
AOP++: A Generic Aspect-Oriented

Programming Framework in C++�

Zhen Yao, Qi-long Zheng, and Guo-liang Chen

National High Performance Computing Center at Hefei,
Department of Computer Science and Technology,

University of Science and Technology of China
Hefei, Anhui 230027, China

yaozhen@ustc.edu, qlzheng@ustc.edu.cn, glchen@ustc.edu.cn

Abstract. This paper presents AOP++, a generic aspect-oriented pro-
gramming framework in C++. It successfully incorporates AOP with
object-oriented programming as well as generic programming naturally
in the framework of standard C++. It innovatively makes use of C++
templates to express pointcut expressions and match join points at com-
pile time. It innovatively creates a full-fledged aspect weaver by using
template metaprogramming techniques to perform aspect weaving. It
is notable that AOP++ itself is written completely in standard C++,
and requires no language extensions. With the help of AOP++, C++
programmers can facilitate AOP with only a little effort.

1 Introduction

Aspect-oriented programming (AOP)[1] is a new programming paradigm for
solving the code tangling problems of object-oriented programming (OOP) by
separating concerns in a modular way. Many crosscutting concerns that cannot
be expressed by entities such as classes or functions in OOP can be abstracted
and encapsulated into aspects. The so called aspect code and component code
can be decoupled cleanly instead of tangled together. Aspects can have influence
upon the component code in many ways. For instance, aspects can change the
static structure of the component code by introductions, as well as change the
dynamic behaviour by advices. The influence is injected by the aspect weaver.
First the weaver identifies points in component code where aspects are to be
inserted, which are called join points. Several join points can form a pointcut
expression which is declared by each aspect to specify its scope. Then the weaver
weaves the aspect code into every join point of the component code.

In existing AOP systems such as AspectJ[13] for Java and AspectC++[7]
for C++, the aspect code is often written in a meta level language which is
different from (usually a superset of) the language used by the component code.

� The work of this paper is funded by Intel HiEd HPC Research Project under grant
4507146713, and Science Foundation of Anhui, China under grant 050420205.

R. Glück and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 94–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



AOP++: A Generic Aspect-Oriented Programming Framework in C++ 95

That means AOP usually requires language extensions as well as special AOP-
aware (pre-)compilers, therefore aspects and components cannot be expressed in
a uniform manner.

Though both C++ and Java are object-oriented programming languages,
C++ is very different from Java in many aspects. C++ has many character-
istic language constructs such as template, multiple inheritance and operator
overloading. They are not optional features of the language, but indispens-
able parts that make C++ a harmonious whole. Template mechanisms and
subsequent generic programming (GP)[5][9] and template metaprogramming
techniques[20][10] enable the application of generative programming[12] con-
cepts in C++ to create active libraries[19] supporting multiple programming
paradigms[14] including OOP, GP and even functional programming (FP)[2][3].
Different paradigms in C++ can cooperate with each other harmoniously to
solve complex programming problems in a more natural manner.

The C++ language is so complicated that even some commercial C++ com-
pilers fail to support all its features (especially the complex template mech-
anisms) well. The syntax and semantics of C++ is too complex to add new
language extensions, especially significant radical extensions such as aspect-
orientation. We should not expect an AOP-aware (pre-)compiler to behave better
than professional C++ compilers at dealing with complex generic components.
Even so, it would be less likely to persuade developers to learn and accept the
language extensions and use a specific AOP-aware compiler instead of their fa-
vorite standard C++ compilers.

AOP++ presented in this paper is a generic aspect-oriented programming
library/framework for C++ that adopts an approach which is quite different
from that used by AspectJ or AspectC++. It is remarkable that the aspect
weaver and all the aspect code are completely written in standard C++. No
extra language extension is required, so no proprietary AOP-enabled compiler is
ever needed. With the help of AOP++, C++ programmers can facilitate AOP
with only a little effort.

AOP++ can be considered as an active library that defines a new domain-
specific sublanguage for AOP and extends the C++ compiler’s ability through
its aspect weaver. It makes heavy use of complex template metaprogramming
techniques to perform aspect weaving at compile time within the framework of
standard C++.

AOP++ is tightly coupled with the C++ language. As a consequence, all
language features, especially template mechanisms and generic programming are
supported intrinsically by AOP++. That means it can apply AOP to the realm
of GP paradigm such as STL containers and generic components from other
modern C++ template libraries. In fact, the aspect code itself is written as
C++ templates and is generic by nature.

The infrastructure of AOP++ is depicted in Fig. 1. It is remarkable that
aspect weaving all takes place in standard C++ compiler by metaprograms.
Details will be described in later sections.



96 Z. Yao, Q.-l. Zheng, G.-l. Chen

standard C++ compiler

aspect code

aspects

aspect weaver

component code

revise to enable

introduction

weaving

revise to enable

advice weaving

weaved code

aspect list

advice list
introduction

list

ClassesClassesclasses

ClassesClassesweaved classes

ClassesClassesfunctions

ClassesClassesdisciplined
classes

ClassesClassesdisciplined
functions

ClassesClassesintroductions ClassesClassesadvices

ClassesClassesweaved functions

introduction weaver advice weaver

Fig. 1. Infrastructure of the AOP++ Framework

The rest of this paper is organized as follows: Section 2 gives an overview
of the AOP++ framework, including its overall infrastructure, disciplines of
the component code and definitions of pointcut expressions and introductions /
advices / aspects; A typical example is presented in Sect. 3 to demonstrate the
power of AOP++; Implementation approaches are explained in Sect. 4; Section 5
gives a brief discussion of related work; Finally, Section 6 summarizes the paper
and gives some directions of the possible future work.

2 The AOP++ Framework

2.1 Overview

AOP++ is mainly composed of the following parts:

Pointcut Expression is an important building block of AOP++ for identify-
ing join points in the component code. There are two categories of pointcut
expression: type pattern represents a collection of types, which is used to
specify the scope of introductions; while method pattern represents a collec-
tion of functions, which is used primarily to specify the scope of advices.
Both type pattern and method pattern can be defined recursively. Type op-
erators can be applied to existing ones to build up composite type patterns
or method patterns.

Base Classes for Aspects are the implementation basis for the user-defined
aspect code. They provide basic mechanisms for the aspect code to interact
with the component code through a collection of reflection API.

Aspect Weaver is the core of AOP++. It does aspect weaving at compile time.
Two weavers are included: the introduction weaver weaves introductions into
user-defined classes, while the advice weaver weaves advices into user-defined
functions.



AOP++: A Generic Aspect-Oriented Programming Framework in C++ 97

2.2 Disciplines of the Component Code

In order to make AOP++ work, the component code must be written according
to some simple disciplines.

2.2.1 Class Definitions
User-defined classes must be defined in a special way to enable introduction
weaving, that is, to inherit from template class aop::introd. The declaration
looks like this:
class SimpleClass : public aop::introd<SimpleClass> { /* ... */ };

If a user-defined class originally inherits from other class(es), for example:
class ComplexClass

: public A, public B, private C { /* ... */ };

The disciplined code looks like this:
class ComplexClass : public aop::introd<ComplexClass>

::public_bases<A, B>::private_base<C> { /* ... */ };

2.2.2 Function Implementations
There are two ways to discipline function implementations to enable advice
weaving in AOP++.

The common way is planting a local hook variable of type aop::advice,
aop::ctor advice or aop::dtor advice in the function body, with function
type (and name) provided as template parameters, while function arguments
are provided to the constructor of the hook variable. Here are some examples:

void MyClass::mf(int i) {

// do not forget the implicit "this" argument

aop::advice<void (MyClass::*)(int), &MyClass::mf> hook(this, i);

// original implementation code

}

void f(double d, const MyClass& c) {

aop::advice<void (double, const MyClass&), f> hook(d, c);

// original implementation code

}

MyClass::MyClass(int i) {

aop::ctor_advice<MyClass(int)> hook(this, i);

// original implementation code

}

MyClass::~MyClass() {

aop::dtor_advice<MyClass()> hook(this);

// original implementation code

}

There is another way to enable advice weaving for functions in dynamic linked
libraries (or shared libraries). This style of advice weaving is also performed at
compile time but is pluggable at runtime, we call it pluggable advice weaving.
For example, a member function void Dynamic::mf()’s implementation in file
“dynamic.cpp” is compiled into a dynamic linked library. The disciplined code
can be put in another file named “dynamic aop.cpp”:



98 Z. Yao, Q.-l. Zheng, G.-l. Chen

void Dynamic::mf()

{ return aop::dynamic_advice<void (Dynamic::*)(), &Dynamic::mf>(this); }

2.3 Type Pattern

Type pattern in AOP++ is a mechanism to represent collections of types at
compile time.

A type pattern can be simply a type (atomic type pattern), or it can be de-
fined recursively using or type, and type, not type, derived or const or not,
which are called type operators. For example, the type pattern that matches any
type which is derived from ClassA or ClassB is

aop::or_type<aop::derived<ClassA>, aop::derived<ClassB> >

The same type pattern can be represented in AspectJ as ClassA+ ||
ClassB+ and in AspectC++ as derived(ClassA) || derived(ClassB).

There is also a special wildcard type pattern any type which obviously
matches any type, and a type pattern null type which matches no type. In ad-
dition, AOP++ provides several predefined type patterns which are frequently
used, such as integral type, class type, arithmetic type and abstract
type, etc.

Type patterns in AOP++ have a peculiar capability that is lacking in other
AOP frameworks to represent template types. When applying AOP to C++
libraries such as the STL, we need to represent concept like “std::vector<T>
where T is any derived type of MyClass”, and it is easy to write out the type
pattern in AOP++:

std::vector<aop::derived<MyClass> >

AOP++ provides a mechanism called compile-time lambda expression[10]
to presents type patterns which impose specific relationships between template
parameters. For example, we can express the type pattern “std::pair<T, T>
where the two T’s are the same.” in AOP++ as follows:

std::pair<_, _>

Note that the predefined type patterns described previously all correspond
to lambda type pattern expressions composed of type traits in the Boost Type
Traits Library[4]. For instance, aop::integral type and boost::is integral
type< > are equivalent type patterns.

AOP++ also provides a mechanism to do type pattern matching. Users can
determine whether a type is contained in a type pattern expression at compile
time by using aop::matches template:

aop::matches<TypePattern, Type>::value

value is of type bool that evaluates to true or false at compile time.
The introduction weaver uses a similar way to determine whether a class is

in the scope of an introduction.



AOP++: A Generic Aspect-Oriented Programming Framework in C++ 99

2.4 Method Pattern

Method pattern can be viewed as a special kind of type pattern that concerns
with functions or overloaded operators.

AOP++ uses several helper class templates to wrap up functions to types,
so as to manipulate them more easily.

Given a global function f and a member function A::mf:

void f(int i, std::string s);

void A::mf(int i, std::string);

The corresponding method patterns can be defined as following:

aop::method<void (int, std::string), f>

aop::method<void (A::*)(int, std::string), &A::mf>

Because of that there is no type to represent constructors or destructors
directly in C++, AOP++ uses an alternative way to define method patterns for
them. Given:

Point::Point(int x, int y);

Point::~Point();

Their corresponding method patterns are:

aop::ctor<Point (int, int)>

aop::dtor<Point ()>

In AspectJ, the same constructor can be represented as “Point.new(int,
int)”.

Wildcards can be used for method names in method patterns as well. The
pattern below matches “any non-static non-const member function defined in
class MyClass or any of its derived classes”:

aop::methods<aop::any_type (aop::derived<MyClass>::*)(...)>

It is equivalent to “* MyClass+.*(..)” in AspectJ or “% derived (MyClass)
::%(...)” in AspectC++.

It is possible to specify a collection of member functions with exactly the
same name. The macro below defines a method pattern named draw methods
that matches “any non-static non-const member function named ‘draw’ in class
Component or any of its derived classes, which takes a reference to Graphics as
its parameter and has no return value”:

AOP_DEFINE_METHODS(void (derived<Component>::*)(Graphics&), draw,

draw_methods);

Similar to type patterns, method patterns can be combined by applying type
operators and type, or type and so forth to form composite method patterns.

Type pattern and method pattern in AOP++ are simplified pointcut con-
cepts. There is no distinct call, execution, within or cflow and so forth
pointcuts in AOP++. AOP++ simply uses method pattern to represent the
execution of functions.



100 Z. Yao, Q.-l. Zheng, G.-l. Chen

2.5 Introduction

Introduction is used for modifying user-defined classes and their hierarchies. It
changes the static structure of the component code at compile time. Introduction
can introduce new base classes for user-defined classes, or add new members
(member variables or member functions) to them.

A user-defined introduction in AOP++ is a class template which is derived
from template class aop::introd base. Extra base classes, member variables
and member functions to be introduced into user-defined classes can be specified
by just declaring base classes, member variables and member functions of the
user-defined introduction class itself respectively.

An important part of user-defined introduction is an inner type named scope,
which specifies the scope within which the introduction takes effects in terms of
a type pattern.

For example, the code listed below shows how to declare a user-defined in-
troduction named MyIntrod which introduces an extra base class, a member
variable and a member function to the user-defined classes A and B:

template <typename Arg>

struct MyIntrod : aop::introd_base<Arg>

::public_base<IntroducedBaseClass> {

typedef aop::or_type<A, B> scope;

int introduced_member_variable;

void introduced_member_function();

static const int introduced_static_member_variable = 0;

static void introduced_static_member_function();

};

There are also abstract introductions. An abstract introduction just leaves
its scope definition empty, or holds pure virtual functions, waiting for derived
introductions to complete the definition.

An introduction can be declared to “dominate” some other introductions by
defining in its definition a type pattern named dominates which includes the
dominated introductions as follows:

typedef aop::or_type<IntroductionA<Arg>, IntroductionB<Arg> > dominates;

That means, it will reside at a higher level than those dominated introduc-
tions in the introduction hierarchies generated by the introduction weaver (see
Sect. 4 for detail).

2.6 Advice

Advice is used for defining additional code that should be executed at runtime.
It changes the dynamic behaviour of the component code at runtime. However,
advice weaving is done at compile time.



AOP++: A Generic Aspect-Oriented Programming Framework in C++ 101

AOP++ currently supports three kinds of advices: before, after and around.
Around advice is only available for pluggable advice weaving. All user-defined
advices should be class templates that inherit from aop::advice base. Inner
type named scope is a method pattern specifying the functions to be advised.

The before, after and around methods in advice are member functions, each
takes the same parameter list as that of the method to be advised, or a tuple
which wraps up all the arguments by reference as its only parameter in situations
when the advised methods have different signatures, or even takes no argument
and gets these arguments via member functions of its advice base. AOP++
will automatically choose the correct way to pass the actual arguments to the
before, after and around methods. These arguments can be read or even modified
in the before, after and around methods, to perform extra work or change the
behaviour of the advised functions.

Below is a simple example illustrating how to define an advice containing
before and after methods for tracing any AOP++-enabled functions.

template <typename Arg>

struct TracingAdvice : aop::advice_base<Arg> {

typedef aop::any_type scope;

void before()

{ clog << "TracingAdvice::before " << this->method_name() << endl; }

void after()

{ clog << "TracingAdvice::after " << this->method_name() << endl; }

};

There are also abstract advices. An abstract advice just leaves its scope
definition empty, or holds pure virtual before / after / around functions,
waiting for derived advices to complete the definition.

An advice can be declared to dominate some other advices by defining in
its definition a type pattern named dominates which includes the dominated
advices as follows:

typedef aop::or_type<AdviceA<Arg>, AdviceB<Arg> > dominates;

That means, it will precede those dominated advices in the advice chain
generated by the advice weaver (see Sect. 4 for detail).

2.7 Aspect

Like data and functions can be encapsulated into a class, several introductions
and advices can be encapsulated into a single aspect to emphasize their logical
relation. Figure 2 shows an aspect that adds synchronization support for generic
containers. We take std::vector for example here. (Suppose we could revise
the standard containers to make them AOP++-enabled.)



102 Z. Yao, Q.-l. Zheng, G.-l. Chen

template <typename Arg>
struct vector_monitor

: aop::aspect_base<Arg> {
typedef recursive_read_write_mutex Mutex;
typedef recursive_read_write_lock Lock;

struct monitorable : aop::introd_base<Arg> {
typedef std::vector<aop::any_type> scope;

mutable Mutex mutex;
};

struct read_monitor : aop::advice_base<Arg> {
typedef aop::methods<aop::any_type
(std::vector<aop::any_type>::*)(...) const>
scope;

Lock lock;

read_monitor()
: lock(this->this_object->mutex)

{}
void before() { lock.read_lock(); }

void after() { lock.unlock(); }
};

struct write_monitor : aop::advice_base<Arg> {
typedef aop::methods<aop::any_type

(std::vector<aop::any_type>::*)(...)>
scope;

Lock lock;

write_monitor()
: lock(this->this_object->mutex)

{}
void before() { lock.write_lock(); }
void after() { lock.unlock(); }

};

typedef aop::type_list<
monitorable,
read_monitor,
write_monitor> aspect_list;

};

Fig. 2. The Synchronized Aspect for vectors

We can also specify aspect precedence by defining a type pattern named
dominates which includes the dominated aspects. If an aspect “dominates” an-
other aspect, that means all introductions and advices in it dominate those in
the other.

2.8 Reflection

It is important for aspects to have the ability interacting with the corresponding
component code. AOP++ provides a rich reflection API through introd base
and advice base for the purpose. Aspect programmers can access type infor-
mation of the component code, get arguments of the method being advised and
so on. The APIs can be divided into two categories — compile time reflection
and runtime reflection.

2.9 Putting It All Together

Once the component code is correctly disciplined and all the introductions, ad-
vices and aspects are defined, we need to tell AOP++ which of them are expected
to take effect on the component code:

namespace aop {

typedef template_list<

Introd1, Introd2, ...,

Advice1, Advice2, ...,

Aspect1, Aspect2, ...

> aspect_list;

}



AOP++: A Generic Aspect-Oriented Programming Framework in C++ 103

Only introductions / advices / aspects in the aop::aspect list will be wo-
ven into the component code. Users can maintain different aspect list config-
urations for different projects, and define a preprocessor macro AOP ASPECTS to
specify the header including the expected aspect list. Aspect weaving can also
be disabled by defining a null aspect list or a preprocessor macro AOP DISABLE.

3 Example: Implementing the Observer Pattern

In this section, we demonstrate how to use AOP++ to implement the famous
observer pattern described in [8]. Given classes FigureElement, Point, Line and
Canvas as in Fig. 3.

class FigureElement {
public:

virtual void setXY(int, int) = 0;
virtual ~FigureElement();

};

class Point : public FigureElement {
int _x;
int _y;

public:
Point(int x, int y);
void setXY(int x, int y);
void setX(int x);
void setY(int y);
int x();
int y();

};

class Line : public FigureElement {
Point p1;
Point p2;

public:
Line(int x1, int y1, int x2, int y2);
Line(const Point& p1, const Point& p2);
void setXY(int x, int y);
void setP1(const Point &p);
void setP2(const Point &p);

};

class Canvas {
std::list<FigureElement*> elements;

public:
void addFigureElement(FigureElement* fe);
...

};

Fig. 3. Definition of FigureElement and Its Derived Classes

template <typename _Observer>
struct Subject {

typedef _Observer Observer;
typedef std::list<Observer*> ObserverList;

void attach(Observer* obs) {
observers.push_back(obs);

}

void detach(Observer* obs) {
observers.remove(obs);

}

void notify() {
typedef

typename ObserverList::iterator
iterator;

for (iterator it = observers.begin();

it != observers.end(); ++it) {
(*it)->update(static_cast<
typename Observer::Subject*>(this));

}
}

virtual ~Subject() {}

private:
ObserverList observers;

};

template <typename _Subject>
struct Observer {

typedef _Subject Subject;

virtual void update(Subject* subject) = 0;
virtual ~Observer() {}

};

Fig. 4. Generic Components for the Observer Pattern



104 Z. Yao, Q.-l. Zheng, G.-l. Chen

template <typename Arg>
struct MoveMethods {

AOP_DEFINE_METHODS(void (aop::derived<FigureElement>::*)(int, int),
setXY, setXY_method);

AOP_DEFINE_METHODS(void (Point::*)(int), setX, setX_method);
AOP_DEFINE_METHODS(void (Point::*)(int), setY, setY_method);
AOP_DEFINE_METHODS(void (Line::*)(const Point&), setP1, setP1_method);
AOP_DEFINE_METHODS(void (Line::*)(const Point&), setP2, setP2_method);

typedef aop::or_type<
setXY_method, setX_method, setY_method, setP1_method, setP2_method> scope;

};

Fig. 5. The Move Events of FigureElements

template <typename Arg>
struct SubjectObserverProtocol

: aop::aspect_base<Arg> {

struct SubjectIntrod
: aop::introd_base<Arg>

::public_base<Subject<Canvas> > {
typedef FigureElement scope;

};

struct StateChangedAdvice
: aop::advice_base<Arg> {

typedef
typename MoveMethods<Arg>::scope
scope;

void after()
{ this->this_object->notify(); }

};

struct ObserverIntrod
: aop::introd_base<Arg>
::public_base<Observer<FigureElement> > {

typedef Canvas scope;

virtual void update(FigureElement* fe) {

// update the canvas according to fe
}

};

struct SubjectAddedAdvice
: aop::advice_base<Arg> {

AOP_DEFINE_METHODS(
void (Canvas::*)(FigureElement*),
addFigureElement, scope);

typedef aop::advice_base<Arg> base;
typedef typename base::arg_list arg_list;

void after(arg_list& args) {
// attach the Canvas to the FigureElement
aop::arg<1>(args)

->attach(this->this_object);
}

};

typedef aop::type_list<
SubjectIntrod,
StateChangedAdvice,
ObserverIntrod,
SubjectAddedAdvice> aspect_list;

};

Fig. 6. The Aspect for implementing the Observer Pattern

A Canvas holds a list of FigureElement objects and is responsible for render-
ing them. Now we want the Canvas to be notified to update its display whenever
any one of its FigureElement is moved. Obviously the Canvas acts as the ob-
server, while the FigureElement and its derived classes act as the subjects.

The first step is to discipline the above classes to be AOP++-enabled.
The second step is to define generic components supporting the observer

pattern, which is shown in Fig. 4. This approach is similar to those used in the
Loki Library[6].

Before writing aspects using AOP++, let’s define the pointcut expression
that denotes the move event of a FigureElement in Fig. 5.

Now the aspects can be written as in Fig. 6.
It is also possible to make the concrete subject and observer classes as well

as the state-changed pointcut as template parameters so as to generalize the



AOP++: A Generic Aspect-Oriented Programming Framework in C++ 105

above SubjectObserverProtocol aspect to accommodate general situations.
The generalized aspect is called a parameterized aspect.

Several other design patterns such as the visitor pattern[8] can also be applied
in this manner. The generic components are similar to those in the Loki Library,
while their integration with user-defined components is automatically done by
reusable parameterized aspects in an aspect-oriented manner.

4 Implementation

AOP++ makes extensive use of template metaprogramming in its implementa-
tion.

Pointcut expressions including type patterns and method patterns are all
represented using the C++ type system. Type patterns are defined by simple
types and type operators, also with some predefined shortcuts for defining often-
used type patterns. Method patterns are method pointers wrapped up in method,
methods, ctor or dtor templates.

There are two aspect weavers in AOP++, the introduction weaver and the
advice weaver. A mechanism similar to the template aop::matches in Sect. 2.3 is
used to determine whether a join point is covered by the scope of an introduction
or advice. The following is a simplified description of the work flow of the aspect
weaver.

Introduction weaving takes place while defining the base class(es) for a user-
defined type. It first filters all introductions (both standalone and those em-
bedded in aspects) from the aop::aspect list, then determines whether the
scope of an introduction covers the current join point (that is, the user-defined
class which is being defined). If the answer is yes, the introduction is rele-
vant and will be woven into the definition of the class; otherwise it is simply
discarded. Then all relevant introductions will be instantiated with the cur-
rent join point in their template parameter using a class template similar to
Loki::GenLinearHierarchy template[6], and form a linearized class hierarchy
in which the introductions are lined up and inherit one another (the order will
be influenced by the domination declarations of introductions) with the user-
defined base classes at the top of the hierarchy while the class being defined at
the bottom. Hence extra base classes, member functions and member variables
are “injected” into user-defined classes.

Consider a class C defined as follows:

class C : public aop::introd<C>::public_bases<A, B> { /* ... */ };

Suppose three introductions Introd1, Introd2 and Introd3 are injected into
class C. The resulting inheritance structure generated by our introduction weaver
is shown in Fig. 7.

Advice weaving takes place while defining the extra hook variable (which
uses the scope guard idiom) of a user-defined method. The weaver first fil-
ters all advices (both standalone and those embedded in aspects) from the



106 Z. Yao, Q.-l. Zheng, G.-l. Chen

C

introd<C>::public_bases<A, B>

introd_with_base_list<C, SORTED_INTROD_LIST, type_list<A, B> >

Introd3<introd_arg<C, INTROD2> > = INTROD3

introd_base<introd_arg<C, INTROD2> >

Introd2<introd_arg<C, INTROD1> > = INTROD2

introd_base<introd_arg<C, INTROD1> >

Introd1<introd_arg<C, type_list<A, B> > > = INTROD1

introd_base<introd_arg<C, type_list<A, B> > >

gen_hierarchy<type_list<A, B> >

gen_hierarchy<aop::type_list<B> >

A B

Fig. 7. The Generated Inheritance Structure of Class C

aop::aspect list whose scope covers the current join point (that is, the func-
tion being defined), and creates a list of all the relevant advices (called an advice
chain)in the corresponding aop::(dynamic )advice, aop::(dynamic )ctor
advice or aop::(dynamic )dtor advice classes. The constructor of the advice
class will call the around and before member functions of every relevant advice
one by one in order (the order will be influenced by the domination declarations
of the advices), the destructor will call corresponding after member functions
in reverse order.

The arguments of the method are passed to constructor of the hook variable,
from which they will then be passed to every before / after / around member
functions of the advices automatically in appropriate manner.

5 Related Work

AOP++ invents a brand-new approach to support aspect-oriented programming
paradigm in C++. By using template metaprogramming techniques, AOP++
creates a full-fledged aspect-oriented programming framework which does not
depend on any language extensions or privileged AOP-aware compilers. All con-
cepts and components in AOP++ are all built on standard C++ constructs.
This makes it easy to be accepted by C++ programmers.

AOP++ distinguishes itself from several previous approaches to simulate
AOP in C++[16][17][21] by its characteristic aspect weaver.

The previous approaches [16] and [17] exploit techniques similar to mixin-
based programming[18] to wrap up existing component with mixin layers, while in
[21], the component class must be declared as a template with an extra “Aspect”



AOP++: A Generic Aspect-Oriented Programming Framework in C++ 107

template parameter. In all of them, the aspect user has to declare which aspects
are desired for each class by defining an aspects list for every user-defined class
explicitly and manually. the aspect list can be long and the manual definition
is error-prone and cumbersome. Furthermore, all code that refers to the user-
defined classes has to be changed to use the classes wrapped up with aspects
explicitly. The most important crosscutting nature of AOP cannot be expressed.

On the contrary, aspect weaving in AOP++ is done implicitly and automat-
ically at compile time behind the scenes by the aspect weaver according to the
scope definition of each aspect. The component programmer need not concern
about what aspects will be injected into which user-defined classes or functions
at all.

6 Conclusion and Future Work

The main contributions of AOP++ are:

1. It innovatively makes use of C++ templates to express pointcut expressions
and match join points at compile time.

2. It innovatively creates a full-fledged aspect weaver by using C++ template
metaprogramming techniques to perform aspect weaving.

3. It successfully extends and applies AOP to the GP paradigm in standard
C++. It bridges the gap between AOP and GP. This includes dual meaning:
(1) GP techniques can be used in the aspect code and (2) AOP++ makes
it possible to apply AOP to generic components in modern C++ template
libraries.

Due to limitations of the C++ language itself, there are also some limitations
of AOP++, such as that the weaved code is a structural and behavioural ap-
proximation to what is expected, but not exactly the same, and it is difficult to
implement some advanced features such as join points for field access, privileged
aspects, etc.

The main limitation of AOP++ is that it is not 100% transparent to the
component programmer. Existing component code has to be revised according
to some disciplines in order to enable AOP++ to act on them, though the
disciplines are simple and straightforward, and may be applied automatically
by a simple pre-processor. We believe that this does not really contradict the
philosophy of AOP which demands the separation of the component code and
the aspect code. The reason is that the revision is done just once in a uniform
manner regardless of whatever aspects will be woven later. The disciplines are
the keys for bridging the component code and the aspect code. The benefit
we achieved is that no language extensions are imposed upon programmers. In
addition, all the client code which uses the component code needs not to be
changed to enjoy the benefit of AOP++.

Our future work includes:

1. Further enhancement of AOP++, including more dynamic features such as
support for cflow. It is likely that they will introduce more runtime overhead
upon the user program.



108 Z. Yao, Q.-l. Zheng, G.-l. Chen

2. Investigate the possibility of integrating support for AOP++ in modern IDEs
to facilitate the development of AOP programs.

3. Study the development model of the AOP paradigm and the interactions
between aspects in AOP++, construct reusable generic AOP libraries for
tracing, debugging, performance profiling, program visualization and verifi-
cation, concurrent programming, etc.

4. Study the relation between AOP and other new programming paradigms
such as explicit programming[15] and try to combine them in the framework
of AOP++.

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, V., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In Proceedings of ECOOP 1997. Springer-
Verlag. (1997)

2. McNamara, B., Smaragdakis, Y.: Functional Programming in C++. In Proceedings
of the ACM SIGPLAN ICFP 2000. (2000)

3. The Boost Lambda Library. http://www.boost.org/libs/lambda/
4. The Boost Type Traits Library. http://www.boost.org/libs/type traits/
5. Austern, M.: Generic Programming and the STL: using and extending the C++

Standard Template Library. Addison-Wesley Longman Publishing Co., Inc. (1998)
6. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-

terns Applied. Addison-Wesley. (2001)
7. Spinczyk, O., Gal, A., Schröder-Preikschat, W.: AspectC++: An Aspect-Oriented

Extension to the C++ Programming Language. In Proceedings of TOOLS 2002.
(2002)

8. Gamma, E., Helm. R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley. (1994)

9. Stepanov, A., Lee, M.: The Standard Template Library. HP Technical Report HPL-
94-34. (1995)

10. The Boost C++ Metaprogramming Library. http://www.boost.org/libs/mpl/
11. The Boost Array Library. http://www.boost.org/libs/array/
12. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-

plications. Addison-Wesley. (2000)
13. AspectJ. Home Page. http://www.aspectj.org/
14. Coplien, J.: Multi-Paradigm Design for C++. Addison-Wesley. (1998)
15. Bryant, A., Catton, A., Volder, K., Murphy, G.: Explicit Programming. In Pro-

ceedings of AOSD 2002. (2002)
16. Diggins, C.: Aspect-oriented programming & C++. Dr Dobbs Journal 29 (8) (2004)
17. Gal, A., Lohmann, D., Spinczyk, O.: Aspect-Oriented Programming with C++

and AspectC++. Tutorial held on AOSD 2004. (2004)
18. Smaragdakis, Y., Batory, D.: Mixin-Based Programming in C++. In Proceedings

of the Second International Symposium on Generative and Component-Based Soft-
ware Engineering-Revised Papers. Springer-Verlag. (2001)

19. Veldhuizen, T., Gannon, D.: Active libraries: Rethinking the roles of compilers and
libraries. In Proceedings of the SIAM Workshop on Object Oriented Methods for
Inter-operable Scientific and Engineering Computing (OO’98). SIAM Press. (1998)

20. Veldhuizen, T.: Using C++ template metaprograms. C++ Report. 7(4). (1995)
21. Sunder, S., Musser, D.: A Metaprogramming Approach to Aspect Oriented Pro-

gramming in C++. MPOOL’04 (ECOOP 2004)


	Introduction
	The AOP++ Framework
	Overview
	Disciplines of the Component Code
	Type Pattern
	Method Pattern
	Introduction
	Advice
	Aspect
	Reflection
	Putting It All Together

	Example: Implementing the Observer Pattern
	Implementatation
	Related Work
	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




