
A data model supporting conflict resolving in cooperative text editions –

HypereiDoc ∗

Péter Bauer and Zsolt Hernáth

Dept. of Programming Languages and Compilers

and Dept. of Information Systems

Faculty of Informatics, Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

E-mail: {bauer p|hernath}@inf.elte.hu

Abstract

HypereiDoc [1] is an XML based framework that has

been designed to support multi-layered processing of epi-

graphical, papyrological or similar texts in a cooperative,

and distributed manner for modern critical editions. Cre-

ating an edition, philologists may however face the prob-

lem that a prepared edition is semantically unjust. The rea-

son behind semantically damaged editions is merging vir-

tual text-documents that annotate the same piece of text dif-

ferently, and occasionally made by different scholar teams

independently of each other. Current initiatives like TEI

and Epidoc have definitive limitations both in expressional

power and the way how individual results can form a co-

operative product. The HypereiDoc framework provides

XML schema definition for a set of annotation-based lay-

ers connected by an extensive reference system, validating

and building tools, and an editor that makes on-line visual-

ization of the base text and the annotations. The framework

that makes scholars able to work on the same text in a co-

operative and distributed way has been successfully tested

by philologists working on the Hypereides palimpsest.1

Keywords: data model, XML, cooperative text edition

∗Supported by Nemzeti Kutatási és technológiai Hivatal under

TECH 08-A2/2-2008-0089.
1The text edition of Hypereides’ speech against Diondas is based on the

above described editor. The transcript was published in the Zeitschrift für

Papyrologie und Epigraphik vol. 2008 (October). Similarly, this editor was

used to publish the revised edition of Hypereides’ Against Timandros (cf.

[13, 14]) in AAHung vol. 2008. After the above mentioned publications

the entire Greek texts together with the editor is accessible in [17].

1. Introduction

The XML document format [16] is a well-respected so-

lution for the document processing domain. A wide range

of applications are based on XML from DocBook to Mi-

crosoft Office Open XML. The flexibility with the ease of

machine processing makes XML an ideal format for doc-

ument handling. Very special but increasingly important

areas of document handling are epigraphy and papyrol-

ogy. Epigraphy and papyrology include both the interpre-

tation and translation of ancient documents. Such historical

relics are often damaged and their study produces contro-

versial results by nature. Scholars have long standing so-

lution for the situation: the system of critical annotations

to the text. Annotations may mark missing, unreadable,

ambiguous, or superfluous parts of text. They should also

carry information about the reason of the scholar’s deci-

sion e.g. other document sources, well-accepted historical

facts or advances in technology. Annotations also provide

meta-information about the author of the individual critical

notes and expose the supposed meaning according to the

given scholar. Preserving any information during transcrip-

tion processes has primary inportance, even those remarks

which will never appear in any critical edition should be

kept either. The Leiden Conventions are the most accepted

set of rules and symbols to indicate annotations in literary,

epigraphical or papyrological texts [8].

Our aim was to equip the scholarly teams with general and

flexible tools, which enable them to create both consis-

tently tagged source files and pretty printed output. While

most epigraphycal systems, similarly to classical paper-

based books, focus on the creation of a single document,

HypereiDoc covers the full distributed process of scientific

activity. In order to follow and join the related standards,

for the realization of our goals the Text Encoding Initia-



tive (TEI) Guidelines [18] and its epigraphical customiza-

tion Epidoc [15] that provide detailed recommendations for

storing documents in XML format has been chosen as start-

up point. As our goals due to supporting embedded and

overlapped annotations seemd far beyond the possibilities

of the above standards, we establish a suitable extension of

those. Meanwhile TEI released the new version P5 [20],

and Epidoc was correspondently changed.

As the detailed description of the HypereiDoc algebraic

datamodel as well as the application tool set far exceed

the acceptable size of the paper, here we pay a great im-

portance to conflict detection and resolution instead. The

priors, both, can be found in [1]. For HypereiDoc XML

schema, and also a list of philological applications of the

framework, see [17].

The rest of the paper is organized as follows: section 2

presents a detailed description on the design and implemen-

tation of our Virtual Text-document Annotation Model based

on our extension and customization of TEI P5 and Epidoc

Version 5 standards. Section 3 reports on a successful ap-

plication of the HypereiDoc framework in the Archimedes

Palimpsest project. In section 4 we give an overview of

XML based projects from the epigraphical and papyrologi-

cal domain and approaches on XML related merging prob-

lems. Our results are summarized in section 5.

2. Virtual Text-document Annotation Model

Virtual Text-document Model stores documents as a set

of TEI P5 conform XML documents distributed over dif-

ferent document-layers and provide low-level semantic op-

erations on texts. Document-layers are not simply joined

XML document fragments like XML general entities, but

rather an XML document hierarchy where document-layers

are connected via an extensive reference system. The model

provides the means for stepwise adding of basic seman-

tic information, summarizing the scholar team’s knowledge

base, team work, cross-checking, and proof-reading. Edi-

tions may be based upon one or more previously published

layers, so that creating critical editions is also supported.

We defined a Base Text Layer where only the original text

and its physical structure is stored and which may not be

modified later, one or more Annotation Layers with the at-

tached philological metadata, and anOrdering and Indexing

Layer defining the pages’ order and place in the codices.

Philologists can define their own Annotation Layers which

may refer to the Base Text Layer or one or more Annota-

tion Layers, so they can add notes and annotations to the

original text and also to already exsisting annotations. To

handle these references and to support the distributed and

collaborative work with using more Annotation Layers in

one edition, an adequate schema has been designed.

2.1. Document-layers

The primary structure of the text is its logical struc-

ture according to the TEI Guidelines2. As for the physical

structure of the text, empty tags are suggested according to

XML’s milestone technique that follows the natural physi-

cal structuring provided by the palimpsest. The latter is a

well-identifiable frame for the document processeing, and

therefore considered as the primary structure for our Ref-

erence System. References are used to mark off and anno-

tate particular part of the documents to establish mappings

between the images and the transcription. The Base Text

Layer is established to store the transcription of the text in-

cluding both its logical and physical structure.

For philologists the most important aspect is the annotation

facilities by using the Leiden Conventions, and the appli-

cation of the critical apparatus. One weakness of TEI P4

and EpiDoc is that these pieces of information are stored

within the document as XML element type instances [2, 5].

On the one hand, unless an element type content model al-

lowes nested instances of the same element type, imple-

menting embedded annotations encoded by the same ele-

ment type instance is impossible without loosing seman-

tics. On the other hand, due to the requirements for well

formed XML documents, overlapping annotations done by

the philologists, and encoded by different element type in-

stances cannot be implemented at all as illustrated below.

The string omen is readable, however, aut beside it is miss-

ing due to a flaw in the material of the codex. The tran-

scriber has succeeded at reconstructing the missing part.

According to the Leiden conventions the respective anno-

tation is [aut]omen. Nevertheless, the transcribing philol-

ogist observes that the t and o characters are superfluous,

and probably got into the text as an error on the part of the

original copyist of the document. This can be annotated as

[au{t]o}men, but this annotation cannot be encoded with

the element type instance suggested by TEI P4 and Epidoc.

To remedy scantinesses of TEI P4 and Epidoc, our solution

proposed was that annotations of the text have to be stored

separately from the Base Text Layer in several Annotation

Layers, and to develop an extensive Reference System built

on the physical structure of the document. With this miss-

ing words and sentence boundaries can easily be described,

even if interpreted differently by various philologists. Punc-

tuations missing from the document can also easily be en-

coded, so that our extended model enable us to handle any

overlapping or embedded annotation.

The Ordering and Indexing Layer is an especial document-

layer. A detailed discussion of its necessity, and the layer

itself are described in section 3.

2For the problems caused by structuring the text this way see [19].



2.2. Reference System

Most annotations may have two different meaning. It

is possible that the character string we refer to is present

in the base text or in a previous annotation. We call this

type of annotation Marking Annotation. It is also possi-

ble that the annotation inserts new characters in the text.

This type of annotation is called Inserting Annotation. The

inserted text may only be referred relatively to this anno-

tation. From this point of view, due to the embedded and

overlapped annotations and our multi-layered document ap-

proach we define three types of references. Operations sup-

porting editions are annotation-level operations, and there-

fore an important issue to mark off annotations themselves.

That needs, however an additional kind of reference. Refer-

ences implemented by TEI P5 extended XPointers [21] are

as follows.

The Absolute References point at a character position in the

Base Text. The Internal Relative References point at a char-

acter position in text inserted or marked by a previous anno-

tation in the same Annotation Layer. The External Relative

References point at a character position in text inserted or

marked by an annotation in a previous Annotation Layer. To

mark out annotations External Annotation References are

used.

Concernig External Annotation References, please note,

there is no internal annotation reference, since there is

no need to select annotations from the layer being edited.

Philologists can easily insert and remove annotations to and

from their unpublished Annotation Layer.

2.3. Virtual Text Semantic Validity

Virtual Text Semantic Validity is References’ Satisfiabil-

ity. Our model guarantees that annotating semantc valid vir-

tual texts keeps semantic validity. Considering a Base Text

Layer, and its all available annotation layers, a selection of

an arbitrary subset of those including the Base Text Layer

does not necessarily constitute semantic valid virtual text-

document. As creating an edition takes place by selecting

a subset of Annotation Layers for some Base Text Layer, it

may result in semantic invalid virtual tetxt-document. There

is only one common case that can, and in general does cause

virtual text semantic validity problems: differently annotat-

ing the same piece of base or virtual (i.e. annotated) piece

of text. The possible results of that, however, may be very

various, as shown by the examples below.

First, let us suppose that the base text was unreadable, and

the first annotation layer stated that the word ”master”was
restored there, which according to the Leiden conventions

appeared as ”[master]”, then the second layer revised this
annotation as ”[mater]”, while the third layer revised it

as ”[magister]”. In this situation one can select the first

and the second annotation layer or the first and the third

one without conflict, but cannot select the first, the second

and third one. In our second example the string ”omen”
is readable and is present in the Base Text Layer. Philol-

ogist 1 recognizes that ”aut” is missing before ”omen”,
and publishes this in Annotation Layer 1. This is encoded

as ”[aut]omen”. Philologist 2 states that ”to” is super-

fluous and publishes it in Annotation Layer 2 encoded as

”[au{t]o}men”3, then if revising the ”[aut]” to ”[a]” in

Annotation Layer 3, or hiding the ”[aut]” annotation leads

to very similar conflicts.

2.4 Hiding annotations

To help creating editions, we want to make the philolo-

gist able to select an annotation to publish from a conflicting

set and hide the others. Since in our model all annotations

are shown by default, the only change we have to store is

making an annotation invisible. Therefore in the layer de-

scribing the edition we store a Hide operator with a refer-

ence to the annotation to be hidden.

However, hiding an annotation may cause new conflicts. If

there are annotations in a published layer referring to the

hidden annotation, and we include that layer in our new

edition, all the referring annotations are in conflict with

the Hide operation. Therefore we collect these conflicting

annotations and create a conflict selection, which is repre-

sented by a new layer with references to those annotations

which have references to a hidden annotation or references

to any annotation which are already in this selection. This is

needed because hiding an annotation makes unpublishable

all the annotations which are refferring it, and if we hide

these unpublishable annotations, this will cause new anno-

tations to be unpublishable. Therefore the selection consists

of exactly those annotations which are referring to the hid-

den annotation or any annotation in the selection.

After creating the selection of conflicting annotations, the

philologist can use one of the options below to resolve the

conflict. Since these operations resolves conflicts between

two or more annotations, a new selection is to be created

from the conflicting annotations left. The scholar can re-

move some new conflicts with another operation and these

steps are repeated until the selection is empty.

The selected annotations are referring the hidden one with

an External or Internal Relative Reference or an External

Annotation Reference. These types of references are like a

foreign key in a database system. Hiding the referred anno-

tation may cause two kinds of effect: cascade-hiding all the

referring annotations or changing them to point to NULL.

3A superfluous character in a codex is present, readable, but consid-

ered erronously inserted by the ancient scribe, thus ”[au{t]o}men” has

different semantics from ”[au]men”.



However the latter is not acceptable in a document process-

ing system, since it is impossible to publish an annotation

without knowing where to insert it in the text. Philologist

agree that the cascade-hide mechanism is not acceptable ei-

ther. They want to make decisions on which annotation to

hide and which to show in place of the hidden annotation.

Splitting annotations To support this, it is possible to split

up annotations, when a referring annotation overlaps the

hidden one. Using the SPA operation, the referring an-

notation can be split into two consecutive annotations, of

which one is embedded in the annotation to be hidden while

the other one is independent. After the split, we can apply

cascade-hide to the embedded annotation, while leaving the

other part shown. Following the second example in section

2.3, if the annotator choses to hide ”[aut]”, it is a possible
option to split up the ”{to}” annotation to ”{t}{o}” with

hiding the ”{t}”, giving ”{o}men”.

Relocating annotations In case of embedded annotations,

we need another logic. If the philologist hides an annota-

tion in which another annotation was embedded, a fall-back

mechanism can be used. In this case, we apply a REL (re-

location) operation on the embedded annotation, after that

it acts like it was inserted to the location, where the hid-

den annotation was. This operation can revise the Location

of the referring annotation to add a reference to the point

where the hidden annotation was inserted. For instance, if

”aumen” was deleted and later restored (this is displayed

as ”[[aumen]]”) and then a philologists makes an annota-
tion that ”to” was restored from a gap: ”[[au[to]men]]”. If
this is published and another philologist wants to hide the

”[[aumen]]” annotation, it is possible to leave ”[to]” by re-
locating it to the point where ”[[aumen]]” was insterted.

2.5 Automating the annotation-level operations

In real cases, when there are hundreds of annotations at-

tached to a single page of original text, creating editions

leads to many conflicts. We had a detailed research on how

the decisions in conflict resolution can be automated. Work-

ing with philologists, we found that the decisions in many

cases are predictable due to the semantics of operations.

Since inserting Annotations always refer to an empty text,

an Inserting Annotation never overlaps with previously

added annotations, it is always stand-alone or embedded.

While this annotation type always adds new characters to

the text which should not be hidden, using the fall-back

mechanism when hiding referred annotations is the best

choice in most cases.

Embedded Marking Annotations interprets only the text of

the annotation they are embedded into. Therefore if the

referred annotation was an Inserting Annotation, hiding it

always makes the embedded Marking Annotation uninter-

pretable, therefore the cascade-hide is a good choice. In

most cases, when the referred annotation was a Marking

Annotation, the embedded annotation still makes sense af-

ter hiding the referred one, therefore the fall-back mecha-

nism should be used. In case of overlapping annotations,

when the referred annotation is an Inserting Annotation, the

referring annotation should be split up. When the referred

annotation is a Marking Annotation, the fall-back mecha-

nism should be used.

Please note that hiding a Marking Annotation involves the

fall-back mechanism in most cases, since the embedded and

overlapped annotations does make sense without the inter-

pretation of the hidden annotation. Our conclusions can be

seen in table 1. These defaults are set in the editor but can

be easily overridden in every single case.

Referred Referring annotation

annotation Inserting Marking

embedded embedded overlapped

Inserting fall-back cascade-hide split

Marking fall-back fall-back fall-back

Table 1. Automating operations

2.6 Meta-layer

When a philologist creates an edition, document-, layer-

and annotation-level operations are done. Selecting pub-

lished Annotation Layers to include in an edition is a layer-

level operation, while selecting conflicting annotations and

resolving the conflicts are annotation level operations.

However these are very similar operations to the philolo-

gists annotations, therefore we call them meta-annotations.

An edition is described by the meta-annotations needed to

create it from published Annotation Layers. We store these

meta-annotations in a Meta-Layer. Meta-Layers are very

much like Annotation Layers, the difference is that refer-

ences in Meta-Layers are pointing to annotations and meta-

annotations, not character positions.

An edition which consists of only one Annotation Layer

without reference to other Annotation Layers is called a

Basic Edition. An edition which is based on more than

one Annotation Layer is a Complex Edition. Every Com-

plex Edition – even if it has no conflicts to resolve – has a

Meta-Layer which may refer to Annotation Layers of Ba-

sic Editions and Meta-Layers of complex editions. A Basic

Edition can be treated as having an empty Meta-Layer.

2.7. Tools

Our XML format contains a flexible XPointer scheme

which is not easily editable by simple text editors. To sup-

port user friendly editing of the texts, we developed a What



You See Is What You Get editor. It is not only an editor but

also helps with the publishing of the finished document.It

supports working with layered and flat XML files: it has a

Base Text mode which is used when one start working with

a new codex. For the layered structure the editor has an

Annotation mode. In this mode editing the base text is dis-

abled, but adding, modifying and deleting annotations are

still possible.

3. The Hypereides palimpsest – a sample

project

The HypereiDoc system has been created with the appli-

cation to the decipherment of the now famous Archimedes

Palimpsest [11] in view. It consists of remains of at least five

former codices. One of those discarded and reused books

contained speeches of Hyperides [13, 14]. Here we faced a

special situation: the Archimedes Palimpsest is a secondary

product, it has been created from reused sheets of former

manuscript books. Before the secondary usage the leaves

must have been cleaned as much as possible to make them

fit for bearing the new texts. Scholars are interested in both

the old texts (hardly visible remains of a lower layer on the

surface of the pages, as called undertext) and the new texts

(an upper layer, as called overtext).

As the undertext has not yet been exactly identified on all

leaves, and finding new leaves the whole codex has to be oc-

casionally reordered, the Base Text Layer’s physical struc-

ture is based on the overtext, the pages are identified with

the overtext leaf and side while columns, lines are marked

regarding the undertext, thus the undertext lines are exactly

identifiable. Since the undertext can only be interpreted or

even displayed in its original page order if the exact struc-

ture of the undertext is known, we defined the Ordering and

Indexing Layer independently from the Base Text Layer. It

had to be defined as an independent layer, because philol-

ogists may not agree on the page order, and perhaps want

to use Ordering and Indexing Layer of their own. The Or-

dering and Indexing Layer assigns the overtext leaves and

sides to undertext quires, leaves and sides.

Ending the project not only the final result has been docu-

mented, but also important steps in the scholarly process of

creating the transcription, ie. the XML source files that con-

tain much such information has beeen made public along

with the printed version.

4. Related work

Robin La Fontaine has established the Delta Format for

XML [6] which stores the changes between versions of

XML files in XML format. The system also gives a DTD

to validate the delta file based upon the DTD of the original

XML file. Unfortunately this system cannot be used when

only the differences are stored as annotations in XML lay-

ers.

Robin La Fontaine’s approach to merging XML datasets in

an intelligent way [7] is a well-suitable system when there’s

no semantic conflict between the data sets. However in our

case it is not suitable, since it can’t handle semantically con-

flicting annotations.

Grégory Cobéna gives an overview on XML change detec-

tion systems in [4]. None of the systems reviewed is suit-

able for us, because we are working with published, frozen

editions which are very different. We are not looking for

changes or similarities, but semantic conflicts, therefore we

cannot use change detection.

Tancred Lindholm introduces the three-way merging tech-

nique for XML files in [9]. This technique cannot deal with

semantic conflict resolution.

Gerald W. Manger describes a tree-based algorithm for

megring SGML and XML files with respect to document

validity in [10]. This approach has an accent on keeping a

valid syntax, but does not have solutions to keep static se-

mantics, which is needed to resolve annotation conflicts.

Peter Buneman and his co-authors gives an overview on

how to deal with keys in XML documents in [3]. The paper

discusses the difference between pointers used in the XML

standard and keys used in database systems. It is a good

starting point for our system, however this paper does not

deal with validity in terms of statical semantics.

Md. Sumon Shahriar and Jixue Liu introduces referencial

integrity constraints in means of dependencies and foreign

keys in [12]. This is very close to our work, since Relative

References and Annotation References are foreign keys in

our XML layers. However, the fallback mechanism used in

HypereiDoc is not described here.

5. Conclusion

XML-based frameworks are widely used in editing epi-

graphical, papyrological texts. Most common systems, like

TEI [18] and Epidoc [15] are able to describe the larger

part of the annotations required by the scholars, but lack

support for overlapping annotations, cooperative and dis-

tributed work of teams of scholars as well as creating an-

notations. HypereiDoc is an XML based framework sup-

porting distributed, multi-layered processing of epigraphi-

cal, papyrological or similar texts in a modern critical edi-

tion. With the extensions described in the paper, philolo-

gists can create editions from scratch and also based upon

their previous and other teams’ published work. Seman-

tical conflicts in multi-layered documents can be detected

and resolved using our model. This makes scholars able to

summarize their knowledge in editions composed of many



previously published Annotation Layers on the same Base

Text.

In the last months HypereiDoc has been proved to be an ef-

ficient epigraphical system used in creation of large amount

of papyrological results. In this paper we reviewed the ex-

periences regarding the framework. The growing commu-

nity using HypereiDoc revealed a number of features where

the system should be improved. We discussed the most in-

teresting problems, including the merging problem which

arises when overlapped annotations are later modified caus-

ing conflicts. We extended the model describing the Hyper-

eiDoc annotation system to capture the problem. We pro-

posed solutions based on annotating the annotations.

References

[1] Péter Bauer, Zsolt Hernáth, Zoltán Horváth, Gyula

Mayer, Zsolt Parragi, Zoltán Porkoláb, Zsolt Sztupák:

HypereiDoc - An XML Based Framework Support-

ing Cooperative Text Editions, In: Paolo Atzeni, Al-

bertas Caplinskas, Hannu Jaakkola (Eds.): Advances

in Databases and Information Systems, 12th East

European Conference, ADBIS 2008, Pori, Finland,

September 5-9, 2008. Proceedings. Lecture Notes in

Computer Science Vol. 5207, Springer Verlag 2008,

ISBN 978-3-540-85712-9, pp. 14-29.

[2] Bauman, Syd.: TEI HORSEing Around. In Proceed-

ings of Extreme Markup Languages, 2005.

[3] Peter Buneman, Susan Davidson, Wenfei Fan,

Carmem Hara, WangChiew Tan: Keys for XML,

Computer Networks, Volume 39, Issue 5, August

2002, pp 473 - 487.

[4] Grégory Cobéna, Talel Abdessalem, Yassine Hinnach:

A comparative study for XML change detection, Insti-

tut National de Recherche en Informatique et en Au-

tomatique, Rocquencourt, France, July 2002.

[5] DeRose, Steven.: Markup Overlap: A Review and a

Horse. In Proceedings of ExtremeMarkup Languages,

2004.

[6] Robin La Fontaine: A Delta Format for XML, XML

Europe 2001, Berlin, 2001

http://www.gca.org/papers/xmleurope2001/papers/

html/s29-2.html

[7] Robin La Fontaine: Merging XML Files: A New Ap-

proach Providing Intelligent Merge of XMLData Sets,

XML Europe 2002, Barcelona, 2002

http://www.deltaxml.com/dxml/93/version/default/

part/AttachmentData/data/merging-xml-files.pdf

[8] B. A. van Groningen: De signis criticis in edendo ad-

hibendis. Menemosyne 59 (1932), pp. 362-365.

[9] Tancred Lindholm: A three-way merge for XML doc-

uments, Source Document Engineering, Proceedings

of the 2004 ACM symposium on Document engineer-

ing, Milwaukee, Wisconsin, USA, 2004, pages: 1-10,

ISBN:1-58113-938-1

[10] Gerald W. Manger: A Generic Algorithm for Merging

SGML/XML-Instances, XML Europe 2001, Berlin,

2001

http://www.gca.org/papers/xmleurope2001/papers/

html/s29-1.html

[11] Reviel Netz, William Noel: The Archimedes Codex.

Revealing The Secrets Of The World’s Greatest

Palimpsest. ISBN-13: 9780297645474, London 2007.

[12] Md. Sumon Shahriar and Jixue Liu: Towards a Def-

inition of Referential Integrity Constraints for XML,

International Journal of Software Engineering and Its

Applications, Vol. 3, No. 1, January, 2009

[13] Tchernetska, N.: New Fragments of Hyperides from

the Archimedes Palimpsest. Zeitschrift für Papyrolo-

gie und Epigraphik 154 (2005) 1–6.

[14] Tchernetska, N., Handley, E. W., Austin, C. F. L.,

Horváth, L.: New Readings in the Fragment of Hy-

perides’ Against Timadros. Zeitschrift für Papyrologie

und Epigraphik 162 (2007) 1–4.

[15] Epidoc Guidelines.

http://www.stoa.org/epidoc/gl/5/

toc.html

[16] Extensible Markup Language (XML) 1.0 (Third Edi-

tion)

http://www.w3.org/TR/2003/PER-xml-20031030

[17] HypereiDoc Project Homepage.

http://hypereidoc.elte.hu

[18] TEI P4 Guidelines.

http://www.tei-c.org/Guidelines/P4/index.xml

[19] TEI P4 Multiple Hierarchies.

http://www.tei-c.org/release/doc/tei-p4-

doc/html/NH.html

[20] TEI P5 Guidelines.

http://www.tei-c.org/Guidelines/P5/index.xml

[21] TEI XPointer Supplements.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/

SA.html


