Accessor methods for manipulating attributes no partial partial no 

 
6. Conclusions 
This paper reviewed OOP support for a very important principle of software engineering, encapsula-
tion. The support major OOPLs provide for this concept was compared and evaluated. While most 
OOPLs provide support for encapsulation, they differ in the way they do it and the level of encapsula-
tion they provide. An OOPL must provide language constructs and mechanisms to restrict access to 
the representation of objects. There is no need to distinguish between different clients of a class 
regarding access rights to the features of the class. Abstract classes are useful and provide another 
level of encapsulation. Some formalism such as the contract paradigm is also required to specify the 
interface of a class. This will improve their robustness and reliability of class specifications.  
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