
An XML based General Document Algebra

supporting conflict resolving in cooperative text

editions – HypereiDoc revisited ⋆

Zsolt Hernáth1, Péter Bauer2, and Zoltán Porkoláb2

1 Dept. of Information Systems
2 Dept. of Programming Languages and Compilers
Faculty of Informatics, Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
{bauer p|hernath|gsd}@inf.elte.hu

Abstract. HypereiDoc [1] is an XML based framework that has been
designed to support multi-layered processing of epigraphical, papyrolog-
ical or similar texts in a cooperative, and distributed manner for modern
critical editions. Creating an edition, philologists may however face the
problem that a prepared edition is, semantically unjust. The reason be-
hind semantically damaged editions is merging virtual text-documents
made by different scholar teams that may annotate the same piece of
text independently of each other. As nor detection, neither resolution
of such semantic casualties is currently supported by the framework, in
this paper we explore and analyze possible semantic problems, and ex-
tend the mathematical model of HypereiDoc in order to capture, and
present possible solutions for them.

1 Introduction

HypereiDoc is an XML [4] based framework established to support distributed,
multi-layered, version-controlled processing of epigraphical, papyrological or sim-
ilar texts in a modern critical edition. Such studies are typically based on in-
dependent work of philologists using annotation systems like the Leiden Con-
ventions [2]. Most of the epigraphycal systems focus on the creation of a single
document, similar the classical paper-based books. HypereiDoc does, however,
cover the full distributed process of scientific activity. Scholars can refer each
others results: support, modify, and contradict observations of earlier editions
in form of annotations. When this process reaches a certain point a new edition
can be created. The HypereiDoc framework provides XML schema for a set of
annotation-based layers connected by an extensive reference system, validating
and building tools, and an editor on-line visualizing the base text and the anno-
tations.

The HypereiDoc framework is based on a multi-layer data model. We defined a

⋆ Supported by Nemzeti Kutatási és technológiai Hivatal under TECH 08-A2/2-2008-
0089.

Base Text Layer where only the original text and its physical structure is stored
and which may not be modified later, an Ordering and Indexing Layer defining
the pages’ order and place in the codices and one or more Annotation Layers

with the attached philological remarks.

To physically structure the text and to implement philological metadata, the
HypereiDoc framework provides an XML schema, in which not only the physi-
cal structure, but also a large scale of annotation metadata could be expressed.
The latter, among others, makes also possible to follow also the ownership and
the full timeline of the text. HypereiDoc supersedes other initiatives like TEI
[6] and Epidoc [3] by introducing a multi-layered document model together with
an extensive reference system, the latter in order to make exact references to
any piece of both the base text in the Base Text Layer and texts inserted by
annotations in any Annotation Layer. The layered document model is able to
express both embedded and also overlapping annotations.

Our framework has been successfully used by philologists. The text edition of
Hypereides’ speech against Diondas has been created1 using the editor of the
framework. Currently the entire Greek texts together with the editor is available
on the project’s home page [5]. The creation of 10 pages of greek text with more
than 1500 annotations, scholars sometime made conflicting annotations, that
unintentionally caused some of the possible validity problems mentioned in [1],
proving an exhausted test not only for the XML schema and the tools but also for
the scholar’s cooperative working methodology. Validating the document with
our static semantics validation tool revealed these errors, but finding the exact
conflicting annotations in different layers and dissolving them has been found
laborious. To avoid executing the full semantical validity check in the editor re-
peatedly and then expressing the bogus positions in an unacceptable complex
way, we concluded that both the detection and resolving of such conflicts should
be supported on the level of the data model.

The rest of the paper is organized as follows. In section 2 we present two inter-
esting and possible cases as a result of concurrently annotating the same piece of
text. In section 3 our data model VITAM, see subsection 2.3 in [1], is extended.
The extension is strongly governed by the sample cases presented in section 2.
Section 4 details conflict handling and resolution by applying the VITAM exten-
sion. In section 5, we give an overview of approaches on XML related merging
and foreign key problems, and last, our results are summarized in section 6.

2 HypereiDoc Revisited

Establishing new editions from old ones using the Hypereidoc editor, philologists
were frequently facing the fact that a set of selected annotations made by dif-

1 The text edition of Hypereides’ speech against Diondas was transcribed with the
above described editor. The publication is forthcoming in the Zeitschrift für Pa-
pyrologie und Epigraphik vol. 2009 (April). Similarly, this editor is applied in the
revised edition of Hypereides’ Against Timandros in AAHung vol. 2008.

ferent philologist groups procuced an annotated text, where some annotations
were occasionally simple lost i.e. disappeared, others became uninterpretable.
The reason behind the above phenomena is the lack of a forced full-validation
of merged Virtual text-documents reported by [1].

Though the prototype of the HypereiDoc editor offers forced full validity check of
any edition of annotated text, a real support of philologists would be an editor-
controlled and automatic full validation of any edition (i.e. a base text and
selected annotations). To support philologists with editor-controlled automatic
full validation, basically data model controlled means are on need. Such means
need to extend the Hypereidoc base algebra VITAM2, so that first VITAM’s
notions and definitions are summarized below.

2.1 VITAM Revisited

Our data model VITAM lies basically on the notions Raw Text, Base, and Virtual
Text-documents, the validity of the latter, primitive text operations on Base and
Virtual Text-documents, and what are called annotations, which are considered
as philological operations, and which are implemented by primitive operation
sequences, each by one.

Raw Text and Base Text-document:
Given a text R as a particular sequence of UNICODEs (UTF8) called Raw Text,
an (R-based) Base Text-document is a TEI P5 [6] conformable XML document
being valid against the document grammar [5] made from R, where XML tags
are to indicate page-, column-, and linebreaks. The idea behind the notion of
base text-documents was to establish a frame of reference in order to locate and
reference any piece of text inside R.

Primitive operations on raw texts:
LO, that locates some piece of text inside a base text-document by specifying
the first and the last character of the sub-text. Marking off characters takes
place by TEI P5 extensions of XPointers [7], and instead of marking out char-
acter positions Xpointers are used to trace out positions between neighbouring
characters. An LO operator is called performable, if an existing piece of text, or
a position between existing neighbouring characters is in fact located.

IN, that interprets (i.e. assigns semantics to) a piece of text located by an LO
inside a base text-document.

RE, that revises a piece of text located by an LO inside a base text-document,
i.e. deletes, or overwrites the located subtext, or inserts a piece of text at the
position located.

Homogenous Operation Sequence:
A (possible empty) sequence {o0, . . . , on} of primitive operations is called homo-
geneous, if operands of each LO occurrence inside the sequence refers implicitly

2 VIrtual Text Annotation Model

either to the same base text-document, or to a raw text literal operand of some
preceding operation.

Annotation:
A possible empty homogeneous operation sequence that refers implicitly to a
base text-document XR, and established as a TEI P5 [6] conformable XML doc-
ument being valid against document grammar [5] is called an annotation. There
exists the empty annotation denoted by A∅.

Virtual Text-document:
Given XR base text-document and {At0 , . . . , Atr

} a non-empty annotation se-
quence, (XR, A∅) is an XR-rooted virtual text-document, identical with XR.
Given XR-rooted virtual text-document VR, (VR, {At0 , . . . , Atr

}) is an XR-rooted
virtual text-document, defined by the expression

((. . . (VR, At0) . . .), Atr
).

The raw text content of virtual text-document (VR, {At0 , . . . , Atr
}) results in

from VR, by processing annotations At0 , . . . , Atr
in the given order. Processing

an annotation means performing its primitive operations in the order of the
operation sequence that it implements. The idea behind the notion of virtual
text-documents is to avoid committed results of executing arbitrary sequences
of the above operations on any Base Text-document.

Merging Virtual Text-documents:
Given VR = (XR, {Ati0

, . . . , Atir
}), V

′

R = (XR, {Atk0
, . . . , Atks

}) XR-rooted vir-
tual text-documents, and {Bt0 , . . . , Btn

} annotation sequence. Suppose, for each
natural number m, for that 0 ≤ m ≤ n holds, there exists 0 ≤ j ≤ r, or 0 ≤ l ≤ s

such that either Btm
= Atij

or Btm
= Atkm

hold. A virtual text-document of

form (XR, {Bt0 , . . . , Btn
}) is called a merge of VR and V

′

R.

Well-formedness and Validity:
Virtual text-documents’ well-formedness formally declares the conformance of
XML documents that implements base text-documents and annotations against
document grammar [5]. Virtual text-documents’ validity is a semantics issue.

Annotation A∅ is valid with respect to any base and virtual text-document.
Given VR virtual text-document, an annotation A is valid with respect to VR,
iff all occurrences of operations LO inside A is performable. An annotation se-
quence {A0, . . . , As} is valid w.r.t. VR, iff A0 is valid w.r.t. VR, and ∀1 ≤ i ≤ s,
annotation Ai is valid w.r.t. (VR, {A0, . . . , Ai−1}).

Given XR base text-document, (XR, A∅) is a valid virtual text-document. Given
VR valid virtual text-document, and {A0, . . . , Ar} annotation sequence being
valid w.r.t. VR, (VR, {A0, . . . , Ar}) is a valid virtual text-document.

In VITAM generally, any homogeneous operator sequence is called annotations.
Here, from now on, we restrict the general notion of annotations to particular
homogeneous operation sequences by assigning particular homogeneous opera-

tion sequences to particular philological annotations, one to each in harmony
with Leiden Conventions, as it is seen in table 13.

Leiden Explanation Operations

Conventions

[...] a lacuna or gap in the original text, LO to position and
not restored by the editor IN:missing on the selected

empty text

[abc] letters missing from the original text LO to position, RE:insert,
due to lacuna, restored by the editor LO to select the inserted text

and IN:restored gap

a(bc) abbreviation in the text, LO to position, RE:insert,
expanded by the editor LO to select the inserted text

and IN:expanded abbreviation

< ab > characters erroneously omitted LO to position, RE:insert,
by the ancient scribe, restored or LO to select the inserted text,
corrected by the editor IN:restored omission

{ab} letters in the text considered erroneous LO to select the text
and superfluous by the editor and IN:superfluous

.ab. characters damaged or otherwise LO to select the text
unclear in the text, ambiguous and IN:damaged
outside of their context

... traces of letters on the surface, LO to position and
insufficient for restoration by the editor IN:unrestorable on the

selected empty text

[[abc]] deleted letters LO to position, RE:insert,
LO to select the inserted text
and IN:restored deletion

V ac. space left empty (vacat) on the surface LO to position and
IN:empty on the selected
empty text

Table 1. Representing the Leiden Conventions

2.2 Conflict Analysis

There is only one common case that can, and in general does cause virtual text
validity problems: differently annotating the same piece of base or virtual (i.e.
annotated) piece of text. The possible results of those, however, may be very

3 Please note that an operation sequence starting with an LO followed by an RE
is representing an Inserting Annotation. If the text to be interpreted is already
present in the Virtual Text Document, one can use a Marking Annotation which is
represented by the same operation sequence without the starting LO and RE. (see
section 3.2 in [1])

various, as the following examples show. For instance, if the base text was un-
readable, the first annotation layer stated that there ”master” was restored,
which appeared ”[master]” according to the Leiden conventions. After that the
second layer revised this annotation as ”[mater]”, while the third layer revised
it as ”[magister]”. In this situation one can select the first and the second an-
notation layer or the first and the third one without conflict, but cannot select
the first, the second and third one.

Let us consider another example: The string ”omen” is readable and is present in
the Base Text Layer. Philologist 1 recognizes that ”at” is missing before ”omen”,
and publishes this in Annotation Layer 1. This is encoded as ”[aut]omen” in
Leiden Conventions. After that philologist 2 states that ”to” is superfluous and
publishes it in Annotation Layer 2: ”[au{t]o}men”.4 In this case revising the
”[aut]” to ”[a]” in Annotation Layer 3, or hiding the ”[aut]” annotation leads to
very similar conflicts.

3 Extended VITAM – VITAME

For arbitrary XR base text-document, an edition can be considered as a merge
of XR-rooted virtual text-documents, and basically, there is only one source of
conflicts: annotating the same piece of text in different ways. To support conflict
detection, our base idea is that given an edition of form E = (XR, {E0, . . . , Es}),
the sequence {E0, . . . , Es} can always be rearranged a to a sequence of subse-
quences such that E is yield by an expression

((· · · (XR, {E11
, . . . , Ek1

}), · · ·), {Em1
, . . . , Ekm

}),

where annotations of subsequence {E11
, . . . , E1k1

} are valid w.r.t (XR, A∅), and
annotations of subsequence {Ej1 , . . . , Ejkj

} for any 2 ≤ j ≤ m are valid w.r.t.

(XR, {{E11
, . . . , Ek1

}, . . . , {E(j−1)1 , . . . , E(j−1)kj−1
}}). As for conflict resolution,

subsequences are checked if more than one annotations annotate the same text
region, and if so, groups of those by common text regions are to be considered
as one annotation with the semantics that each group represents any, but only
one annotation on the text region in question.

3.1 Extension Basics

Definition 1 (Null Annotataion)
Given XR base text-document, and VR XR-rooted virtual text-document, for
arbitrary LOVR

that locates a piece of raw or annotated text within VR, the
operation sequence {LOVR

} is called a null-annotation of the text located, and
denoted by A0

LOVR

.

4 A superfluous character in a codex is present, readable, but considered erroneously
inserted by the ancient scribe, thus ”[au{t]o}men” has different semantics from
”[au]men”.

Definition 2 (Denominations and Notations)
For arbitrary annotation A, let LOA, and LOA denote the text to be, and
already annotated, respectively. The text denoted by LOA and LOA is called
the source domain and annotated source domain, respectively.

In extended VITAM annotations can be considered as characters from some
alphabet that disjoint from that of the base test-document. Annotations are
therefore supposed, that they can be located by applying operation LOA, just
like any pieces of texts inside virtual text-documents, by applying operation LO.
LOAA denotes the LOA that locates annotation A.

Definition 3 (Orthogonality and Common Domain)
Given VR virtual text-document, and annotations A1, . . . , Ar, each of them being
valid w.r.t VR, an annotation sequence {A1, . . . , Ar} is called orthogonal w.r.t.
VR.

Suppose, VR, and {B1, B2} denote a virtual text-document, and annotation se-
quence, respectively, the latter being orthogonal w.r.t. VR. Annotations B1 and
B2 are said common-domained w.r.t. VR, iff

– there exist a raw text t such that t is a common subtext of LOB1
and LOB2

;
– both LOB1

and LOB2
locate the same single position, or

– single position LOB1
(LOB2

) is inside raw text LOB2
(LOB1

).

Tags of annotation sequence {A0, . . . , As} being orthogonal w.r.t. VR are said
common-domained w.r.t. VR, iff for each pair Aj and Ak, 0 ≤ j 6= k ≤ s,
either Aj and Ak are common-domained w.r.t. VR, or, one can select a sequence
Ak1

, . . . , Akr
from annotations A0, . . . , As such that Aj = Ak1

, Akr
= Ak, and

neighbouring tags of the sequence selected are common-domained w.r.t. VR.

Definition 4 (Orthogonal Validity)
Let VR, and {A0 . . . , Ar} denote a valid virtual text-document, and annota-
tion sequence being orthogonal w.r.t. VR, respectively. Sequence {A0 . . . , Ar} is
called orthogonally valid w.r.t VR, iff for each {Aj0 , . . . , Ajm

} ⊆ {A0 . . . , Ar},
(VR, {Aj0 , . . . , Ajm

}) is a valid virtual text-document.

Remark 1
Notice, for any virtual text-document VR, and annotations A0, . . . , As being
common-domained w.r.t. VR, there always exists the shortest piece of text t in
VR denoted by LO{A0,...,As} in harmony with definition 2. An annotation se-
quence consisting of annotations that are common-domained w.r.t. some virtual
text-document can’t be orthogonally valid w.r.t. the same virtual text-document,
and vice versa.

Definition 5 (Orthogonally layered Virtual Text-Documents)
Let XR be a base text-document. An XR-rooted virtual text-document VR of
form (XR, {{B11

, . . . , B1k1
}, . . . , {Bs1

, . . . , Bsks
}}) is said it is ortogonally lay-

ered or given in a canonical form, if

– annotation sequences {B11
, . . . , B1k1

}, . . . , {Bs1
, . . . , Bsks

} are pairwise dis-
joint,

– annotation sequence {B11
, . . . , B1k1

} is orthogonal w.r.t. (XR, A∅),
– for each 2 ≤ j ≤ s, {Bj1 , . . . , Bjkj

} is orthogonal w.r.t. virtual text-document

yield by the expression ((· · · (XR, {B11
, . . . , B1k1

}), · · ·), {Bj−11
, . . . , Bj−1kj

}),

Remark 2
Keeping notations of Definition 5, one can constructively prove that arbitrary
XR-rooted virtual text-document (XR, {B0, . . . , Bu}) can be transformed into a
canonical form. Creating a canonical form, first all those annotations has to be
selected as the subsequence {B11

, . . . , B1k1
} that are valid w.r.t. (XR, A∅), next

those as {B21
, . . . , B2k2

}, which are valid w.r.t. ((XR, A∅), {B11
, . . . , B1k1

}), and
so on until each Bj (j = 0, . . . , u) has been selected.

It is also easy to see, that if VR is an XR-rooted virtual text-document given
in a canonical form as (XR, {{B11

, . . . , B1k1
}, . . . , {Bs1

, . . . , Bsks
}}), then VR is

valid, iff {{B11
, . . . , B1k1

} is orthogonally valid w.r.t. (XR, A∅), and for each
j = 2, . . . , s, {Bj1 , . . . , Bjkj

} is orthogonally valid w.r.t. virtual text-document

(XR, {{B11
, . . . , B1k1

}, . . . , {B(j−1)1 , . . . , B(j−1)k(j−1)
}}).

3.2 Operations on Annotations

Operations on annotations may also be considered as annotations on annota-
tions, or with other words meta-annotations. The operations introduced below
are to support conflict detection and their resolution.

Definition 6 (Selection)
Suppose, VR is a virtual text-document, A1, . . . , Ar are common-domained an-
notations w.r.t. VR. {A1, . . . , Ar}

S
is an annotation issued the semantics that

it represents any, but only one annotation from the sequence {A1, . . . , Ar}, and
called a selection of annotations A1, . . . , Ar.

Remark 3
Suppose, VR is a virtualtext-document, {B0, . . . , Br} is an annotation sequence
being ortogonally valid w.r.t VR, annotations A1, . . . , As are common domained
w.r.t VR, and source domain LO{A1,...,As} is disjoint from any LOBj

for each

j = 1, . . . , r. Under such conditions the sequence {{A1, . . . , As}
S
, B0, . . . , Br} is

orthogonally valid w.r.t. VR.

Definition 7 (Prepare Selection of Annotations)
Suppose, VR is a virtual text-document, operation LOVR

locates some raw or
annotated text inside VR, and annotation sequence {C0, . . . , Cs} is orthogonal
w.r.t. VR. Operation PSA(LOVR

, {C0, . . . , Cs}) results in a LOA that locates a
(occasionally empty) selection {Ci0 , . . . , Cim

}S , where

– {Ci0 , . . . , Cim
} ⊆ {C0, . . . , Cs},

– annotations Ci0 , . . . , Cim
are common-domained,

– domains LOVR
and LO{Ci0

,...,Cim} are in relation LOVR
⊆ LO{Ci0

,...,Cim},
or LOVR

⊇ LO{Ci0
,...,Cim}.

Definition 8 (Complete selections For Undo)
Given selection {S0, . . . , Sr}

S , operation CFU({S0, . . . , Sr}
S) results in a LOA

that locates the selection {A0
LO{S0,...,Sr}

, S0, . . . , Sr}
S .

Remark 4
Keeping the notations of the two above definitions one may realize, that par-
ticular applications of operations PSA and CFU give the means for undoing
arbitrary annotations. Given arbitrary virtual text-document VR, and annota-
tion A being valid w.r.t. VR, the means itself is the selection {A0

LOA
, A}S , and

can be obtained by performing either PSA(LOA, {A0
LOA

, A}), or CFU({A}).

Definition 9 (SElect Annotation from selection)
Given selection SS = {S0, . . . , Sv}

S , let A∗ denote one of the annotations
S0, . . . , Sv. Operation SEA(LOAA∗ , SS) results in LOAA∗ .

Notice the operation introduced above helps both detecting and resolving con-
flicts caused by annotations being common-domained w.r.t. some virtual text-
document. Conflict resolutions achieved by them are however rather coarse in
the sense that different annotations of their common source domain may ac-
cidentally contain the same character at the same position. In order to carry
out conflict resolutions as fine as possible, contradicting annotations need to be
splitted to annotation sequences as formalized below.

Definition 10 (Split Annotation)
Given annotation A, and an LO that locates a single position within text literal
operand of A, operation SPA(LO, A) results in a LOA to sequence {S1A

, S2A
}

such that LOS1A
and LOS2A

in this order are consecutive source domains.5

Definition 11 (Join Annotations)
Given annotation sequence {A0, A1}, where LOA0

and LOA1
in this order are

consecutive source domains, suppose, annotations A0 and A1 do not perform
either IN operation, or both perform the same. Operation JOA(LOA{A0,A1})
results in a LOA to the annotation

– the source domain of which are the catenation of consecutive source domains
LOA0

, and LOA1
,

– the annotated source domain of whicih in turn is the catenation of annotated
source domains LOA0 and LOA1 in this order.

4 Implementation

The new operations are needed because of creating editions, which is primarily a
document-level activity, more exactly a layer-level activity. However implement-
ing the new operations has effect both on annotations and on layers.

5 Consecutive source domains are those where the end-position of the first domain,
and the initial position of the second domain are the same.

4.1 Annotation-level operations

Operations supporting editions are annotation-level operations, since their Loca-
tion points to an annotation in a previously defined layer. This type of Location
is implemented by an External Annotation Reference. This type of reference is
expressed by an XPointer pointing to the XML tag representing the annota-
tion to be selected. Please note, that there is no internal annotation reference,
since there is no need to select annotations from the layer being edited. Philol-
ogists can easily insert and remove annotations to and from their unpublished
Annotation Layer.

4.2 Hiding annotations

To help creating editions, we want to make the philologist able to select an an-
notation to publish from a conflicting set and hide the others. Since in our model
all annotations are shown by default, the only change we have to store is making
an annotation invisible. Therefore in the layer describing the edition we store a
Hide operator with a reference to the annotation to be hidden.

However, hiding an annotation may cause new conflicts. If there are annotations
in a published layer referring to the hidden annotation, and we include that
layer in our new edition, all the referring annotations are in conflict with the
Hide operation. Therefore we collect these conflicting annotations and create a
conflict selection, which is represented by a new layer with references to those
annotations which have references to a hidden annotation or references to any
annotation which are already in this selection. This is needed because hiding an
annotation makes unpublishable all the annotations which are referring it, and
if we hide these unpublishable annotations, this will cause new annotations to
be unpublishable. Therefore the selection consists of exactly those annotations
which are referring to the hidden annotation or any annotation in the selection.

After creating the selection of conflicting annotations, the philologist can use
one of the options below to resolve the conflict. Since these operations resolve
conflicts between two or more annotations, a new selection is to be created from
the conflicting annotations left. The scholar can remove some new conflicts with
another operation and these steps are repeated until the selection is empty.

The collected annotations are referring the one to be hidden with an External or
Internal Relative Reference or an External Annotation Reference. These types
of references are similar to foreign keys in relational database systems. Hiding
the referred annotation may cause two kinds of effect: cascade-hiding all the
referring annotations or changing them to point to NULL. However the latter is
not acceptable in a document processing system, since it is impossible to publish
an annotation without knowing where to insert it in the text. Philologist agree
that the cascade-hide mechanism is not acceptable either. They want to make
decisions on which annotation to hide and which to show in place of the hidden
annotation.

Splitting annotations To support this, it is possible to split up annotations,
when a referring annotation overlaps the hidden one. Using the SPA operation,
the referring annotation can be split into two consecutive annotations, of which
one is embedded in the annotation to be hidden while the other one is indepen-
dent. After the split, we can apply cascade-hide to the embedded annotation,
while leaving the other part shown. Following the second example in section 2.2,
if the annotator choses to hide ”[aut]”, it is a possible option to split up the
”{to}” annotation to ”{t}{o}” with hiding the ”{t}”, giving ”{o}men”.

Relocating annotations In case of embedded annotations, we need another
logic. If the philologist hides an annotation in which another annotation was
embedded, a fall-back mechanism can be used. In this case, we apply a REL
(relocation) operation on the embedded annotation, after that it acts like it
was inserted to the location, where the hidden annotation was. This operation
can revise the Location of the referring annotation to add a reference to the
point where the hidden annotation was inserted. For instance, if ”aumen” was
deleted and later restored (this is displayed as ”[[aumen]]”) and then a philolo-
gists makes an annotation that ”to” was restored from a gap: ”[[au[to]men]]”. If
this is published and another philologist wants to hide the ”[[aumen]]” annota-
tion, it is possible to leave ”[to]” by relocating it to the point where ”[[aumen]]”
was insterted.

4.3 Automating the annotation-level operations

In real cases, when there are hundreds of annotations attached to a single page
of original text, creating editions leads to many conflicts. We had a detailed
analysis on how the decisions in conflict resolution can be automated. Working
with philologists, we found that the decisions in many cases are predictable due
to the semantics of operations.

From the practical point of view, there are two types of annotations, the In-

serting Annotations and the Marking Annotations6. Inserting Annotations are
changing the characters of the Virtual Text, while Marking Annotations marks
the text to add interpretations. Inserting Annotations always refer to an empty
text, therefore an Inserting Annotation never overlaps with previously added
annotations, it is always stand-alone or embedded. While this annotation type
always adds new characters to the text which should not be hidden, using the
fall-back mechanism when hiding referred annotations is the best choice in most
cases.

Embedded Marking Annotations interprets only the text of the annotation they
are embedded into. Therefore if the referred annotation was an Inserting Annota-
tion, hiding it always makes the embedded Marking Annotation uninterpretable,
therefore the cascade-hide is a good choice. In most cases, when the referred an-
notation was a Marking Annotation, the embedded annotation still makes sense
after hiding the referred one, therefore the fall-back mechanism should be used.

6 For detailed definition, see section 3.2 in [1]

In case of overlapping annotations, when the referred annotation is an Inserting
Annotation, the referring annotation should be split up. When the referred an-
notation is a Marking Annotation, the fall-back mechanism should be used.

Please note that hiding a Marking Annotation involves the fall-back mechanism
in most cases, since the embedded and overlapped annotations does make sense
without the interpretation of the hidden annotation. Our conclusions can be seen
in table 2. These defaults are set in the editor but can be easily overridden in
every single case.

Referred Referring annotation

annotation Inserting Marking
embedded embedded overlapped

Inserting fall-back cascade-hide split

Marking fall-back fall-back fall-back

Table 2. Automating operations

4.4 Layer- and document-level operations

Creating an edition means summarizing philologists’ work on a given Base Text.
Creating editions from published Annotation Layers consists of three main steps:

– Selecting the annotation layers containing the annotations we want to pub-
lish.

– Analyzing the conflicts between the annotations in these layers and resolving
them.

– Typesetting the text with the selected annotations.

The first step is already supported by our framework, since selecting the An-
notation Layers to be published is done via the same mechanism as selecting
Annotation Layers to base a new annotation layer on, when creating a critical
Annotation Layer for a critical edition. The last step is also supported by our
editor with LATEX and ledmac [8].

While the editor is able to detect conflicting annotations, we have to extend our
data model to support storing the decisions made to resolve the conflicts. We
also introduce some new functionality to support creating editions from different
types of Annotation Layers and previous editions.

Please note that an Annotation Layer itself with its Base Text is also an edition,
since it contains non-conflicting annotations, and the editor has the ability to
export it in a format to be printed or published on the web. Therefore we will
refer critical editions and editions consisting of only one Base Text Layer and
Annotation Layer as edition.

Join Joining editions is the simplest way to create a new one. We can join edi-
tions if the domain of these editions are disjoint. In this case no conflicts can
occur.

Split Splitting an edition is also a simple way to create new editions. This fea-
ture is helpful when a philologist want to publish only a portion of the text, for
instance a speech from the Hypereides Palimpsest.

Merge Merging editions is similar to join except that the original editions’ do-
main is not pairwise disjoint, therefore there may be and in general are conflicting
annotations. Please note, that such conflicts can always be solved by splitting the
conflicting layers and joining them again leaving out the parts which caused the
conflict. However, using the new operations gives more freedom to the philologist
to chose which annotations to hide, and makes it possible to leave annotations
referring to a hidden one shown.

4.5 Meta-layer

When a philologist creates an edition, document-, layer- and annotation-level
operations are performed. Selecting published Annotation Layers to include in
an edition is a layer-level operation, while selecting conflicting annotations and
resolving the conflicts are annotation level operations. However these are very
similar operations to the philologists annotations, therefore we call them meta-
annotations. An edition is described by the meta-annotations needed to create it
from published Annotation Layers. We store these meta-annotations in a Meta-

Layer. Meta-Layers are very much like Annotation Layers. The difference is that
references in Meta-Layers are pointing to annotations and meta-annotations, not
character positions.

An edition which consists of only one Annotation Layer without reference to
other Annotation Layers is called a Basic Edition. An edition which is based on
more than one Annotation Layer is a Complex Edition. Every Complex Edition
– even if it has no conflicts to resolve – has a Meta-Layer which may refer to
Annotation Layers of Basic Editions and Meta-Layers of complex editions. A
Basic Edition can be treated as having an empty Meta-Layer.

5 Related work

During the HypereiDoc project a number of existing XML merging systems and
approaches were carefully revised.

Robin La Fontaine has established the Delta Format for XML [9], which stores
the changes between versions of XML files in XML format. The system also gives
a DTD to validate the delta file based upon the DTD of the original XML file.
Unfortunately this system cannot be used when only the differences are stored
as annotations in XML layers.

Robin La Fontaine’s approach to merging XML datasets in an intelligent way [13]

is a well-suitable system when there’s no semantical conflict between the data
sets. However in our case it is not suitable, since it can’t handle semantically
conflicting annotations.

Grégory Cobéna gives an overview on XML change detection systems in [10].
None of the systems reviewed is suitable for us, because we are working with
published, frozen editions which are very different. We are not looking for changes
or similarities, but semantical conflicts, therefore we cannot use change detection.

Tancred Lindholm introduces the three-way merging technique for XML files in
[11]. This technique cannot deal with semantical conflict resolution.

Gerald W. Manger describes a tree-based algorithm for merging SGML and XML
files with respect to document validity in [12]. This approach has an accent on
keeping a valid syntax, but does not have solutions to keep static semantics,
which is needed to resolve annotation conflicts.

Peter Buneman and his co-authors gives an overview on how to deal with keys
in XML documents in [14]. The papers discusses the difference between pointers
used in the XML standard and keys used in database systems. It is a good
starting point for our system, however this paper does not deal with validity in
terms of statical semantics.

Md. Sumon Shahriar and Jixue Liu introduces referencial integrity constraints
in means of dependencies and foreign keys in [15]. This is very close to our
work, since Relative References and Annotation References are foreing keys in
our XML layers. However, the fallback mechanism used in HypereiDoc is not
described here.

6 Conclusion

XML-based frameworks are widely used in editing epigraphical, papyrological
texts. Most common systems, like TEI [6] and Epidoc [3] are able to describe
the larger part of the annotations required by the scholars, but lacks to support
overlapping annotations, cooperative and distributed work of teams of scholars
as well as creating annotations. HypereiDoc is an XML based framework sup-
porting distributed, multi-layered processing of epigraphical, papyrological or
similar texts in a modern critical edition. With the extensions described in the
paper, philologists can create editions from scratch and also based upon their
previous and other teams published work. Semantical conflicts in multi-layered
documents can be detected and resolved using our model. This makes scholars
able to summarize their knowledge in editions composed of many previously
published Annotation Layers on the same Base Text.

In the last months HypereiDoc has been proved to be an efficient epigraphical
system used in creation of large amount of papyrological results. In this paper
we reviewed the experiences regarding the framework. The growing community
using HypereiDoc revealed a number of features where the system should be

improved. We discussed the most interesting problems, including the merging
problem which arises when overlapped annotations are later modified causing
conflicts. We extended the model describing the HypereiDoc annotation system
to capture the problem. We proposed solutions based on annotating the anno-
tations.

References

1. Péter Bauer, Zsolt Hernáth, Zoltán Horváth, Gyula Mayer, Zsolt Parragi, Zoltán
Porkoláb, Zsolt Sztupák: HypereiDoc - An XML Based Framework Supporting Co-
operative Text Editions, In: Paolo Atzeni, Albertas Caplinskas, Hannu Jaakkola
(Eds.): Advances in Databases and Information Systems, 12th East European Con-
ference, ADBIS 2008, Pori, Finland, September 5-9, 2008. Proceedings. Lecture
Notes in Computer Science Vol. 5207, Springer Verlag 2008, ISBN 978-3-540-85712-
9, pp. 14-29.

2. B. A. van Groningen: De signis criticis in edendo adhibendis. Menemosyne 59
(1932), pp. 362-365.

3. Epidoc Guidelines. http://www.stoa.org/epidoc/gl/5/toc.html
4. Extensible Markup Language (XML) 1.0 (Third Edition)

http://www.w3.org/TR/2003/PER-xml-20031030
5. HypereiDoc Project Homepage. http://hypereidoc.elte.hu/
6. TEI P5 Guidelines. http://www.tei-c.org/Guidelines/P5/index.xml
7. TEI XPointer Supplements.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SA.html
8. Peter Wilson: Ledmac.

ftp://dante.ctan.org/tex-archive/macros/latex/contrib/ledmac/
9. Robin La Fontaine: A Delta Format for XML, XML Europe 2001, Berlin, 2001

http://www.gca.org/papers/xmleurope2001/papers/html/s29-2.html
10. Grégory Cobéna, Talel Abdessalem, Yassine Hinnach: A comparative study for

XML change detection, Institut National de Recherche en Informatique et en Au-
tomatique, Rocquencourt, France, July 2002.

11. Tancred Lindholm: A three-way merge for XML documents, Source Document
Engineering, Proceedings of the 2004 ACM symposium on Document engineering,
Milwaukee, Wisconsin, USA, 2004, pages: 1-10, ISBN:1-58113-938-1

12. Gerald W. Manger: A Generic Algorithm for Merging SGML/XML-Instances,
XML Europe 2001, Berlin, 2001
http://www.gca.org/papers/xmleurope2001/papers/html/s29-1.html

13. Robin La Fontaine: Merging XML Files: A New Approach Providing Intelligent
Merge of XML Data Sets, XML Europe 2002, Barcelona, 2002
http://www.deltaxml.com/dxml/93/version/default/part/AttachmentData/data/merging-
xml-files.pdf

14. Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, WangChiew Tan:
Keys for XML, Computer Networks, Volume 39, Issue 5, August 2002, pp 473 -
487.

15. Md. Sumon Shahriar and Jixue Liu: Towards a Definition of Referential Integrity
Constraints for XML, International Journal of Software Engineering and Its Ap-
plications, Vol. 3, No. 1, January, 2009

