
HypereiDoc – An XML Based Framework
Supporting Cooperative Text Editions�,��

Péter Bauer1, Zsolt Hernáth2, Zoltán Horváth1, Gyula Mayer3, Zsolt Parragi1,
Zoltán Porkoláb1, and Zsolt Sztupák1

1 Dept. of Programming Languages and Compilers
2 Dept. of Information Systems

Faculty of Informatics, Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

bauer p@inf.elte.hu, hernath@ullman.inf.elte.hu, hz@inf.elte.hu
gsd@inf.elte.hu, zsolt.parragi@eotvos.elte.hu, sztupy@eotvos.elte.hu

3 Hungarian Academy of Sciences, Research Center for Ancient Studies
Múzeum krt. 4/F. H-1088 Budapest, Hungary

gam@cs.elte.hu

Abstract. HypereiDoc is an XML based framework supporting dis-
tributed, multi-layered, version-controlled processing of epigraphical, pa-
pyrological or similar texts in a modern critical edition. Such studies are
typically based on independent work of philologists using annotation sys-
tems like the Leiden Conventions. Current initiatives like TEI and Epi-
doc have definitive limitations both in expressional power and the way
how individual results can form a cooperative product. The HypereiDoc
framework provides XML schema definition for a set of annotation-based
layers connected by an extensive reference system, validating and build-
ing tools, and an editor on-line visualizing the base text and the anno-
tations. The framework makes scholars able to work on the same text in
a cooperative and distributed way. Our framework has been successfully
tested by philologists working on the Hypereides palimpsest.1

1 Introduction

The XML document format is a well-respected solution for the document pro-
cessing domain. A wide range of applications are based on XML from DocBook
� Supported by ELTE Informatikai Kooperációs Kutatási és Oktatási Központ.

�� The initiative and the frames of the interdisciplinary co-operations have been
established and are maintained by the Classical Philology Workshop – Eötvös
József Collegium. (László Horváth; OTKA inv. no. T 47136 and IN 71311;
horvathl@eotvos.elte.hu)

1 The text edition of Hypereides’ speech against Diondas is based on the above de-
scribed editor. The publication is forthcoming in the Zeitschrift für Papyrologie und
Epigraphik vol. 2008 (October). Similarly, this editor will be applied in the revised
edition of Hypereides’ Against Timandros (cf. [8,9]) forthcoming in AAHung vol.
2008. After the above mentioned publications the entire Greek texts together with
the editor will be made accessible on the URL: http://hypereidoc.elte.hu/

P. Atzeni, A. Caplinskas, and H. Jaakkola (Eds.): ADBIS 2008 , LNCS 5207, pp. 14–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

HypereiDoc – An XML Based Framework 15

[11] to Office Open XML, the new document format of Microsoft Word [22]. The
flexibility with the ease of machine processing makes XML an ideal format for
document handling. Very special but increasingly important areas of document
handling are epigraphy and papyrology. Epigraphy is the study of inscriptions
or epigraphs engraved into durable materials (e.g. stone). Papyrology focuses on
the study of ancient literature, correspondence, legal archives, etc. as preserved
in papyri. Epigraphy and papyrology include both the interpretation and trans-
lation of ancient documents. Such historical relicts are often damaged and their
study produces controversial results by nature. Scholars have solutions of long
standing for the situation: the system of critical annotations to the text.

Annotations may mark missing, unreadable, ambiguous, or superfluous parts
of text. They should also quote information about the reason of the scholar’s
decision e.g. other document sources, well-accepted historical facts or advances
in technology. Annotations also provide meta-information about the author of
the individual critical notes and expose the supposed meaning according to the
given scholar. It is of a primary importance that no information should be lost
during the transcription process, even those remarks which will never appear in
any critical edition should be kept either. The Leiden Conventions are the most
accepted set of rules and symbols to indicate annotations in literary, epigraphical
or papyrological texts [4].

The aim of the project is to equip the scholarly teams with general and flexible
tools, which enable them to create both consistently tagged source files and
pretty printed output.

For the realization of the project goals the XML document format has been
chosen for storing the documents and the associated pieces of information. This
format primarily supports the Unicode character encoding. The Text Encoding
Initiative (TEI) Guidelines [25,27] provide detailed recommendations for storing
documents in XML format. Its epigraphical customization is called EpiDoc [18].
During the course of the project we take these standards and recommendations
as starting points. The TEI Guidelines’ version at the time the project started
was P4, now it is P5. The current EpiDoc (version 5) is based on TEI P4 and is
not yet updated to TEI P5 but we follow the Guidelines of it. However, our goals
exceed the possibilities of these recommendations, thus their customization and
completion is required.

The rest of the paper is organized as follows: We formalize the problem in
section 2. The design and implemenation of the HypereiDoc framework are dis-
cussed in details in section 3. The successfull application of the HypereiDoc
framework in the Hypereides palimpsest project is described in section 4. In
section 5 we give an overview of XML based projects from the epigraphical and
papyrological domain. We summarize our results in section 6.

2 Formalizing the Problem

In order to formalize the problem and the needs of computer support discussed
informally above, consider the following computer produced linguistic puzzle:

16 P. Bauer et al.

– get a human-readable text-file and split it into portions, called pages;
– damage strings by inserting, deleting, or replacing few characters;
– concatenate the pagess in a random order.

To solve such text puzzles, i.e. to reconstruct the hypothetically original text

– the first task is to find the joints where the text can be splitted into pages
– the second is to restore damaged piece of text or characters,
– last concatenate pages in an adequate order found.

Following the above instructions the hypothetically original text can only be
more or less exactly reconstructed after several tries. Each try may modify some
words, may insert, delete, or replace characters, some of them use text versions
produced by a sequence of earlier tries, etc. To make, catalogue, reference them,
computer support is needed, which itself needs a problem-oriented data model
that provides occasionally nested text operations cited informally above. To
establish the adequate data model we need some base notions and terminology
introduced next.

2.1 Basics

Definition 1 (Base text-document, Raw text-document, Raw text).
Given R – a text, i.e a particular sequence of UNICODEs (UTF8), let XR

denote the TEI P5 conformed XML document being valid against the document
grammar [21]. Texts R, and XR are referred to as raw, and (R-based) base text-
documents, respectively. Any portion of text R and of #PCDATA typed element
content in XR is called raw text.

Remark 1. Notice that XR defines a frame of reference to locate and reference
any piece of raw text of R.

Going on with introducing our base terminology, we introduce three primitive
binary operatons used to locate, and issue semantics to, or modify raw texts
inside base text-documents. Locating a raw text takes place by specifying the
positions of its first and last character. In case of semantics issuer and corrective
operations the first operand is a reference to a located raw text inside a base
text-document, the seccond, in turn, always a raw text literal.

Definition 2 (Primitive Operations). Let O be the set of primitive opera-
tions O = {LO, IN, RE}. They are semantic operations in the sense that each
of them issues some semantics to raw texts inside a base text-document as seen
below:

– LOcate: locate raw texts inside a base text-document.
Given XR base text-document, and Xpointers xs, xe being valid according to
the tagging of document XR, LO(xs, xe) is the raw text betwen characters
pointed to by xs, and xe, inclusive. An LO is called performable, if their
operands are valid.

HypereiDoc – An XML Based Framework 17

– INterpret: interpret raw texts inside a base text-document.
Given raw text locator lt for XR base text-document as LO(xst, xet), and t
raw text literal, IN(lt, t) issue semantics given by t to raw text located by lt.

– REvise: revise raw texts inside a base text-document.
Keeping notations lt and t used above, RE(lt, t) replaces raw text located
by lt with raw text t that may supply additional semantics as well.

2.2 Virtual Operation Performance

It is very important to see that base text-documents have to be kept untouched,
even if semantics issuer or corrective operations are applied on it. One way to per-
form such operations would be to follow what database journal mechanisms do:
executing operations results in new versioned complete (base) text-document, oc-
casionally inheriting issued semantics, and corrections from other versions. This
way would, however, lead to an unnecessary growth of base text-document ver-
sions, and instead, we develop a kind of virtual execution method whenever oper-
ations are to be performed. Informally, we say that applying a primitive operation
o1 to a base text-document XR can be considered as an expression of form

(XR, o1),

and called a virtual text-document. If one wants to perform an operation o2 on
virtual text-document (XR, o1), simple create an expression of form

((XR, o1), o2),

and so on. Following this philosophy, and considering the expression

(((. . . (XR, o0) . . .), or−1), or),

∀0 < i ≤ r, operation oi refers to a raw text inside the virtual text-document

((. . . (XR, o0) . . .), oi−1).

The latter, however, means that operation LO sould be able to locate raw texts
that are completely outside or partially inside XR. That, in turn, in harmony
with the definition of LO is possible, if operations’ raw text literal can also be
marked off by Xpointers, and all operations above implicitely refer to the same
base text-document. We now formalize our conclusion as follows.

Definition 3 (Homogeneous Operation Sequence). A (possible empty) se-
quence {o0, . . . , on} of primitive operations is called homogeneous, if operands
of each LO occurence inside the sequence – being present either as the first
operand of some IN or RE, or as an operation of its own – refers implicitely
either to the same base text-document, or to a raw text literal operand of some
preceding operation.

18 P. Bauer et al.

Definition 4 (Annotation). A possibly empty sequence of homogeneous op-
erations that refers implicitely to a base text-document XR, and established as a
TEI P5 conformed XML document being valid against document grammar [21]
is called an annotation. The annotation that implements an empty sequence is
called the empty annotation, and denoted by A∅.

Definition 5 (Virtual text-document). Given R-based base text-document
XR, and a non-empty annotation sequence {At0 , . . . , Atr}, where indexes of an-
notations are some kind of time stamps indicating their creation time. (XR, A∅)
is an XR-rooted virtual text-document, identical with XR. Given XR-rooted
virtual text-document VR, (VR, {At0 , . . . , Atr}) is an XR-rooted virtual text-
document, defined by the expression ((. . . (VR, At0) . . .), Atr). The raw text
content of virtual text-document (VR, {At0 , . . . , Atr}) results in from VR, by
processing annotations At0 , . . . , Atr in the given order. Processing an annota-
tion means performing its primitive operations in the order of the operation
sequence that it implements.

Definition 6 (Merging Virtual text-documents having common roots).
Given VR = (XR, {Ati0

, . . . , Atir
}), V

′

R = (XR, {Atk0
, . . . , Atks

}) XR-rooted vir-
tual text-documents, and {Bt0 , . . . , Btn} annotation sequence. Suppose, for each
natural number m, for that 0 ≤ m ≤ n holds, there exists 0 ≤ j ≤ r, or 0 ≤ l ≤ s
such that either Btm = Atij or Btm = Atkm

hold. A virtual text-document of
form (XR, {Bt0 , . . . , Btn}) is called a merge of VR and V

′

R.

2.3 A Data Model for Text Annotations

The data model developed here is referred to as VITAM2. Informally, it contains
virtual text-documents as data items and annotation sequences and virtual text-
documents’ merging as operations. Since data are virtual i.e. their raw text
content can only be achieved by processing annotation sequences over virtual
text-documents, an important issue is to define the well-formedness, and the
validity of virtual text-documents.

Definition 7 (Well-formedness). Given XR base text-documents, (XR, A∅)
is a well-formed virtual text-document. Given VR well-formed virtual text-
document, and {A0, . . . , Ar} annotation sequence, (VR, {A0, . . . , Ar}) is a well-
formed virtual text-document.

Definition 8 (Annotation Validity). Annotation A∅ is valid with respect
to any virtual text-document. Given VR virtual text-document, an annotation A
is valid with respect to VR, iff all occurences of operations LO inside A is per-
formable. An annotation sequence {A0, . . . , As} is valid w.r.t. VR, iff A0 is valid
w.r.t. VR, and ∀1 ≤ i ≤ s, annotation Ai is valid w.r.t. (VR, {A0, . . . , Ai−1}).

Definition 9 (Virtual text-document Validity). Given, XR base text -
document, (XR, A∅) is a valid virtual text-document. Given VR valid virtual
2 VIrtual Text-document Annotation Model.

HypereiDoc – An XML Based Framework 19

text-document, and {A0, . . . , Ar} annotation sequence being valid w.r.t. VR,
(VR, {A0, . . . , Ar}) is a valid virtual text-document.

Remark 2. Notice, well-formedness does only declare the validity of XML doc-
uments virtual text-documents consist of against the document grammar [21]. It
is also important to see that while valid annotation sequences w.r.t. valid virtual
text-documents produce valid virtual text-documents from those, merging com-
monly rooted virtual text-documents does not, however, warrant valid merge,
unless the merging procedure involves forced validity check.

3 Implementation

The XML model is based upon the TEI Guidelines (version P4 and P5) and its
epigraphical customization, Epidoc Guidelines (version 5). We extended these
standards to meet the HypereiDoc project requirements, thus we can use em-
bedded and overlapped annotations and we also support a more free way to use
the Critical Apparatus.

3.1 Layered Structure

Our schema is based on a multi-layer approach. We defined a Base Text Layer
(see definition 1) where only the original text and its physical structure is stored
and which may not be modified later, an Ordering and Indexing Layer defining
the pages’ order and place in the codices and one or more Annotation Layers
(see definition 4) with the attached philological metadata. This model provides
the means for stepwise adding of basic semantic information, summarizing the
scholar team’s knowledge base, team work, cross-checking, and proof-reading.
Later editions may be based upon one or more previously published layers, thus
creating critical editions is also supported.

Philologists can define their own Annotation Layers which may refer to only
the Base Text Layer or one or more Annotation Layers. They can add notes
and annotations to the original text and to previous annotations, they can make
reflections on earlier work or create a new interpretation. We have designed a
schema to handle these references and to support the distributed and collabora-
tive work with using more Annotation Layers in one edition.

To make exact references to any point of the text, we need to discuss the
structure of the text. The primary structure of the text is its logical structure
according to the TEI Guidelines. The TEI suggests the header part for storing
the associated information, while the text is structured by div tags. Also, for
the physical structuring of the text representation empty tags are suggested
according to XML’s milestone technique. We store the transcription text in the
Base Text Layer this way.

The palimpsest provides an existing physical structure of the text. This presents
a well-identifiable base for processing the document as it can be clearly sectioned
into codices, quires, leaves, sides, columns, and lines. Therefore we intend to regard
these as the primary structure for our Reference System, making it possible to

20 P. Bauer et al.

define exact references to the document’s specific parts. The references are needed
for philological processing, for annotating the text and for mapping between the
images and the transcription.

For philologists processing the document the most important aspect is the
annotation facilities, as they can use it with the Leiden Conventions, and the
application of the critical apparatus. The TEI sets up the structured recording
of this information in the text, while the EpiDoc describes guidelines for the
application of these techniques. However, a weakness of TEI P4 and EpiDoc is
that these pieces of information are stored in the form of XML tags inserted
into the document [2,3]. Therefore due to the requirements for well formed XML
documents, annotations defined by the philologists can be embedded only if the
tags are balanced.3

Let us consider the following example. The string omen is readable, however,
aut beside it is missing due to a flaw in the material of the codex. At the same
time, the transcriber has succeeded at reconstructing the missing part. According
to the Leiden conventions the respective annotation is [aut]omen. Nevertheless,
the transcribing philologist observes that the t and o characters are superfluous,
and probably got into the text as an error on the part of the original copyist
of the document. This can be annotated as [au{t]o}men, but this annotation
cannot be encoded with the XML tags suggested by TEI P4 and Epidoc. This is
a quite possible situation in the palimpsest. Besides the philological annotations
the text parts marked by the apparatus of similar passages may also overlap.

Consequently, we have developed a Reference System built on the physical
structure of the document. This enables the handling of any overlapping anno-
tation. With this reference system missing word and sentence boundaries can
easily be described, even if interpreted differently by various philologists. Punc-
tuations missing from the document can also easily be coded. As a result, the
XML transcription may consist of several layers.

We face a special situation in the case of our sample project: the Archimedes
Palimpsest is a secondary product, it has been created from reused sheets of
former manuscript books. Before the secondary usage the leaves must have been
cleaned as much as possible to make them fit for bearing the new texts. Scholars
are interested in both the old texts (hardly visible remains of a lower layer on
the surface of the pages, as called undertext) and the new texts (an upper layer,
as called overtext).

Since the undertext has not yet been exactly identified on all leaves and it
is also possible that by finding new leaves we need to reorder the whole codex,
we intend to regard the page numbering of the overtext as the base for the
Reference System. This can be extended or changed while it does not affect the
interpretation of the undertext. Since the undertext can only be interpreted or
even displayed in its original page order if the exact structure of the undertext

3 TEI P4 has draft recommendations on solving this problem [26], but these are not
elaborated and less powerful than our Reference System. TEI P5 supports multiple
ways to handle overlapping tags, and we use one of these techniques to implement
the Reference System.

HypereiDoc – An XML Based Framework 21

is known, we defined the Ordering and Indexing Layer independently from the
Base Text Layer. We store this data in an external XML file because philologists
may not agree on the page order and they may want to use their own Ordering
and Indexing XML file. Ordering and Indexing mean that we assign the overtext
leaves and sides to undertext leaves and sides and this assignment can be changed
without modifying the Base Text Layer. Therefore we can change the page order
in the restructured codices if needed without the need of changing the references
of the annotations.

The Base Text Layer’s physical structure is based on the overtext, the pages
are identified with the overtext leaf and side while columns, lines are marked
regarding the undertext, thus the undertext lines are exactly identifiable. The
Ordering and Indexing Layer assigns the overtext leaves and sides to undertext
quires, leaves and sides.

3.2 Reference System

Due to the embedded and overlapped annotations and the multi-layer approach
we define three types of references. The Absolute References point at a character
position in the Base Text (cf. remark 1). Their structure is overleaf, overside,
column, line, (optional) character, and (optional) position. The Internal Relative
References point at a character position in text inserted by a previous annotation
in the same Annotation Layer. Their structure is annotation identifier, (optional)
character, and (optional) position. The External Relative References point at a
character position in text inserted by an annotation in a previous Annotation
Layer. They identify the previous layer, the annotation, (optionally) the char-
acter, and (optionally) the position. Notice, the Relative References above are
particular cases of virtual operation performance (cf. section 2.2).

Only alphanumeric characters are numbered, whitespaces and the philologists’
various brackets are disregarded because, in harmony with definition 1, they are
annotations in the text. Character means only alphanumeric characters in the
paper. Please note that the “character” field does not refer to a character but the
position between two characters. The zeroth referred position is before the first
character in the line while the first referred position is after the first character of
the line and before the second. In a line containing n characters the nth position
is after the last character of the line.

Most annotations may have two different meaning. It is possible that the
character string we refer to is present in the base text or in a previous annota-
tion. We call this type of annotation Marking Annotation (see operation IN in
definition 2). The marked text may be later referred absolutely or relatively to
this annotation. It is also possible that the annotation inserts new characters in
the text. This type of annotation is called Inserting Annotation (see operation
RE in definition 2). The inserted text may only be referred relatively to this
annotation.

Relative References are used if we want to refer to characters inserted by
a previous annotation. To make this possible all annotations regardless their
type have an identifier which is unique in the given layer. Annotations must be

22 P. Bauer et al.

processed by the course of their identifier’s lexicographic order which is identical
to the order of the tags in the XML document.

Please note that if we want to refer to a character position in a text portion
which is inserted by multiple embedded annotations, the exact annotation which
has actually inserted the character is known, therefore we do not have to deal in
the references with the annotation hierarchy.

In cases of embedded and overlapping annotations it is possible that the ref-
erence is ambiguous. For instance the base text is abc and the annotation claims
that def is missing after a which is marked as ab[def]c according to the Leiden
Conventions. After that the absolute character position 1 is ambiguous: it can
either point to ab|[def]c or ab[def]|c. (The point where the examples refer to is
marked with a | character.) In this case we use the Position attribute which has
four values: ”l” for left side, ”r” for right, ”b” for before, and ”a” for after.

The ”l” value is applicable when the Character attribute is present and it
points the position before the annotation that was inserted to the Character po-
sition given. The ”r” value is applicable when the Character attribute is present
and it points the position after the annotation that was inserted to the Char-
acter position given. The ”b” value is applicable in Relative References when
the Character attribute is not present and it points the position before the re-
ferred annotation, while the ”a” is applicable in Relative References when the
Character attribute is not present and it points the position after the referred
annotation.

Please note that the Position attribute is omittable but Character attribute
can’t be omitted if Position is not present or has the value of ”l” or ”r”. If the Po-
sition attribute takes value ”b” or ”a” then Character attribute must be omitted.

We can also use Relative References to Marking Annotations. This makes
unambiguous the character positions at the end of embedded and overlapped
annotations. In the previous example the Relative Reference for character posi-
tion 0 in the annotation refers to ab[|def]c and the relative reference for character
position 3 refers to ab[def |]c. This is useful when marked text is inserted before
or after an already marked text part.

3.3 XML Pointer-Based Implementation of the Reference System

The XML Pointer Language (XPointer) Framework is a W3C standard that
allows one to point to an arbitrary position in an XML document. An extension
of Xpoinetrs introduced by TEI P5 Guidelines offers some supplements [28], such
as the left and right pointer schemes, to the main standard.

To implement our reference system with XPointer we use the following mecha-
nism: An Absolute Reference to leaf 27, side recto, column a, line 1 and character
3 looks like the following figure:

archimedes/P2/#xpointer(//pb[n=’27:r’]/following::cb[n=’a’]/
following::lb[n=’1’]/following::text()[1]/point()[3])

In the example above archimedes/P2 is the name of the base text file. In this
encoding not only the file name but also the version number of the base text

HypereiDoc – An XML Based Framework 23

is included, therefore possible later changes of the base text will not interfere
with the reference system. After the file name the location part of the reference
is converted into the exact position within the XML document. Because our
XML structure has empty tags to mark the physical structure we had to use the
following axis, which unfortunately makes the references more complex. After
linking to the correct text node we use the point function of the XPointer scheme
to point to the exact position.

In internal relative references we use

#xpointer(//[xml:id=’b13’]//text()/point()[2])

which means the second character position in the raw text in the thirteenth
annotation. Our reference system allows us to include positional information
like left, right, before or after. To use positions like left, or right we use TEI
P5’s supplement functions: left and right. We think of before and after as the
position before or after an annotation, thus they are used like this:

#left(xpointer(//[xml:id=’b13’]))

This refers to the leftmost point of an annotation tag, which in turn is “before”
the annotation. The after tag is similar but uses the right function instead
of left.

External relative references are composed of the file information from absolute
references and the relative positional information from internal relative refer-
ences. We need to include a file name which includes the name of the annotator,
a version number, and the location of the annotation like this:

annotations/mgy/a001#xpointer(//[xml:id=’b2’]//text()/point()[1])

Unfortunately, when the TEI Consortium designed the TEI P5 Guidelines they
did not think about XPointer as a pointer to an arbitrary position, but as a
pointer to an arbitrary tag. Because of this the guidelines lack support of the
type of overlapping we need.

The guidelines allow us to implement new features by creating a new XML
namespace but we wanted to stick with the P5 guidelines to maintain maximum
compatibility. Therefore we had to use two of the tags that allow us to link to
an interval in the text. These two tags are the app and the note tags. The app
tags contains a critical notes to spans of texts. From a philological point of view
this can also be used to describe the annotations we need. We use the from and
to attributes to denote the start and end position of the annotation. The note
tags have the target and targetEnd attributes to express the start and end
position of annotations.

To ease the publication there is also a “flat file format” that is more close
to the basic TEI P5 Guidelines. In this file format we do not use the XPointer
scheme, because there are only a few tools that can handle it. Instead we use that
feature of the app and the note tags, that allows them to be inlined into the text.
In this mode at the beginning of the location the annotation refers to, we add

24 P. Bauer et al.

an anchor tag, and we add the app or the note tag at the end of the referenced
interval with a link to the anchor. Of course this breaks the collaborative nature
of our system, so this file format should only be used for a frozen digital dataset
of a publication.

3.4 Version Control

Though this type of collaborative work is agile by nature, we do not establish a
real version control system like Subversion or CVS does, where you can acquire
the whole file, regardless whether it is the head revision or an earlier version. In
our system what you have is a directory tree containing the base text-document
and it’s annotation sequences. Since the base text-document is read-only, and
therefore, not under version control, the annotation sequence may be, however,
extended. This extension means that new annotations may be added to such
a sequence (e.g. annotations that occasionally have impacts on some previous
annotations, but can never change them). Practically this is the same as other
version controlling systems store their files internally, because they usually does
only store the differences between the different versions.

To accomplish this, we use a web-server called WEBRick [10], that handles the
requests in a RESTful [7] way. In this system a virtual-text document can be con-
sidered as a resource on which following version control operations are defined.
The list operation shows the annotations of this resource (the base virtual-text
document), the create operation adds a new annotation to the sequence (au-
tomatically time-stamped), and the show operation gets the appropriate version
of the file from the server. Because we deny the modification and deletion of re-
sources, operations modify and delete are not supported by our system.

3.5 Tools

Our XML format contains a flexible XPointer scheme which is not easily editable
by simple text editors. To support user friendly editing of the texts, we developed
a What You See Is What You Get editor. It is not only an editor but also helps
with the publishing of the finished document.

It supports working with layered and flat XML files: it has a Base Text mode
which is used when one start working with a new codex. In this mode the philol-
ogist may edit the base text and its annotations at the same time. Its primary
output is the flat XML format which is after the base text is finished can be
converted to the layered structure.

For the layered structure the editor has an Annotation mode. In this mode
editing the base text is disabled, but adding, modifying and deleting annotations
are still possible. One can select already existing and published annotation XML
files which will be the base of the work. The editor helps with the conflict reso-
lution between the dependencies – when two or more XML documents conflicts
each other – and it can also flatten the finished work to help the publication,
because other TEI P5 compatible tools might use the flat file format more easily
(see definition 6).

HypereiDoc – An XML Based Framework 25

When one loads a layered XML document, the editor first checks wether or
not the XPointers point to existing locations. If the input is valid it also validates
the dependencies and tries to resolve the conflicts and unifies them controlled
by the philologist whenever neccessary (cf. remark 2). If the previous process
succeeds the user is greeted with a window like the screenshot in Figure 1. For

Fig. 1. Editor in Annotation mode

publications we provide some additional tools, such as the LATEX converter, that
converts the base text, and the selected annotations into a LATEX file, that can
be converted to PDF. Our integrated toolset consists of:
– Java based, platform-independent editor with graphical interface producing

valid XML output.
– Java based tool for displaying the XML encoded transcription data in a form

which is traditionally used by scholars, based on a compiler producing PDF.
– Java based validator tool which checks basic semantic relations.
– Java based converter tool exporting and importing flattened (one-layer) TEI

P5 transcriptions.
– GTK based, platform-independent GIMP plug-in for linking image positions

with lines of transcription producing XML output.

4 The Hypereides Palimpsest – A Sample Project

The HypereiDoc system has been created with the application to the deciphere-
ment of the now famous Archimedes Palimpsest [13] in view.4 It consists of
4 The story of the Palimpsest is described in detail in [6].

26 P. Bauer et al.

remains of at least five former codices. One of those discarded and reused books
contained speeches of Hyperides [8], [9]. The transcription process involves many
scholars working in different groups, making new suggestions and referring to
each other’s work.

It is the intention of the owner of the manuscript, that the Archimedes
Palimpsest should be presented to the public in the most adequate way. Prime
targets are the lower texts of the codex, together with the complex history of
their decipherement. Presentation includes tagging and formatting. To format
the sort of complex scholarly texts to be created, there exists an excellent plat-
form, i.e. Edmac [5] resp. its variant for LATEX Ledmac [30].

However, as excellent as is LATEX at formatting, and as good as it is at tagging,
the level of sophistication it provides at the latter is way behind what we need.
Our goal is to document not only the final result, but also important steps in the
scholarly process of creating the transcription. Of course, consistent tagging must
not be so permissible as it is the case with a TEX based system. Thus we could
retain LATEX as our frontend for paper publication and paper-like visualization,
but had to find an adequate system for tagging. Therefore a system meeting the
complex scholarly requirements has been devised – the HypereiDoc framework.

Figure 2 shows the first five lines of a page. In the formatted output margins
are reserved to refer to the present physical structure of the codex: in the left
margin leaf 138, side recto is noted, in the right margin the line numbers. In
line 3 parentheses indicate complementation of an abbreviation, and in line 5
curly brackets enclose a letter visible and readable in the codex, but superfluous
according to grammatical rules. A dot beneath a letter shows that the letter is
incomplete, but the traces are compatible with the interpretation presented. The

Fig. 2. Formatted main text

main text is accompanied by two series of annotations (a so called apparatus of
similar passages and a critical apparatus). Figure 3 is a snippet of the second
apparatus. Traditionally, the language of the apparatuses is latin with commonly
used abbreviations. Since the existing pages do not contain the beginning and
the title of the speech, the title is reconstructed from other sources, and does
not have a corresponding line number. A significant difference between the XML
source files and the output formatted for print is, that the latter contains only a
selection of the information available. E.g. in line 5 the emendation of the text is
so obvious, that no reason needs to be given. In line 1 reading has been substan-
tially improved against the first publication in [8], and account should be given
of it. In line 3 the cited scholar suggests to insert a two letter word, but this
emendation is not regarded necessary by the editor of the apparatus. In line 10

HypereiDoc – An XML Based Framework 27

Fig. 3. Formatted annotations

we face a strange and rare situation, which can not be formalized and therefore
is described in a ‘human readable’ sentence (“free text” within the annotations).
The formatted version illustrated above is tailored to the conditions of a tradi-
tional paper publication. The XML source files contain much more information
in an easily parseable form and will be made public simultaneously with the
printed version to appear autumn 2008 in the same journal as [8].

Scholars throughout the world will be able to contribute, enhance or even fork
new versions of the fileset if they deem so.

5 Related Work

During the HypereiDoc project, a number of existing related projects have been
carefully revised.

Gothic Bible and minor fragments [20] are using TEI P4 without any refer-
ence to Epidoc. No overlapping annotation occurs in this project. Perseus Digital
Library [24] is a huge library of TEI documents without any annotations. Aphro-
disias Project at UNC and Kings College [12] is using Epidoc XML, but no over-
lapping annotation occurs. Digital Library Production Services at University of
Virginia Library (DLPS) [16] uses TEI P4 with local modifications. The project
adapts the standard to their needs. Center for Hellenic Studies - The Homer Multi-
text Project [15] is a TEI Core structure with embedded pictures instead of textual
transcription. Most of Oxford Text Archive’s [23] projects use the SGML (not the
XML) version of TEI for the header only with simple ASCII text representation.
The Newton Project uses TEI XML with nesting but without overlapping, and is
not related to epigraphy. Cambridge University Press [14] is publishing CD-ROM
versions of English literary classics, including the works of Chaucer, Shakespeare,
Samuel Johnson, and John Ruskin. These projects are not related to epigraphy.
UVA Library, University of Virginia Text Center [29] is using TEI without over-
laps, and is not related to epigraphy. Duke University Digitized Collections [17]
has mostly 20th century texts, and is not related to epigraphy.

6 Conclusions

The HypereiDoc framework has been created to provide informatics background
for transcribing literary, papyrological or epigraphical documents. An XML-based
multi-layered structure is introduced to allow distributed, version-controlled work
of scholars in a cooperative way. Handling of philological notations, associated in-
terpretations, and commentaries are supported by an extensive reference system

28 P. Bauer et al.

based on XML pointers. The expressive power of the defined document model ex-
ceeds the capability of the other proposals.

A software package of supporting tools was created to provide a convenient
interface for recording information in an error-free way, validating and building,
as well as for the creation of critical editions. The solutions provide the greatest
portability possible between operating systems with respect to both the tools
and the finished documents.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the WEB – From Relations to
Semistructured Data and XML, W3C Proposed Edited Recommendation, October
30, 2003, San Francisco (2000) ISBN 1-55860-622-X

2. Bauman, S.: TEI HORSEing Around. In: Proceedings of Extreme Markup Lan-
guages (2005)

3. De Rose, S.: Markup Overlap: A Review and a Horse. In Proceedings of Extreme
Markup Languages (2004)

4. van Groningen, B.A.: De signis criticis in edendo adhibendis. Menemosyne 59,
362–365 (1932)

5. Lavagnino, J., Wujastyk, D.: Critical Edition Typesetting: The EDMAC format for
plain TEX. San Francisco and Birmingham, TEXUsers Group and UK TEXUsers
Group (1996)

6. Netz, R., Noel, W.: The Archimedes Codex. Revealing The Secrets Of The World’s
Greatest Palimpsest, London (2007) ISBN-13: 9780297645474

7. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007)
8. Tchernetska, N.: New Fragments of Hyperides from the Archimedes Palimpsest.

Zeitschrift für Papyrologie und Epigraphik 154, 1–6 (2005)
9. Tchernetska, N., Handley, E.W., Austin, C.F.L., Horváth, L.: New Readings in

the Fragment of Hyperides’ Against Timadros. Zeitschrift für Papyrologie und
Epigraphik 162, 1–4 (2007)

10. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby: The Pragmatic Program-
mers’ Guide, p. 733. O’Reilly, Sebastopol (2004)

11. Walsh, N., Muellner, L.: DocBook: The Definitive Guide. O’Reilly, Sebastopol
(1999)

12. The Aphrodisias Project, UNC and Kings College,
http://insaph.kcl.ac.uk/ala2004/

13. Archimedes Palimpsest, http://www.archimedespalimpsest.org/
14. Cambridge University Press, http://www.cup.cam.ac.uk/
15. Center for Hellenic Studies – The Homer Multitext Project,

http://www.chs.harvard.edu/publications.sec/homer multitext.ssp
16. The Digital Library Production Services,

http://www.lib.virginia.edu/digital/reports/teiPractices/
dlpsPractices postkb.html

17. Duke University Digitized Collections,
http://library.duke.edu/specialcollections/collections/digitized/

18. Epidoc Guidelines, http://www.stoa.org/epidoc/gl/5/toc.html
19. Extensible Markup Language (XML) 1.0 (Third Edition),

http://www.w3.org/TR/2003/PER-xml-20031030
20. The Gothic Bible, http://www.wulfila.be/gothic/

http://insaph.kcl.ac.uk/ala2004/
http://www.archimedespalimpsest.org/
http://www.cup.cam.ac.uk/
http://www.chs.harvard.edu/publications.sec/homer_multitext.ssp
http://www.lib.virginia.edu/digital/reports/teiPractices/dlpsPractices_postkb.html
http://www.lib.virginia.edu/digital/reports/teiPractices/dlpsPractices_postkb.html
http://library.duke.edu/specialcollections/collections/digitized/
http://www.stoa.org/epidoc/gl/5/toc.html
http://www.w3.org/TR/2003/PER-xml-20031030
http://www.wulfila.be/gothic/

HypereiDoc – An XML Based Framework 29

21. HypereiDoc Project Homepage, http://hypereidoc.elte.hu/
22. Microsoft Office Word 97-2007 Binary File Format,

http://www.ecma-international.org/news/PressReleases/PR TC45
Dec2006.htm

23. The Oxford Text Archive, http://ota.ahds.ac.uk/
24. The Perseus Digital Library, http://www.perseus.tufts.edu/hopper/
25. TEI P4 Guidelines, http://www.tei-c.org/Guidelines/P4/index.xml
26. TEI P4 Multiple Hierarchies,

http://www.tei-c.org/release/doc/tei-p4-doc/html/NH.html
27. TEI P5 Guidelines, http://www.tei-c.org/Guidelines/P5/index.xml
28. TEI XPointer Supplements,

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SA.html
29. University of Virginia Text Center - UVA Library,

http://etext.lib.virginia.edu/standards/tei/uvatei.html
30. Wilson, P.: Ledmac,

ftp://dante.ctan.org/tex-archive/macros/latex/contrib/ledmac/

http://hypereidoc.elte.hu/
http://www.ecma-international.org/news/PressReleases/PR_TC45_Dec2006.htm
http://www.ecma-international.org/news/PressReleases/PR_TC45_Dec2006.htm
http://ota.ahds.ac.uk/
http://www.perseus.tufts.edu/hopper/
http://www.tei-c.org/Guidelines/P4/index.xml
http://www.tei-c.org/release/doc/tei-p4-doc/html/NH.html
http://www.tei-c.org/Guidelines/P5/index.xml
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SA.html
http://etext.lib.virginia.edu/standards/tei/uvatei.html
ftp://dante.ctan.org/tex-archive/macros/latex/contrib/ledmac/

	Introduction
	Formalizing the Problem
	Basics
	Virtual Operation Performance
	A Data Model for Text Annotations

	Implementation
	Layered Structure
	Reference System
	XML Pointer-Based Implementation of the Reference System
	Version Control
	Tools

	The Hypereides Palimpsest -- A Sample Project
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

