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Abstract sary properties. Although a statically typed language must therefore

provide type parameterization (“generics”) to support generic pro-

Conceptsare an essential language feature for generic program- . . - .
gramming, generic programming as a development methodology is

ming in the large. Concepts allow for succinct expression of con- h richer th imoly ¢ terizati
straints on type parameters of generic algorithms, enable systematidnuz frlcder an Is_lmp y type pa_l(rjamel erization. ‘ .
organization of problem domain abstractions, and make generic al- undamental Issue in providing language support for generic

gorithms easier to use. In this paper we present the design of atypep!'ogramming is how to express the set of _admissible types for a
system and semantics for concepts that is suitable for non-type-9Iven algorithm, or equivalently, how to design a type system that

inferencing languages. Our design shares much in common with €@0 check calls to a generic (type-parameterized) algorithm and

the type classes of Haskell, though our primary influence is from Separately check the implementation of the algorithm. An impor-
best practices in the+€community, where concepts are used to tant complementary issue is providing the run-time mechanism by

document type requirements for templates in generic libraries. Con- Which user-defined operations, such as multiplication figint
cepts include a novel combination of associated types and same.YP€: are connected with uses of operations inside a generic algo-

type constraints that do not appear in type classes, but that are sim/1thm, such as acall to¢'x x" in an algorithm parameterized on the
ilar to nested types and type sharing in ML. number type. In toda_ys programming languages there are four ap-
proaches to addressing these issues: subtype bounds, type classes,

Categories and Subject DescriptorsD.3.3 [Programming Langua-  structural matching, and by-name operation lookup. We describe
ged: Language Constructs and Features—abstract data types, coneach of these approaches below and show examples in Figure 1.

straints, polymorphism; D.2.13pftware EngineerifjgReusable Subtype Bounds(Figure 1 (a)) In object-oriented languages,
Software—reusable libraries; D.3.Prbgramming Languagés constraints on type parameters are typically expressed via subtyp-
Language Classifications—multiparadigm languages ing [6,7,47]. When a generic function constrains a type parameter

to be a subtype of an interface, objects passed to the generic func-
tion must carry along the necessary operations in a virtual table.
Keywords generic programming, polymorphism+CStandard This approach is used in Eiffel [35] and in the generics extensions
ML, Haskell to Java [4] and C# [27, 36].
Type ClasseqFigure 1 (b)) In Haskell, type classes are used
1. Introduction to describe the set_of adr_nissible types to a ge_neric function [63_].
A type class contains a list of required operations, and a type is
In the 1980’s Musser and Stepanov developed a methodology for declared to belong to a type class through an instance declaration
creating highly reusable algorithm libraries [25, 39], using the term that provides implementations of the required operations. If a type
“generic programming” for their work. They applied this method- parameter to a generic function is constrained to be an instance of
ology to the construction of sequence and graph algorithms in Ada, a type class, operations from the appropriate instance declaration
C, and Scheme [28, 40, 58]. In the early 1990's they applied their are implicitly passed into the generic function at a call site. A type
work to G+ and took advantage of templates [60] to construct the class is similar to an object-oriented interface in that it specifies a
Standard Template Library [59] (STL). The STL became part of set of required operations. However, unlike interfaces, type classes
the G+ Standard [18], which brought generic programming into  are not themselves types (e.g., one cannot declare a variable with a
the mainstream. Since then, generic programming has been suctype class as its type).
cessfully applied to the creation of generic libraries for numerous Structural Matching (Figure 1 (c)) Many languages take a
problem domains [2, 29, 49,53, 56, 62, 64]. structural approach to expressing constraints: the name of an in-
A distinguishing characteristic of generic programming is that terface does not matter (as it does for a type class), only the content
generic algorithms are expressed in terms of properties of types, of the interface matters (which operations must be provided). This
rather than in terms of a particular type. A generic algorithm can be is the case for CLU type sets [32, 33], ML signatures [37], and
used (more importantly, reused) with any type that has the neces-O’Caml object types [31]. In CLU, polymorphic functions are ex-
plicitly instantiated on particular types, and the corresponding clus-
ter definitions for those types must supply the operations required
in thewhere clause. In ML, a functor is explicitly instantiated with
a structure, and the structure must match the required signature. In
Permission to make digital or hard copies of all or part of this work for personal or O’Caml, the type of the object passed into a polymorphic function

classroom use is granted without fee provided that copies are not made or distributedmyst structurally match the parameter’s object type, and if success-
for profit or commercial advantage and that copies bear this notice and the full citation ful the polymorphic function is implicitly instantiated
on the first page. To copy otherwise, to republish, to post on servers or to redistribute .

General Terms Languages, Design

to lists, requires prior specific permission and/or a fee. By-Name Operation Lookup (Figure 1 (d)) In Cforall [10,
PLDI’05, June 1215, 2005, Chicago, lllinois, USA. 11] and G-, the operations used in a generic function are not
Copyright(©) 2005 ACM 1-59593-080-9/05/0006. . . $5.00. necessarily class methods, but can be free-standing functions. In
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public interface Number<U> {
public U mult(U other);

public class Biglnt implements Number<BigInt> {
public Biglnt mult(Biglnt x) { ... }

public class Square {
<T extends Number<T>>
T square(T x) { return x.mult(x); }

public static void main(String|[] args) {
square(BiglInt(4));

(a) SubtypingBiglint is a subtype of th&lumber
interface (Java).

class Number u where
mult :: u —u —u

square :: Number t =t —t

square x = mult x x

instance Number Int where
mult = ()

main = square (4::Int)

(b) Type classes:int

is an instance of the
Number type class
(Haskell).

number = { u | u has mul: proctype (u,u) returns (u)
signals (underflow,overflow) }

square = proc[t:type](a: t) returns (t)
where t in number
return (t$mul(a, a))
end square

start_up = proc()
out:stream := stream$primary_output()
stream$putl(out,int$unparse(square[int](4)))
end start_up

(c) Structural matching: typent has static methods
for all operations in theumber type set (CLU).

spec number(type U) {
U mult(U, U);

}i
forall(type T | number(T))
T square(T x) {
return mult(x,x);
int mult(int x, int'y) { return x x y; }
int main() {

return square(4);

(d) By-name operation lookup: a
function named “mult” is defined

for typeint (Cforall).

Figure 1. Some approaches to realizing generic programming.

Cforall, constraints are specified in terms of function signatures includes concepts. Our design of Feflects a decade of experi-
and in G+ they are specified in the accompanying documentation ence in generic library construction in*CTechnically, System &
in terms of valid expressions. In either case, when a call is made tois unique because 1) it provides scoped instance declarations, 2)
a generic function, the compiler tries to locate function declarations concepts integrate nested types and type sharing in a type class-
with the appropriate name and signature. like feature, and 3) it explores the design space of type classes for
In [14] we implemented a generic graph library (based on the non-type-inferencing languages.
Boost Graph Library [54]) using programming languages in each Road map. Concepts have a number of similarities to the type
of the above four categories. We carefully evaluated each languageclasses of Haskell [17,63] an&fhas a number of similarities (and
with respect to support for generic programming and found that differences) with existing work, which we discuss in Section 2.
although these approaches were able to support generic programwe split our presentation of Finto two parts to simplify the
ming to varying degrees, none was ideal. The primary limitation presentation and the technical development. The first part adds
was that existing languages do not fully capture the essential fea-concepts, models, anghere clauses to System F. We informally
ture of generic programming, nametgncepts introduce the syntax and semantics in Section 3 and present some
In the parlance of generic programming, concepts are used toexamples that demonstrate its characteristics. We provide a formal
express sets of admissible types to an algorithm. More specifically, semantics in Section 4 with a translation frorff Bo System F
a concept is a list of requirements which denotes a set of conform- that preserves typing (similar to the translation of type classes
ing types. A function specified in terms of concepts can be used to System F in [17]). The second part of our presentation adds
with any types satisfying the requirements given by those concepts.support for associated types, which turns out to be a non-trivial
Concepts as specifications were formalized in the generic program-addition to the language. In Section 5 we discuss the motivation
ming literature [23, 24, 65], but are more widely known through for associated types and then extend the syntaxfaRd the
their use in the documentation of*@emplate libraries [3,57]. translation to System F to handle associated types. The language
Contributions. The current practice of generic programming FS omits a number of important but less essential features for
is impeded because no existing language provides all the featuresyeneric programming due to the scope (and page limit) of this

and abstractions needed to support generic programming. In thispaper. We briefly describe those features in Section 6 where we
paper we capture the essence of the necessary language abstragiso discuss directions for future work.

tions in a small formal system. Our primary contribution is System
FS, a simple language based on System F [15, 52] that explicitly
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2. Related Work Figure 2. Types and Terms of System F

Of existing language features, Haskell's type classes are the most

similar to concepts. They are based purely on parametric polymor- s, t € Type Variables

phism, as are concepts. A fundamental difference between our ap-  z,y,d € Term Variables

proach and that of type classes is that we target languages without n €N

Hindley-Milner style type inference. This gives our design more S,oyT,vi=t | T o7 | Tx - xT|Vt. T
freedom in other aspects. For example, fn f&vo concepts may ! s=a | f(f) | \gT7. f | AL f | f[7]
share the same member name (as do classes in object-oriented lan- | letz=finf | (f,....,f) | nthfn

guages) whereas in Haskell two type classes in the same module
may not. In addition, our design is based on experience in the
field of generic library construction. One of the primary lessons
learned from that experience is the need for modularity, especially
for good scoping rules. As a result, concepts and model§ aré

expressions, not declarations (as are type classes and instances In let sum —

Figure 3. Higher Order Sum in System F

Haskell), and they obey the usual lexical scoping rules. Difficulties (At.
arising from this difference are described in Section 3.2. fix (A sum : fn(list t, fn(t,t)—t, t)—t.
Another lesson learned was the importance of language support Als : list t, add : fn(t,t)—t, zero : t.
for associated types. In our study [14] we found that without asso- if null[t](Is) then zero
ciated types, interfaces of generic algorithms become cluttered with else add(car[t](ls), sum(cdr[t](ls), add, zero)))) in

extra type parameters to the point of causing scalability problems, ) ) . )
and internal helper types of abstract data types must be exposed, et Is = cons[int](1, cons[int](2, nil[int])) in
thereby breaking encapsulation. In response to [14], Chakraefarty sum(int](ls, iadd, 0)

al proposed an extension to Haskell for associating algebraic datal
types with type classes [8]. Our work differs from theirs in three
ways. First, our associated types are not algebraic data types but

simply requirements for a type definition, which is all that is nec- ;..\, yate function in Section 5, especially the return type, us-
essary for generic algorithms. The second difference is that we in- i, geqia's nested abstract types. Scalis: construct is similar
fkllu?e same-type tcc:jnftramts, which arel vital foggetnerlcsal_lgﬁ_r |éhms to model in FS: it allows for retroactive conformance of a type to

at use associated types, as we explain in Section 5. Third, We,, iniarface. However in Scala, member operations must have the

|nctlude_ contcefit |nkhe”r|t9agcie (;%fmement) in ?ﬁ‘{ formalism. Earlulsr odeling type as a parameter, so operations sudteasity_elt of
extensions to Haskell [9,21] address some of the same issues solve eMonoid concept (see Section 3) can not be expressed.

by associated types, but they did not address the problems of clutter O'Caml's object types [31,51] and polymorphism over row vari-

and encapsulation. ables provide fairly good support for generic programming. How-
o rough analogy can be made between Mrl%&gnatures [371and e 0'Caml lacks support for associated types so it too suffers
F* concepts, and between ML structures and models. How- g0 clutter due to extra type parameters. PolyTOIL [5], with its
ever, there are significant differences. First, functors are module- ,otch-bound polymorphism, provides similar support for generic
level constructs and therefore provide a more coarse-grained meCh'programming as O'Caml but’also lacks associated types.
anism for parameterization than do generic functions. More im- Type sets in CLU [32, 33] are analogous to conceptsindnd
portantly, functors .require explicit instaptiation with a structure, ¢ olirse thavhere claus;a of € was inspired by by CLU’svhere
.thergby maklng their use more heavyweight than generic functions clause. Type sets differ from concepts in that they rely on structural
In F~, which perfo”‘? automatic lookup of the requwed.rréjodel or matching whereas concepts use nominal conformance established
instance. The associated types and same-type constraifitsaeF o 1 el definition. Also, I provides a means for composing
roughly equivalent to types nested in ML signatures and to type concepts via refinement whereas CLU does not provide a means

sharing respectively. We reuse some implementation technique : : :
from ML such as a union/find-based algorithm for deciding type Sf;;rsc(:)c():rr;?gjltr;%;yspe sets. Finally, CLU does not provide support for

equality [34]. There are numerous other languages with parame-

tset:LZ(igrQOdMES [1,16,50] that require explicit instantiation with a 3 G = System F + Concepts
In some sense, our work combines some of the best features ofSystem F, the polymorphic lambda calculus, is the prototypical tool

Haskell and ML relative to generic programming. However, there for studying type parameterization [15, 52]. The syntax of System

are non-trivial details to combining these features and these detailsF is shown in Figure 2. We omit the type rules for System F as they

are discussed in depth in this paper. are standard. The variabferanges over System F expressions; we
As discussed in the introduction, many object-oriented lan- reserve: for System € expressions. We use an over-bar, such,as

guages choose to express bounds on type parameters via subtypo denote repetitionty, . .., 7,. We use mult-parameter functions

ing [4,7,26,27,35,36]. For a detailed account of the problems we and type abstractions in System F to ease the translation ffom F

encountered with the subtype-based approach we refer the readefo F. We also include &t expression with the following type rule.

to our study [14]. One of the problems was the inability to group SEfiio Saiobforr

constraints on several types. (LET) .
Scala [44, 45] and gbeta [12, 13] have some support for associ- Yhletz=/fiinfa:r

ated types in the form of object-dependent types. This differs from It is possible to write generic algorithms in System F, as is

F<, where types are associated with a model which is a static entity. demonstrated in Figure 3, which implements a polymorghia

A model could be represented with an object in Scala or gbeta, how- function. The function is written in higher-order style, passing the

ever F¥ provides the convenience that models are implicitly passed type-specificadd andzero as parameters. However, this approach

to generic functions. Further, we found it difficult to express the does not scale: algorithms of any interest typically require dozens

of type-specific operations.
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Figure 4. Types and Terms of & system checks the body of the model against the concept defini-
tion to ensure all required operations are provided and that there
are model declarations in scope for each refinement.

c € Concept Names
st € Type Variables model Semigroup<int> {
x,y,z € Term Variables binary_op = iadd;
, w=t | fn (T Vt where c<o>.
5 T e || e(g-)|_/\)y7— ‘T e v o T model Monoid<int> {
- _ identity_elt = 0;
| At where c<a>. e | €[T] ) identity-€
| concept c<t>{refinesc<o>; T:7;}ine )
| model c<7> {T=w¢;}ine A model can be found via the concept name and type, and
| e<F>.x members of the model can be extracted with the dot operator. For

example, the following would return thiedd function.

Monoid<int>.binary_op

. With the Monoid concept defined, we are ready to write a
3.1 Adding Concepts genericsum function. The function has been generalized to work
FC adds support for generic programming through the addition of with any type that has an associative binary operation with an iden-
concepts, models, and where clauses to System Fedrfwept fea- tity element (no longer necessarily addition), so a more appropriate
ture is a mechanism for grouping and organizing requirements. The name for this function iaccumulate. As in System F, type param-
model feature establishes that a type meets the requirements of aeterization in E is provided by the\ expression. £ adds avhere
concept. Thavhere clause, which is written in terms of concepts, clause to the\ expression for listing requirements.
constrains how a polymorphic function may be instantiated and du-
ally introduces models that may be used inside a polymorphic func-
tion. Figure 4 shows the abstract syntax of the basic formulation of ~ The concepts, models, andiere clauses collaborate to provide
FS. Associated types and same-type constraints are addétito F a mechanism for implicitly passing operations into a generic func-
Section 5. tion. As in System F, a generic function is instantiated by providing
To illustrate the features of § we evolve thesum function. type arguments for each type parameter.
To be generic, theaum function should work for any element
type that supports addition, so we will capture this requirement
in a concept. Mathematicians already have a name for slightly In System F, instantiation substituties for t in the body of theA\.
more generalized conceptSamigroup is some type together with  In F, instantiation also involves the following steps:
an associative binary operation. I¥ Fthe Semigroup concept is
defined as follows.

let accumulate = (A t where Monoid<t>. /«xbody+/)

accumulate(int]

1. int is substituted fot in thewhere clause.

) 2. For each requirement in thehere clause, the lexical scope of
concept Semigroup<t> { the instantiation is searched for a matching model declaration.

binary-op : fn(t,t)—t; 3. The models are implicitly passed into the generic function.

Consider the body of theccumulate function listed below. The
model requirements in thehere clause serve as proxies for actual
model declarations. Thus, the bodyaetumulate is type-checked
as if there were a model declaratiamdel Monoid<t> in the
enclosing scope. The dot operator is used inside the body to access
the binary operator and identity element of tlenoid.

The genericsum function requires more than just addition; it
also requires a zero object of the appropriate type. Again, mathe-
maticians have a name for this conceptlanoid, which is aSemi-
group with an identity element. In generic programming terminol-
ogy, we say thaMonoid is arefinemenof Semigroup and define
Monoid in F& accordingly.
let accumulate =

(A t where Monoid<t>.
fix (A accum : fn(list t)— t.

concept Monoid<t> {
refines Semigroup<t>;

identity_elt : t; Als - list t.
3 let binary_op = Monoid<t>>.binary_op in
Note that the mathematical definition of monoid is quite general— let identity_elt = Monoid<t>.identity_elt in
it only requires a binary operation and an identity element with if null[t](Is) then identity_elt
respect to that operation. That operation need not be addition and else binary_op(car(t](Is), accum(cdr(t](Is)))))
the identity element need not be zero. The integers with multipli- It would be more convenient to writeinary_op instead of the

cation as the binary operation and one as the identity element alsoexplicit member acces#flonoid<t>.binary_op. However, such a
form a monoid. To completely reflect the mathematical definition statement could be ambiguous without the incorporation of over-
of a monoid, thedentity_elt must satisfy the following axioms for loading. For example, suppose that a generic function has two type
any objectx of typet. Unfortunately, expressing this requirement parameterss andt, and requires each to beMonoid. Then a
is presently outside the scope of the fype system. call to binary_op might refer to eitheMonoid<s>.binary_op or
Monoid<t>.binary_op. While the convenience of function over-
loading is important, we did not wish to complicat€ Rith this

A particular type, such ast, is said tomodela concept if it additional feature. We discuss future work on function overloading
satisfies all of the requirements in the concept. f Bn explicit in Section 6.
declaration is used to introduce a model of a concept (correspond-  The complete program for this example is in Figure 5. As with
ing to an instance declaration in Haskell). The following declares System F, F is an expression-oriented programming language.
int to be a model ofemigroup andMonoid, using integer addition The concept and model declarations are likéet: they add to the
for the binary operation and for the identity element. The type lexical environment for the enclosed expression (aftefrthe

binary_op(identity_elt, x) = x = binary_op(x, identity_elt)
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Figure 5. Generic Accumulate

Figure 6. Intentionally Overlapping Models

concept Semigroup<t> {
binary_op : fn(t,t)—t;

}in

concept Monoid<t> {
refines Semigroup<t>;
identity_elt : t;

}in

let accumulate =
(A t where Monoid<t>.
fix (A accum : fn(list t)— t.
Als : list t.
let binary_op = Monoid<t>.binary_op in
let identity_elt = Monoid<t>>.identity_elt in
if null[t](Is) then identity_elt
else binary_op(car[t](Is), accum(cdr|t](Is))))) in

model Semigroup<int> {
binary_op = iadd;

}in

model Monoid<int> {
identity_elt = 0;

}in

let Is = cons[int](1, cons[int](2, nil[int])) in
accumulate[int](Is)

3.2 Lexically Scoped Models and Overlapping

The lexical scoping of models declarations is an important feature
of F¢, and one that distinguishes it from Haskell. We illustrate this
distinction with an example. There are multiple ways for the set of
integers to modeMonoid besides addition with the zero identity
element. For example, in“; the Monoid consisting of integers
with multiplication for the binary operation aridfor the identity
element would be declared as follows.

model Semigroup<int> {
binary_op = imult;

model Monoid<int> {
identity_elt = 1,
}

Borrowing from Haskell terminology, this creates overlapping
model declarations, since there are now two models declarations
for the Semigroup<int> and Monoid<int> concepts. Overlap-
ping model declarations are problematic since they introduce ambi-
guity: whenaccumulate is instantiated, which model (with its cor-
responding binary operation and identity element) should be used?

In F€, overlapping models declarations can coexist so long

as they appear in separate lexical scopes. In Figure 6 we create

sum and product functions by instantiatingitccumulate in the
presence of different models declarations. This example would not
type check in Haskell, even if the two instance declarations were

let sum =
model Semigroup<int> {
binary_op = iadd;
}in
model Monoid<int> {
identity_elt = 0;
} in accumulate]int] in

let product =
model Semigroup<int> {
binary_op = imult;
}in
model Monoid<int> {
identity_elt = 1;
} in accumulatefint] in

let Is = cons|int](1, cons[int](2, nil[int])) in
(sum(ls), product(ls))

Semigroup<int>
iadd

Monoid<int>

Figure 7. Dictionaries forSemigroup<int> andMonoid<int>.

type safety. We show that the translation froffi B System F
preserves typing, which together with the fact that System F is
type safe [48], ensures the type safety 5f Fhe main idea behind

the translation is to represent models with dictionaries that map
member names to values, and to pass these dictionaries as extra
arguments to generic functions. Here, we use tuples to represent
dictionaries. Thus, the model declarations f#migroup<int>

and Monoid<int> translate to a pair ofet expressions that bind
freshly generated dictionary names to the dictionaries (tuples) for
the models. We show a diagram of the dictionary representation of
these models in Figure 7 and we show the translation to System F
below.

model Semigroup<int> {
binary_op = iadd;

}in

model Monoid<int> {
identity_elt = 0;

}in /x rest x/

_—

let Semigroup-61 = (iadd) in
let Monoid_67 = (Semigroup_61,0) in /x rest */

to be placed in different modules, because instance declarationsThe accumulate function is translated by removing thehere

implicitly leak out of a module when anything in the module is
used by another module.

4. Translation of F¢ to System F

We describe a translation fronf'fto System F similar to the type-
directed translation of Haskell type classes presented in [17]. The
translation described here is intentionally simple; its purpose is
to communicate the semantics of Fand to aid in the proof of

PLDI'05,

clause and wrapping the body in\aexpression with a parameter
for each model requirement in thehere clause.

let accumulate = (A t where Monoid<t>. /*bodyx /)
—
let accumulate =

(A t. (A Monoid-18:(fn(t,t)—t)xt. /x body */)

The accumulate function is now curried, first taking a dictionary
argument and then taking the normal arguments.
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accumulate[int](Is) Figure 8. Well-formedness of £ types and translation to System

= F types. Formation of dictionary types.
((accumulate[int])(Monoid_67))(ls) [

In the body ofaccumulate there are model member accesses. These

are translated into tuple member accesses.

tel
let binary_op = Monoid<t>.binary_op in (TYVAR)m
let identity_elt = Monoid<t>.identity_elt in
=
let binary_op = (nth (nth Monoid_18 0) 0) in TEo~o TET~71
let identity_elt = (nth Monoid_18 1) in (TyABS) — —

fng -7~ fno’ — 7'
The formal translation rules are in Figure 9. We wifite- o]

for the capture avoiding substitution ef for ¢ in 7. We write ;= w ——— - , ,

[t 7|7 for simultaneous substitution. The functiBfT'V returns (TYTABS) (I, 8) =b"(e<p>, (I,1)) T Sl

the set of free type variables afV returns the concept names I+ VE where c<p>. 7 ~ Vt. fnd — 7'

occurring in thewhere clauses within a type. We writéistinct ¢

to mean that each item in the list appears at most once. We subscript

a nested tuple type with a non-empty sequence of natural numbers

to mean the following:

(Tlx...XTk)i:Ti . . L
RN Figure 10. Well-formed F¥ environment that is in correspondence
(T X )i = (7i) with a System F environment.
The environment™ consists of four parts: 1) the usual type

assignment for variables, 2) the set of type variables currently in

scope, 3) information about concepts and their corresponding dic- I~ 2
tionary types, and 4) information about models, including the iden- T~ Tk1~~q [~
tifier and path to the corresponding dictionary in the translation. 0~ 0 Tziro Szt L.t~ 5,1
The (MEm) rule uses the auxiliary functiob(c,p,7,T) to ’ ’
obtain a set of concept members together with their their types and
the paths (sequences of natural numbers) to the members through r~x (-0 =07, —,—,T)
the dictionary. A path instead of a single index is necessary because T, (model c<7> — (d,[])) ~ =,d : 6
dictionaries may be nested due to concept refinement. ’ ’
o(c,p,m,I") = Y% 0<lna d:6e% (= 0x) =b"(c,7 —,—,T)
M:=0 [ocr dn S
fori =0,...,[c| -1 T, (model c<7> — (d, 7)) ~
M := M Ub(c;, i 7o, (7,4), 1)
fori=0,....[z] -1 _ [~% (I'0)=b"(C<r>,(0,0) I'kg~o
retujt‘{l].\/[ MUz : ([fr=plos, (m le] + )} T, (concept c<#>{refines /' <7>; T70;} > §'Qa’) ~ ¥

whereconcept c<t>{refines o<p> T g;}—d6€el

The (TABS) rule uses the auxiliary functidrt’ to collect proxy

model definitions from thewhere clause of a type abstraction 77§

and also computes the dictionary type for each requirement. The 7o ?@E’Hﬁ}ﬁ

functionb™, defined below, is applied to each concept requirement. [ :=T, (model c<p> i (d, 7))

w — return(T", 7

o ([.1) = (0.) e refines T 7} s

b ((e<p>, d<p'>),T) = whereconcept c<t>{refines ¢’<p’>; T:0;}+— 5 €l
generate f[f557 Figure 8 defines the translation fronT Bypes to System F types.
(I',0) :=b5"(c,p,d, [, T)_ We now come to our main result for this section: translation
(T,0") :=b¥ (/< [t—p]p’>,T) produces well typed terms of System F, or more preciselyHfe :
return(T, (6,6")) T ~» fand¥ is a System F environment corresponding tahen

there exists some type such thats - f : 7’. Figure 10 defines
what we mean by correspondence between@evironment and
The functionb™(c, p,d,n,T') collects the model definitions  System F environment.

whereconcept c<t>{refines ¢’<p’>; T:0;} — 5 €Tl

and dictionary type for the modekp>. The model information Several lemmas are used in the theorem. The proofs of these
inserted into the environment includes a dictionary nahznd a lemmas are omitted here but appear in the accompanying technical
pathm that gives the location insidéfor the dictionary ofe(7). report [55]. The technical report formalizes the lemmas and the-
o™ (¢, 7, d, 75, T) = orem in the Isar proof language [42] and the Isabelle proof assis-

tant [43] was used to verify the proofs.

Ehe_CkF e The first lemma relates the type of a model member returned by
o [ — theb function to the member type in the dictionary for the model
forz:O,...,|c\71 glvenbythd)m

(L,8) == b™ (e}, [frp)7 . d, (), T)
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Figure 9. Type Rules for € and Translation to System F

distinct ¢

(Flv _) = bw(cl<p>7 (F7¥))

I'F7~s 1/

(cP1) §=(['—p10")@r" T, (concept c<t>{refines/’<p>; T:7;}—d)Fe:T~f cgCV(r)
I’ concept c<t>{refines /<p>; T:7;}ine: 7~ f
concept c<t>{refines c/<p’>; z77;} — 0l Thrkp~1 Threto~f
model ¢/<[t—plp/> — (d',n) €T z:[t—plrCyro d fresh
(MbL) I, (model c<p>+— (d,[])) Fe: T~ f d’=(nth ...(nthd n1)...nk)
It model c<p> {T=¢€;}ine: 7~ letd= (d"Q[g— fIZ) in f
(TABS) distinctt INFTV(I) =0 (I',6) =b*“(c<p>,(T,%) T'lFe:T~ f
B — —
I' - At where c<p>. e : Vt where c<p>. T ~ At. A\d : 6. f
(TAPD ko ~o" The:Viwherec<p>. 7T~ f model c<[t—7]p>+ (d,n) €
PP
T'kelo]: [t—a)r ~ flo/](nth ...(nthdni)...nk)
Mewy P 0 (modfl c<p>r (dm) €T (z :,(T,W)g € b(e,p,m,T) (Var)_ZiTE€T
Pke<p>ax:7~ (nth ...(nthdni)...ny) FFz:7T~x
T,x:oke:T~ TG~ o Thei: fnog— 7~ Thes 0~ fo
(ABS) ,T:okbe:T~ f o~ o (AP e1: g -7~ fi €2 :0 ~ fa

I'FXz=o.e: fndg -1~ Ax:0'. f

I'ei®@): 7~ fi(f2)

LEMMA 1.
If (1‘: (Tv W)) € b(C,ﬁ7 n, F) and(_véﬁ)
thenl' - 7 ~ 6

The next lemma states that the type of the dictionaries in the
environment match the concept’s dictionary typeThe purpose
of the sequence is to map from the dictionary for a “derived”
concept to the nested tuple for the “super” coneept

LEMMA 2.

If (model c<7> — (d,m)) € T'andl’ ~» X
and(fv(;) = bm(c’?7777’1")
thenX F (nth ...(nthdni)...ng): 4

The following lemma states that extending tHé &nvironment
with proxy models from avhere clause, and extending the System
F environment withd : §, preserves the environment correspon-
dence.

LEMMA 3.
If T~ X and(T’,d) = b (c<p>,T)
thenI” ~ 3. d:6

We now state the main result. The proof is in the Appendix.
THEOREM1 (Translation preserves well typing).

fTke:7~ fandl ~ X
then there exists’ such thats - f : 7" andT' F 7~ 7/

PLDI'05,

5. Associated Types and Same-Type Constraints

Associated typeare types that play a role in the operations of a
concept, that may vary from model to model, and that are deter-
mined by the type parameters of the concept. An example of an
associated type is the “pointed-to” type of an iterator. In Standard
ML, associated types are typically represented with nested types
within a signature. Similarly, in & nested types within a concept
are used to represent associated types. The folloitémgtor con-

cept declares a requirement for a nested type nated

concept lterator<lter> {
types elt;
next : fn(lter)—lter,
curr : fn(lter)—elt,
at_end : fn(lter)—bool;

Any model of thelterator concept must provide a type assignment
for elt.

model Iterator<list int> {
types elt = int;
next = (A Is : list int. cdrfint](Is)),
curr = (A Is : list int. car[int](Is)),
at_end = (A Is : list int. null[int](ls));

}

In the following code theaccumulate function is modified to
take an iterator as input instead of a list. The function is now
parameterized on the iterator type, not on the element type of
the list. However,accumulate still needs a way to refer to the
element type, for example, to write the return type and to state
the requirement that the element type must mddehoid. We
extend the model member access syntax to apply to associated
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Figure 11. F¢ with Associated Types and Same Type Constraints time algorithm [41]. We prefix operations on sets of types and type
‘ | assignments with® - because type equality now depends on the
environment.

Figure 13 gives the typing rules for°Fwith associated types
and same-type constraints and the translation to System F. The
(MbL) rule must check that all required associated types are given

c € Concept Names
st € Type Variables
x,y € Term Variables

p,o, 7=t | fnT — 7 | Viwherec<o>; o=7 .7 type assignments and that the same-type requirements of the con-
| e<T>.1 cept are satisfied. Also, when comparing the model’s operations to
e w=ux | e(e) | \yTT.e the operations in the concept, in addition to substitugirfor the
| At wherec<o>; =7 .¢ | e[F] concept parameters occurrences of associated types must be re-
| concept e<t> { placed with their type assignments from the body of the model and

from models of the concepisrefines. The (TA&Ss) and (TAPP)

types's; refines c<o>; - . .
Do ' rules are changed to introduce same-type constraints into the en-

CRNEN @ = T vironment and to check same-type constraints respectively. The
tine (APP) rule has been changed from requiring syntactic equality be-
| model c<7> { tween the parameter and argument types to requiring type equality

types T = o; based on the congruence of the type equalities in the environment.
T—=¢: The new rule (As) for type aliasing checks the body in an envi-
Yine ’ ronment extended with a type equality that expresses the aliasing.
| c<T>.x

5.2 Translation
t t=rTi . L . .
| type rine The main idea of the translation is to turn associated types into extra

type parameters on type abstractions, an approach we first outlined
in [19] and which is also used in [8]. The following code shows an
example of this translation. Th®py function requires a model of
types: Iterator<Iter>.elt. The accumulate function can now be Iterator, which has an associated tygle.
expressed as follows.

let copy = (A lter, Outlter where Iterator<lter>,

let accumulate = Outputlterator<Outlter, lterator<lter>.elt>. /x body */)
A lter where lterator<lter>, Monoid<lterator<lter>.elt>. . .
( fix (X accum : fn(Iter) —lterator<Iter>.elt. An extra type parameter for the associated type is added to the
Aiter : Iter. /x body */)) translated version afopy.
From inside a generic function, associated types are opaque, that et copy =
is, no information is known about them unless otherwise specified. (A lter, Outlter, elt.
For example, associated types from different models are assumedto ~ (* lterator-21:(fn(Iter) —lter)«(fn(Iter) —elt)«(fn(lter)—bool),

be different types. However, an algorithm may need two associated (/)*Utbp; ;}I/t ir/a)tor’ﬁ(fn(OUtIter’elt)Hou“ter)'

types to be the same type, such as in the merge algorithm shown
below, where the element type of the two iterators must be the same  However, there are two complications here that are not present

type. To accommodate this, we introdwsame-type constraints in [8]: same-type constraints and concept refinement. Due to the
let merge — same-type constraints, all type expressions in the same equivalence
(A lterl, Iter2, Outlter where class must be translated to the same System F type. Fortunately, the
lterator<Iterl>, Iterator<lter2>, congruence closure algorithm for type equality [41] is based on a
Outputlterator<Outlter, Iterator<Iterl>.elt>, union-find data structure which maintains a representative for each
LessThanComparable<lIterator<Iterl>.elt>; type class. Therefore the translation outputs the representative for
Iterator<Iterl>.elt = lterator<Iter2>.elt. /* body */) each type expression. The translation of #tege function shows
an example of this. There are two type parame#trs and elt2
5.1 Syntax and Typing Rules for each of the twdterator constraints. Note that in the types for

the three dictionaries, onhitl is used, since it was chosen as the

The syntax of € with associated types and same-type constraints representative.

is given in Figure 11 with the additions highlighted in gray. The
syntax for concepts is extended to include requirements for asso-  let merge =
ciated types and for type equalities. We add type assignments to (A In1, In2, Out, eltl, elt2.

m I larations. In ition. where cl re exten with (A Iterator_78:(fn(In1)—In1)*(fn(In1)—eltl)*(fn(In1)—bool),

ty[c))geecs]uda?i(l::igsa ons. In addition, where clauses are extended wit Iterator_80:(fn(In2)—In2)*(fn(In2)—-eltl)*(fn(In2)—bool),

We have also added an expression for creating type aliases. f;f#‘;ff&fﬁ;ff;ggfgg“;f;ﬁ'(teﬁlfeﬁf));boo|)_ /+ body x/))
Type aliases were singled out in [14] as an important feature and

the semantics of type aliases is naturally expressed using the type The second complication is the presence of concept refinement.
equality infrastructure for same-type constraints. As mentioned in [8], this causes there to be extra type parameters
Type checking is complicated by the addition of same-type con- for not just the associated types of a concephentioned in the
straints because type equality is no longer syntactic equality: it where clause, but also an extra type parameter for every associated
must take into account the same-type declarations. We extend endype in concepts thatrefines. Furthermore, there may be diamonds
vironments to include type equalities, and introduce a new type in the refinement diagram. To preclude duplicate associated types
equality relationl" = o = 7. This relation is the congruence we keep track of which concepts (with particular type arguments)
that includes all the type equalities In Deciding type equality have already been processed.
is equivalent to the quantifier free theory of equality with uninter- Figure 13 presents the translation frof With associated types
preted function symbols, for which there is an effici€ntn log ) and same-type constraints to System F. We omitkhenf), (Var),
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and @bs) rules since they do not change. The functioradb™ Figure 12. Well-formed F¥ types (now with associated types and
need to be changed to take into account associated types that magame-type constraints) and translation to System F types.
appear in the type of a concept member or refinement. For example;

in the body of function below, the expressierB(r)>.bar(x) has -
type <B(r)>.z, not justz. Also, the refinement foA(z) in B
translates ta<B(r)>.z modelingA. teT
. (TYVAR) —————————
concept A<u> { foo : fn(u)—u; } in 'kt~ [t
concept B<t> {
types z; o
refines A<z>; (TvAes) F'Fog~o Thkr~1

bar : fn(t)—z;
}in
(A r where B<r>.
Axir. A<B<r>.z> . foo(B<r>.bar(x)))

' fng—7~ fno’ — 7'

(I,5,8) =b" (5>, (1,D)  T'Fre 7
We define a function® to collect all the associated types from a (TvyTABs)

concepte and_f_rom the concepts refined byand map them to their I'FViwherec<p>, n=1n .7~ Y, 5.fné6 — 1’
concept-qualified names.
b (e, T) =
Si=s:c<T>.5 F'Fp~p T'Fmodelc<p>...€T
. — TYASC
fori=0,...,|c| -1 ( ) 'k c<p>.x ~ [e<p>.z|r
S = 57 ba(c;7 S(T,L))
returnS
where

concept c<t>{types 5 ; refines c/<7'>; T:0; p=p'} €T
Here is the new definition df.

b(c,7,m,I') = b ((e<p>,¢/<p’>),T) =
S =b%e,7),T: 7 generate fresh
M:=0 (F,E, 5l: bm(cvﬁv d, []7F)
fori=0,...,[c| -1 (T,8,0) :=b"(c'<[t—plp'>,T)
M = M Ub(c;, S(773), (m,1),T) return(T, (3,s), (6,8))
fori=0,...,]z| -1 - where
M := M U{zi : (S(0:), (W, |c'| +14))} concept c<t>{types 5 ; refines /<p’>; x:0; n=n} €l
returnM
where Figure 12 shows the changes to the translation‘ofypes to Sys-

concept c<t>{types 5 ; refinesc/’<7'>; T:0; p=p'} €T tem F types. Type variables and member access types are mapped
to their representative, written &s|r.

The proof that the translation to System F preserves well typing
can be modified to take into account the changes we have made for
associated types and same-type constraints and will appear in the
first author’s Ph.D. thesis.

We usedb™ in Section 4 to collect the the models from a
conceptc and the concepts thatrefines. We changg™ to also
collect the same-type constraints from the concepts. In addition,
for every associated typein ¢ we generate a fresh type variable
s’ and add the same-type constraiht= <c(7)>.s. The function
b™ also returns a substitution mapping the associated type namesr . cenm2 (Translation preserves well typing)
to these generated type variables. '

fTke:7~ fandl ~ X

b™(c,p,d,m,T") =
éhepckr‘ |— p)w — and generate fresh variablgs then there exists’ such that - f s andl b 7w 7
I'=TI,s =c<p>.s
A:=b%c,p)t:p 6. Conclusion
;—o‘r i :] 0,....[d -1 The main contribution of this paper is the development of a lan-
(T,35,8) = b™ (¢}, A(F,), d, (7,4),T) guage, namedlclt, that provides first-class support for concepts,
> 4’:’? 5 v v A thereby_ capturing the essence of language support for generic pro-
- F@A7(E) gramming. We present a formal type system for the language and
L= y provide semantics via a translation to System F. We prove that the
I=T1,A0n) = Aﬁ” ) _ translation preserves typing, and thus type soundness*or F
I':=T, model c<p> — (d,m, A) There are several language features that are important for
return(T’, (s, ¢'), 7) generic programming that we do not cover in this paper due to
where - _ space considerations as well as a desire to provide an uncluttered
concept c<t>{types 5 ; refines c'<p'>; T:0; n=n'} €T presentation of concepts. Those features include:

Nested RequirementsConcepts often include requirements on
associated types. For example, a container’s associated iterator a
would be required to model thierator concept. This form of
concept composition is slightly different from refinement but close
b ([, T) = (T, []) enough that we did not wish to clutter our presentationof F

Thewhere clause of a type abstraction is processed sequentially
so that later requirements in théhere clause can refer to require-
ments (e.g., their associated types) that appear earlier in the list.
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Figure 13. Type Rules for € with Associated Types and Same-Type Constraints and Translation to System F

I

distinct #  distinct 3 concept /<t'>{...} = & €Tl TI,5,5Fp~p DL, t5FT~ 71
I,t,sFG~7 I,t,sFo ~ v 5= ([t'—p']é6")ar’
T, (concept c<t>{types 5 ; refinesc/’<p>; T:7; c =o'} — ) be: T~ f

(Cp1) = - LI —
I - concept c<t>{types s ; refines /<p>; T:7; c =o'} ine: 7~ f

concept c<I>{types s ; refinesc/<p’>; T 7; n=n}—6cT TrFp~7 TFD~V Trkeig~/f
s C3 S=1:p,s :[5—1]s I' - model /<S(p')> — (d',m, A" ) €T S =S, UA’
F'kz:S(r)Cy o L'k S'(n)=5S"(n) d fresh
T, (model c<p> — (d,[], (UA’",s": [5—D]s') ) Fe:T~ f d’ = (nth ...(nthd ni)...ng)
(MbL) — —
I'F model c<p> {typess=1;y=¢}ine: T~ letd = (d'Q[y— f]T) in f
distinct T FNFTV(IT) =0 (I, 3,6) =b“(c<p>,(T,%) T/, 7=7 Fe:T~ f
(TABS)
'+ At where c<p>, T=17" .e:Vtwherec<p>, T=7 .7~ At, 5. Ad: 0. f
'~ ~ o Tke:Viwherec<p>, n=n .7~ f
'+ model c<[t—7ap>+— (d,n, s )€l Tk [t—7an=[t—an
(TAPP — —
I'kefa]: [t—a)T ~ flo’, 7](nth ...(nthdni)...ng)
t¢FTV(I) T,t=7ke:7~ f I'key:fneg—7~fi Thre:o~fo Tko=d
(ALS) : (APP —
IHtypet=7ine: 7~ f Fkeiez: 7~ fi(f2)
Implicit instantiation of type abstractions. Ideally we would Cpt Let IV = T, concept c<t>{refines ¢’<v>; T:7,;}. By
introduce a subsumption rule based on Mitchell's containmentrela-  inversion we have:

tion [38]. However, that relation is undecidable [61]. There are two

interesting restrictions that are decidable: no coercion under a func- concept !<t’>{.. .} = €T @

tion arrow [30] and restriction of type arguments to monomorphic iF7T~ 1 (2)

types [46]. We plan further investigation in this area. The:ir | ®)
Statically resolved function overloading as in G+ and Java. )

This feature is needed to remove the clutter of model member c g CV(r) 4)

access such ddonoid<t>.binary_op. . ) From the assumptiofi ~ ¥ and from (1) and (2) we have
Named models as in [22]. This feature provides a mechanism " ~ 3. Then by (3) and the induction hypothesis we have
for managing overlapping models, and would be a straightforward Sk f: 7 andT’ F 7 ~ 7. Then from (4) we have

addition to F¥. Thrw

Parameterized modelgequivalent to parameterized instances ;L _ .
in Haskell) are important for the case when the modeling type is Mdl Letl” =T', (model c<p>) — (d, []). We have the following

parameterized, such dst<T>. by inversion:

Defaults for concept membergas in Haskell) provide a mech- I'teto~ f (5)
anism for implementing a rich interface in terms of a few functions. — — —

Algorithm specialization is used in & to provide automatic model ¢/<[t—p]p'> > (d',n/) C T (6)
dis.patching to different versions of an a.Ig.orithm based on prop- m Cyo @)
erties of a type, such as an iterator providing random access. The ,
natural way to add this toFwould be to have function overloading Mhe:r~ f 8

based on the where clauses of generic functions [20]. concept c<¥>{refines /<p'>; 777} 5l (9)

A. Appendix Let ¥ such thaf” ~ .. With (5) and the induction hypothesis
there existe’ such thats - f : ¢/ andl' - & ~~ o’. Next, let

ProoOF (of Theorem 1) The proof is by induction of the derivation
of TkFe:7~ f. 7= (nth ...(nthd' n})...n))
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FromT ~ ¥ and (9) we havé—, ') = b (¢'<p’>,T). and
therefore(—, [t — 7]6') = b*(¢/<[t—p]p’>,T). Together
with (6) and Lemma 2 we havE + 7 : [t — p]d’. With (7)
we have a well typed dictionary:

Yk (FQ[g— f]7) : 6 (10)

LetX beX,d:d soI” ~ X'. Then with (8) and the induction
hypothesis there exists such that>’ + f : 7" andI” + 7 ~

7'. From (10) we show + let d = (TQ[y— f]Z) in f : 7',
TAbs By inversion we have:
(T, 6) = b* (c<p>, (T, 1))
't Mbe:T~ f

11
12)

From the assumptiofr ~~ ¥ we havel',t ~» X,t. Then
with (11) we apply Lemma 3 to get’ ~ X,%,d : 6. We
then apply the induction hypothesis with (12), so there exists
7' such that:,t,d : 6§ - f : 7 andI’ + 7 ~ 7.
Hence we have2, 7 - Xd : 6. f : fn § — 7 and
thereforeX - AZ. A\d : 6. f : Vi. fn 6 — 7’. Also, from
I+ 71 ~ 7" we havel',f - 7 ~ 7’. Then with (11) we have
I' - Vi where c<p>. 7 ~ V. fn § — 7/,

TApp By inversion of the (TAP) rule we have:

'+~ o (13)
'k e: Vit where c<p>.T ~ f (14)
model c<[t—7T|p> — (d,7) €T (15)

From (14) and the induction hypothesis there existsuch that
Yk f: 7 andl’ - Vi where c<p>. 7 ~» 7'. By inversion
there exist®, "/, andl" such that

7=Vt fnd—1" (16)
(I",8) =" (c<p>,T) (17
I'Ero~s 7" (18)
Using (16) we have
St flo]: t—o](fnd —1") (19)
From (17) and (13) we have
(I, [f~0"10) = b* (c<ffalp>T))  (20)

Letd” = (nth ...(nthdn;)...n). From the assumption
I' ~ %, (15), and (20) we apply Lemma 2 to get- d’ : [t
o’]6. Then with (19) we have& + f[o](d’) : [t — @]7" and
from (13) and (18) we havE - [t— &)1 ~~ [t—o’]7T".
Mem By inversion we have
(model c<7> +— (d,m)) €T
z:(1,n) €b(c, 7,7, T)

(21)
(22)
From the assumptioh ~ 3 and (21), we have the following
by inversion.

(d:9)eXx

(—,6m) =b"(c,7,—,—,T)
From (23) we have: - d : 6 and with (22) we show

Sk (nth...(nthdn})...ny): 6

n’

From (22), (24), and Lemma 1 we halVe- 7 ~ §.

Var, Abs, App The proofs of these cases are straightforward and
omitted for brevity.

(23)
(24)

O
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