
C++ Metastring Library

Zalán Szűgyi, Ábel Sinkovics, Norbert Pataki, and Zoltán Porkoláb

Department of Programming Languages and Compilers, Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

{lupin, abel, patakino, gsd}@elte.hu

Abstract. C++ template metaprograms are special programs inter-
preted by the compiler. While regular programs recline upon usual lan-
guage constructs, these metaprograms are implemented in functional ap-
proach and are created with the generic construct of C++, called tem-
plate.

Metaprograms are widely used for the following purposes: executing al-
gorithms at compile time, optimizing runtime programs, implementing
active libraries, and emitting compilation errors and warnings to enforce
certain semantic checks.

Developing these metaprograms requires a high level of programming
competence and great amount of time, because of the imperfection of lan-
guage support. Nevertheless, there are metaprogram libraries that can as-
sist C++ metaprogramming, such as Loki and Boost::MPL. Nonetheless,
they only provide a weak implementation of metastrings, though these
would highly simplify the programmers’ work, just as regular strings do
in regular programming.

In this research, we analyzed the possibilities of handling string objects
at compile time with a metastring library in order to overcome this in-
sufficiency. We created a prototype implementation of metastring based
on boost::mpl::string that provides the common string operations (sub-
string, concatenation, replace, etc.). In this paper, we present how to
improve the performance or code quality of some commonly used algo-
rithms by applying metastrings.

1 Introduction

The classical compilation model of software development designs and imple-
ments subprograms, than compiles them and runs the program. During the first
step the programmer makes decisions about implementation details: choosing
algorithms, setting parameters and constants. Programming by generative pro-
gramming paradigm, some of these decisions can be delayed and applied only
a compile time. Active libraries [18] take effect at compile time, making deci-
sions based on programming contexts, thus, they can optimize performance. In
contrast of traditional libraries they are not passive collections of routines or ob-
jects, but take an active role in generating code. Active libraries provide higher
abstractions and can optimize those abstractions themselves.



The C++ programming language [17] supports generative programming paradigm
with using template facility. The templates are designed to shift the classes and
algorithms to a higher abstraction level without loosing efficiency. This way the
classes and algorithms can be more general and flexible, making the source code
shorter, and easier to read and maintain, which improves the quality of the code.

A C++ code with templates – designed in a special way – is able to utilize
the type-system of the language and force the compiler to execute a desired
algorithm. This programming style is called template metaprogramming [20]. In
this way, the program itself runs during compilation time. The output of this
process is also checked by the compiler and can run as an ordinary program.
Template metaprogramming is proved to be a Turing-complete sub-language of
C++ [4].

Template metaprogramming is widely used for several purposes, like execut-
ing algorithms at compile time to optimize or make safer run-time algorithms
and data structures. Expression templates [19] allow C++ expressions to be lazy-
evaluated. Template metaprograms can perform compile time optimizations on
a Finite State Machine [8]. Static interface checking increases the safety of the
code, allowing compile time checking of template parameters whether they meet
the given requirements [14].

Strings are one of the most commonly used data types in programming.
Most programming languages provide strings as built in data types, while others
support string operation by their standard library. A number of applications
are based on string manipulation, like lexical analyzers, pattern matchers and
serialization tools. These applications are widely used in most areas of computer
science. Numerous researches and studies managed to improve the efficiency of
these algorithms, however these improvements focused only on runtime algorithm
optimizations.

There are cases, when some of the input arguments of string manipulation
algorithms are known already during compile time. In these cases a template
metaprogram can customize the string algorithm to the corresponding input,
making it safer and more efficient. As an example, while using Knuth-Morris-
Pratt substring search algorithm [1] we know the exact pattern to find in the
text. Thus, we can generate the next vector of the algorithm at compile time.

Although the printf function of the standard library of the C programming
language – that is a widely used function to write strings to the standard output
– has a nice and compact syntax, it is not recommended to use in C++, because
it parses the formatting string at runtime, thus, it is not typesafe. At the same
time, in most cases the formatter string is already known during compilation
time. Hence, it is possible to generate a formatter string specific printf with
metaprograms, so that the compiler would be able to check the type of the other
parameters, making our code safer.

In this paper, we present a metastring library based on boost::mpl::string

[9, 21] to provide a string type for metaprograms. We introduce the meta algo-
rithms of usual string operations of C++ Standard Template Library [11]. Ad-



ditionally, we provide meta-algorithms to make pattern matching more efficient
and present a typesafe printf.

The paper is organized as follows. In section 2 we give a short description of
template metaprogramming paradigm. Section 3 presents our Metastring library,
while in section 4 we present some applications using these metastrings. Related
and future work comes in section 5, and the conclusion stands in section 6.

2 Template Metaprograms

The template facility of C++ allows us to write algorithms and data structures
parametrized by types. This abstraction is useful for designing general algorithms
like finding an element in a list. The operations of lists containing integers, char-
acters or even user defined classes are essentially the same. The only difference
between them is the stored type. With templates we can parametrize these list
operations by type, thus we need to write the abstract algorithm only once, and
the compiler will generate the integer, character or user defined class version of
the list from it. See the example below:

template<typename T>

struct list {

list();

void insert(const T& t);

T head();

// ...

};

int main() {

list<int> l; //instantiation

l.insert(42);

}

The list type has one template argument T. This refers to the future type,
whose object will be contained by the list. To use this list we need to assign
a specific type to it. That method is called instantiation. During this process
the compiler replaces the abstract type T with a specific type and compiles this
newly generated code. The instantiation can be invoked either explicitly by the
programmer or implicitly by the compiler when the new list is first referred to.

The template mechanism of C++ enables the definition of partial and full
specializations. Let us suppose that we would like to create a more efficient type-
specific implementation of the list template for bool type. We may define the
following specialization:

template<>

struct list<bool> {

//type-specific implementation

};



The implementation of the specialized version can be totally different from
the original one. Only the name of these template types are the same. If during
the instantiation the concrete type is bool, the specific version of template list
is chosen, otherwise the general one is selected.

In case of certain expressions a concrete instance of template is needed for
the compiler to deduce it. Thus, an implicit instantiation will be performed. Let
us see the following example of calculating factorial of 5:

template<int N>

struct factorial {

enum { value = N * factorial<N-1>::value };

};

template<>

struct factorial<0> {

enum { value = 1 };

};

int main() {

int result = factorial<5>::value;

}

To initialize the variable result here, the expression factorial<5>::value

has to be evaluated. As the template argument is not zero, the compiler instan-
tiates the general version of the factorial template with 5. The definition of
value is N * factorial<N-1>::value, hence the compiler has to instantiate
the factorial again with 4. This chain continues as long as the concrete value
becomes 0. Then, the compiler choses the special version of factorial where
the value is 1. Thus, the instantiation chain is stopped and the factorial of 5
is calculated. This algorithm runs while the compiler compiles the code. Hence,
this example code is equivalent to int result = 120.

These programs, which run at compile time are called template metapro-
grams [2]. Template metaprograms stand for the collection of templates, their
instantiations and specializations, and perform operations at compile time. The
basic control structures like iteration and condition appear in them in a func-
tional way [15]. As we can see in the previous example iterations in metaprograms
are applied by recursion. Besides, the condition is implemented by a template
structures and its specialization. See below:

template<bool cond_, typename then_, typename else_>

struct if_ {

typedef then_ type;

};

template<typename then_, typename else_>

struct if_<false, then_, else_> {



typedef else_ type;

};

The if structure has three template arguments: a boolean and two abstract
types. If the cond is false, then the partly-specialized version of if will be
instantiated, thus the else will be bound by the type. Otherwise the general
version of if will be instantiated and then will be bound by type.

Since the style of metaprograms is unusual and difficult, it requires high
programming skills to write. Besides, it is sorely difficult to find errors in it.
Porkoláb et al. provided a metaprogram debugger tool [12] in order to help
finding bugs.

3 Metastring Library

Our metastring library is based on boost::mpl::string [21]. The Boost Metapro-
gram Library provides us a variety of meta containers, meta algorithms and
meta iterators. The design of that library is based on STL, the standard library
of C++, however, while the STL acts at runtime, the Boost::Mpl works at com-
pile time. The meta version of regular containers in STL, like list, vector, deque,
set and map are provided by Boost::MPL. Also, there are meta versions of most
algorithms and iterators in STL. The string metatype was added to Boost in the
last release (1.40). Contrary to other meta containers, the metastring has lim-
ited features. Almost all regular string operations, like concatenation, equality
comparison, substring selection, etc. are missing. Only the c str() meta function,
which converts the metastring type to constant character array, is provided by
Boost.

In our metastring library we extended the boost::mpl::string with the most
common string operations.

The metastring itself is a template type. The template arguments contain
the value of the string. While C++ does not support passing string literals to
template arguments, we need to pass it character by character. See below:

typedef string<’H’,’e’,’l’,’l’,’o’> str;

The boost::mpl::string is a variadic template type like boost::mpl::vector [22],
but only accepts characters as template arguments. The instantiated metastring
type can perform as a concrete string at compile time. Since an instantiated
metastring is a type, one can assign a shorter name to it by typedef keyword.

In the examples of the paper we write the type- and function names of boost
without the scope (string, instead of boost::mpl::string) to save space. If we write
the names of functions or objects in STL we put the scope before them.

Setting metastrings char-by-char is very inconvenient, therefore, the Boost
offers an improvement. A template argument can be any integral type, hence
it is possible to pass four characters as integer, and later on a metaprogram
transforms it back to characters. See example below:



typedef string<’Hell’,’o’> str;

In most architectures, the int contains at least four bytes and since the size
of a character is one byte, it can store four characters. We are exploiting this
feature now.

Nevertheless, this is still not the simplest way of setting a metastring, but
the C++ standard [13] only supports this one. We provide a non-standard ex-
tension to enable setting metastrings in a regular way. This method requires a
code transformation tool, which transforms the source to a standard C++ code
before compilation. Since our solution does not follow the C++ standard, in the
following examples we will use the four character per template argument style.

We provide the meta-algorithms of the most common string operations, like
concat, find, substr, equal, etc. These algorithms are also template types,
which accept metastring types as template arguments. The concat and substr

defines a type called type which is the result of the operation. equals provides
a static boolean constant called value, which is initialized as true if the two
strings are equal, otherwise as false. find defines a static std::size t constant
called value, which is initialized as the first index of matching, if the pattern
appears in the text and as std::string::npos otherwise. See the example about
concatenation of string below:

typedef string<’Hell’,’o’> str1;

typedef string<’ Wor’,’ld!’> str2;

typedef concat<str1, str2>::type res;

std::cout << c_str<res>::value

The type defined by concat<str1, str2> is a new metastring type, which
represents the concatenation of str1 and str2 metastrings.

4 Applications with Metastrings

In this chapter we present some applications which can take either efficiency
or safety advantages of metastrings. The first examples are pattern matching
applications. If the text or a pattern is known at compile time, we can improve
the matching algorithms. (If both of the text and the pattern are known, we
can perform the whole pattern matching algorithm at compile time.) The third
application is a typesafe printf. If the formatter string is known at compile time,
we can generate a specialized kind of printf algorithm to it, which can perform
type checking.

4.1 Pattern Matching with Known Pattern

Most of the pattern matching algorithms start with an initialization step. This
step depends only on the pattern. If the pattern is known at compile time,



we can shift this initialization subroutine from runtime to compile time. This
means that while the compiler compiles the code it will wire the result of the
initialization subroutine into the code. Thus, the algorithm does not need to run
the initialization step, because it is already initialized. The more the pattern
matching algorithm is invoked, the more advantage we get.

The example below shows how to use these algorithms:

typedef string<’patt’,’ern’> pattern;

std::string text;

// reading data to text

std::size_t res1 = kmp<pattern>(text);

std::size_t res2 = bm<pattern(text);

The kmp and bm function templates implement the Knuth-Morris-Pratt [10]
and the Boyer-Moore [3] pattern matching algorithms. The return values are
similar to the find function in STL and are either the first index of the match
or std::string::npos. The implementation of these functions are the following:

template<typename pattern>

std::size_t kmp(const std::string& text) {

const char* p = c_str<pattern>::value;

const char* next = c_str<initnext<pattern>::type>::value;

//implementation of Knuth-Morris-Pratt

}

template<typename pattern>

std::size_t bm(const std::string& text) {

const char* pattern = c_str<pattern>::value;

const char* skip = c_str<initskip<pattern>::type>::value;

//implementation of Knuth-Morris-Pratt

}

The pattern template argument must be a metastring type for both of the
functions. The initnext and the initskip meta algorithms create the next and
the skip vectors for the algorithms at compile time. The rest of the algorithms
are the same as the normal runtime version.

We compared the full runtime version of algorithms with our solution where
the initialization is performed at compile time. Fig. 1 shows the results related to
Knuth-Morris-Pratt and fig. 2 to Boyer-Moore. We tested these algorithms with
several inputs. The input was a common English text and the pattern contained
a couple words. The pattern did not appear in the text, thus the algorithms
had to read all the input. We measured the running cost with one, two, five
and ten kilobyte long inputs. In both charts, the blue columns show the running
cost of the original algorithms and the green ones show the performance of the



algorithms optimized at compile time. The X-axis shows the inputs and the
Y-axis shows the instructions consumed during the algorithm.

Fig. 1. Comparison of Knuth-Morris-Pratt

Fig. 2. Comparison of Boyer-Moore

4.2 Pattern Matching with Known Text

Several algorithms exist for fast pattern matching. Some of these are general
algorithms, the worst-case time complexity of which are good in every kind of
texts, like the Knuth-Morris-Pratt’s algorithm. Others like the Boyer-Moore’s
algorithm [1] can be very fast in some special kinds of texts but very slow in
other cases. If the text, where we want to find a pattern is known at compile time,
our meta-algorithm can analyze it and choses the best fitting pattern matching
algorithm. For example, if the alphabet of the input text is large, the Boyer-
Moore algorithm is more efficient, but if the alphabet is small, choosing the
Knuth-Morris-Pratt algorithm is more beneficial.



Since the text is known at compile time, the analysis can be done by the
programmer. However, doing it manually with large texts is difficult, boring
and it is easy to make mistakes, thus the result is often not the most efficient
algorithm.

Another advantage of using our meta-algorithm is that it provides a unified
interface to perform pattern matching, and the compile time optimizations are
hidden from the user as well.

The example below shows the usage the of the find function:

typedef string<’Text,’we w’,’ant ’,’to s’,’earc’,’h fr’,’om’> text;

std::size_t result = find<text>("pattern");

Just like the find function in STL, our function returns with the index of the
first match in text, or with std::string::npos if there is no match. The find

function is a function template, where the template argument is a metastring
containing the text. The function applies the text analyzer metaprogram and
invokes the best fitting pattern matching algorithm. See below the definition of
the find function.

template<typename text>

std::size_t find(const std::string& pattern) {

return find(c_str<text>::value,

pattern,

analyze<text>::type() );

}

The template argument text must be a metastring type, while the pattern
can be any string, not necessarily known at compile time. The find function
calls a three-argument find function, which is hidden from the user. The inner
find function is overloaded by the third argument algorithm tag type. The
implementation is similar to the implementation of the function advance in
STL [11]. The template type analyze counts the different characters in text

and defines boyer moore algorithm as algorithm tag if the alphabet is large,
otherwise defines knuth morris pratt algorithm. See the sample code below:

struct boyer_moore_algorithm {};

struct knuth_morris_pratt_algorithm {};

std::size_t find(const std::string& text,

const std::string& pattern,

boyer_moore_algorithm)

{

// Implementation of Boyer-Moore algorithm

}

std::size_t find(const std::string& text,



const std::string& pattern,

knuth_morris_pratt_algorithm)

{

// Implementation of Knuth-Morris-Pratt algorithm

}

template<typename text>

struct analyze :

eval_if<typename greater<typename different_chars<text>::type,

int_<N> >::type,

boyer_moore_algorithm,

knuth_morris_pratt_algorithm

>

{

};

The different chars is a meta-algorithm that counts the different char-
acters in metastring text and if the number is more than N, then it is the
boyer moore algorithm that is bound to the type by the meta eval if, oth-
erwise it is the knuth morris pratt algorithm. In general English texts, the
Boyer-Moore algorithm runs faster [3], thus we set N to 52, where 52 is the
number of the small and big capital letters in the English alphabet.

We tested our solution against the pure runtime versions of Knuth-Morris-
Pratt (KMP) and Boyer-Moore (BM) algorithms. In order to do so, we applied
two kinds of inputs to these. The first, marked with A contained only a few
different characters and there were several repetitions in the pattern. The second
one, marked with B was an ordinary English text and the pattern consisted of
a single word. Both texts contained about 2K characters. First we performed
the search in both texts with the KMP, second with the BM and third with our
optimized algorithm. Fig. 3 illustrates the result: the red rectangle shows the
instructions required to perform the pattern matching in text A, while the green
one shows the same in text B. The BM algorithm was very fast in case of input
B but it was fairly slow in case of input A. In contrast, the KMP algorithm was
much more balanced. Our solution was the optimal of all, because it was the
only one being able to chose the better algorithm depending on the given text.
The performance of these three algorithms are shown in the columns, while the
consumed instructions are illustrated by the Y-axis.

4.3 Type-safe printf

Though the printf function of the standard C library is efficient and easy to
use, it is not typesafe, hence mistakes of the programmer may cause undefined
behavior at runtime. Some compilers – such as gcc – type check printf calls
and emit warnings in case they are incorrect, but this method is not widely
available. To overcome the problem, C++ introduced streams as a replacement
of printf, which are typesafe, but they have runtime and syntactical overhead.



Fig. 3. Comparison of algorithms

In this section, we implement a typesafe version of printf using compile time
strings. Contrary to the original printf function, this solution works in case the
format string is available at compile time, which is true for most of the cases.
We write a C++ wrapper for printf which validates the number and type of
its arguments at compile time and calls the original printf without runtime
overhead.

We call the typesafe replacement of printf safePrintf. It is a template
function taking one class as a template argument: the format string as a compile
time string. The arguments of the function are the arguments passed to printf.
See below:

safePrintf<‘Hello %s!‘>("John");

As the example shows there is only a slight difference between the usage of
printf and our typesafe safePrintf, while there is a significant difference be-
tween its safety: safePrintf guarantees that the printf function called at run-
time will have the right number of arguments that will have the right type.

safePrintf evaluates a template-metafunction at compile time, which tries
to verify the number and type of the arguments and in case this verification fails,
safePrintf emits a compilation error [9]. On the other hand, if the verification
succeeds safePrintf calls printf with the same arguments that safePrintf

was called with. The template metafunction verifying the arguments cannot have
a runtime overhead, only a compile time overhead. The body of safePrintf

consists of a call to printf, which is likely to be inlined, thus, using safePrintf

has no runtime overhead compared to printf.
Our safePrintf uses a metafunction called ValidPrintf to verify the cor-

rectness of the arguments. This metafunction takes two arguments: the format
string as a compile time string and a compile time list of types. This metafunc-
tion parses the format string character by character, and verifies that the types
conform the format string.

ValidPrintf uses a final state machine [8] to parse the format string. The
states of this machine are represented by template metafunctions, and the state



transitions are done by the C++ compiler during template metafunction evalua-
tion. Template metafunctions are lazy evaluated, thus the C++ compiler instan-
tiates only valid state transitions of the final state machine. In case an argument
of safePrintf has the wrong type according to the format string, ValidPrintf
stops immediately, and it skips further state transitions of the final state ma-
chine. Thus the C++ compiler has a chance to emit the error immediately and
continue compilation of the source code.

After verifying the validity of the arguments, safePrintf calls the original
printf function of the C library. The format string passed to printf is auto-
matically generated from the compile time string argument of safePrintf. For
example:

safePrintf<‘Hello %s!‘>("John");

Here safePrintf calls printf with the following arguments:

printf("Hello %s!", "John");

This solution combines the simple usage and small run-time overhead of printf
with the type-safety of C++ using compile time strings.

Stroustrup wrote a typesafe printf using variadic template functions [26],
which are part of the upcoming standard C++0x [16]. His implementation uses
runtime format string and transforms printf calls to write C++ streams at
runtime. See the example:

printf("Hello %s!", "John");

Stroustrup’s method does the following at runtime:

std::cout << ’H’ << ’e’ << ’l’ << ’l’ << ’o’ << ’ ’ << "John" << ’!’;

This solution was primarily written to demonstrate the power of variadic tem-
plates, that is why printing the format string is done character by character,
making the process extremely slow. This method can be optimized in the fol-
lowing, more efficient way:

std::cout << "Hello " << "John" << "!";

We have measured the speed of these operations and of the normal printf
used by our implementation. We printed the following and it’s std::cout equiv-
alents:

printf("Test %d stuff\n", i);

The text was printed 100 000 times and the speed using the time command on
a Linux console was measured. The average time of the process can be seen in
Table 1. The printf function, which is used by our typesafe implementation,
is almost four times faster than the example at [26] and more than two times
faster than the optimized version of the example.



Method used Time

std::cout for each character 0,573 s

normal std::cout 0,321 s

printf 0,152 s
Table 1. Elapsed time

Another difference between Stroustrup’s typesafe printf and ours is the
way they validate the type of the arguments. Stroustrup’s solution ignores the
type specified in the format string; it displays every argument supporting the
streaming operator regardless of its type. For example, it accepts the following,
incorrect usage of printf, where our solution would emit an error at compile
time:

printf("Incorrect: %d", "this argument should be an integer");

Our solution, however, can only deal with the types that the C printf can
deal with, while Stroustrup’s solution can deal with any type that supports the
streaming operator.

Nevertheless, a drawback of Stroustrup’s solution is that it does not detect
the shifting or wrong order of printf arguments, and displays them incorrectly.
For example Stroustrup’s printf accepts and displays the following:

printf("Name: %s\nAge: %d\n", "John", "27");

Name: 27

Age: John

On the other hand, our solution emits a compilation error in this case.
Stroustrup’s solution throws an exception at runtime if the number of ar-

guments passed to printf is incorrect. This can lead to hidden bugs due to
incomplete testing, while our solution emits compilation errors in such cases.

5 Related Work

There are some third party libraries that also apply compile time operations
related to strings in some special areas of programming.

Spirit [23] is an object oriented recursive descent parser framework. It en-
ables to write EBNF grammars in C++ syntax and it can be inlined to the C++
source code. While the implementation of spirit uses template metaprogram-
ming techniques, the parser from the EBNF grammar is generated by the C++
compiler.

The Wave C++ preprocessor library [24] uses the Spirit parser construc-
tion library to implement a C++ lexer with ISO/ANSI Standards conformant
preprocessing capabilities. It provides an iterator interface, which returns the



current preprocessed token from the input stream. This preprocessed token is
generated on-the-fly while iterating over the preprocessor iterator sequence.

The xpressive is a regular expression template library [25] dealing with
static regular expressions. It can perform syntax checking and generates opti-
mized code for static regexes.

Similar to our solution the new standard of C++ [16] also provides a typesafe
printf function. The differences are explained in chapter 4.3.

6 Conclusion and Future Work

We have developed a metastring library based on boost::mpl::string and
extended its functionality with the usual operations of runtime string libraries.
We presented some applications which benefit from these metastrings.

One of these are the pattern matching algorithms that can be improved if
either the text or the pattern are known at compile time. In this paper, our main
goal was not to provide the best pattern matching solution, but to demonstrate
the power of metastrings, thus we only dealt with Boyer-Moore and Knuth-
Morris-Pratt pattern matching algorithm. Our work in the future aims to create
a more sophisticated method – which counts more pattern matching algorithms
– in order to find the optimal pattern matching solution.

We have created a C++ wrapper for printf taking the format string as a
compile time string and validating the types of the runtime arguments based
on that. In this solution, validation happens already at compile time, ensuring
type-safety and providing that there is no runtime overhead either. We have
compared our typesafe printf solution with Stroustrup’s and found that our
version provides stricter type-safety besides running significantly faster. How-
ever, Stroustrup’s method is capable of deducing the format of the output by
the argument’s type, which is still missing from our version. Our future plan is
to improve this printf function by implementing the %a specifier to provide a
similar functionality.

We proved the benefit of our metastring library in empirical way on these
applications. Moreover several other fields are exist in computer science, which
can be improved using metastrings.

References

1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algo-
rithms. The MIT Press (2001)

2. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. Addison-Wesley (2004)

3. Boyer, R. S., Moore, J. S.: A Fast String Searching Algorithm. Communication of
the ACM, vol. 20, pp. 762–772. (1977)

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley, Reading (2000)

5. Czarnecki, K., Eisenecker, U. W., Glck, R., Vandevoorde, D., Veldhuizen, T.
L.:Generative Programmind and Active Libraries. Springer-Verlag, (2000)



6. Devadithya, T., Chiu, K., Lu, W.: C++ Reflection for High Performance Problem
Solving Environments, in Proceedings of the 2007 spring simulation multiconfer-
ence - Volume 2, pp. 435–440

7. Gil, J. (Y.), Lenz, K.: Simple and safe SQL queries with c++ templates, in proc.
of Simple and safe SQL queries with c++ templates (2007), The ACM Digital
Library pp. 13–24, (2007)

8. Juhász, Z., Sipos, Á., Porkoláb, Z.: Implementation of a Finite State Machine with
Active Libraries in C++. In: GTTSE 2007. LNCS, vol. 5235, pp. 474–488. Springer,
Heidelberg (2008)

9. Karlsson, B.: Beyond the C++ Standard Library, An Introduction to Boost.
Addison-Wesley, Reading (2005)

10. Knuth, D. E., Morris, J. H. Jr., Pratt, V. R.: Fast Pattern Matching in Strings.
SIAM J. Comput. vol. 6, issue 2, pp. 323–350 (1977)

11. Meyers, S.: Effective STL. Addison-Wesley (2001)
12. Porkoláb, Z., Mihalicza, J., Sipos, Á.: Debugging C++ Template Metaprograms,

in proc. of Generative Programming and Component Engineering (GPCE 2006),
The ACM Digital Library pp. 255–264, (2006)

13. Programming languages C++, ISO/IEC 14882 (2003)
14. Siek, J., Lumsdaine, A.: Concept checking: Binding parametric polymorphism in

C++. In: First Workshop on C++ Template Metaprogramming (October 2000)
15. Sipos, Á., Porkoláb, Z., Pataki, N., Zsók, V.: Meta<Fun> - Towards a Functional-

Style Interface for C++ Template Metaprograms, in Proceedings of 19th Inter-
national Symposium of Implementation and Application of Functional Languages
(IFL 2007), pp. 489–502

16. Stroustrup, B.: Evolving a language in and for the real world: C++ 1991-2006.
ACM HOPL-III. June 2007

17. Stroustrup, B.: The C++ Programming Language Special Edition. Addison- Wes-
ley, Reading (2000)

18. Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compilers
and libraries. In: Proceedings of the SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scientic and Engineering Computing (OO 1998), pp. 21–23.
SIAM Press, Philadelphia (1998)

19. Veldhuizen, T.: Expression Templates. C++ Report 7(5), 26–31 (1995)
20. Veldhuizen, T.: Using C++ Template Metaprograms. C++ Report 7(4), 36–43

(1995)
21. http://www.boost.org/doc/libs/1_40_0/libs/mpl/doc/refmanual/string.html

22. http://www.boost.org/doc/libs/1_40_0/libs/mpl/doc/refmanual/vector-c.html

23. http://spirit.sourceforge.net/

24. http://www.boost.org/doc/libs/1_40_0/libs/wave/index.html

25. http://www.boost.org/doc/libs/1_38_0/doc/html/xpressive.html

26. http://www.research.att.com/~bs/C++0xFAQ.html


