
Implementation of a Finite State Machine with

Active Libraries in C++?

Zoltán Juhász, Ádám Sipos, and Zoltán Porkoláb

Department of Programming Languages and Compilers
Faculty of Informatics

Eötvös Loránd University
e-mail: {cad, shp, gsd}@inf.elte.hu

H-1117 Budapest, Pázmány Péter sétány 1/C.

Abstract. Active libraries are code parts playing an active role during
compilation. In C++ active libraries are implemented with the help of
template metaprogramming (TMP) techniques. In this paper we present
an active library designed as an implementation tool for Finite state ma-
chines. With the help of various TMP constructs, our active library car-
ries out compile-time actions like optimizations via state-minimalization,
and more sophisticated error-detection steps. Our library provides ex-
tended functionality to the Boost::Statechart library, the popular FSM
implementation of the Boost library. We describe the implementation
and analyze the efficiency.

1 Introduction

Generative programming is one of today’s popular programming paradigms. This
paradigm is primarily used for generating customized programming components
or systems. C++ template metaprogramming (TMP) is a generative program-
ming style. TMP is based on the C++ templates. Templates are key language
elements for the C++ programming language [25], and are essential for captur-
ing commonalities of abstractions. A cleverly designed C++ code with templates
is able to utilize the type-system of the language and force the compiler to exe-
cute a desired algorithm [31]. In template metaprogramming the program itself
is running during compilation time. The output of this process is still checked
by the compiler and run as an ordinary program.

Template metaprograming is proved to be a Turing-complete sublanguage of
C++ [6]. We write metaprograms for various reasons, here we list some of them:

– Expression templates [32] replace runtime computations with compile-time
activities to enhance runtime performance.

– Static interface checking increases the ability of the compile-time to check
the requirements against template parameters, i.e. they form constraints on
template parameters [18, 23].

? Supported by GVOP-3.2.2.-2004-07-0005/3.0



– Language embedding makes it possible to introduce domain-specific code into
a C++ program via a metaprogramming framework. Examples include SQL
embedding [11], and a type-safe XML framework [13].

– Active libraries [29]. act dynamically during compile-time, making decisions
based on programming contexts and making optimizations. These libraries
are not passive collections of routines or objects, as are traditional libraries,
but take an active role in generating code. Active libraries provide higher
abstractions and can optimize those abstractions themselves.

Finite State Machines (FSMs) are well-known mathematical constructs, their
practical applications include but are not limited to lexical analyzers, perfor-
mance tests, and protocol definition implementations. Most protocols are de-
scribed by a FSM, since FSMs provide a clear framework for distinguishing the
possible state transitions when the protocol is in a certain state. However, since
often only the results of test cases of a protocol are obtainable, the developer
himself has to define and implement his own state machine description.

FSMs play a central role in many modern software systems. Besides their
functionality, their correctness and effectiveness is also crucial. Unfortunately,
recent implementation techniques provide no support for features like detecting
unreachable states and carrying out automatic state reductions. This lack of
features may reduce the quality and the effectiveness of FSM code used in critical
applications.

With the help of active libraries we are able to define state machines, do
sanity checking on their state tables, and enhance their run-time effectiveness at
compile-time in a fully automated manner. Such process can either detect consis-
tency errors during the compilation process, or produce a correct and optimized
FSM for run-time usage.

Our goal is to demonstrate the possibility to implement and effectively use
active libraries matching the above criteria. Our library is capable of carrying
out compile-time operations and performs various checkings and optimizations
on a state machine.

The paper is organized as follows. In section 2 we discuss C++’s templates
and template metaprogramming concepts. Section 3 introduces the Finite State
Machine’s formal definition. Section 4 describes common implementation tech-
niques for finite state machines. We discuss the possible implementation tech-
niques in section 5. The code efficiency and compilation time measurement re-
sults are presented in section 6. Future development directions and related work
are discussed in section 7.

2 C++ Template metaprograms

2.1 Compile-time programming

Templates are an important part of the C++ language, by enabling data struc-
tures and algorithms to be parameterized by types. This abstraction is frequently



needed when using general algorithms like finding an element in a data struc-
ture, or data types like a list of elements. The mechanism behind a list containing
integer numbers, or strings is essentially the same, it is only the type of the con-
tained objects that differs. With templates we can express this abstraction, thus
this generic language construct aids code reuse, and the introduction of higher
abstraction levels. Let us consider the following code:

template <class T> int main()

class list {

{ ...

public: list<int> li; // instantiation

list(); li.insert(1928);

void insert(const T& x); }

T first();

void sort();

//...

};

This list template has one type parameter, called T, referring to the future type
whose objects the list will contain. In order to use a list with some specific type,
an instantiation is needed. This process can be invoked either implicitly by the
compiler when the new list is first referred, or explicitly by the programmer.
During instantiation the template parameters are substituted with the concrete
arguments. This newly generated code part is compiled, and inserted into the
program.

The template mechanism of C++ is unique, as it enables the definition of
partial and full specializations. Let us suppose that for some type (in our example
bool) we would like to create a more efficient type-specific implementation of
the list template. We may define the following specialization:

template<>

class list<bool>

{

// a completely different implementation may appear here

};

The specialization and the original template only share the name. A specializa-
tion does not need to provide the same functionality, interface, or implementation
as the original.

2.2 Metaprograms

In case the compiler deduces that in a certain expression a concrete instance of
a template is needed, an implicit instantiation is carried out. Let us consider the
following code demonstrating programs computing the factorial of some integer
number by invoking a recursion:



// compile-time recursion // runtime recursion

template <int N> int Factorial(int N)

struct Factorial {

{ if (N==1) return 1;

enum { value = N * return N*Factorial(N-1);

Factorial <N-1>::value }; }

};

template<>

struct Factorial<1>

{

enum { value = 1 };

};

int main() int main()

{ {

int r=Factorial<5>::value; int r=Factorial(5);

} }

As the expression Factorial<5>::valuemust be evaluated in order to initialize
r with a value, the Factorial template is instantiated with the argument 5.
Thus in the template the parameter N is substituted with 5 resulting in the
expression 5 * Factorial<4>::value. Note that Factorial<5>’s instantiation
cannot be finished until Factorial<4> is instantiated, etc. This chain is called
an instantiation chain. When Factorial<1>::value is accessed, instead of the
original template, the full specialization is chosen by the compiler so the chain
is stopped, and the instantiation of all types can be finished. This is a template
metaprogram, a program run in compile-time, calculating the factorial of 5.

In our context the notion template metaprogram stands for the collection of
templates, their instantiations, and specializations, whose purpose is to carry out
operations in compile-time. Their expected behavior might be either emitting
messages or generating special constructs for the runtime execution. Henceforth
we will call a runtime program any kind of runnable code, including those which
are the results of template metaprograms.

C++ template metaprogram actions are defined in the form of template def-
initions and are “executed” when the compiler instantiates them. Templates can
refer to other templates, therefore their instantiation can instruct the compiler
to execute other instantiations. This way we get an instantiation chain very sim-
ilar to a call stack of a runtime program. Recursive instantiations are not only
possible but regular in template metaprograms to model loops.

Conditional statements (and stopping recursion) are solved via specializa-
tions. Templates can be overloaded and the compiler has to choose the narrowest
applicable template to instantiate. Subprograms in ordinary C++ programs can
be used as data via function pointers or functor classes. Metaprograms are first
class citizens in template metaprograms, as they can be passed as parameters to
other metaprograms [6].



Data is expressed in runtime programs as variables, constant values, or liter-
als. In metaprograms we use static const and enumeration values to store
quantitative information. Results of computations during the execution of a
metaprogram are stored either in new constants or enumerations. Furthermore,
the execution of a metaprogram may trigger the creation of new types by the
compiler. These types may hold information that influences the further execution
of the metaprogram.

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree
structures, or sequences. Tree structures are the favorite implementation forms
of expression templates [32]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost::mpl library [16].

2.3 Active libraries

With the development of programming languages, user libraries also became
more complex. FORTRAN programs already relied heavily on programming
libraries implementing solutions for re-occuring tasks. With the emerging of
object-oriented programming languages the libraries also transformed: the sets
of functions were replaced by classes and inheritance hierarchies. However, these
libraries are still passive: the writer of the library has to make substantial de-
cisions about the types and algorithms at the time of the library’s creation. In
some cases this constraint is a disadvantage. Contrarily, an active library [29]
acts dynamically, makes decisions in compile-time based on the calling context,
chooses algorithms, and optimizes code. In C++ active libraries are often im-
plemented with the help of template metaprogramming. Our compile-time FSM
active library also utilizes TMP techniques.

3 Finite State Machine

The Finite State Machine (FSM) is a model of behavior composed of a finite
number of states, transitions between those states, and optionally actions. The
transitions between the states are managed by the transition function depending
on then input symbol (event). In the rest of this paper we use the expression
Finite State Machine (FSM), automaton or machine in terms of Deterministic
Finite State Machine (DFSM). Deterministic Finite State Machines, Determin-
istic Finite Tree Automatons etc. are a widespread model for implementing a
communication protocol, a program drive control flow or lexical analyzer among
others. The solution of a complex problem with a FSM means the decomposition
of the problem into smaller parts (states) whose tasks are precisely defined.

3.1 A Mathematical model of Finite State Machine

A transducer Finite State Machine is a six tuple [20], consisting of



– Let Σ denote a finite, non empty set of input symbols. We are referring to
this set as the set of events

– Let Γ denote a finite, non empty set of output symbols
– Let S denote a finite set of States
– Let q0 ∈ Q denote the Start or Initial state, an element of S
– A Transition function: δ : Q × Σ → Q
– Let ω denote an Output function

The working mechanism of a FSM is as follows. First the FSM is in the
Start state. Each input symbol (event) makes the FSM move into some state
depending on the transition function, and the current state. If the event-state
pair is not defined by the function, the event in that state is not legal. For
practical purposes we introduce a 7th component to the FSM, which is a set
of actions. These actions that are executed through a transition between two
states. Note that our model uses the Moore machine [20].

4 Common implementation techniques

There are a number of different FSM implementation styles from hand-crafted
to professional hybrid solutions. In the next section we review some common
implementation techniques.

4.1 Procedural solution

This is the simplest, but the least flexible solution of the implementation of a
DFSM. The transition function’s rules are enforced via control structures, like
switch-case statements. States and events are regularly represented by enumer-
ations, actions are plain function calls.

The biggest drawback of this implementation is that it is suitable only for
the representation of simple machines, since no framework for sanity checking is
provided, therefore the larger the automaton, the more error prone and hard to
read its code [22]. Such implementations are rare in modern industrial programs,
but often used for educational or demonstrational purposes.

4.2 Object-oriented solution with a state transition table

The object-oriented representation is a very widespread implementation model.
The transition function behavior is modeled by the state transition table (STT).
Table 1 shows a sample STT:

Current State contains a state of the automaton, Event is an event that
can occur in that state, Next State is the following state of the state machine
after the transition, and Action is a function pointer or a function object that
is going to be executed during the state transition.

A good example of such an automaton implementation is the OpenDiam-
eter communication protocol library’s FSM [10]. One of the main advantages



Current State Event Next State Action

Stopped play Playing start playback
Playing stop Stopped stop playback

Table 1. State Transition Table.

of the Object-Oriented solution over the hand-crafted version is that the state
transition rules and the code of execution are separated and it supports the in-
crementality development paradigm in software engineering. The drawback of
an average OO FSM implementation is that the state transition table is defined
and built at runtime. This is definitely not free of charge. Sanity checking also
results in runtime overhead and incapable of preventing run-time errors.

4.3 Hybrid technique

The most promising solution is using the Object-Oriented and template-based
generative programming techniques side by side. States, events and even actions
are represented by classes and function objects, and the STT is defined at com-
pilation time with the heavy use of C++ template techniques, like Curiously
Recurring Template Pattern (CRTP) [8].

An outstanding example of such DFSM implementation is Boost::Statechart
Library [9], which is UML compatible, supports multi-threading, type safe and
can do some basic compile time consistency checking. However, Boost::Statechart
is not based on template metaprograms, therefore it does not contain more
complex operations, like FSM minimization.

5 Our solution

As soon as the STT is defined at compilation time, algorithms and transfor-
mations can be executed on it, and also optimizations and sanity checking of
the whole state transition table can be done. Therefore we decided to step for-
ward towards using template metaprograms to provide automatic operations at
compile-time on the FSM. Our goal was to develop an inital study that:

– carries out compound examinations and transformation on the state transi-
tion table,

– and shows the relationship between Finite State Machines and Active Li-
braries over a template metaprogram implementation of the Moore reduction
procedure.

The library is based on a simplified version of Boost::Statechart ’s State Transi-
tion Table. In the future we would like to evolve this code base to a library that
can cooperate with Boost::Statechart library and function as an extension.



5.1 Applied data structures and algorithms

We used many C++ template facilities extensively, such as SFINAE, template
specialization, parameter deduction etc[21]. In a metaprogram you use compile
time constants and types instead of variables and objects respectively; class
templates and function templates instead of funtions and methods. To simu-
late cycles and if-else statements we used recursive template instantiations and
partial and full template specializations.

Assignment is also unknown in the world of metaprograms, we use typedef
specifiers to introduce new type aliases, that hold the required result.
We used Boost::MPL[5], which provides C++ STL-style[19] compile-time con-
tainers and algorithms.

In our model the State Transition Table defines a directed graph. We imple-
mented the Moore reduction procedure, used the Breadth-First Search (BFS)
algorithm to isolate the graph’s main strongly connected component and with
the help of a special “Error” state we made it complete.

Much like the Boost::Statechart’s STT, in our implementation states and
events are represented by classes, structs or any built-in types. The STT’s im-
plementation based on the Boost::MPL::List compile-time container is described
in Figure 1:

template< typename T, typename From, typename Event, typename To,

bool (T::* transition_func)(Event const&)>

struct transition

{

typedef T fsm_t;

typedef From from_state_t;

typedef Event event_t;

typedef To to_state_t;

typedef typename Event::base_t base_event_t;

static bool do_transition(T& x, base_event_t const& e)

{

return (x.*transition_func)(static_cast<event_t const &>(e));

}

};

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >

// +-----------+----------+-------------+----------------------+

>::type sample_transition_table; // end of transition table

Fig. 1. Implementation of our State Transition Table.



A transition table built at compile-time behaves similarly to a counterpart
built in runtime. The field transition func pointer to member function repre-
sents the tasks to be carried out when a state transition happens. The member
function do transition() is responsible for the iteration over the table. The
state appearing in the first row is considered the starting state.

5.2 A Case Study

In this section we present a simple use case. Let us imagine that we want to
implement a simple CD player, and the behavior is implemented by a state
machine. The state transition table skeleton can be seen in Figure 2.

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >,

trans < Playing , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

... duplicated functionality ...

trans < Stopped , play , Running , &p::start_running >,

trans < Running , stop , Stopped , &p::stop_running >,

trans < Running , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

... unreachable states ...

trans < Recording , pause , Pause_rec , &p::pause_recording>,

trans < Paused_rec, resume , Recording , &p::resume_rec >

// +-----------+----------+-------------+----------------------+

>::type sample_trans_table; // end of transition table

Fig. 2. Sample State Transition Table

The programmer first starts to implement the Stopped, Playing, and Paused
states’ related transitions. After implementing a huge amount of other transi-
tions, eventually he forgets that a Playing state has already been added, so he
adds it again under the name Running. This is an unnecessary redundancy, and
in generaly could indicate an error or sign of a bad design. A few weeks later it
turns out, that a recording functionality needs to be added, so the programmer
adds the related transitions. Unfortunately, the programmer forgot to add a few
transitions, so the Recording and Paused state cannot be reached. In general
that also could indicate an error. On the other hand if the state transition ta-
ble contains many unreacheable states, these appear in the program’s memory
footprint and can cause runtime overhead.

Our library can address these cases by emitting warnings, errors messages, or
by eliminating unwanted redundancy and unreacheable states. The result table
of the reduction algorithm can be seen here:



template struct fsm_algs::reduction< sample_trans_table >;

After this forced template instantiation, the enhanced_table typedef within
this struct holds an optimized transition table is described in Figure 3:

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >,

trans < Playing , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

... duplicated functionality has been removed ...

... unreachable states have been removed too ...

// +-----------+----------+-------------+----------------------+

>::type sample_trans_table; // end of transition table

Fig. 3. Reduced Transition Table

5.3 Implementation of the algorithms

In the following we present the minimization algorithm implemented in our active
library.

Locating strongly connected components The first algorithm executed be-
fore the Moore reduction procedure is the localization of the strongly connected
component of the STT’s graph from a given vertex. We use Breadth-First Search
to determine the strongly connected components. After we have located the main
strongly connected component from a given state, we can emit a warning / error
message if there is more than one component (unreachable states exist) or we
can simply delete them. The latter technique can be seen in Figure 4 (several
lines of code have been removed):

Making the STT’s graph complete The Moore reduction algorithm requires
a complete STT graph, so the second algorithm that will be executed before the
Moore reduction procedure is making the graph complete. We introduce a special
“Error” state, which will be the destination for every undefined state-event pair.
We test every state and event and if we find an undefined event for a state, we
add a new row to the State Transition Table. (Figure 5.)

The destination state is the “Error” state. We can also define an error-handler
function object[19]. After this step, if the graph was not complete, we’ve intro-
duced a lot of extra transitions. If they are not needed by the user of the state



// Breadth-First Search

template < typename Tlist, typename Tstate, typename Treached,

// STT ^ Start state ^ Reached states ^

typename Tresult = typename mpl::clear<Tlist>::type,

// ^ Result list is initialized with empty list

bool is_empty = mpl::empty<Treached>::value >

struct bfs

{

// Processing the first element of the reached list

typedef typename mpl::front<Treached>::type process_trans;

typedef typename process_transition::to_state_t next_state;

// (...) Removing first element

typedef typename mpl::pop_front<Treached>::type

tmp_reached_list;

// (...) Adding recently processed state table rows

// to the already processed (reachead) list

typedef typename merge2lists<tmp_result_list, tmp_reached_list>

::result_list tmp_check_list;

// (...) Recursively instantiates the bfs class template

typedef typename bfs< Tlist, next_state, reached_list,

tmp_result_list, mpl::empty<reached_list>::value>

::result_list result_list;

};

Fig. 4. Implementation of Breadth-First Search

machine, these can be removed after the reduction. The result after the previ-
ously executed two steps is a strongly connected, complete graph. Now we are
able to introduce the Moore reduction procedure.

The Moore reduction procedure Most of the algorithms and methods used
by the reduction procedure have already been implemented in the previous two
steps.

First we suppose that all states may be equivalent i.e. may be combined
into every other state. Next we group non-equivalent states into different groups
called equivalence partitions. When no equivalence partitions have states with
different properties, states in the same group can be combined. We refer to
equivalent partitions as sets of states having the same properties. [14]

We have simulated partitions and groups with Boost::MPL’s compile time
type lists. Every partition’s groups are represented by lists in lists. The outer
list represents the current partition, the inner lists represent the groups. Within
two steps we mark group elements that need to be reallocated. These elements
will be reallocated before the next step into a new group (currently list).



// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stop , pause , Error , &p::handle_error >

Fig. 5. Adding new transition.

After the previous three steps the result is a reduced, complete FSM whose
STT has only one strongly connected component. All of these algorithms are exe-
cuted at compile time, so after the compilation we are working with a minimized
state machine.

6 Results

The aim of the previously introduced techniques is to prove that we are able
to do sanity checks and transformations on an arbitrary FSM State Transition
Table. With the help of these utilities we can increase our automaton’s efficiency
and reliability without any runtime cost. We can also help the developer since
compile-time warnings and errors can be emitted to indicate STT’s inconsistency
or unwanted redundancy. Our algorithms are platform independent because we
are only using standard facilities defined in the C++ 2003 language standard
(ISO/IEC 14882) [21], and elements of the highly portable Boost library. Sup-
ported and tested platforms are the following:

– Comeau C/C++ 4.2.45, 4.3.3

– Compaq C++ (Tru64 UNIX) 6.5

– GCC 3.2.2, 3.3.1, 3.4, 4.1.0

– Intel C++ 7.1, 8.0, 9.1

– Metrowerks CodeWarrior 4.2.45, 4.3.3

– Microsoft Visual C++ 7.1

In the following we present code size and compilation time measurements with
the gcc 4.1.0 20060304 (Red Hat 4.1.0-3) compiler. The test consists of the
definition and consistency checking of a state transition table.

6.1 Code size

The x axis represents the number of states, while y shows the resulting code
size in bytes. At 0 states the program consisits of our library, while no state
transition table is used. Binary code size is increased only when the first state
is introduced. The graph shows no further code size increase when the FSM
consists of more states. (Figure 6) The reason is that the representation of each
state is a type, which is compile-time data. This data is not inserted into the
final code.



4740

4760

4780

4800

4820

4840

4860

0 10 20 30 40 50

bytes

number of states

size of code

Fig. 6. Number of states and size of code

6.2 Compilation time

The testing method is essentially the same as above. Compilation time does not
grow linearly with the introduction of new states. (Figure 7)

7 Related work and Future work

Final State Machine implementations vary from fully procedural [22] to object-
oriented solutions [10]. Flexibility and maintanibility are becoming better, but
the correctness of the created automaton ultimately depended on the program-
mers caution. Template techniques were introduced to enhance run-time perfor-
mance [8], but not for providing sanity checks on the FSM.

The Boost Statechart Library supports a straightforward transformation of
UML statecharts to executable C++ code [9]. The library is type safe, supports
thread-safety and performs some basic compile time consistency checking. How-
ever, Boost::Statechart is not based on template metaprograms, therefore it does
not contain more complex operations, like FSM minimization.

In the future we intend to extend the library with the following functionali-
ties.

– Warnings, error messages - The library minimizes the graph without asking
for confirmation from the programmer. Warnings and errors could be emitted
by the compiler whenever an isolated node or reducible states are found.



0

0.5

1

1.5

2

0 10 20 30 40 50

s

number of states

compilation time

Fig. 7. Number of states and compilation time

– Joker states, events - In some cases it would be convenient to have a state
in the FSM that acts the same regardless of the input event. Now we have
to define all such state transitions in the STT. With future “joker” states
and events, the STT definition would be simpler for the user, and also the
reduction algorithm would have a smaller graph to work on. On the other
hand the representation and the library logic would get more complex.

– Composite states - A composite state is a state containing a FSM. In case
such state is reached by the outer machine, this inner automaton is activated.
This FSM might block the outer automaton.

8 Conclusion

We created an active library to implement Final State Machines functionally
equivalent to the Boost::Statechart library [9]. Our library is active in the sense
that it carries out various algroritms at compile time. Algorithms include state
machine reduction, and extended error checking.

The library carries out checking and transformations on a FSM’s State Tran-
sition Table. The active library contains an implementation of the Moore re-
duction procedure and other algorithms. The algorithms are executed during
compilation in the form of template metaprograms, therefore no runtime penal-
ties occur. If the reduction is possible, the FSM is expected to be faster during
its execution in runtime. The usage of such compile time algorithms has little
impact on the code size.



On the other hand, with the aid of compile time checking and the emitted
warnings and error messages the program code will be more reliable, since the
program can only be compiled if it meets the developer’s requirements. These
requirements can be assembled through compile time checking.

Our implementation is based on the Boost::MPL and Boost::Statechart Li-
braries. As the library uses only standard C++ features, it is highly portable
and successfully tested in different platforms.

References

1. David Abrahams, Aleksey Gurtovoy: C++ template metaprogramming, Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley, Boston, 2004.

2. Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

3. ANSI/ISO C++ Committee. Programming Languages – C++. ISO/IEC
14882:1998(E). American National Standards Institute, 1998.

4. Boost Concept Checking library.
http://www.boost.org/libs/concept_check/concept_check.html

5. Boost Metaprogramming library.
http://www.boost.org/libs/mpl/doc/index.html

6. Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods,
Tools and Applications. Addison-Wesley (2000)

7. Krzysztof Czarnecki, Ulrich W. Eisenecker, Robert Glck, David Vandevoorde, Todd
L. Veldhuizen: Generative Programmind and Active Libraries. Springer-Verlag,
2000

8. James O. Coplien: Curiously Recurring Template Patterns. C++ Report, February
1995.

9. A. H. Dnni: Boost::Statechart
http://boost-sandbox.sourceforge.net/libs/statechart/doc/index.html

10. V. Fajardo, Y. Ohba, Open Diameter
http://www.opendiameter.org/

11. Y. Gil, K. Lenz: Simple and Safe SQL Queries with C++ Templates. In Proceedings
of the 6th international conference on Generative programming and component
engineering, pp. 13-24, Salzburg, Austria, 2007

12. Douglas Gregor, Jaakko Jrvi, Jeremy G. Siek, Gabriel Dos Reis, Bjarne Stroustrup,
and Andrew Lumsdaine: Concepts: Linguistic Support for Generic Programming in
C++. In Proceedings of the 2006 ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA’06), October 2006.

13. Y. Solodkyy, J. Järvi, E. Mlaih: Extending Type Systems in a Library — Type-
safe XML processing in C++, Workshop of Library-Centric Software Design at
OOPSLA’06, Portland Oregon, 2006

14. John. E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, 2000

15. Zoltán Juhász: Implementing Finite State Automata with Active Libraries
M.Sc. Thesis. Budapest, 2006.

16. Björn Karlsson: Beyond the C++ Standard Library, An Introduction to Boost.
Addison-Wesley, 2005.

17. Donald E. Knuth: An Empirical Study of FORTRAN Programs. Software - Prac-
tice and Experience 1, 1971, pp. 105-133.



18. Brian McNamara, Yannis Smaragdakis: Static interfaces in C++. In First Work-
shop on C++ Template Metaprogramming, October 2000

19. David R. Musser, Alexander A. Stepanov: Algorithm-oriented Generic Libraries.
Software-practice and experience, 27(7) July 1994, pp. 623-642.

20. J. E. Hopcroft, R. Motwani, J. Ullman: Introduction to Automata Theory, Lan-
guages, and Computation Addison-Wesley, 1969

21. Programming languages C++, ISO/IEC 14882 (2003)
22. Miro Samek: Practical Statecharts in C/C++. CMP Books (2002)
23. Jeremy Siek and Andrew Lumsdaine: Concept checking: Binding parametric poly-

morphism in C++. In First Workshop on C++ Template Metaprogramming, Oc-
tober 2000

24. Jeremy Siek: A Language for Generic Programming. PhD thesis, Indiana Univer-
sity, August 2005.

25. Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-
Wesley (2000)

26. Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley (1994)
27. Erwin Unruh: Prime number computation. ANSI X3J16-94-0075/ISO WG21-462.
28. David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The Complete Guide.

Addison-Wesley (2003)
29. Todd L. Veldhuizen and Dennis Gannon: Active libraries: Rethinking the roles of

compilers and libraries. In Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientic and Engineering Computing (OO’98). SIAM
Press, 1998 pp. 21–23

30. Todd Veldhuizen: Five compilation models for C++ templates. In First Workshop
on C++ Template Metaprogramming, October 2000

31. Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4,
1995, pp. 36-43.

32. Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5, 1995, pp. 26-31.
33. István Zólyomi, Zoltán Porkoláb: Towards a template introspection library. LNCS

Vol.3286 pp.266-282 2004.


