
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2005;1:1 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

STLlint: Lifting static checking
from languages to libraries

Douglas Gregor1 and Sibylle Schupp2

1 Computer Science Department
Indiana University
Bloomington, IN 47405 USA
〈dgregor@cs.indiana.edu〉
2 Dept. of Computing Science
Chalmers University of Technology
SE-41296 Gothenburg
〈schupp@cs.chalmers.se〉

SUMMARY

Traditional static checking centers around finding bugs in programs by isolating cases where the language
has been used incorrectly. These language-based checkers do not understand the semantics of software
libraries, and therefore cannot be used to detect errors in the use of libraries. In this paper, we introduce
STLlint, a program analysis we have implemented for the C++ Standard Template Library and similar,
generic software libraries, and we present the general approach that underlies STLlint. We show that
static checking of library semantics differs greatly from checking of language semantics, requiring new
representations of program behavior and new algorithms. Major challenges include checking the use of
generic algorithms, loop analysis for interfaces, and organizing behavioral specifications for extensibility.

KEY WORDS: static checking, program verification, interface compilation, generic programming, Standard
Template Library

1. Introduction

Static program checkers attempt to locate incorrect constructs in programs and report them to the user
before the programs are actually executed. Each static checker isolates problems for a different set of
program constructs, with many checkers, such as the venerable lint [1] checker for the C language,
detecting some set of common programmer errors in the use of the language, such as non-portable
type casting and unused variable definitions. More advancedtools [2, 3, 4] detect errors such as NULL
pointer dereferences or out-of-bounds array accesses. Each of theselint -like static checkers operate

Contract/grant sponsor: National Science Foundation (NSF); contract/grant number: 0131354

Received 21 January 2004
Copyright c© 2005 John Wiley & Sons, Ltd. Revised 9 February, 2005

Accepted 17 February, 2005

2 D. GREGOR AND S. SCHUPP

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAcces sIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAcces sIterator last,

Compare comp);

1. Effects: Sorts elements in the heap[first, last) .
2. Complexity: At mostN log N comparisons (whereN == last - first).
3. Notes:Not stable.

Figure 1. Specification of thesort heap algorithm excerpted from the C++ standard [6,§25.3.6.4].

at the level of abstraction of the language, checking programs against the semantics of the underlying
language.

Modern mainstream programming languages such as Java [5] and C++ [6] boast large standard
libraries of reusable algorithms and data structures that offer functionality beyond what is intrinsic to
the language. The use of these and other software libraries represents a shift from reliance entirely
on language semantics to reliance on both language and library semantics. Since static checkers
are primarily a programmer aid, we claim that programmers using software libraries would benefit
from static checkers that check the uses of the software libraries, not just the underlying language.
Checking against software libraries is sometimes called client-conformance checking [7] or interface
compilation [8].

Fig. 1 is an excerpt of the specification for thesort heap algorithm in the C++ standard [6],
originally part of the C++ Standard Template Library (STL) [9, 10]. This specificationillustrates how
the problem of checking library usage is markedly differentfrom that of checking language usage. The
effectsclause describes several preconditions and postconditions, including:

• The parametersfirst and last are iterators [11] that must form avalid range. Iterators
abstract the notion of iterating over a sequence of values, such as values within a container.
Iterators form a valid range[first, last) when one may access the elements referenced
by first , ++first , ++(++first) , etc., up to (but not including) the element referenced
by last .

• The values in the sequence referenced by[first, last) must be arranged as a heap. It is
specified elsewhere in the C++ standard that the function (or function object)comp will provide
the ordering relation for the heap if it is supplied; otherwise the< operator will provide the
ordering relation.

• This algorithm will rearrange the elements referenced by[first, last) into sorted order,
based on the ordering relationcomp or the< operator.

We note that these pre- and post-conditions are very high-level semantic properties. The notion of a
valid range is based on the iteratorconcept[12, 13], i.e., a set of syntactic and semantic requirements
coupled with a set of abstractions that fulfill these requirements. Thus to check that the parameters

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 3

first andlast form a valid range, we aren’t checking requirements based onlanguage constructs
(the C++ languagedoes not have iterators), or even based on a concrete type or interface, but are
checking against requirements specified for an abstract data type. Moreover, the “heap” precondition
and “sorted” postcondition describe particular orderingson the values that will be referenced by
the given iterators. Overall, static checking given such a high-level specification must cope with
abstractions far from the language itself, including user-defined data types described only by their
conceptual requirements, and must provide checking for semantic guarantees written in terms of these
abstractions.

We present here the challenges of “lifting” a static checkerfrom the language level to the level
of abstract, generic software libraries. We focus on the widely-used C++ Standard Template Library
(STL) and its abstractions, and present our “higher-level”static checker STLlint [14] that performs
checking of the use of the STL. Characteristic for our approach is that it is based on symbolic execution
rather than on abstract interpretation, which proved to be too imprecise for our purpose. While most
of the symbolic techniques we employ are not new themselves,we combine them in a way that they
together can address the unique challenges of library analysis. In addition, we present the first attempt
at user-centric, extensible static checking for generic software libraries such as the C++ STL. The
resulting tool, STLlint, can handle STL in its entirety, with no restrictions; empirical tests of STLlint
include comprehensive sets of examples from two standard textbooks and showed a low false positive
rate of0.59%.

This article is presented as follows: Sec. 2 describes the motivation behind STLlint, illustrating the
shortcomings of language-level static checking and the need for library-aware static checkers. We then
describe the challenges we have faced in the construction ofSTLlint and the methods we have used
to overcome those challenges, including our approach to checking with abstractions in Sec. 3, the
challenges of dealing with iterators as higher-level induction variables in Sec. 4, and a way to manage
extensibility in a large generic library in Sec. 5.

2. STLlint

STLlint is a static program checker that checks the use of C++ libraries, in particular the STL. Thus
instead of treating C++ libraries in the same manner as the user’s C++ code, STLlint treats libraries as
extensions to the language itself, so that it may check user code against the semantics of the library and
not the semantics of the implementation within the language, allowing STLlint to find errors such as:

• Use of an iterator before it has been defined to reference a value in a sequence
• Use of an iterator that has been invalidated by a previous operation, e.g., erasing the element it

references
• vector or deque subscript out of (logical) bounds
• Attempt to dereference a past-the-end iterator
• Attempt to apply a binary search to a sequence that has not been sorted, or has been sorted based

on a different ordering relation

A powerful language-based,lint -like tool could be used to find many errors that STLlint can
find, by analyzing the user program along with the source codefor the implementation of the library,
since most—but not all—errors in the use of a library result in errors in the use of the language. For

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

4 D. GREGOR AND S. SCHUPP

int transmogrify(int x);
// ...
vector<int> values;
// fill values
vector<int> results;
results.reserve(values.size());
std::transform(values.begin(), values.end(),

results.begin(),
transmogrify);

Figure 2. Language-level tools cannot detect the erroneousattempt to dereference a past-the-end iterator in this
example, because the language semantics are not violated.

instance, an attempt to access the value referenced by alist iterator after that element has been
erased may result in a warning involving the use of memory that has already been freed. However,
typical library-level optimizations such as memory pooling may mask such errors even from run-time
memory checkers.

Furthermore, there are errors in the use of libraries that nolint -like checker is able to detect
because they do not result in errors in the use of the language. The example in Fig. 2, adapted from
Meyers’ item #30 [15], illustrates one such case. Here, we are attempting to apply thetransform
operation that, for each valuex in thevalues vector, writes the result oftransmogrify(x) into
the corresponding position in theresults vector. However, theresults vector is empty, so the
transform operation attempts to dereference a past-the-end iterator(results.begin()) when
it writes the result, invoking behavior undefined by the C++ language. STLlint will diagnose this error,
but alint -like tool cannot: thereserve call prior to thetransform operation allocates a suitable
amount of memory, such that within thetransform call, the program always accesses memory that
has already been properly allocated. In essence, the program is not an error from the perspective of
the C++ language but is instead an error from the (more abstract) library perspective. By considering
only the implementation of the C++ library and not its higher-level semantics,lint -like tools cannot
detect many errors important for the proper use of libraries.

The program in Fig. 2 can be trivially modified to use data structures much more complicated
than vectors, such as linked lists, double-ended queues, oreven balanced binary trees. While the user
code is not complicated by these changes due to the iterator abstraction provided by the STL, the
underlying implementation becomes drastically more complex, requiring alint -like tool to perform
more advanced (and expensive) analyses, such as shape analysis [16, 17] to verify proper traversal of
a linked list. STLlint, on the other hand, treats all of thesecases similarly by analyzing the abstraction,
not the implementation. In essence, STLlint applies abstractions for the same reason that a programmer
would: to reduce the complexity of a task by factoring out subtasks. Since these abstractions are not
language abstractions, a language-level static checker could not do the same.

Errors that alint -like checker can detect will be reported where the C++ language semantics have
been violated, often deep within the implementation of the STL and far from the user code that is in
fact incorrect. Being unable to relate the library implementation back to its interface,lint -like tools

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 5

cannot provide the user with diagnostics that relate to the user’s error. A similar problem occurs with
the type checkers of C++ compilers, where errors in the use of C++ template libraries are reported
within the library implementations instead of at the point of use [18, 19, 20].

STLlint is comprised of three modules: a static analysis engine, a C++ language interface, and
a description of the behavior of the C++ standard library suitable for analysis. The static analyzer
verifies assertions within the program representation, emitting diagnostics when the assertions cannot
be proven true. The C++ language interface parses C++ source code (using the Edison Design Group’s
C++ front end [21]), translates the C++ representation into our Semple internal representation language
(used by the static analysis engine), and finally translatesdiagnostics produced by the static analyzer
into error messages that integrate with the C++ front end. Finally, STLlint contains a description of
the semantics of the C++ standard library (further discussed in Sections 3 and 5), written in C++ and
integrated with a derivative of the SGI Standard Template Library implementation [22]. This semantic
description is not compiled into the STLlint binary, but is parsed by the C++ compiler when it is
needed.

The rigid separation of the language interface and library semantics from the static analysis engine
of STLlint ensures that the analysis can be applied to other languages and other libraries. While
STLlint does include a semantic description of the C++ standard library, this description is in no way
special: other C++ libraries may use or extend that description, or may providea completely different
description to be verified by the static analysis engine.

3. Static checking with abstractions

STLlint employs executable specifications, written withinthe source language (C++), to provide the
analyzable abstractions used in analysis. With STLlint, the program code is parsed in its entirety and the
types and functions that have specifications are directly replaced by the specifications themselves. The
entire program (with specifications) is then analyzed by thestatic checker, and any assertions within
the program or specifications are verified. We do not attempt to verify the accuracy of implementations
with respect to the specifications they must meet [23, 24], although other static checkers have
demonstrated that this capability is useful [3], because verification of generic algorithms [25] is beyond
the scope of STLlint.

3.1. Executable specifications

Executable specifications in STLlint are written within a statically type-safe subset of C++. The subset
includes templates, classes, functions and methods, (multiple) inheritance, pointers, integers, and most
control structures, but does not include unions, type casts, floating-point arithmetic, or exceptions.
Additionally, STLlint specifications may contain assertions (i.e., conditions on program variables that
must hold true; see Fig. 3), assumptions (i.e., conditions that should be assumed true even if they cannot
be proven), and two features that cannot be directly expressed in C++: a foreach loop that iterates
over the entire program state space and a set of classification statements that allow C++ objects to be
augmented with additional information at run time (of the analyzer).

The foreach construct allows one to iterate over all objects of a given type within the (abstract)
program state as represented by the static analyzer. This construct allows first-order logic to be

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

6 D. GREGOR AND S. SCHUPP

iterator erase(iterator pos) {
semple_assert(pos.dereferenceable(),

"attempt to erase a singular or past-the-end iterator");
semple_assert(pos.sequence_ == this,

"attempt to erase an iterator from another container");
semple_foreach(iterator i) {

if (i.sequence_ == this && i.position_ >= pos.position_)
i.version_ = 0;

}
--size_;
return iterator(pos.position_, this);

}

Figure 3. Specification of theerase operator for an STLvector .

employed by STLlint specifications, which is required when object sharing is involved. For instance,
many iterators may share the same container object and operations that modify that container need also
modify the associated iterators. Fig. 3 illustrates the specification of theerase operation of an STL
vector , which employs theforeach construct to invalidate all iterators that reference the erased
element or any element following it [6,§23.2.4.3].

The classification constructs of STLlint allow specifications to attach additional analysis-only data
to any object representation. The feature allows, for instance, the specification of a sequence-sorting
routine (such assort heap , from Fig. 1) to attach a tag to the sequence indicating that the sequence
has been sorted, which may later be queried by other specifications (e.g., a binary search) or removed
(e.g., by a sequence randomization algorithm). Any number of classifications may be applied to a
particular object, and classifications are themselves objects that may have state. Classifications may
be queried (via an “is-a” check), accessed as an object (via the “as-a” operation), and eliminated (via
the “declassify” operation). The usefulness of classifications, and especially their use as a specification
extension mechanism, will be covered in Sec. 5.

3.2. Preserving library/user code separation

Specifications provide the means to hide implementation details from the static checker, to reduce the
complexity of the analysis, but we must also perform the inverse operation by hiding the specification
details from the end user. For instance, if we are performingstatic checking at the abstraction level
of iterators and containers, we should produce diagnosticsthat refer to iterators and containers, not
the pointers or classes that are used to implement them. Failure to phrase error messages in terms of
the abstractions the user has applied eliminates the primary end-user benefits of a higher-level static
analyzer.

Producing diagnostics at the same level of abstraction as the program code requires domain-
specific knowledge of the abstractions. This knowledge may be built into the static checker (as are
the semantics of a programming language in alint -like checker) or included with the specifications
themselves. STLlint employs the latter technique, where all assertions (checks) within the specification

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 7

Figure 4. HTML output produced by STLlint when it is invoked on the program given in Fig. 2.

are accompanied by a diagnostic to be emitted should the assertion fail to prove true. Error messages
are typically placed on entry to the library and refer to the context of the caller, using simple mark up
commands to highlight function call arguments of interest to the user.

Additionally, function specifications provide hypertext links to external documentation that may
be presented to the user along with the diagnostic message identifying the source of the error. This
way, STLlint provides both domain-specific information at the point where the user error occurred
along with documentation to help the user understand the semantics of the function under question.
Fig. 4 illustrates the HTML output produced by STLlint for the example in Fig. 2, including
argument highlighting and documentation for thetransform function (derived from the SGI STL
documentation [22]). In addition, STLlint groups diagnostics triggered from within an executable
specification under any diagnostics generated from the specification’s preconditions (under the heading
“Implementation-specific symptoms” in Fig. 4). The effect is to present the user first with a diagnostic
relating only to the potentially-incorrect user code (at the algorithm’s level of abstraction), but to also
provide links to other diagnostics that allow the user to “step into” the specification/implementation
of the algorithm to see how mistakes at the call site affect the underlying algorithm. Finally, STLlint
generates hyperlinks from source-code references to stylized versions of the source code that highlight
lines in the source code for which STLlint has emitted diagnostics, allowing the user to quickly
determine the context of a diagnostic. Fig. 5 illustrates this highlighting behavior on a sample program
including Fig. 2.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

8 D. GREGOR AND S. SCHUPP

Figure 5. STLlint highlights the lines referenced by its diagnostics (hyperlinked from the diagnostic messages
themselves) within the source file, permitting the user to see the errors in context.

4. Higher-level iteration constructs

Perhaps the greatest challenge in lifting STLlint to library-level analysis has revolved around loop
analysis, which must now cope with iterators. Unlike iterators in other languages and libraries,
such as the Java Collections Framework [26], many STL iterators can be used to reference a single
sequence concurrently, making modifications and moving through the sequence in arbitrary ways,
resulting in complex iteration patterns. STLlint therefore requires sophisticated loop analysis and
particularly induction variable recognition with “higher-level” induction variables. Induction variables
are traditionally integer variables that increase by some constant value each loop iteration, but have
been extended to more complex induction expressions, multiple assignments, wraparound variables,
etc. These forms of induction variables are adequate for low-level internal representations and even
some constructs in high-level languages, for instance using integer variables to step through arrays.

Induction variables may also take on other forms, such as pointers with pointer arithmetic or
traversal of a linked-list data structure. In the former case, it suffices to represent pointers by a
pair (address, position), whereaddress is the address of the beginning of an array andposition

represents the offset of the pointer into the array, in whichcase traditional loop analysis techniques can
be applied to theposition provided theaddress remains constant throughout the loop. The latter case,
however, does not permit such a simple solution, and the situation worsens with more complex data
structures.

The iterator abstraction provides the ability to iterate over all elements within a particular container
regardless of the underlying data structure, maintaining aconsistent interface and semantics regardless
of the implementation details. Iterators are typically utilized in program loops, requiring the static
checker to adequately support iterators within loop analysis in order to properly verify their use. Since
we cannot hope to check the implementation of iterators for complex data structures, we introduce
specifications for the iterator that are simpler and are amenable to loop analysis. With STLlint, we
have chosen to specify iterators by a pair(sequence, position), wheresequence is the address of the
data structure the iterator references andposition is a 0-based offset representing the location of the
iterator in the sequence, as is done with pointer arithmetic. In theory, this representation of iterators

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 9

01 vector<Student> extract_fails(vector<Student>& stud ents)
02 {
03 vector<Student> fail;
04 vector<Student>::iterator iter = students.begin();
05
06 while (iter != students.end()) {
07 if (fgrade(*iter)) {
08 fail.push_back(*iter);
09 iter = students.erase(iter);
10 } else
11 ++iter;
12 }
13 return fail;
14 }

Figure 6. A typical iterator loop wherein induction variables are modified within subroutine calls (++ anderase),
the loop termination condition is hidden within a subroutine call (!=), and the two induction variablesiter and

students.end() are monotonic.

allows us to reuse traditional loop analysis techniques to recognize iterators as induction variables
based on the induction behavior of the iterator’sposition.

However, loop analysis on iterator specifications is much more complex than analysis on
integer variables, or even on pointers with pointer arithmetic. The analysis must cope with
multiple assignments to induction variables, monotonic induction variables, induction variables
accessed/modified via (multi-level) pointers, and we must implement an interprocedural loop analysis
because the iterator operations that dominate loop analysis, such as the operations that advance or
compare iterators, are function calls.

4.1. An example

The deceptively simple loop in the subroutineextract fails in Fig. 6, taken from an introductory
C++ text [27], illustrates the challenges for the loop analysis:

• Within the loop, the primary induction variable is the iterator iter , which steps through the
students vector in two ways: via the++ prefix operator, which increments theposition of
the iterator by one step, and via theerase operation, that in effect leaves theposition of iter
constant but shifts all elements afteriter in the vector back one step, reducing its size. From
the two “increment” operations we see thatiter is a monotonic induction variable, because its
position moves either zero or one steps forward in each iteration.

• The prefix operator++ is a function call that operates oniter via a pointer anderase is
a function call that returns a new value foriter that is later copied intoiter via a copy
constructor, which again operates oniter via a pointer. We therefore have multiple assignments
to the induction variableiter that always occur through one level of pointer indirection within

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

10 D. GREGOR AND S. SCHUPP

subroutines, requiring both pointer analysis and the ability to perform interprocedural loop
analysis.

• The infix != operator is again implemented via a function call operatingon a pointer toiter
and a pointer to the (temporary) result of the call expression students.end() . Thus any
algorithm attempting to use the loop termination condition, e.g., to calculate a loop trip count or
to perform narrowing operations [28, 29] must be interprocedural and able to cope with pointers
and temporary variables.

• Although the expressionstudents.end() appears to be loop-invariant, it is not. The “end”
iterator of a container is called a “past-the-end” iterator, because it points one element beyond
the last element in the container. In our(sequence, position) representation of iterators, this
corresponds to the case whereposition is equivalent to the size of thesequence. However,
the erase operation on thestudents vector eliminates one element and decreases the
size of the sequence. Whenstudents.end() is executed next, its position will therefore
be one less than the prior position iferase has been executed, or equivalent to the
prior position if erase has not been executed, making the result ofstudents.end() a
monotonically nonincreasing induction variable. This again complicates computations based
on the loop termination condition, as we now have a monotonically nondecreasing induction
variable compared via inequality (!=) against a monotonically nonincreasing induction variable,
requiring us to determine if the two induction variables mayever become equivalent (terminating
the loop) or if they may pass each other because both move in the same iteration.

• Finally, STLlint performs many correctness checks within this loop that are not evident from the
loop itself. Of particular interest are the checks performed by the specification of the prefix*
operator, which returns the element that the iterator references. This operator requires that its
iterator argument be “dereferenceable”, i.e., the following two conditions must hold:

1. The iterator is not singular: A singular iterator is one that has not been initialized to
reference a sequence, references a sequence that no longer exists, or has been invalidated
by a sequence operation such aserase .

2. The iterator is not past-the-end: A past-the-end iterator is one that is not singular and
points one element beyond the last element in the sequence. Past-the-end iterators may
come from theend member function of a container, but may also be reached by
incrementing an iterator referencing the last element in the container.

Within our representation, a dereferenceable iterator is one that has a validsequence and a
nonnegativeposition that is strictly less than the size of that sequence. This assertion occurs
within the dereference operator* , operating on a pointer to an iterator. Since an iterator’s
sequence is itself a pointer, accessing the size of the sequence from within the dereference
operator requires a multi-level pointer access that, in theexample from Fig. 6, brings us back to
the monotonically nonincreasing size of thestudents vector.

STLlint employs a variety of techniques to analyze iteratorloops within a unifiedsymbolic
execution[30] framework. In the following subsections, we focus on the analysis of integer values,
especially as it pertains to the positions of iterators and the sizes of containers, and delve into the
enhancements we have made to traditional loop analysis techniques to facilitate higher-level loop
analysis with iterators. In preparation, we briefly summarize the core idea of symbolic execution and
contrast it with abstract interpretation.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 11

4.2. Symbolic execution

Symbolic execution [30] refers to the process of executing aprogram given symbolic input in lieu of
actual, concrete input. At conditional branches, where different inputs may in fact cause the program to
follow different execution paths, the abstract program state is split (“forked”) into two identical copies,
one of which assumes that the condition is true and the other assumes that the logical negation of the
condition is true. The two program states are modified independently until the paths rejoin, and the
program states are merged into a single, conservative approximation of both incoming states.

Symbolic execution is similar to abstract interpretation [29], which also employs a symbolic
representation of the values of program variables to perform static analysis. Symbolic execution differs
from abstract interpretation in its handling of program loops. While both methodologies perform fixed-
point iteration and apply widening/narrowing operations [28, 29] to ensure convergence, symbolic
execution employs a different analysis method for program loops that is not dependent on fixed-point
iteration.

To better illustrate symbolic execution, we describe the analysis of a single iteration of the loop in
Fig. 6; details of the iterator andvector specifications involved in the analysis are provided in the
appendix. The initialization ofiter at line 10 sets its position to zero and its sequence to the address
of students . At the while loop, the iterator’soperator!= is invoked, and the analysis maps the
actual parameters to the formal parameters of the routine and executes the routine body: assuming
that students is non-empty, the analysis enters the body of the loop. At thecall to fgrade , the
analysis first steps into the iterator’soperator* , which verifies that the iterator is dereferenceable
(see specification in Appendix A), and passes the result tofgrade (not shown); it is unlikely that
we can statically determine the outcome offgrade , so instead we fork the program state into two
copies: one assuming thatfgrade returns true and one assuming thatfgrade returns false. We then
continue the symbolic execution of each branch (separately) to determine that: (1) in thetrue case, the
students vector decreases in size by one, thefails vector increases in size by one, and the iterator
iter ’s position remains constant; (2) in thefalse case, the iteratoriter ’s position increases by
one. The two program states are then merged together in a manner that conservatively retains the
properties of both states, and the symbolic execution continues with a single abstract program state.

Interprocedural symbolic execution is similar to the call string approach to interprocedural data
flow analysis [31] in that it explicitly preserves the call context for every subroutine invocation.
For programs involving recursive subroutines, the length of the call string is unbounded, requiring
particular care to ensure termination. We therefore treat recursive calls (i.e., those calls to routines
already present in the call string) aswidening edges[28, 29] in the (interprocedural) control-flow
graph by applying a widening operation, which is a conservative form of the merge operation, to the
program state. STLlint then iterates over the body of a recursive function until the result has stabilized,
as is guaranteed by the use of the widening operator [32,§3.3.4].

In an abstract interpretation, the analysis of program loops would proceed similarly to our recursive
analysis. However, within symbolic execution we instead apply induction variable recognition, which
will be described in Sec. 4.4.1. First, we describe the manner by which the abstract program states are
represented, manipulated, and merged.

Throughout the presentation we assume the existence of a context-sensitive, flow-sensitive points-to
analysis allowing us to map expressions with pointers to locations in the abstract program state. STLlint
employs a simple constant-propagation lattice to describethe values of pointers during the symbolic

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

12 D. GREGOR AND S. SCHUPP

execution, which is sufficient so long as the sequences associated with an iterator do not differ based
on a prior conditional. Our experience has shown that this situation rarely occurs in practice.

4.3. Symbolic integer value analysis

STLlint’s static analysis represents the values of integervariables and fields via expressions involving
integer literals and symbolic variables. The use of symbolic variables enables STLlint to effectively
cope with containers of unknown size and track the relative positions of iterators within a container,
which is essential for modeling the invalidation behavior of some STL containers. For instance, the
vectorerase operation (see Fig. 3) invalidates all iterators whose position is greater than or equal
to the position of the element being erased, requiring (symbolic) comparisons to determine the set of
iterators invalidated by the operation.

Each symbolic variablex falls within a particular value range [33] writtenx ∈ [a : b], such
that a ≤ x ≤ b. The expressionsa and b may again be symbolic, allowing STLlint to represent
complex relations amongst integer values. For instance, the position of a particular iterator may be
x ∈ [0 : N − 1] whereas the size of the sequence the iterator references maybeN , meaning that the
iterator is dereferenceable. Incrementing said iterator results in the position1 + (x ∈ [0 : N − 1]),
resulting in an iterator that is either dereferenceable or past-the-end, but is clearly safe to decrement.

STLlint implements the symbolic comparison algorithm discovered by Blume & Eigenmann [34].
This algorithm operates by replacing symbolic variables with their value ranges in a logical order,
and then simplifying the resulting expression until it is comparable to zero. For instance, comparing
the expression1 + (x ∈ [0 : N − 1]) to N would perform symbolic variable replacements on
the difference1 + (x ∈ [0 : N − 1]) − N . Substitution ofx for its value range results in
1 + [0 : N − 1] − N = [1 : N] − N = [1 − N : 0], which must be zero or negative, allowing
STLlint to conclude that1 + (x ∈ [0 : N − 1]) ≤ N .

4.4. Induction variable recognition

The symbolic representation of integer values within STLlint is crucial to the application of induction
variable recognition. As demonstrated in Fig. 6, we requirerecognition of induction variables that are
accessed via multi-level pointers and may be assigned multiple times within a single loop iteration.
In fact our induction variables are not generally variablesat all, but are fields of objects that are
modified through pointers in subroutine calls. We thereforerefer to induction locations, i.e., abstract
memory locations that represent memory locations that holdintegral values. Each field of a particular
object is associated with a unique abstract memory location, so that by performing induction variable
recognition on the abstract locations we can effectively deduce the inductive behavior of these locations
even when they are accessed via multi-level pointer expressions.

4.4.1. Symbolic differencing

The use of induction locations in lieu of induction variables drastically reduces the potential set of
existing induction variable recognition algorithms that we may employ. Induction variable recognition
algorithms that detect patterns in the definitions of integer variables [35, 36], most notably those
that are based on Static Single Assignment (SSA) form [37, 38], are unusable in this context

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 13

template<typename InputIterator, typename Predicate>
InputIterator
find_if(InputIterator first, InputIterator last, Predic ate pred)
{

while (first != last && !pred(*first)) { ++first; }
return first;

}

Figure 7. Implementation of the genericfind if algorithm, which searches for the first element in a sequence
that satisfies the given predicate.

because they operate on integer variables only and cannot cope with integer locations accessed via
pointers. Symbolic differencing [39], on the other hand, can recognize the inductive behavior of
integer locations, and is therefore the method of choice in STLlint. Symbolic differencing applies
Newton’s forward formula for interpolation to recognize generalized induction expressions of the form
χ(n) = ϕ(n) + arn for a polynomialϕ (with loop-invariant coefficients) and loop-invarianta andr,
where the maximal degree of the polynomial,n, is a parameter to the symbolic differencing analysis.
Symbolic differencing requires only that the analysis symbolically execute the loop body in its most
general form (i.e., by replacing the value at each integer location with a fresh symbolic constant),
iteratingn + 2 times and recording the values of each integer location after each iteration. Thus given
a suitable points-to analysis that can associate arbitrarypointer expressions with integer locations,
STLlint can derive induction expressions for integer locations regardless of how—or where—integer
locations are accessed. In an iterator loop such as that of Fig 7, the locationfirst.position will
originally be assigned a fresh symbolic variablep, and will assume the valuesp+1, p+2, ...,p+n+2 at
the end of then+2 loops. Applying symbolic differencing to this sequence(p, p+1, p+2, ..., p+n+2),
we derive the induction expressionp0 + i for the integer locationfirst.position , wherep0 is the
initial value offirst.position andi is the iteration number.

4.4.2. Trip count calculation

The generality of symbolic differencing also enables STLlint to accurately determine trip counts, i.e.,
the number of times the loop body will execute, even when we cannot easily relate the loop termination
condition to the values of induction variables before or after a particular loop iteration. In Fig. 7, the
two parts of the loop termination condition,first != last and!pred(*first) , both involve
subroutine calls that may have side effects and are separated by a conditional branch due to the short-
circuit evaluation of the&& operator. Fig. 9 makes these branches and function calls more explicit
by “lowering” the find if implementation, illustrating that we cannot simply use thevalues of
the integer locations compared viafirst != last to determine the trip count, leaving the static
analyzer with two options: either prove that the integer locations involved in the expressionfirst !=
last are unchanged by the subsequent call topred , or attempt to compute the inductive behavior
of first != last without relying on the induction expressions computed for the requisite integer
locations. STLlint utilizes the latter option, by computing the set of integer expressions involved in the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

14 D. GREGOR AND S. SCHUPP

int j = 0, k = 0;
for (int i = 0; i < n; ++i)

if (is prime(i))
++j;

else
++k;

}

(a) Monotonic induction variables

int j = 0, k = 0

for (int i = 0; i < n; ++i)

if(is_prime(i)) (exit)

++j; ++k;

(merge)

(b) Control flow graph

Figure 8. A simple loop containing a basic induction variable i and two monotonic induction variables,j andk.

loop termination condition. The values of these expressions are recorded at each loop iteration (as we
have done for integer locations), and symbolic differencing computes induction expressions for these
expressions that will be used in trip count calculations. The technique used to isolate the set of integer
expressions when they occur within subroutines will be described in Sec. 4.5.1. As a peculiar side
benefit, calculating induction expressions for expressions in the loop termination condition allows us
to determine trip counts even in certain cases where the integer locations involved in the termination
condition are not themselves inductive [39].

4.4.3. Monotonic induction variables

STLlint implements monotonic induction variables within the context of symbolic differencing by
careful introduction of additional symbolic variables during the control-flow merge operation. Control-
flow merges occur in flow-sensitive but path-insensitive analysis algorithms, where on two separate
paths the same variable or location possesses two differentvalues; when these two paths rejoin,
perhaps at the end of anif –then –else construct, the analysis must produce a new value for
that variable or location that approximates the values on both paths. With traditional value range
propagation [33], this merge operation computes the resulting value range[a : b] wherea is the
minimum of all incoming values andb is the maximum of all incoming values. For instance, if a
variablem is assigned the valuex in one path, and the valuex + 1 in another path, then the resulting
integer value of that variable after control-flow merge of the two paths will produce the value range
[min(x, x + 1) : max(x, x + 1)] = [x : x + 1].

The introduction of value ranges at merge points hampers theapplication of symbolic differencing
for that location, because symbolic differencing is formulated based on symbols alone, not value

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 15

ranges. The loop in Fig. 8 contains a monotonic variable,j, whose maximum value is bounded by
n. Using the traditional value range merge operation,j would take on the valuesjx, [jx : jx + 1], [jx :
jx + 2], [jx : jx + 3], [jx : jx + 4] through successive iterations, wherejx is an arbitrary symbolic
variable used for induction variable recognition. Symbolic differencing cannot derive the inductive
behavior ofj from this sequence of values.

We note that in Fig. 8, the value ofj is increased by either1 (when i is prime) or0, wheni is
not prime. Thus instead of introducing a new value range within the control-flow merge operation, we
produce an equivalent symbolic value by capturing the variation in a fresh symbolic constantα ∈ [0 :
1], and declare the result of the value range merge operation tobe jx + α. In the example of Fig. 8,
α describes the possible changes to the variablej based on the value ofis prime(i) in a given
iteration. The use ofα in successive iterations therefore refers to the sameevent, but not to a particular
constant value (only the range is constant). By reusingα when merging values ofj at the control-flow
join within this loop, we determine thatj will take on the valuesjx, jx +α, jx +2α, jx +3α, jx +4α.
Symbolic differencing can then be applied to this sequence to produce an induction expressionj0 + iα

for the variablej, wherei is the iteration number andα ∈ [0 : 1] is loop-invariant. Thus we can
determine that on thekth iteration of the loop, the value ofj will be its initial valuej0 plusαk, i.e.,
some value in[0 : k]. This result is more precise than could be determined via abstract interpretation
with widening and narrowing [29], which would determine only that the value ofj ≥ j0 because
widening does not apply whenj is not used in the loop termination condition.

Our formulation of monotonic variables is sufficient for some, but not all instances of monotonic
variables we have encountered in the use of STLlint. In particular, the iterator-erasure example in Fig. 6
requires that the two monotonic variables—iter.position andstudents.size —be related so
that the invariantiter.position ≤ students.size can be verified. STLlint further enhances
the control-flow merge operation to retain such a relation byexploiting knowledge of important
relationships amongst fields in different objects; this algorithm is the subject of another paper [40].

4.5. Interprocedural loop analysis

STLlint addresses the need for interprocedural loop analysis in several ways. The most important aspect
of this support, that of representing the values at integer locations via symbolic expressions (Sec. 4.3)
and applying symbolic differencing to these locations (Sec. 4.4.1), has already been discussed.
Our approach to loop analysis with symbolic execution naturally supports interprocedural induction
location recognition. However, induction location recognition itself does not suffice for loop analysis:
we require precise interprocedural trip count calculation, discussed in Sec. 4.5.1, and also benefit from
techniques that simplify the loop termination condition, as discussed in Sec. 4.5.2.

4.5.1. Interprocedural trip count calculation

The trip count calculation described in Sec. 4.4.2 requiresthat one calculate the set of integer
expressions that are involved in the termination condition. We first describe the representation of this
set, and then present the construction and evaluation of a loop termination condition using the members
of this set.

Integer expressions involved in the loop termination condition must be uniquely located within
the abstract syntax tree and associated with a particular chain of subroutine invocations. Thus if the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

16 D. GREGOR AND S. SCHUPP

iterator find_if(iterator first, iterator last, Predicat e pred)
{

bool b1 = not_equal(&first, &last);
bool b2;
if (b1) {

T* ref = deref_iterator(&first);
bool b3 = pred(ref);
b2 = !b3;

}
if (b1 && b2) {

do {
iterator_increment(&first);
bool b4 = not_equal(&first, &last);
bool b5;
if (b4) {

T* ref = deref_iterator(&first);
bool b6 = pred(ref);
b5 = !b6;

}
} while (b4 && b5);

}
return first;

}

bool not_equal(iterator* x, iterator* y)
{

semple_assert(x->sequence && x->position <= x->sequence ->position);
semple_assert(y->sequence && y->position <= y->sequence ->position);
semple_assert(x->sequence == y->sequence);
return x->position != y->position;

}

Figure 9. Partial expansion of thefind if function from Fig. 7, illustrating the static analyzer’s view of the
“simple” iterator loop.

expressionx + 1 in a functionf is evaluated twice within the loop body becausef is invoked from
two different call sites in the loop, the two evaluations areconsidered distinct from the point of view of
the set of integer expressions. STLlint represents these integer expressions as(context, expression)
pairs, where thecontext refers to the node within the invocation graph [41] at which the expression is
evaluated andexpression refers to the node in the abstract syntax tree that represents the expression.
The use of an invocation graph allows STLlint to efficiently represent and compare chains of subroutine
invocations.

Fig. 9 contains a partially-expanded implementation of thefind if algorithm originally presented
in Fig. 7, such that function calls and control flow have been made more explicit. The loop termination
condition present in thedo–while loop references two boolean variables, from which we cannot
directly derive a trip count. Instead, we must trace these boolean variables back to their definitions

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 17

to uncover the integer relations that govern loop termination: b4 can be traced back to the result
of the call tonot equal , which in turn is the result of the integer relationx->position !=
y->position , whereasb5 can be traced to the logical negation ofb6 , that itself is the result of a
call to the unknown predicatepred . Denoting chains of subroutine calls vias1 : s2 : · · · : sn, our true
loop termination condition is

(find if : not equal , x->position) 6= (find if : not equal , y->position)∧unknown.

Since we do not have any information at this time to approximate the result ofpred(ref) ,
we instead apply the placeholderunknown that represents an unknown termination condition.
STLlint constructs the loop termination condition by computing an SSA numbering [37, 38] for
each subroutine, so that boolean variables occurring in thetermination condition may be (recursively)
replaced with the appropriate definition. Variables whose definition is the result of a function call will
be replaced with the return expression within the call context, after the callee has been normalized to
contain only a single return statement.

The values of each integer expression(context, expression) evaluated in the true loop termination
condition are recorded forn + 2 iterations of the loop body, and symbolic differencing is applied
to compute induction expressions for each. The trip count iscomputed from the loop termination
condition using the following rules:

• Comparisons between a linear induction expression and a loop invariant results in an exact trip
count.

• Comparisons between two linear induction expressions results in a trip count between 0 and
the distance between the initial values of the two inductionexpressions (if they converge), or
between 0 and∞ (if they diverge).

• unknown expressions result in a trip count between 0 and∞.
• Logical conjunctionsx ∧ y result in the minimum trip count computed for the subexpressionsx

andy.
• Logical disjunctionsx ∨ y result in the maximum trip count computed for the subexpressionsx

andy.

The trip count for our example in Fig. 9, given the initial value 0 for (find if :
not equal , x->position) andN for the initial value of(find if : not equal , y->position),
will be computed asmin(N, [0 : ∞]) = [0 : N].

4.5.2. Goal-directed inlining

STLlint performs interprocedural loop trip count determination to accurately analyze the behavior of
program loops with higher-level iteration constructs. Another problem that plagues static analyzers
when faced with such loops is that flow-sensitive information generated from conditional branches
is not easily propagated. For instance, the boolean variable b4 contains the result of the expression
x->position != y->position , wherex is the address offirst andy is the address oflast .
Within thethen branch of the conditional involvingb4 , it is guaranteed thatfirst.position !=
last.position , but it is nontrivial to propagate the information from the source ofb4 ’s value—
inside the functionnot equal —to the use ofb4 in a conditional branch. It is essential that this

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

18 D. GREGOR AND S. SCHUPP

do {
iterator_increment(&first);
semple_assert(first.sequence

&& first.position <= first.sequence->position);
semple_assert(last.sequence

&& last.position <= last.sequence->position);
semple_assert(first.sequence == last.sequence);
bool b4 = first.position != last.position;
bool b5;
if (first.position != last.position) {

T* ref = deref_iterator(&first);
bool b6 = pred(ref);
b5 = !b6;

}
} while (b4 && b5);

Figure 10. “Optimized” form of thedo–while loop from Fig. 9, after boolean variable definitions have been
“pulled” into the if condition.

information be propagated: the body of thederef iterator operation (not shown) contains an
assertion that requiresfirst.position != last.position .

To aid in the propagation of information present in conditional branches, STLlint performs goal-
directed inlining to “pull” the underlying definitions of boolean variables used in conditional branches
into the branch conditions. The process begins by computingSSA numbers for all boolean variables
in the function; then, the calls defining any boolean variable referenced within anif or a do–
while condition are inlined. Finally, the resulting code is optimized via copy propagation and the
elimination of unused variables. Fig. 10 illustrates the result of pulling the conditional expression
for b4 into the find if loop; we see that this result enables STLlint to propagate the assumption
first.position != last.position into its then branch, guaranteeing that the assertion
within the iterator dereference operation will not producea false positive.

4.6. Putting it all together

Analysis of the example in Fig. 6 relies primarily on preciseloop analysis. In the initial phase of
translation, the calls to library routines and the definitions of library data structures are replaced by
their respective executable specifications. Prior to the loop, symbolic execution determines thatiter
references thestudents vector and has a position of zero (the beginning of the vector), the fail
vector has size zero, and we assume for this discussion that thestudents vector is nonempty.

When the analysis encounters the loop, it forks a separate program state for loop analysis. We employ
fixed-point iteration (as in abstract interpretation) for noninductive variable types (e.g., pointers). In the
resulting state, the values for all integer locations are replaced with fresh symbolic constants, and the
loop is executed several times, recording the values of (1) each integer location (or variable), and
(2) each subexpression involved in the termination condition, at each iteration. Symbolic differencing
then determines that the position ofiter is monotonically increasing (by 0 or 1 each iteration), the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 19

size ofstudents (and therefore the position ofstudents.end()) is monotonically decreasing
and changing when the position ofiter does not change [40], and finally that the size offail
is monotonically increasing. Symbolic differencing is then applied to the values of each termination
condition subexpression to compute a loop trip count.

Analysis of the loop completes by replacing the symbolic constants used in symbolic differencing
by the initial values of the pre-loop state. Here we determine that the loop executesn times, where
n is between1 andstudents.size() . The loop is then symbolically executed in its own forked
program state using the induction expressions (e.g., the position of iter is α · i, wherei is the loop
iteration number andα ∈ [0 : 1]) and allowingi to vary between0 andn − 1. Thus, we are checking
all iterations of the loop in one symbolic execution of the loop body. STLlint is therefore able to verify
the correctness of all assertions in all iterations of the loop.

The side effects of the loop are determined by again replacing the symbolic constants introduced
for symbolic differencing by the initial conditions, and replacing the values of integer locations with
induction expressions. The loop body is then executed once with i = n−1, simulating the final iteration
of the loop.

5. Organization of an extensible static checker

Higher-level checking involves not only checking of higher-level constructs (e.g., containers and
iterators) but also higher-level semantic properties, such as whether the values in a sequence have
been sorted or whether the values of a certain subsequence cannot be relied upon to be accurate. The
C++ standard [6] specifies the requirements of many STL algorithms in terms of higher-level semantic
properties, in the manner shown in Fig. 1. We do not attempt toconstruct proofs that algorithms
introduce certain properties, instead relying on hand-written algorithm specifications that assert the
appropriate semantic properties. STLlint specifications provide a method of “tagging” objects with
other objects of varying types and accessing those “tag” objects later in the program. Specifications
may create, query, or destroy these tags (that may themselves carry additional information) at any
point, allowing for instance a sorting algorithm to introduce the “sorted” tag (coupled with the ordering
relation), that will be verified any time the sequence is required to be sorted (e.g., when one calls a
binary search function such aslower bound), and that will be destroyed by any attempt to modify
the sequence that doesn’t explicitly preserve sortedness.Fig. 11 illustrates an example where the author
has omitted the proper sorting invariant, for which STLlintproduces a reasonable diagnostic:

"sort_insert_insert.cpp", line 21, warning: sequence may have been
sorted with a different predicate than the one given

i = lower_bound(v.begin(), v.end(), 17);

in call to function lower_bound at "sort_insert_insert.cp p", line 21

Even by limiting ourselves to semantic properties useful within the C++ STL, there is a large
number of combinations that must be handled. The STL contains more than 70 algorithms and 8
different container types, with many interesting interactions among them. We must therefore consider

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

20 D. GREGOR AND S. SCHUPP

vector<int> v;
// fill v
sort(v.begin(), v.end(), greater<int>());
vector<int>::iterator i =

lower_bound(v.begin(), v.end(), 42, greater<int>());
v.insert(i, 42);
i = lower_bound(v.begin(), v.end(), 17);
v.insert(i, 17);

Figure 11. A small code snippet that improperly attempts to insert two values into a sorted sequence. The second
lower bound invocation does not use the same ordering relation as was previously used to sort the sequence.

the incremental cost of introducing checking for a single new semantic property. For instance, to add
proper checking for sortedness in such a system, we would need to:

• Annotate all sorting functions to state that they make the sequence “sorted”, and
• annotate all functions that require a sorted sequence to perform checking of the “sorted” attribute,

and
• annotate all functions that may modify or reorder the sequence so that they modify or remove

the “sorted” attribute.

In essence, the need to maintain tags means that the additionof a single new function requires one
to reexamine the entire system of specifications, drastically hampering extensibility. To address this
problem, we define a set ofalgorithm concepts[42] that describe the behavior of algorithms and allow
STLlint to reduce the cost of introducing new semantic checks. We describe algorithm concepts in
Sec. 5.1 and detail the implementation of algorithm concepts in STLlint in Sec. 5.2.

5.1. Algorithm concepts

Within STLlint, we are primarily concerned with the behavior of algorithms with respect to the
(iterator) sequences on which they operate. Algorithm concepts categorize the high-level semantics
of algorithms, for instance grouping all sorting algorithms together under the SORTING concept or
grouping all binary search algorithms together under the SORTEDSEARCHING concept. Algorithm
concepts range from very unspecific, very general concepts such as READs a sequence or WRITEs a
sequence, to very specific concepts describing the behaviorof particular algorithms, such as a heap
sort.

Semantic properties are associated with algorithm concepts by providing specifications of the
behavior of algorithm concepts with respect to that semantic property. For instance, to perform
checking related to sorting we specify that the SORTEDSEARCHING concept check that the incoming
sequence is sorted; the SORTING concept assert that the sequence as sorted; and the WRITE concept
assert that the sequence is no longer guaranteed to be sorted. We refer to a semantic property being
checked as anaxis, and here we have informally specified the semantics of different algorithm concepts
along the “sortedness” axis. To differentiate the specification of algorithm concept behavior along an
axis from the specification of data structures and algorithms, we apply the termcustomizationto the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 21

read

fold modify

searching

find min_element

lower_bound upper_bound binary_search

rearrange replace

sort partial_sort

write

sorted searching sorting

Figure 12. Partial algorithm concept lattice as used in STLlint

former. STLlint supports the introduction, removal, and verification of semantic property tags (such
as “sorted”) based not on algorithms but algorithm concepts. That is, all algorithms that model the
SORTING concept will introduce the “sorted” tag to assert sortedness, SORTEDSEARCHING algorithms
will verify the existence of the “sorted” tag on the input sequence, and any other algorithm that WRITEs
an iterator sequence will remove the “sorted” tag. The ellipses containing dots in Fig. 12 represent
the customization points required to implementing checking of “sorted” properties. The details of
the decision process that supports these semantics requireadditional relationships among algorithm
concepts.

Algorithm concepts are arranged within a concept lattice [43], where the least specific concepts are
placed at the top of the lattice with the most specific concepts at the bottom. The (implicitly) directed
edges represent therefinementrelation, where the statement “ArefinesB” indicates that the concept
A inherits all properties of concept B but also introduces its own properties. Fig. 12 contains a partial
algorithm concept lattice. For instance, note that MODIFY—meaning that the algorithm modifies a
particular sequence— refines both READ and WRITE. Furthermore, the REARRANGE concept refines
the MODIFY concept because rearranging the values in a sequence modifies the sequence, but more
specifically it performs a reordering of the elements instead of arbitrarily modifying them.

To determine the effects of an algorithm, STLlint finds the most specific algorithm concept(s)
modeled by the algorithm and customized along some axis. Thesearch for the most specific algorithm
concept(s) modeled by a particular algorithm is a depth-first search starting at the concept for that
particular algorithm (represented by a rectangle) in the lattice and proceeding up through other
algorithm concepts (represented by ellipses) in the lattice until a concept customized by that axis is

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

22 D. GREGOR AND S. SCHUPP

found along that branch. For instance, the search for a customization point for thereplace algorithm
along the sortedness axis would find the WRITE concept (i.e., the first dot found when traversing up
the lattice). Thus the author ofreplace , by merely stating that the algorithm models theMODIFY

concept, has in effect stated that replacing elements in a sorted sequence may result in an unsorted
sequence. If a concept refines two or more concepts, it is possible that several customization points may
apply for a particular axis and algorithm concept. Additionally, since the customization of concepts
occurs on several different axes (for multiple, distinct semantic property checks), potentially many
customization points may apply for any given algorithm.

Algorithm concepts, and particularly the concept refinement relationship, provide a way to decouple
algorithms from semantic checks on the algorithms, drastically reducing the effort required to introduce
extensions to STLlint. Introducing a new algorithm requires only that one state the concepts that the
algorithm models, after which the algorithm seamlessly performs checks and updates of the various
semantic tags. Introducing a new semantic check (axis) requires one to isolate the concepts of interest
within this axis and specify the assertions and effects thatalgorithms modeling these concepts have on
the semantic tags involved. While the effort expended to isolate and specify the behavior of algorithm
concepts is nontrivial, the process involves much less redundancy than the alternative, and provides
the additional benefit of being modular: STLlint allows one to toggle the checking of various semantic
properties from the command-line interface.

5.2. Algorithm events

STLlint provides an extensible implementation of algorithm concepts and axes. Algorithm concepts
themselves are represented by otherwise empty C++ class types, with concept refinement represented
by inheritance. Similarly, axes are represented by C++ class types and a set of C++ functions that
operate on certain algorithm concepts. The C++ manifestations are not a part of the static analyzer
itself, but are part of STLlint’s modified C++ standard library implementation, compiled along with—
and therefore customizable by—the user’s code. An “active”C++ library [44] may introduce its own
axes, algorithm concepts, algorithms, and data structuresthat STLlint can then analyze.

Each algorithm must explicitly state the algorithm conceptit models, providing information about
its arguments and return value. This information is provided to STLlint’seventmechanism that enables
the customization of behavior along each axis for algorithmconcepts. Customization is permitted when
the algorithm has been invoked (via theon entry event) and when the algorithm has completed
its computation (via theon exit event), allowing arbitrary executable specifications to, e.g., check
preconditions and assert postconditions. Fig. 13 illustrates the STLlint directive that associates the
lower bound algorithm with its algorithm concept; again, the event mechanism implementing
algorithm concepts in STLlint is standard C++ code.

Customizations are implemented as C++ function templates (called eventhandlers) whose function
parameters correspond to the algorithm concept they customize (e.g., SORTEDSEARCHING), the axis
along which they perform the customization (e.g., “sortedness”), and the function parameters provided
by the algorithm to the event. Fig. 14 illustrates theon entry handler responsible for uncovering
the inconsistent predicate in Fig. 11. Note that this singleentry point applies to thelower bound ,
upper bound , equal range , andbinary search algorithms from the C++ standard library,
without requiring one to annotate the algorithms separately. Customizations ofon exit events are

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 23

template<typename ForwardIterator, class T, typename Com pare>
ForwardIterator
lower_bound(ForwardIterator first, ForwardIterator las t,

const T& value, Compare compare)
{

_STLlint::event<
__events::lower_bound,
ForwardIterator(ForwardIterator, ForwardIterator, con st T&, Compare)
> ep(first, last, value, compare);

ForwardIterator result;
// ...
return ep(result);

}

Figure 13. Skeletal implementation of thelower bound algorithm including STLlint’s annotation associating
the implementation with theLOWER BOUND concept.

similar, with one exception: the return value is available as a parameter to theon exit function
directly following the axis, to allow the handler to assert postconditions on the result.

STLlint’s events and event handlers provide a means to decouple algorithms from their pre- and
post-conditions effectively via algorithm concepts. However, this decoupling introduces additional
levels of abstraction that place semantic checks far from the algorithms whose preconditions they
verify, complicating the process of generating diagnostics relating directly to the algorithm invocation.
For instance, error messages that are written within event handlers refer to the parameters of the
algorithm concept they customize and not the arguments actually passed to the algorithm. For this
reason, the event dispatching mechanism constructs a mapping from the parameters of an algorithm
concept to the arguments of the concepts it refines; when a diagnostic is required, STLlint follows the
argument mappings in reverse to associate the parameters referenced within an event handler to the
actual arguments the user passed to a particular algorithm,resulting in diagnostics such as the one
presented in Sec. 5.

6. Related work

Engler presents the MAGIK [8] open compilation system that allows the programmer to write
dynamically-loaded modules that operate directly on the C compiler’s internal representation (IR).
These modules may inspect, transform, and even optimize theprogram during compilation, permitting
additional checking and optimization for software libraries. MAGIK is more extensive than STLlint
because it permits transformation of the program, but the direct interface to the compiler’s IR hampers
portability and does not scale well to more complex languages and libraries due to the greater variance
and complexity of the IR. Similarly, OpenC++ [45] implements a “meta object protocol” for C++,
permitting objects that exist only at compile time to directcompilation, and has been applied to the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

24 D. GREGOR AND S. SCHUPP

template<typename ForwardIterator, typename Compare>
void
on_entry(sorted_searching, sortedness, ForwardIterato r first,

ForwardIterator last, Compare comp)
{

semple_assert(sortedness::requires(first, last),
"sequence not sorted...");

semple_assert(sortedness::requires(first, last, comp) ,
"sequence sorted with different predicate...");

}

Figure 14. Implementation of theon entry event along the “sortedness” axis for algorithms modeling
the SORTEDSEARCHING concept. This function template verifies that all sorted searching algorithms receive

sequences sorted with the same ordering operationcomp.

checking and implementation of design patterns in C++ [46]. If one gives up static safety guarantees,
the specification of class invariants and pre- and post-conditions that Eiffel introduced ([47], also see
[48]), provides alternative means for (dynamically) checking safety, yet lacks the precision of control-
flow analysis that iterator-based programs often require.

The problem of iterator invalidation is as old as the conceptof an iterator itself, but is defined in
different ways for different languages. CLU [49], the language that introduced the term “iterator”, was
limited to a single iterator per loop and prohibits the modification of a collection while an iterator
is active. While these design decisions greatly improved the potential for static analysis on iterator
traversals, these limitations are overly restrictive (see, e.g., [50]). Similarly in the Java Collections
Framework (JCF) [26], where iterators are invalidated by any operation on the container that does not
occur through the iterator, thereby allowing the problem ofinvalidation to be reduced to a versioning
problem. The semantics of iterators in the C++ STL, in contrast, are more deeply tied to the underlying
data structures, and are only invalidated when the memory they reference may no longer be available:
for instance, avector iterator will be invalidated by an erasure from the container only if the iterator
references the erased element or any element after it whereas erasing from alist invalidates only
iterators referencing the element being erased. Dependingon the iterator semantics, the complexity
of the analysis varies. For the JCL, Ramalingam et al. describe a method of deriving program
analyses [7] suitable for verifying component-client conformance, which they apply to (what they call)
the Concurrent Modification Problem (CMP), i.e., the use of an iterator that references a container
that has been modified. They also show the need for deriving specialized analyses for problems such
as CMP, for which general static analyses are impractical for large programs. On the other hand, the
more-complex invalidation semantics of the C++ STL, and the ability of some STL iterators to move
in either direction (Bidirectional iterators) or an arbitrary number of steps (Random access iterators)
mandate that STLlint utilize a more expressive form for iterators than is needed for iterators in the Java
Collections Framework.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 25

7. Evaluation

We constructed a new test suite to evaluate STLlint, becauseno existing test suite exercised the unique
properties of high-level checking for the STL. Our test suite consists of roughly 110 tests, the vast
majority of which have been collected from the following sources:

• Accelerated C++[27]: This book teaches introductory C++ using STL. The example code
presented throughout the book therefore exhibits precisely the style of programming targeted
by STLlint, providing many negative tests (i.e., those without errors). Furthermore, the book
provides several examples of nearly-correct code that fails due to iterator invalidation; these
examples are included as positive tests that also provide motivation for STLlint.

• Effective STL[15]: This book describes various pitfalls with the use of STL. We have adapted
some of the examples that correspond to interesting properties checked by STLlint into both
positive and negative test cases.

• GNU libstdc++ test suite[51]: This test suite is meant to exercise the GNU implementation the
C++ standard library. As of version 3.4 of the GNU compiler, the test suite includes (negative)
tests for correctness of the implementation and (positive)tests that verify correct behavior of the
run-time checked version of the library. The tests relevantto the STL have been incorporated
into the STLlint test suite.

The STLlint static checker performs favorably, achieving a0.59% false positive rate on this test
suite. We define a false positive as any warning produced by STLlint where manual inspection of the
source code has concluded that the source code is, in fact, correct. We verified our findings with tests
on the complete source code from another STL reference [9], achieving a2.19% false positive rate.
Further inspection indicates that49% of these false positives were due to expectations on the input not
calculable by STLlint. For instance, a sample program mightcall the STLfind algorithm on a known
input and would then dereference the resulting iterator without checking that it is dereferenceable.
STLlint produces a false positive because it does not model the hard-coded input in its analysis. Another
25% of the false positives are due to the use of “lower-level” C++ constructs, such as C-style arrays
and string literals, which are not accurately modeled by STLlint. For instance, the length of a string
literal is lost when that string is passed to a function via a character pointer. The project web page [52]
gives a complete analysis of these false positives.

To assess the efficiency and scalability of STLlint, we focuson the time required to analyze the
programs within the STLlint test suite. We then compare thattime against the time required to parse
and type check the program, where a smaller ratio of analysistime to parsing/type checking time
indicates a more scalable analysis relative to program size. All data was gathered on a system using
an AMD AthlonXP 2500+ processor with 512 megabytes of RAM running under version 2.4.22 of the
Linux kernel. STLlint itself employs version 3.0.1 of the Edison C++ front end [21] and was compiled
with version 3.3.2 of the GNU C++ compiler [51] with a high optimization level (-03).

The histogram in Fig. 15(a) illustrates the analysis time required by examples in our test suite, most
of of which are analyzed in under a second. To scale these results by program size, Fig. 15(b) provides
a histogram of the ratios of analysis time to the time spent inthe front end. While the majority of the
test cases require less time to analyze than to parse and typecheck, there are a few notable exceptions
where the analysis runs ten times longer than the front end. We have observed that the analysis time

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

26 D. GREGOR AND S. SCHUPP

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

N
um

be
r

of
 te

st
 c

as
es

Analysis time (seconds)

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 te

st
 c

as
es

Ratio of analysis time to front end time

(b)

Figure 15. Histograms illustrating the analysis time (in seconds) required by STLlint and the ratio of analysis time
to front end time for our STLlint test suite

is proportionate to the number of integer comparisons performed by STLlint, which is not directly
correlated to program size: specifications of STLset and map insertion operations, for instance,
introduce many more integer comparisons than the corresponding operations in other data structures.
Not coincidentally,set andmap insertion operations also degrade precision in certain instances [32,
§8.4.1], resulting in several false positives within the STLlint test suite. Future work will focus on these
particular weaknesses and may result in improvements for both precision and performance.

8. Conclusion

Programmers benefit from the static checking tools that can diagnose program errors early in the
development cycle. For static checkers to be useful to the programmer, they must operate at or near the
same level of abstraction as the source code itself. We have presented the challenges of constructing a
static checker, STLlint, that performs checking at the abstraction level of the C++ standard library
and is suitable for the vast majority of examples in two introductory C++ textbooks [27, 9]. Our
experience has been that checking higher-level abstractions is more complex than checking lower-level
languages, as many important analyses—such as loop analysis—become drastically more complicated
when presented with additional layers of abstraction. We also found that we can counteract these
complicating factors by replacing abstractions with simpler models that reduce overall complexity.
We therefore assert that higher-level, library-centric analysis is markedly different from a lower-level,
language-based analysis, because the former requires one to embrace the abstractions crucial to the
programmer’s understanding of the problem domain.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 27

8.1. Availability

The Semple static analysis engine consists of approximately 15k lines of C++ source code, augmented
by the GiNaC symbolic computation framework [53], implementing all of the algorithms described
here and in our companion paper [40]. It provides support forthe analysis techniques we have needed
in STLlint, through a generalized symbolic execution framework. The static analysis engine, including
tools to manipulate programs written in the Semple language, is available for download under an open-
source license [54].

The high-level specifications for the C++ Standard Template Library, which comprise roughly 6k
lines of C++ code, describe the semantic behavior of all containers, iterators, and algorithms within
the STL, as specified in the C++ Standard [6]. These specifications mimic precisely the interfaces of
the STL components they replace, and employ a small set of primitives provided by the C++ parser to
support the introduction of Semple constructs not otherwise expressible in C++. As with the Semple
analysis engine, these specifications are freely available[52].

The link between the Semple static analysis engine and the high-level STL specifications is the
transformation from the internal representation of the Edison C++ front end [21] to the Semple
intermediate representation. While the front end itself isproprietary, the corresponding module, of
approximately 3.5k lines of C++ code, can be replaced with a similar transformation for a different
compiler’s front end with only a moderate amount of effort. For users interested in using STLlint as-is,
we have provided an online system where users can submit C++ source code and receive STLlint’s
diagnostics [52].

ACKNOWLEDGEMENTS

We thank the Edison compiler group for making their front-end available, thus saving us the trouble of parsing C++
ourselves. Two anonymous reviewers made helpful suggestions regarding the empirical part and the presentation
of the paper.

REFERENCES

1. S. C. Johnson. Lint, a C program checker. Technical Report65, AT&T Bell Laboratories, 1978.
2. David Evans. Annotation-assisted lightweight static checking. InFirst International Workshop on Automated Program

Analysis, Testing and Verification, February 2000.
3. David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A tool for using specifications to check code. In

Proceedings of the SIGSOFT Symposium on the Foundations of Software Engineering, pages 87–96. ACM, 1994.
4. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James Saxe, and Raymie Stata. Extended

static checking for Java. InProceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 234–241, 2002.

5. Ken Arnold and James Gosling.The Java Programming Language. Addison-Wesley, Reading, MA, 1998.
6. ANSI-ISO-IEC. C++ Standard, ISO/IEC 14882:1998, ANSI standards for information technology edition, 1998.
7. G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving specialized program analyses for certifying

component-client conformance. InProceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 83–94, June 2002.

8. Dawson R. Engler. Interface compilation: Steps toward compiling program interfaces as languages.Software Engineering,
25(3):387–400, 1999.

9. David R. Musser, Gillmer J. Derge, and Atul Saini.STL Tutorial and Reference Guide. C++ Programming with the
Standard Template Library, Second Edition. Addison-Wesley, 2001.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

28 D. GREGOR AND S. SCHUPP

10. Alexander A. Stepanov and Meng Lee. The Standard Template Library. Technical Report HPL-95-11, Hewlett Packard,
November 1995.

11. David Musser and Alexander Stepanov. Algorithm-oriented generic libraries. Software–Practice and Experience,
27(7):623–642, July 1994.

12. Matthew H. Austern.Generic Programming and the STL. Addison-Wesley, 1999.
13. David Musser and Alexander Stepanov.The ADA Generic Library: Linear List Processing Packages. Springer-Verlag,

1989.
14. Douglas Gregor and Sibylle Schupp. Making the usage of STL safe. In Jeremy Gibbons and Johan Jeuring, editors,

Generic Programming, IFIP TC2/WG2.1 Working Conference onGeneric Programming, volume 243 ofIFIP Conference
Proceedings, pages 127–140. Kluwer, July 2003.

15. Scott Meyers.Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Addison-Wesley,
2001.

16. Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or acyclic graph? A shape analysis for heap-directed pointers in
C. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
1–15, January 1996.

17. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solvingshape-analysis problems in languages with destructive updatin
g. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
16–31, January 1996.

18. Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric polymorphism in C++. InProceedings of
the First Workshop on C++ Template Programming, October 2000.

19. Jeremiah Willcock, Jeremy Siek, and Andrew Lumsdaine. Caramel: A concept representation system for generic
programming. InProceedings of the Second Workshop on C++ Template Programming, October 2001.

20. Leor Zolman. An STL error message decryptor for Visual C++. C/C++ User’s Journal, 19(7):24–30, July 2001.
21. Edison Design Group C++ front end.http://www.edg.com/ .
22. Standard Template Library programmer’s guide.http://www.sgi.com/tech/stl/ , 2003.
23. Sergio Antoy and Dick Hamlet. Automatically checking animplementation against its formal specification.Transactions

on Software Engineering, 26(1):55–69, January 2000.
24. Gary T. Leavens. An overview of Larch/C++: Behavioral specifications for C++ modules. In Haim Kilov and William

Harvey, editors,Specification of Behavioral Semantics in Object-Oriented Information Modeling, pages 121–142. Kluwer
Academic Publishers, 1996.

25. Changqing Wang and David R. Musser. Dynamic verificationof C++ generic algorithms. Software Engineering,
23(5):314–323, 1997.

26. Patrick Chan, Douglas Kramer, and Rosanna Lee.The Java Class Libraries: Supplement for the Java 2 Platform. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 1999.

27. Andrew Koenig and Barbara E. Moo.Accelerated C++. Addison-Wesley, 2000.
28. François Bourdoncle. Efficient chaotic iteration strategies with widenings.Lecture Notes in Computer Science, 735:128–

142, 1993.
29. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. InProceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 238–252, 1977.

30. J. C. King. Symbolic execution and program testing.Communications of the ACM, 19(7):385–394, July 1976.
31. Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In Steven S. Muchnick and Neil D.

Jones, editors,Program Flow Analysis: Theory and Applications, pages 189–233. Prentice Hall, Englewood Cliffs, New
Jersey, 1981.

32. Douglas Gregor.High-Level Static Analysis for Generic Libraries. PhD thesis, Rensselaer Polytechnic Institute, April
2004.

33. William H. Harrison. Compiler analysis of the value ranges for variables.IEEE Transactions on Software Engineering,
SE-3(3):243–250, May 1977.

34. William Blume and Rudolf Eigenmann. Symbolic range propagation. InProceedings of the 9th International Parallel
Processing Symposium, pages 357–363, April 1995.

35. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1986.
36. Michael Wolfe. Beyond induction variables. InProceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 162–174, 1992.
37. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs. InProceedings of the ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 1–11, 1988.
38. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computations. InProceedings of the

ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages (POPL), pages 12–27, 1988.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 29

39. Mohammad R. Haghighat and Constantine D. Polychronopoulos. Symbolic analysis for parallelizing compilers.ACM
Transactions on Programming Languages and Systems, 18(4):477–518, July 1996.

40. Douglas Gregor and Sibylle Schupp. Retaining path-sensitive relations across control-flow merges. Technical Report
03-15, Rensselaer Polytechnic Institute, November 2003.

41. Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural points-to analysis in the
presence of function pointers. InProceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 242–256, 1994.

42. Sibylle Schupp, Douglas Gregor, Brian Osman, David R. Musser, Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine.
Concept-based component libraries and optimizing compilers. Technical report, RPI Computer Science Department
Technical Report 02-02, 2002.

43. Rudolf Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In Ivan Rival, editor,Ordered
Sets, pages 445–470. NATO Advanced Study Institute, September 1981.

44. Todd L. Veldhuizen and Dennis Gannon. Active libraries:Rethinking the roles of compilers and libraries. InProceedings
of the SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and Engineering Computing (OO’98),
1998.

45. Shigeru Chiba. A metaobject protocol for C++. InProceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 285–299, October 1995.

46. Michiaki Tatsubori and Shigeru Chiba. Programming support of design patterns with compile-time reflection. In
Proceedings of OOPSLA’98 Workshop on Reflective Programming in C++ and Java, pages 56–60, 1998.

47. Betrand Meyer.Object-oriented software construction. Prentice Hall, 2nd edition, 1997.
48. R. Kramer. iContract - the Java(tm) design by contract(tm) tool. In Proceedings of the Technology of Object-Oriented

Languages and Systems, page 295. IEEE Computer Society, 1998.
49. Barbara Liskov.CLU Reference Manual. Springer-Verlag New York, Inc., 1983.
50. Stephan Murer, Stephen Omohundro, David Stoutamire, and Clemens Szyperski. Iteration abstraction in Sather.ACM

Transactions on Programming Languages and Systems, 18(1):1–15, 1996.
51. Free Software Foundation. GNU compiler collection.http://www.gnu.org/software/gcc/ , 2003.
52. STLlint: Static checking for the C++ STL.http://www.cs.rpi.edu/˜gregod/STLlint .
53. Christian Bauer, Alexander Frink, and Richard Kreckel.Introduction to the GiNaC framework for symbolic computation

within the C++ programming language.Journal of Symbolic Computation, 33(1):1–12, 2002.
54. Semple static analysis engine.http://www.cs.rpi.edu/˜gregod/Semple .

APPENDIX
A. Example Iterator Specification
template<typename Iterator, typename Sequence>

struct safe_iterator : iterator_traits<Iterator>
{

safe_iterator(unsigned int pos, const Sequence* seq)
: sequence_(seq), version_(seq->version_), position_(p os) { }

safe_iterator(const safe_iterator& other)
: sequence_(other.seq), version_(other.version_), posi tion_(other.position_)

{ semple_assert(!singular(), "attempt to copy a singular i terator"); }

typename safe_iterator::reference operator*() const {
semple_assert(deferenceable(),

"attempt to deference an iterator that is not dereferenceab le");
return sequence_->data_;

}

safe_iterator& operator++() {
semple_assert(incrementable(),

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

30 D. GREGOR AND S. SCHUPP

"attempt to increment an iterator that is not incrementable ");
++position_;
return *this;

}

bool operator==(const safe_iterator& other) const {
semple_assert(!singular() && !other.singular(),

"attempt to compare a singular iterator");
return position_ == other.position_;

}

bool operator!=(const safe_iterator& other) const { retur n !(*this == other); }

bool singular() const { return !sequence_ || sequence_->ve rsion_ != version_; }

bool dereferenceable() const
{ return (sequence_ && position_ >= 0 && position_ < sequence _->size_); }

bool past_the_end() const { return position_ >= sequence_- >size_; }

bool incrementable() const { return dereferenceable(); }

const Sequence* sequence_;
unsigned int version_;
unsigned int position_;

};

B. Example Vector Specification

template<typename T>
class vector
{
public:

typedef safe_iterator<T*, vector<T> > iterator;

vector() : size_(0), version_(1), min_capacity_(0) { }
iterator begin() { return iterator(0, this); }
iterator end() { return iterator(size_, this); }

unsigned int capacity() const {
unsigned int x; // uninitialized
semple_assume(x >= min_capacity_);
return x;

}

void push_back(const T& x) {
if (size_ == 0 || random()) data_ = x;
if (size_ >= min_capacity_) { ++version_; ++min_capacity_ ; }
++size_;

}

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

STLLINT 31

unsigned int size_;
unsigned int version_;
unsigned int min_capacity_;
T data_;

};

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;1:1–1
Prepared usingspeauth.cls

