SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. ExpeR005;1:1 Prepared usingpeauth.cls [Version: 2002/09/23 v2.2]

STLIlint: Lifting static checking P
from languages to libraries &

Douglas Gregdrand Sibylle Schupp

! Computer Science Department

Indiana University

Bloomington, IN 47405 USA

gdgr egor @s. i ndi ana. edu)
Dept. of Computing Science

Chalmers University of Technology

SE-41296 Gothenburg

(schupp@s. chal mers. se)

SUMMARY

Traditional static checking centers around finding bugs in pograms by isolating cases where the language
has been used incorrectly. These language-based checkers bt understand the semantics of software
libraries, and therefore cannot be used to detect errors inhe use of libraries. In this paper, we introduce
STLIlint, a program analysis we have implemented for the G+ Standard Template Library and similar,
generic software libraries, and we present the general appach that underlies STLIint. We show that
static checking of library semantics differs greatly from checking of language semantics, requiring new
representations of program behavior and new algorithms. Mgor challenges include checking the use of
generic algorithms, loop analysis for interfaces, and orgaizing behavioral specifications for extensibility.

KEY WORDS: static checking, program verification, interface comjmia, generic programming, Standard
Template Library

1. Introduction

Static program checkers attempt to locate incorrect coatstin programs and report them to the user
before the programs are actually executed. Each statikeh@wolates problems for a different set of
program constructs, with many checkers, such as the veedirstb [1] checker for the C language,
detecting some set of common programmer errors in the udeedfihguage, such as non-portable
type casting and unused variable definitions. More advatom#s [2, 3, 4] detect errors such as NULL
pointer dereferences or out-of-bounds array accessek.d#itesdint -like static checkers operate

Contract/grant sponsor: National Science Foundation jN&mtract/grant number; 0131354

Received 21 January 2004
Copyright(© 2005 John Wiley & Sons, Ltd. Revised 9 February, 2005
Accepted 17 February, 2005

2 D. GREGOR AND S. SCHUPP SRE

template<class RandomAccesslterator>
void sort_heap(RandomAccesslterator first, RandomAcces slterator last);

template<class RandomAccesslterator, class Compare>
void sort_heap(RandomAccesslterator first, RandomAcces slterator last,
Compare comp);

1. Effects: Sorts elements in the heffprst, last)
2. Complexity: At most N log N comparisons (wherd == last - first).
3. Notes:Not stable.

Figure 1. Specification of theort _heap algorithm excerpted from the+G standard [6§25.3.6.4].

at the level of abstraction of the language, checking progragainst the semantics of the underlying
language.

Modern mainstream programming languages such as Java @5C&h [6] boast large standard
libraries of reusable algorithms and data structures tfiat functionality beyond what is intrinsic to
the language. The use of these and other software libramesents a shift from reliance entirely
on language semantics to reliance on both language andylisemantics. Since static checkers
are primarily a programmer aid, we claim that programmensgusoftware libraries would benefit
from static checkers that check the uses of the softwararlés, not just the underlying language.
Checking against software libraries is sometimes calleghtconformance checking [7] or interface
compilation [8].

Fig. 1 is an excerpt of the specification for thert _heap algorithm in the G+ standard [6],
originally part of the @+ Standard Template Library (STL) [9, 10]. This specificatilurstrates how
the problem of checking library usage is markedly diffeffemin that of checking language usage. The
effectsclause describes several preconditions and postconslifieciuding:

e The parameterfirst andlast are iterators [11] that must form \alid range Iterators
abstract the notion of iterating over a sequence of valugsh as values within a container.

Iterators form a valid ranggirst, last) when one may access the elements referenced
by first |, ++first | ++(++first) , etc., up to (but not including) the element referenced
by last

e The values in the sequence referencedfiogt, last) must be arranged as a heap. Itis

specified elsewhere in the+€ standard that the function (or function objectmp will provide
the ordering relation for the heap if it is supplied; othesavthe< operator will provide the
ordering relation.

e This algorithm will rearrange the elements referencedfiost, last) into sorted order,
based on the ordering relaticomp or the< operator.

We note that these pre- and post-conditions are very higil-s&mantic properties. The notion of a
valid range is based on the iteratmmcep{12, 13], i.e., a set of syntactic and semantic requirements
coupled with a set of abstractions that fulfill these requigats. Thus to check that the parameters

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

SR E STLLINT 3

first andlast form a valid range, we aren't checking requirements basddrguage constructs
(the G+ languagedoes not have iterators), or even based on a concrete typeeoface, but are
checking against requirements specified for an abstraattgdpé. Moreover, the “heap” precondition
and “sorted” postcondition describe particular orderingsthe values that will be referenced by
the given iterators. Overall, static checking given suchighfevel specification must cope with
abstractions far from the language itself, including ubefined data types described only by their
conceptual requirements, and must provide checking foastimguarantees written in terms of these
abstractions.

We present here the challenges of “lifting” a static chedkem the language level to the level
of abstract, generic software libraries. We focus on theslyidised @+ Standard Template Library
(STL) and its abstractions, and present our “higher-lesédtic checker STLIlint [14] that performs
checking of the use of the STL. Characteristic for our apghdsathat it is based on symbolic execution
rather than on abstract interpretation, which proved todedrmprecise for our purpose. While most
of the symbolic techniques we employ are not new themseles;ombine them in a way that they
together can address the unique challenges of library sisaly addition, we present the first attempt
at user-centric, extensible static checking for generfotnswe libraries such as thet€ STL. The
resulting tool, STLIlint, can handle STL in its entirety, wiho restrictions; empirical tests of STLIlint
include comprehensive sets of examples from two standatiddeks and showed a low false positive
rate 0f0.59%.

This article is presented as follows: Sec. 2 describes thevation behind STLIint, illustrating the
shortcomings of language-level static checking and thd fardibrary-aware static checkers. We then
describe the challenges we have faced in the constructi®@Tbfint and the methods we have used
to overcome those challenges, including our approach tokimg with abstractions in Sec. 3, the
challenges of dealing with iterators as higher-level ingurcvariables in Sec. 4, and a way to manage
extensibility in a large generic library in Sec. 5.

2. STLlint

STLlint is a static program checker that checks the usetsf lbraries, in particular the STL. Thus
instead of treating €t libraries in the same manner as the users Code, STLlint treats libraries as
extensions to the language itself, so that it may check b against the semantics of the library and
not the semantics of the implementation within the languatiewing STLIint to find errors such as:

e Use of an iterator before it has been defined to referencaia iala sequence

e Use of an iterator that has been invalidated by a previousatipe, e.g., erasing the element it
references

e vector ordeque subscript out of (logical) bounds

e Attempt to dereference a past-the-end iterator

e Attempt to apply a binary search to a sequence that has notdoeted, or has been sorted based
on a different ordering relation

A powerful language-basetint -like tool could be used to find many errors that STLIlint can
find, by analyzing the user program along with the source ¢odthe implementation of the library,
since most—but not all—errors in the use of a library resukiirors in the use of the language. For

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

4 D. GREGOR AND S. SCHUPP SRE

int transmogrify(int x);

...

vector<int> values;

/I fill values

vector<int> results;

results.reserve(values.size());

std::transform(values.begin(), values.end(),
results.begin(),
transmogrify);

Figure 2. Language-level tools cannot detect the erronatiampt to dereference a past-the-end iterator in this
example, because the language semantics are not violated.

instance, an attempt to access the value referencedlisy a iterator after that element has been
erased may result in a warning involving the use of memory ltlaa already been freed. However,
typical library-level optimizations such as memory poglmay mask such errors even from run-time
memory checkers.

Furthermore, there are errors in the use of libraries thalimo -like checker is able to detect
because they do not result in errors in the use of the langUdmeexample in Fig. 2, adapted from
Meyers’ item #30 [15], illustrates one such case. Here, eeattempting to apply theansform

operation that, for each valuein thevalues vector, writes the result dfansmogrify(x) into
the corresponding position in thesults ~ vector. However, theesults vector is empty, so the
transform operation attempts to dereference a past-the-end itgrasults.begin()) when

it writes the result, invoking behavior undefined by ther@anguage. STLIlint will diagnose this error,
butalint -like tool cannot: theeserve call prior to thetransform operation allocates a suitable
amount of memory, such that within thiansform call, the program always accesses memory that
has already been properly allocated. In essence, the pnagraot an error from the perspective of
the G-+ language but is instead an error from the (more abstracrijtperspective. By considering
only the implementation of the#3 library and not its higher-level semantid¢ist -like tools cannot
detect many errors important for the proper use of libraries

The program in Fig. 2 can be trivially modified to use data cttrtes much more complicated
than vectors, such as linked lists, double-ended queueseorbalanced binary trees. While the user
code is not complicated by these changes due to the iterbstraation provided by the STL, the
underlying implementation becomes drastically more c@xyplequiring dint -like tool to perform
more advanced (and expensive) analyses, such as shapsisifiey 17] to verify proper traversal of
a linked list. STLIint, on the other hand, treats all of theases similarly by analyzing the abstraction,
not the implementation. In essence, STLIlint applies ab8tnas for the same reason that a programmer
would: to reduce the complexity of a task by factoring outtasks. Since these abstractions are not
language abstractions, a language-level static checkdd cot do the same.

Errorsthatdint -like checker can detect will be reported where the-Ganguage semantics have
been violated, often deep within the implementation of tiié 8nd far from the user code that is in
fact incorrect. Being unable to relate the library implenagion back to its interfacdint -like tools

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

SR E STLLINT 5

cannot provide the user with diagnostics that relate to te'sierror. A similar problem occurs with
the type checkers of 3 compilers, where errors in the use of€template libraries are reported
within the library implementations instead of at the poihtise [18, 19, 20].

STLIlint is comprised of three modules: a static analysisiraga G+ language interface, and
a description of the behavior of thet+€ standard library suitable for analysis. The static analyze
verifies assertions within the program representationttemgidiagnostics when the assertions cannot
be proventrue. The€> language interface parses-€source code (using the Edison Design Group’s
C++ front end [21]), translates thetE representation into our Semple internal representatioguage
(used by the static analysis engine), and finally transkignostics produced by the static analyzer
into error messages that integrate with the+Gront end. Finally, STLIlint contains a description of
the semantics of the+#G standard library (further discussed in Sections 3 and Sjtemrin G-+ and
integrated with a derivative of the SGI Standard Templabedry implementation [22]. This semantic
description is not compiled into the STLIlint binary, but iarped by the & compiler when it is
needed.

The rigid separation of the language interface and librargantics from the static analysis engine
of STLIint ensures that the analysis can be applied to otheguages and other libraries. While
STLIint does include a semantic description of thetGtandard library, this description is in no way
special: other €+ libraries may use or extend that description, or may progidempletely different
description to be verified by the static analysis engine.

3. Static checking with abstractions

STLIint employs executable specifications, written witttie source language {&€), to provide the
analyzable abstractions used in analysis. With STLIlimtptogram code is parsed in its entirety and the
types and functions that have specifications are directiiaoed by the specifications themselves. The
entire program (with specifications) is then analyzed bystla¢ic checker, and any assertions within
the program or specifications are verified. We do not atteowetify the accuracy of implementations
with respect to the specifications they must meet [23, 24hoalgh other static checkers have
demonstrated that this capability is useful [3], becausiéization of generic algorithms [25] is beyond
the scope of STLIint.

3.1. Executable specifications

Executable specifications in STLIint are written within at&tally type-safe subset oft@. The subset
includes templates, classes, functions and methods,ife)linheritance, pointers, integers, and most
control structures, but does not include unions, type cdlstating-point arithmetic, or exceptions.
Additionally, STLIlint specifications may contain assensdi.e., conditions on program variables that
must hold true; see Fig. 3), assumptions (i.e., conditibatghould be assumed true even if they cannot
be proven), and two features that cannot be directly expdeissCr+: aforeach loop that iterates
over the entire program state space and a set of classificstitements that allow+@ objects to be
augmented with additional information at run time (of thalgmer).

Theforeach construct allows one to iterate over all objects of a giveyetwithin the (abstract)
program state as represented by the static analyzer. Thistraot allows first-order logic to be

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

6 D. GREGOR AND S. SCHUPP SRE

iterator erase(iterator pos) {

semple_assert(pos.dereferenceable(),

"attempt to erase a singular or past-the-end iterator");
semple_assert(pos.sequence_ == this,

"attempt to erase an iterator from another container");
semple_foreach(iterator i) {

if (i.sequence_ == this && i.position_ >= pos.position_)

i.version_ = 0;

}

--size_;
return iterator(pos.position_, this);

Figure 3. Specification of therase operator for an STivector

employed by STLIint specifications, which is required whéiject sharing is involved. For instance,
many iterators may share the same container object andtmperthat modify that container need also
modify the associated iterators. Fig. 3 illustrates thecdigation of theerase operation of an STL
vector , which employs thdoreach construct to invalidate all iterators that reference tresed
element or any element following it [§23.2.4.3].

The classification constructs of STLIint allow specificasdo attach additional analysis-only data
to any object representation. The feature allows, for msathe specification of a sequence-sorting
routine (such asort _heap, from Fig. 1) to attach a tag to the sequence indicating tlfasequence
has been sorted, which may later be queried by other speitifisge.g., a binary search) or removed
(e.g., by a sequence randomization algorithm). Any numbedassifications may be applied to a
particular object, and classifications are themselvesctdbjppat may have state. Classifications may
be queried (via an “is-a” check), accessed as an objectlfeidas-a” operation), and eliminated (via
the “declassify” operation). The usefulness of classiiicet, and especially their use as a specification
extension mechanism, will be covered in Sec. 5.

3.2. Preserving library/user code separation

Specifications provide the means to hide implementatioaildétom the static checker, to reduce the
complexity of the analysis, but we must also perform thelisg@peration by hiding the specification
details from the end user. For instance, if we are performstatic checking at the abstraction level
of iterators and containers, we should produce diagnosiaisrefer to iterators and containers, not
the pointers or classes that are used to implement thenur&ad phrase error messages in terms of
the abstractions the user has applied eliminates the prierat-user benefits of a higher-level static
analyzer.

Producing diagnostics at the same level of abstraction esptbgram code requires domain-
specific knowledge of the abstractions. This knowledge madilt into the static checker (as are
the semantics of a programming language lim& -like checker) or included with the specifications
themselves. STLIint employs the latter technique, whdrasslertions (checks) within the specification

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

SR E STLLINT 7

"tryit.cpp". lines 17-19, warning: may contain more values than can be output via the output iterator.

std::transform(‘.
results.begin(),
transmogrify);

in call to function transform at "tryit.cpp". lines 17-19

Implementation-specific symptoms:

e warning at "/usr/local/schupp/EDG/libcomo/stl_algo.h", line 525
e wamning at "fusr/local/schupp/EDG/libcomo/stl algo.h". line 524

template <class Inputlterator, class QutputTterator, class UnaryFunction>
OutputIterator transform(InputIterator first, InputIterator last,
OutputIterator result, UnaryFunction op);

template <class InputIteratorl, class InputIterator?, class OutputIterator “
class BinaryFunction>
OutputIterator transform(InputIteratorl firstl, InputIteratorl lastl,
InputIterator2 first2, OutputIterator result,
BinaryFunction binary_op):

Description

Transform performs an operation on objects; there are two versions of transform, one of which uses a single range of Input Iterators and one
of which uses two ranges of Input Iterators.

The first version of transform performs the operation op(*1i) for each iterator i in the range [first, last),and assigns the result of that
operation to *o, where o is the corresponding output iterator. That is, for each n such that 0 <= n < last - first, it performs the assignment
(result + n) = op((first + n)).Thereturn value is result + (last - first).

The second version of transform is very similar, except that it uses a Binary Function instead of a Unary Function: it performs the operation $
.

A ki1 2398 Fae annh haenbas £ in tho sanea FEiwatd Tank1i and nocieno tha ceonlb fn fa ahoes 9 0 tha aneeanean dinn aeatboe e tha

Figure 4. HTML output produced by STLIint when it is invoked the program given in Fig. 2.

are accompanied by a diagnostic to be emitted should thetiasstail to prove true. Error messages
are typically placed on entry to the library and refer to thatext of the caller, using simple mark up
commands to highlight function call arguments of intereshe user.

Additionally, function specifications provide hypertekiKks to external documentation that may
be presented to the user along with the diagnostic messagéfidng the source of the error. This
way, STLIint provides both domain-specific information kg tpoint where the user error occurred
along with documentation to help the user understand theusties of the function under question.
Fig. 4 illustrates the HTML output produced by STLIint forettexample in Fig. 2, including
argument highlighting and documentation for thensform function (derived from the SGI STL
documentation [22]). In addition, STLIlint groups diagnoesttriggered from within an executable
specification under any diagnostics generated from thefgion’s preconditions (under the heading
“Implementation-specific symptoms” in Fig. 4). The effextd present the user first with a diagnostic
relating only to the potentially-incorrect user code (at @hgorithm'’s level of abstraction), but to also
provide links to other diagnostics that allow the user t@psinto” the specification/implementation
of the algorithm to see how mistakes at the call site affeetuthderlying algorithm. Finally, STLIint
generates hyperlinks from source-code references tastiliersions of the source code that highlight
lines in the source code for which STLIint has emitted diagits, allowing the user to quickly
determine the context of a diagnostic. Fig. 5 illustratés hiighlighting behavior on a sample program
including Fig. 2.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

8 D. GREGOR AND S. SCHUPP SRE

00014: std: :vector<int> results;

00015: results.reserve(argc);

00016: std::transform(values.begin(), values.end(),
00017: results.begin(),

00018: transmogrify);

00019:

00020: for (int i = 0; i < argc; ++i) {

00021: std::cout << results[i] << ' ';

00022: }

Figure 5. STLIint highlights the lines referenced by itsgtiastics (hyperlinked from the diagnostic messages
themselves) within the source file, permitting the user tothe errors in context.

4. Higher-level iteration constructs

Perhaps the greatest challenge in lifting STLIint to ligreevel analysis has revolved around loop
analysis, which must now cope with iterators. Unlike iteratin other languages and libraries,
such as the Java Collections Framework [26], many STL iesatan be used to reference a single
sequence concurrently, making modifications and movinguthin the sequence in arbitrary ways,
resulting in complex iteration patterns. STLIint therefaequires sophisticated loop analysis and
particularly induction variable recognition with “hightavel” induction variables. Induction variables
are traditionally integer variables that increase by somestant value each loop iteration, but have
been extended to more complex induction expressions, pleikissignments, wraparound variables,
etc. These forms of induction variables are adequate forléoel internal representations and even
some constructs in high-level languages, for instancegusteger variables to step through arrays.

Induction variables may also take on other forms, such ast@a with pointer arithmetic or
traversal of a linked-list data structure. In the formerega$ suffices to represent pointers by a
pair (address, position), whereaddress is the address of the beginning of an array andition
represents the offset of the pointer into the array, in whitte traditional loop analysis techniques can
be applied to theosition provided thexddress remains constant throughout the loop. The latter case,
however, does not permit such a simple solution, and thatsitu worsens with more complex data
structures.

The iterator abstraction provides the ability to iterateroadl elements within a particular container
regardless of the underlying data structure, maintainiogrsistent interface and semantics regardless
of the implementation details. Iterators are typicallylizéd in program loops, requiring the static
checker to adequately support iterators within loop ansipsorder to properly verify their use. Since
we cannot hope to check the implementation of iterators éonmex data structures, we introduce
specifications for the iterator that are simpler and are aflento loop analysis. With STLIint, we
have chosen to specify iterators by a gaitquence, position), wheresequence is the address of the
data structure the iterator references anslition is a 0-based offset representing the location of the
iterator in the sequence, as is done with pointer arithmatitheory, this representation of iterators

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

SR E STLLINT 9

01 vector<Student> extract_fails(vector<Student>& stud ents)
02 {

03 vector<Student> fail;

04 vector<Student>:iterator iter = students.begin();
05

06 while (iter != students.end()) {

07 if (fgrade(*iter)) {

08 fail.push_back(*iter);

09 iter = students.erase(iter);

10 } else

11 ++iter;

12

13 return fail;

14 }

Figure 6. A typical iterator loop wherein induction variablare modified within subroutine calls{ anderase),
the loop termination condition is hidden within a subroataall (=), and the two induction variableter and
students.end() are monotonic.

allows us to reuse traditional loop analysis techniquesstmgnize iterators as induction variables
based on the induction behavior of the iteratpesition.

However, loop analysis on iterator specifications is muchrenocomplex than analysis on
integer variables, or even on pointers with pointer aritieneThe analysis must cope with
multiple assignments to induction variables, monotoniduction variables, induction variables
accessed/modified via (multi-level) pointers, and we mugtiément an interprocedural loop analysis
because the iterator operations that dominate loop asalysch as the operations that advance or
compare iterators, are function calls.

4.1. Anexample

The deceptively simple loop in the subroutidract _fails in Fig. 6, taken from an introductory
C++ text [27], illustrates the challenges for the loop analysis

¢ Within the loop, the primary induction variable is the itenaiter , which steps through the
students vector in two ways: via the+ prefix operator, which increments thesition of
the iterator by one step, and via these operation, that in effect leaves thesition of iter
constant but shifts all elements aftear in the vector back one step, reducing its size. From
the two “increment” operations we see titet is a monotonic induction variable, because its
position moves either zero or one steps forward in each iteration.

e The prefix operatot+ is a function call that operates dater via a pointer ancerase is
a function call that returns a new value fiber that is later copied intiter via a copy
constructor, which again operatesiter via a pointer. We therefore have multiple assignments
to the induction variabléer that always occur through one level of pointer indirectiathia

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

10 D. GREGOR AND S. SCHUPP SRE

subroutines, requiring both pointer analysis and the tgbit perform interprocedural loop

analysis.
e The infix!= operator is again implemented via a function call operatin@ pointer tdter
and a pointer to the (temporary) result of the call expresstadents.end() . Thus any

algorithm attempting to use the loop termination conditix., to calculate a loop trip count or
to perform narrowing operations [28, 29] must be interpdaral and able to cope with pointers
and temporary variables.

e Although the expressiostudents.end() appears to be loop-invariant, it is not. The “end”
iterator of a container is called a “past-the-end” iterab@cause it points one element beyond
the last element in the container. In oequence, position) representation of iterators, this
corresponds to the case whearesition is equivalent to the size of theequence. However,
the erase operation on thestudents vector eliminates one element and decreases the

size of the sequence. Whatudents.end() is executed next, its position will therefore
be one less than the prior position érase has been executed, or equivalent to the
prior position if erase has not been executed, making the resulstofdents.end() a

monotonically nonincreasing induction variable. This iageomplicates computations based
on the loop termination condition, as we now have a mono#dlyieiondecreasing induction

variable compared via inequalityH) against a monotonically nonincreasing induction vagabl

requiring us to determine if the two induction variables reagr become equivalent (terminating
the loop) or if they may pass each other because both move isetine iteration.

e Finally, STLIlint performs many correctness checks wittiis toop that are not evident from the
loop itself. Of particular interest are the checks perfadrbg the specification of the prefix
operator, which returns the element that the iterator esfegs. This operator requires that its
iterator argument be “dereferenceable”, i.e., the follgytiwo conditions must hold:

1. The iterator is not singularA singular iterator is one that has not been initialized to
reference a sequence, references a sequence that no lgisera has been invalidated
by a sequence operation sucheagse .

2. The iterator is not past-the-end\ past-the-end iterator is one that is not singular and
points one element beyond the last element in the sequeasethe-end iterators may
come from theend member function of a container, but may also be reached by
incrementing an iterator referencing the last elementénctimtainer.

Within our representation, a dereferenceable iteratomis that has a validequence and a
nonnegativeposition that is strictly less than the size of that sequence. Thiertiss occurs
within the dereference operatdr, operating on a pointer to an iterator. Since an iterator's
sequence is itself a pointer, accessing the size of the sequence frihinsthe dereference
operator requires a multi-level pointer access that, irett@mple from Fig. 6, brings us back to
the monotonically nonincreasing size of tedents vector.

STLlint employs a variety of techniques to analyze iterdtmsps within a unifiedsymbolic
execution30] framework. In the following subsections, we focus oe #nalysis of integer values,
especially as it pertains to the positions of iterators dreldizes of containers, and delve into the
enhancements we have made to traditional loop analysisitpels to facilitate higher-level loop
analysis with iterators. In preparation, we briefly summeaithe core idea of symbolic execution and
contrast it with abstract interpretation.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

SR E STLLINT 11

4.2. Symbolic execution

Symbolic execution [30] refers to the process of executipgogram given symbolic input in lieu of
actual, concrete input. At conditional branches, wherediht inputs may in fact cause the program to
follow different execution paths, the abstract progrartestasplit (“forked”) into two identical copies,
one of which assumes that the condition is true and the ofsemaes that the logical negation of the
condition is true. The two program states are modified inddpetly until the paths rejoin, and the
program states are merged into a single, conservative sippation of both incoming states.

Symbolic execution is similar to abstract interpretati@®][which also employs a symbolic
representation of the values of program variables to perfdatic analysis. Symbolic execution differs
from abstract interpretation in its handling of programdeoWhile both methodologies perform fixed-
point iteration and apply widening/narrowing operatio@8,[29] to ensure convergence, symbolic
execution employs a different analysis method for progmamps that is not dependent on fixed-point
iteration.

To better illustrate symbolic execution, we describe thalysis of a single iteration of the loop in
Fig. 6; details of the iterator angkector specifications involved in the analysis are provided in the
appendix. The initialization ater at line 10 sets its position to zero and its sequence to theeasid
of students . At the while loop, the iterator'sperator!= is invoked, and the analysis maps the
actual parameters to the formal parameters of the routideeaacutes the routine body: assuming
thatstudents is non-empty, the analysis enters the body of the loop. Atctileto fgrade |, the
analysis first steps into the iteratooperator* , which verifies that the iterator is dereferenceable
(see specification in Appendix A), and passes the resuljrexde (not shown); it is unlikely that
we can statically determine the outcomefgifade , so instead we fork the program state into two
copies: one assuming thigrade returns true and one assuming tfgrtade returns false. We then
continue the symbolic execution of each branch (sepaddtetietermine that: (1) in thieue case, the
students vector decreases in size by one,thiés vector increases in size by one, and the iterator
iter ’s position remains constant; (2) in tifi@se case, the iteratater ’s position increases by
one. The two program states are then merged together in aen#mat conservatively retains the
properties of both states, and the symbolic execution coas with a single abstract program state.

Interprocedural symbolic execution is similar to the cating approach to interprocedural data
flow analysis [31] in that it explicitly preserves the callntext for every subroutine invocation.
For programs involving recursive subroutines, the lendtthe call string is unbounded, requiring
particular care to ensure termination. We therefore treatinsive calls (i.e., those calls to routines
already present in the call string) asdening edge$28, 29] in the (interprocedural) control-flow
graph by applying a widening operation, which is a cons@rgdbrm of the merge operation, to the
program state. STLIint then iterates over the body of a @earfunction until the result has stabilized,
as is guaranteed by the use of the widening operatos[@3,4].

In an abstract interpretation, the analysis of programdaepuld proceed similarly to our recursive
analysis. However, within symbolic execution we insteaglympduction variable recognition, which
will be described in Sec. 4.4.1. First, we describe the mabyehich the abstract program states are
represented, manipulated, and merged.

Throughout the presentation we assume the existence otextesensitive, flow-sensitive points-to
analysis allowing us to map expressions with pointers tatioas in the abstract program state. STLIlint
employs a simple constant-propagation lattice to desdhiberalues of pointers during the symbolic

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

12 D. GREGOR AND S. SCHUPP SRE

execution, which is sufficient so long as the sequences iassdavith an iterator do not differ based
on a prior conditional. Our experience has shown that thisgon rarely occurs in practice.

4.3. Symbolic integer value analysis

STLIint’s static analysis represents the values of integeiables and fields via expressions involving
integer literals and symbolic variables. The use of syntbediriables enables STLIint to effectively

cope with containers of unknown size and track the relatogtiwns of iterators within a container,

which is essential for modeling the invalidation behavibsome STL containers. For instance, the
vectorerase operation (see Fig. 3) invalidates all iterators whosetsis greater than or equal

to the position of the element being erased, requiring (®fitocomparisons to determine the set of
iterators invalidated by the operation.

Each symbolic variable: falls within a particular value range [33] written € [a : b], such
thata < z < b. The expressions andb may again be symbolic, allowing STLIlint to represent
complex relations amongst integer values. For instaneeptsition of a particular iterator may be
x € [0 : N — 1] whereas the size of the sequence the iterator referencebemslymeaning that the
iterator is dereferenceable. Incrementing said iterasults in the position + (z € [0 : N — 1]),
resulting in an iterator that is either dereferenceableast-the-end, but is clearly safe to decrement.

STLIlint implements the symbolic comparison algorithm digered by Blume & Eigenmann [34].
This algorithm operates by replacing symbolic variablethwieir value ranges in a logical order,
and then simplifying the resulting expression until it isTqmarable to zero. For instance, comparing
the expressionl + (z € [0 : N — 1]) to N would perform symbolic variable replacements on
the differencel + (z € [0 : N — 1]) — N. Substitution ofz for its value range results in
140: N—1—-N=[1: N]—-N = [1- N : 0], which must be zero or negative, allowing
STLlintto conclude that + (z € [0: N —1]) < N.

4.4. Induction variable recognition

The symbolic representation of integer values within SitLik crucial to the application of induction
variable recognition. As demonstrated in Fig. 6, we reqrémmgnition of induction variables that are
accessed via multi-level pointers and may be assigned ptautimes within a single loop iteration.
In fact our induction variables are not generally varialdésall, but are fields of objects that are
modified through pointers in subroutine calls. We therefefer toinduction locationsi.e., abstract
memory locations that represent memory locations that imédjral values. Each field of a particular
object is associated with a unique abstract memory locasiothat by performing induction variable
recognition on the abstract locations we can effectivetiude the inductive behavior of these locations
even when they are accessed via multi-level pointer exjoress

4.4.1. Symbolic differencing

The use of induction locations in lieu of induction variablrastically reduces the potential set of
existing induction variable recognition algorithms tha may employ. Induction variable recognition
algorithms that detect patterns in the definitions of integariables [35, 36], most notably those
that are based on Static Single Assignment (SSA) form [37, 8& unusable in this context

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

SR E STLLINT 13

template<typename Inputlterator, typename Predicate>
Inputlterator
find_if(Inputlterator first, Inputlterator last, Predic ate pred)

while (first != last && !pred(*first)) { ++first; }
return first;

}

Figure 7. Implementation of the genefind _if algorithm, which searches for the first element in a sequence
that satisfies the given predicate.

because they operate on integer variables only and canpetwith integer locations accessed via
pointers. Symbolic differencing [39], on the other handn cacognize the inductive behavior of
integer locations, and is therefore the method of choiceTihlit. Symbolic differencing applies
Newton'’s forward formula for interpolation to recognizengealized induction expressions of the form
x(n) = p(n) + ar™ for a polynomiaky (with loop-invariant coefficients) and loop-invarianandr,
where the maximal degree of the polynomtaljs a parameter to the symbolic differencing analysis.
Symbolic differencing requires only that the analysis sgiidally execute the loop body in its most
general form (i.e., by replacing the value at each integeation with a fresh symbolic constant),
iteratingn + 2 times and recording the values of each integer locatiom a#teh iteration. Thus given
a suitable points-to analysis that can associate arbifyaiyter expressions with integer locations,
STLIint can derive induction expressions for integer lomad regardless of how—or where—integer
locations are accessed. In an iterator loop such as thaydf,Ehe locatiorfirst.position will
originally be assigned a fresh symbolic variaplend will assume the values-1, p+2, ...,p+n+2at
the end of thex+2 loops. Applying symbolic differencing to this sequeripep+1, p+2, ..., p+n+2),

we derive the induction expressipp+- i for the integer locatiofirst.position , wherepg is the
initial value offirst.position and: is the iteration number.

4.4.2. Trip count calculation

The generality of symbolic differencing also enables Sitio accurately determine trip counts, i.e.,
the number of times the loop body will execute, even when wecteasily relate the loop termination
condition to the values of induction variables before oela#t particular loop iteration. In Fig. 7, the
two parts of the loop termination conditicfirst != last and!pred(*first) , both involve
subroutine calls that may have side effects and are seddrate conditional branch due to the short-
circuit evaluation of the&& operator. Fig. 9 makes these branches and function calle mxqlicit
by “lowering” the find _if implementation, illustrating that we cannot simply use tladues of
the integer locations compared \fiest != last to determine the trip count, leaving the static
analyzer with two options: either prove that the integeatams involved in the expressidinst !=

last are unchanged by the subsequent cajprted , or attempt to compute the inductive behavior
of first 1= last without relying on the induction expressions computed fi@rtequisite integer
locations. STLIint utilizes the latter option, by compugithe set of integer expressions involved in the

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

14 D. GREGOR AND S. SCHUPP SRE

for (inti=0;i<n;++)

intj =20, k =0;

for (int i = O; i < n; ++i)
if (is _prime(i))
+H;
else
++k;
¥
(a) Monotonic induction variables (b) Control flow graph

Figure 8. A simple loop containing a basic induction varalind two monotonic induction variablesandk.

loop termination condition. The values of these expressare recorded at each loop iteration (as we
have done for integer locations), and symbolic differeg@omputes induction expressions for these
expressions that will be used in trip count calculationse Técthnique used to isolate the set of integer
expressions when they occur within subroutines will be deed in Sec. 4.5.1. As a peculiar side
benefit, calculating induction expressions for expressiarthe loop termination condition allows us
to determine trip counts even in certain cases where thgenlecations involved in the termination
condition are not themselves inductive [39].

4.4.3. Monotonic induction variables

STLIlint implements monotonic induction variables withimetcontext of symbolic differencing by
careful introduction of additional symbolic variables ithgrthe control-flow merge operation. Control-
flow merges occur in flow-sensitive but path-insensitivelysis algorithms, where on two separate
paths the same variable or location possesses two diffesdnes; when these two paths rejoin,
perhaps at the end of ah —then —else construct, the analysis must produce a new value for
that variable or location that approximates the values ah paths. With traditional value range
propagation [33], this merge operation computes the riegultalue rangda : b] wherea is the
minimum of all incoming values andl is the maximum of all incoming values. For instance, if a
variablem is assigned the valuein one path, and the value+ 1 in another path, then the resulting
integer value of that variable after control-flow merge of tivo paths will produce the value range
[min(z,z + 1) : max(x,z + 1)] = [z : z + 1].

The introduction of value ranges at merge points hamperagbpécation of symbolic differencing
for that location, because symbolic differencing is foratatl based on symbols alone, not value

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

SR E STLLINT 15

ranges. The loop in Fig. 8 contains a monotonic variapleyhose maximum value is bounded by
n. Using the traditional value range merge operatjonpuld take on the valueg,, [j. : j= + 1], [z :

Jz + 2], [Jz ¢ d= + 3], [J= ¢ J= + 4] through successive iterations, whereis an arbitrary symbolic
variable used for induction variable recognition. Symbalifferencing cannot derive the inductive
behavior ofj from this sequence of values.

We note that in Fig. 8, the value gfis increased by either (wheni is prime) or0, wheni is
not prime. Thus instead of introducing a new value rangeiwitiie control-flow merge operation, we
produce an equivalent symbolic value by capturing the tiarian a fresh symbolic constant € [0 :

1], and declare the result of the value range merge operatiba 9 + «. In the example of Fig. 8,
« describes the possible changes to the variglidased on the value @ _prime(i) in a given
iteration. The use of in successive iterations therefore refers to the seweat but not to a particular
constant value (only the range is constant). By reusimghen merging values gfat the control-flow
join within this loop, we determine thatwill take on the valueg, ., j. + «, j. + 2, j + 3o, ji + 4.
Symbolic differencing can then be applied to this sequeapedduce an induction expressigyH-ia
for the variablej, wherei is the iteration number and € [0 : 1] is loop-invariant. Thus we can
determine that on thgt" iteration of the loop, the value gfwill be its initial value j, plusak, i.e.,
some value irff0 : k]. This result is more precise than could be determined vigadisnterpretation
with widening and narrowing [29], which would determine yptihat the value ofi > j, because
widening does not apply whehis not used in the loop termination condition.

Our formulation of monotonic variables is sufficient for sgnbut not all instances of monotonic
variables we have encountered in the use of STLIint. In palgr, the iterator-erasure example in Fig. 6
requires that the two monotonic variableger.position andstudents.size —berelated so
that the invarianiter.position < students.size can be verified. STLIint further enhances
the control-flow merge operation to retain such a relationekploiting knowledge of important
relationships amongst fields in different objects; thioallm is the subject of another paper [40].

4.5. Interprocedural loop analysis

STLlintaddresses the need for interprocedural loop arslyseveral ways. The most important aspect
of this support, that of representing the values at integations via symbolic expressions (Sec. 4.3)
and applying symbolic differencing to these locations (S&d.1), has already been discussed.
Our approach to loop analysis with symbolic execution redlyiisupports interprocedural induction
location recognition. However, induction location recitigm itself does not suffice for loop analysis:
we require precise interprocedural trip count calculatibscussed in Sec. 4.5.1, and also benefit from
techniques that simplify the loop termination conditiopdiscussed in Sec. 4.5.2.

4.5.1. Interprocedural trip count calculation

The trip count calculation described in Sec. 4.4.2 requiheg one calculate the set of integer
expressions that are involved in the termination conditita first describe the representation of this
set, and then present the construction and evaluation ofetésmination condition using the members
of this set.

Integer expressions involved in the loop termination ctadimust be uniquely located within
the abstract syntax tree and associated with a particuln af subroutine invocations. Thus if the

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;1:1-1
Prepared usingpeauth.cls

16 D. GREGOR AND S. SCHUPP SRE

iterator find_if(iterator first, iterator last, Predicat e pred)
{

bool bl = not_equal(&first, &last);

bool b2;

if (b1) {

T* ref = deref_iterator(&first);
bool b3 = pred(ref);
b2 = 1b3;

}
if (b1 && b2) {
do {
iterator_increment(&first);
bool b4 = not_equal(&first, &last);
bool b5;
if (b4) {
T* ref = deref_iterator(&first);
bool b6 = pred(ref);
b5 = Ib6;

}
} while (b4 && bS);
}

return first;

}

bool not_equal(iterator* x, iterator* y)
semple_assert(x->sequence && Xx->position <= x->sequence ->position);
semple_assert(y->sequence && y->position <= y->sequence ->position);

semple_assert(x->sequence == y->sequence);
return x->position != y->position;

}

Figure 9. Partial expansion of tfaend _if function from Fig. 7, illustrating the static analyzer'ssvi of the
“simple” iterator loop.

expressionz 4 1 in a function f is evaluated twice within the loop body becayse invoked from
two different call sites in the loop, the two evaluationsesasidered distinct from the point of view of
the set of integer expressions. STLIint represents thésgen expressions &8ontext, expression)
pairs, where theontext refers to the node within the invocation graph [41] at whivh éxpression is
evaluated andxpression refers to the node in the abstract syntax tree that repreemexpression.
The use of an invocation graph allows STLIint to efficiengpresent and compare chains of subroutine
invocations.

Fig. 9 contains a partially-expanded implementation ofitheé _if algorithm originally presented
in Fig. 7, such that function calls and control flow have be@aexmore explicit. The loop termination
condition present in thelo—while loop references two boolean variables, from which we cannot
directly derive a trip count. Instead, we must trace thesaldam variables back to their definitions

Copyright(© 20