
Essential Language Support for Generic Programming

Jeremy Siek
Open Systems Lab, Indiana University

jsiek@osl.iu.edu

Andrew Lumsdaine
Open Systems Lab, Indiana University

lums@osl.iu.edu

Abstract
Conceptsare an essential language feature for generic program-
ming in the large. Concepts allow for succinct expression of con-
straints on type parameters of generic algorithms, enable systematic
organization of problem domain abstractions, and make generic al-
gorithms easier to use. In this paper we present the design of a type
system and semantics for concepts that is suitable for non-type-
inferencing languages. Our design shares much in common with
the type classes of Haskell, though our primary influence is from
best practices in the C++ community, where concepts are used to
document type requirements for templates in generic libraries. Con-
cepts include a novel combination of associated types and same-
type constraints that do not appear in type classes, but that are sim-
ilar to nested types and type sharing in ML.

Categories and Subject DescriptorsD.3.3 [Programming Langua-
ges]: Language Constructs and Features—abstract data types, con-
straints, polymorphism; D.2.13 [Software Engineering]: Reusable
Software—reusable libraries; D.3.2 [Programming Languages]:
Language Classifications—multiparadigm languages

General Terms Languages, Design

Keywords generic programming, polymorphism, C++, Standard
ML, Haskell

1. Introduction
In the 1980’s Musser and Stepanov developed a methodology for
creating highly reusable algorithm libraries [25,39], using the term
“generic programming” for their work. They applied this method-
ology to the construction of sequence and graph algorithms in Ada,
C, and Scheme [28, 40, 58]. In the early 1990’s they applied their
work to C++ and took advantage of templates [60] to construct the
Standard Template Library [59] (STL). The STL became part of
the C++ Standard [18], which brought generic programming into
the mainstream. Since then, generic programming has been suc-
cessfully applied to the creation of generic libraries for numerous
problem domains [2,29,49,53,56,62,64].

A distinguishing characteristic of generic programming is that
generic algorithms are expressed in terms of properties of types,
rather than in terms of a particular type. A generic algorithm can be
used (more importantly, reused) with any type that has the neces-
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sary properties. Although a statically typed language must therefore
provide type parameterization (“generics”) to support generic pro-
gramming, generic programming as a development methodology is
much richer than simply type parameterization.

A fundamental issue in providing language support for generic
programming is how to express the set of admissible types for a
given algorithm, or equivalently, how to design a type system that
can check calls to a generic (type-parameterized) algorithm and
separately check the implementation of the algorithm. An impor-
tant complementary issue is providing the run-time mechanism by
which user-defined operations, such as multiplication for aBigInt
type, are connected with uses of operations inside a generic algo-
rithm, such as a call to “x ∗ x” in an algorithm parameterized on the
number type. In today’s programming languages there are four ap-
proaches to addressing these issues: subtype bounds, type classes,
structural matching, and by-name operation lookup. We describe
each of these approaches below and show examples in Figure 1.

Subtype Bounds(Figure 1 (a)) In object-oriented languages,
constraints on type parameters are typically expressed via subtyp-
ing [6, 7, 47]. When a generic function constrains a type parameter
to be a subtype of an interface, objects passed to the generic func-
tion must carry along the necessary operations in a virtual table.
This approach is used in Eiffel [35] and in the generics extensions
to Java [4] and C# [27,36].

Type Classes(Figure 1 (b)) In Haskell, type classes are used
to describe the set of admissible types to a generic function [63].
A type class contains a list of required operations, and a type is
declared to belong to a type class through an instance declaration
that provides implementations of the required operations. If a type
parameter to a generic function is constrained to be an instance of
a type class, operations from the appropriate instance declaration
are implicitly passed into the generic function at a call site. A type
class is similar to an object-oriented interface in that it specifies a
set of required operations. However, unlike interfaces, type classes
are not themselves types (e.g., one cannot declare a variable with a
type class as its type).

Structural Matching (Figure 1 (c)) Many languages take a
structural approach to expressing constraints: the name of an in-
terface does not matter (as it does for a type class), only the content
of the interface matters (which operations must be provided). This
is the case for CLU type sets [32, 33], ML signatures [37], and
O’Caml object types [31]. In CLU, polymorphic functions are ex-
plicitly instantiated on particular types, and the corresponding clus-
ter definitions for those types must supply the operations required
in thewhere clause. In ML, a functor is explicitly instantiated with
a structure, and the structure must match the required signature. In
O’Caml, the type of the object passed into a polymorphic function
must structurally match the parameter’s object type, and if success-
ful the polymorphic function is implicitly instantiated.

By-Name Operation Lookup (Figure 1 (d)) In Cforall [10,
11] and C++, the operations used in a generic function are not
necessarily class methods, but can be free-standing functions. In
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public interface Number<U> {
public U mult(U other);

}
public class BigInt implements Number<BigInt> {

public BigInt mult(BigInt x) { ... }
...

}
public class Square {

<T extends Number<T>>
T square(T x) { return x.mult(x); }

public static void main(String[] args) {
square(BigInt(4));

}
}

(a) Subtyping:BigInt is a subtype of theNumber
interface (Java).

class Number u where
mult :: u →u →u

square :: Number t ⇒t →t
square x = mult x x

instance Number Int where
mult = (∗)

main = square (4::Int)

(b) Type classes:Int
is an instance of the
Number type class
(Haskell).

number = { u | u has mul: proctype (u,u) returns (u)
signals (underflow,overflow) }

square = proc[t:type](a: t) returns (t)
where t in number
return (t$mul(a, a))
end square

start up = proc()
out:stream := stream$primary output()
stream$putl(out,int$unparse(square[int](4)))

end start up

(c) Structural matching: typeint has static methods
for all operations in thenumber type set (CLU).

spec number(type U) {
U mult(U, U);

};
forall(type T | number(T))
T square(T x) {

return mult(x,x);
}
int mult(int x, int y) { return x ∗ y; }

int main() {
return square(4);

}

(d) By-name operation lookup: a
function named “mult” is defined
for type int (Cforall).

Figure 1. Some approaches to realizing generic programming.

Cforall, constraints are specified in terms of function signatures
and in C++ they are specified in the accompanying documentation
in terms of valid expressions. In either case, when a call is made to
a generic function, the compiler tries to locate function declarations
with the appropriate name and signature.

In [14] we implemented a generic graph library (based on the
Boost Graph Library [54]) using programming languages in each
of the above four categories. We carefully evaluated each language
with respect to support for generic programming and found that
although these approaches were able to support generic program-
ming to varying degrees, none was ideal. The primary limitation
was that existing languages do not fully capture the essential fea-
ture of generic programming, namely,concepts.

In the parlance of generic programming, concepts are used to
express sets of admissible types to an algorithm. More specifically,
a concept is a list of requirements which denotes a set of conform-
ing types. A function specified in terms of concepts can be used
with any types satisfying the requirements given by those concepts.
Concepts as specifications were formalized in the generic program-
ming literature [23, 24, 65], but are more widely known through
their use in the documentation of C++ template libraries [3,57].

Contributions. The current practice of generic programming
is impeded because no existing language provides all the features
and abstractions needed to support generic programming. In this
paper we capture the essence of the necessary language abstrac-
tions in a small formal system. Our primary contribution is System
FG, a simple language based on System F [15, 52] that explicitly

includes concepts. Our design of FG reflects a decade of experi-
ence in generic library construction in C++. Technically, System FG

is unique because 1) it provides scoped instance declarations, 2)
concepts integrate nested types and type sharing in a type class-
like feature, and 3) it explores the design space of type classes for
non-type-inferencing languages.

Road map.Concepts have a number of similarities to the type
classes of Haskell [17,63] and FG has a number of similarities (and
differences) with existing work, which we discuss in Section 2.
We split our presentation of FG into two parts to simplify the
presentation and the technical development. The first part adds
concepts, models, andwhere clauses to System F. We informally
introduce the syntax and semantics in Section 3 and present some
examples that demonstrate its characteristics. We provide a formal
semantics in Section 4 with a translation from FG to System F
that preserves typing (similar to the translation of type classes
to System F in [17]). The second part of our presentation adds
support for associated types, which turns out to be a non-trivial
addition to the language. In Section 5 we discuss the motivation
for associated types and then extend the syntax of FG and the
translation to System F to handle associated types. The language
FG omits a number of important but less essential features for
generic programming due to the scope (and page limit) of this
paper. We briefly describe those features in Section 6 where we
also discuss directions for future work.
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2. Related Work
Of existing language features, Haskell’s type classes are the most
similar to concepts. They are based purely on parametric polymor-
phism, as are concepts. A fundamental difference between our ap-
proach and that of type classes is that we target languages without
Hindley-Milner style type inference. This gives our design more
freedom in other aspects. For example, in FG two concepts may
share the same member name (as do classes in object-oriented lan-
guages) whereas in Haskell two type classes in the same module
may not. In addition, our design is based on experience in the
field of generic library construction. One of the primary lessons
learned from that experience is the need for modularity, especially
for good scoping rules. As a result, concepts and models in FGare
expressions, not declarations (as are type classes and instances in
Haskell), and they obey the usual lexical scoping rules. Difficulties
arising from this difference are described in Section 3.2.

Another lesson learned was the importance of language support
for associated types. In our study [14] we found that without asso-
ciated types, interfaces of generic algorithms become cluttered with
extra type parameters to the point of causing scalability problems,
and internal helper types of abstract data types must be exposed,
thereby breaking encapsulation. In response to [14], Chakravartyet
al proposed an extension to Haskell for associating algebraic data
types with type classes [8]. Our work differs from theirs in three
ways. First, our associated types are not algebraic data types but
simply requirements for a type definition, which is all that is nec-
essary for generic algorithms. The second difference is that we in-
clude same-type constraints, which are vital for generic algorithms
that use associated types, as we explain in Section 5. Third, we
include concept inheritance (refinement) in our formalism. Earlier
extensions to Haskell [9,21] address some of the same issues solved
by associated types, but they did not address the problems of clutter
and encapsulation.

A rough analogy can be made between ML signatures [37] and
FG concepts, and between ML structures and FG models. How-
ever, there are significant differences. First, functors are module-
level constructs and therefore provide a more coarse-grained mech-
anism for parameterization than do generic functions. More im-
portantly, functors require explicit instantiation with a structure,
thereby making their use more heavyweight than generic functions
in FG, which perform automatic lookup of the required model or
instance. The associated types and same-type constraints of FG are
roughly equivalent to types nested in ML signatures and to type
sharing respectively. We reuse some implementation techniques
from ML such as a union/find-based algorithm for deciding type
equality [34]. There are numerous other languages with parame-
terized modules [1, 16, 50] that require explicit instantiation with a
structure.

In some sense, our work combines some of the best features of
Haskell and ML relative to generic programming. However, there
are non-trivial details to combining these features and these details
are discussed in depth in this paper.

As discussed in the introduction, many object-oriented lan-
guages choose to express bounds on type parameters via subtyp-
ing [4, 7, 26, 27, 35, 36]. For a detailed account of the problems we
encountered with the subtype-based approach we refer the reader
to our study [14]. One of the problems was the inability to group
constraints on several types.

Scala [44, 45] and gbeta [12, 13] have some support for associ-
ated types in the form of object-dependent types. This differs from
FG, where types are associated with a model which is a static entity.
A model could be represented with an object in Scala or gbeta, how-
ever FG provides the convenience that models are implicitly passed
to generic functions. Further, we found it difficult to express the

Figure 2. Types and Terms of System F

s, t ∈ Type Variables
x, y, d ∈ Term Variables
n ∈ N
δ, σ, τ, ν ::= t | fn τ → τ | τ × · · · × τ | ∀t. τ
f ::= x | f(f) | λy : τ . f | Λt. f | f [τ ]

| let x = f in f | (f, . . . , f) | nth f n

Figure 3. Higher Order Sum in System F

let sum =
(Λ t.

fix (λ sum : fn(list t, fn(t,t)→t, t)→t.
λls : list t, add : fn(t,t)→t, zero : t.
if null[t](ls) then zero
else add(car[t](ls), sum(cdr[t](ls), add, zero)))) in

let ls = cons[int](1, cons[int](2, nil[int])) in
sum[int](ls, iadd, 0)

accumulate function in Section 5, especially the return type, us-
ing Scala’s nested abstract types. Scala’sview construct is similar
to model in FG: it allows for retroactive conformance of a type to
an interface. However in Scala, member operations must have the
modeling type as a parameter, so operations such asidentity elt of
theMonoid concept (see Section 3) can not be expressed.

O’Caml’s object types [31,51] and polymorphism over row vari-
ables provide fairly good support for generic programming. How-
ever, O’Caml lacks support for associated types so it too suffers
from clutter due to extra type parameters. PolyTOIL [5], with its
match-bound polymorphism, provides similar support for generic
programming as O’Caml but also lacks associated types.

Type sets in CLU [32,33] are analogous to concepts in FG, and
of course thewhere clause of FG was inspired by by CLU’swhere
clause. Type sets differ from concepts in that they rely on structural
matching whereas concepts use nominal conformance established
by amodel definition. Also, FG provides a means for composing
concepts via refinement whereas CLU does not provide a means
for composing type sets. Finally, CLU does not provide support for
associated types.

3. FG = System F + Concepts
System F, the polymorphic lambda calculus, is the prototypical tool
for studying type parameterization [15, 52]. The syntax of System
F is shown in Figure 2. We omit the type rules for System F as they
are standard. The variablef ranges over System F expressions; we
reservee for System FG expressions. We use an over-bar, such asτ ,
to denote repetition:τ1, . . . , τn. We use mult-parameter functions
and type abstractions in System F to ease the translation from FG

to F. We also include alet expression with the following type rule.

(LET)
Σ ` f1 : σ Σ, x : σ ` f2 : τ

Σ ` let x = f1 in f2 : τ

It is possible to write generic algorithms in System F, as is
demonstrated in Figure 3, which implements a polymorphicsum
function. The function is written in higher-order style, passing the
type-specificadd andzero as parameters. However, this approach
does not scale: algorithms of any interest typically require dozens
of type-specific operations.
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Figure 4. Types and Terms of FG

c ∈ Concept Names
s, t ∈ Type Variables
x, y, z ∈ Term Variables
ρ, σ, τ ::= t | fn (τ) → τ | ∀t where c<σ>. τ
e ::= x | e(e) | λy : τ. e

| Λt where c<σ>. e | e[τ ]
| concept c<t>{refines c<σ>; x : τ ; } in e
| model c<τ> {x = e; } in e
| c<τ>.x

3.1 Adding Concepts

FG adds support for generic programming through the addition of
concepts, models, and where clauses to System F. Theconcept fea-
ture is a mechanism for grouping and organizing requirements. The
model feature establishes that a type meets the requirements of a
concept. Thewhere clause, which is written in terms of concepts,
constrains how a polymorphic function may be instantiated and du-
ally introduces models that may be used inside a polymorphic func-
tion. Figure 4 shows the abstract syntax of the basic formulation of
FG. Associated types and same-type constraints are added to FG in
Section 5.

To illustrate the features of FG, we evolve thesum function.
To be generic, thesum function should work for any element
type that supports addition, so we will capture this requirement
in a concept. Mathematicians already have a name for slightly
more generalized concept: aSemigroup is some type together with
an associative binary operation. In FG, theSemigroup concept is
defined as follows.

concept Semigroup<t> {
binary op : fn(t,t)→t;

}

The genericsum function requires more than just addition; it
also requires a zero object of the appropriate type. Again, mathe-
maticians have a name for this concept: aMonoid, which is aSemi-
group with an identity element. In generic programming terminol-
ogy, we say thatMonoid is a refinementof Semigroup and define
Monoid in FG accordingly.

concept Monoid<t> {
refines Semigroup<t>;
identity elt : t;

}

Note that the mathematical definition of monoid is quite general—
it only requires a binary operation and an identity element with
respect to that operation. That operation need not be addition and
the identity element need not be zero. The integers with multipli-
cation as the binary operation and one as the identity element also
form a monoid. To completely reflect the mathematical definition
of a monoid, theidentity elt must satisfy the following axioms for
any objectx of type t. Unfortunately, expressing this requirement
is presently outside the scope of the FG type system.

binary op(identity elt, x) = x = binary op(x, identity elt)

A particular type, such asint, is said tomodela concept if it
satisfies all of the requirements in the concept. In FG, an explicit
declaration is used to introduce a model of a concept (correspond-
ing to an instance declaration in Haskell). The following declares
int to be a model ofSemigroup andMonoid, using integer addition
for the binary operation and0 for the identity element. The type

system checks the body of the model against the concept defini-
tion to ensure all required operations are provided and that there
are model declarations in scope for each refinement.

model Semigroup<int> {
binary op = iadd;

}
model Monoid<int> {

identity elt = 0;
}

A model can be found via the concept name and type, and
members of the model can be extracted with the dot operator. For
example, the following would return theiadd function.

Monoid<int>.binary op

With the Monoid concept defined, we are ready to write a
genericsum function. The function has been generalized to work
with any type that has an associative binary operation with an iden-
tity element (no longer necessarily addition), so a more appropriate
name for this function isaccumulate. As in System F, type param-
eterization in FG is provided by theΛ expression. FG adds awhere
clause to theΛ expression for listing requirements.

let accumulate = (Λ t where Monoid<t>. /∗body∗/)

The concepts, models, andwhere clauses collaborate to provide
a mechanism for implicitly passing operations into a generic func-
tion. As in System F, a generic function is instantiated by providing
type arguments for each type parameter.

accumulate[int]

In System F, instantiation substitutesint for t in the body of theΛ.
In FG, instantiation also involves the following steps:

1. int is substituted fort in thewhere clause.
2. For each requirement in thewhere clause, the lexical scope of

the instantiation is searched for a matching model declaration.
3. The models are implicitly passed into the generic function.

Consider the body of theaccumulate function listed below. The
model requirements in thewhere clause serve as proxies for actual
model declarations. Thus, the body ofaccumulate is type-checked
as if there were a model declarationmodel Monoid<t> in the
enclosing scope. The dot operator is used inside the body to access
the binary operator and identity element of theMonoid.

let accumulate =
(Λ t where Monoid<t>.

fix (λ accum : fn(list t)→ t.
λls : list t.
let binary op = Monoid<t>.binary op in
let identity elt = Monoid<t>.identity elt in
if null[t](ls) then identity elt
else binary op(car[t](ls), accum(cdr[t](ls)))))

It would be more convenient to writebinary op instead of the
explicit member access:Monoid<t>.binary op. However, such a
statement could be ambiguous without the incorporation of over-
loading. For example, suppose that a generic function has two type
parameters,s and t, and requires each to be aMonoid. Then a
call to binary op might refer to eitherMonoid<s>.binary op or
Monoid<t>.binary op. While the convenience of function over-
loading is important, we did not wish to complicate FG with this
additional feature. We discuss future work on function overloading
in Section 6.

The complete program for this example is in Figure 5. As with
System F, FG is an expression-oriented programming language.
The concept andmodel declarations are likelet: they add to the
lexical environment for the enclosed expression (after thein).
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Figure 5. Generic Accumulate

concept Semigroup<t> {
binary op : fn(t,t)→t;

} in
concept Monoid<t> {

refines Semigroup<t>;
identity elt : t;

} in

let accumulate =
(Λ t where Monoid<t>.

fix (λ accum : fn(list t)→ t.
λls : list t.
let binary op = Monoid<t>.binary op in
let identity elt = Monoid<t>.identity elt in
if null[t](ls) then identity elt
else binary op(car[t](ls), accum(cdr[t](ls))))) in

model Semigroup<int> {
binary op = iadd;

} in
model Monoid<int> {

identity elt = 0;
} in

let ls = cons[int](1, cons[int](2, nil[int])) in
accumulate[int](ls)

3.2 Lexically Scoped Models and Overlapping

The lexical scoping of models declarations is an important feature
of FG, and one that distinguishes it from Haskell. We illustrate this
distinction with an example. There are multiple ways for the set of
integers to modelMonoid besides addition with the zero identity
element. For example, in FG, the Monoid consisting of integers
with multiplication for the binary operation and1 for the identity
element would be declared as follows.

model Semigroup<int> {
binary op = imult;

}
model Monoid<int> {

identity elt = 1;
}

Borrowing from Haskell terminology, this creates overlapping
model declarations, since there are now two models declarations
for the Semigroup<int> and Monoid<int> concepts. Overlap-
ping model declarations are problematic since they introduce ambi-
guity: whenaccumulate is instantiated, which model (with its cor-
responding binary operation and identity element) should be used?

In FG, overlapping models declarations can coexist so long
as they appear in separate lexical scopes. In Figure 6 we create
sum and product functions by instantiatingaccumulate in the
presence of different models declarations. This example would not
type check in Haskell, even if the two instance declarations were
to be placed in different modules, because instance declarations
implicitly leak out of a module when anything in the module is
used by another module.

4. Translation of FG to System F
We describe a translation from FG to System F similar to the type-
directed translation of Haskell type classes presented in [17]. The
translation described here is intentionally simple; its purpose is
to communicate the semantics of FG and to aid in the proof of

Figure 6. Intentionally Overlapping Models

let sum =
model Semigroup<int> {

binary op = iadd;
} in
model Monoid<int> {

identity elt = 0;
} in accumulate[int] in

let product =
model Semigroup<int> {

binary op = imult;
} in
model Monoid<int> {

identity elt = 1;
} in accumulate[int] in

let ls = cons[int](1, cons[int](2, nil[int])) in
(sum(ls), product(ls))

Semigroup<int>

Monoid<int>

0

iadd

Figure 7. Dictionaries forSemigroup<int> andMonoid<int>.

type safety. We show that the translation from FG to System F
preserves typing, which together with the fact that System F is
type safe [48], ensures the type safety of FG. The main idea behind
the translation is to represent models with dictionaries that map
member names to values, and to pass these dictionaries as extra
arguments to generic functions. Here, we use tuples to represent
dictionaries. Thus, the model declarations forSemigroup<int>
andMonoid<int> translate to a pair oflet expressions that bind
freshly generated dictionary names to the dictionaries (tuples) for
the models. We show a diagram of the dictionary representation of
these models in Figure 7 and we show the translation to System F
below.

model Semigroup<int> {
binary op = iadd;

} in
model Monoid<int> {

identity elt = 0;
} in /∗ rest ∗/
=⇒
let Semigroup 61 = (iadd) in
let Monoid 67 = (Semigroup 61,0) in /∗ rest ∗/

The accumulate function is translated by removing thewhere
clause and wrapping the body in aλ expression with a parameter
for each model requirement in thewhere clause.

let accumulate = (Λ t where Monoid<t>. /∗body∗/)
=⇒
let accumulate =

(Λ t. (λ Monoid 18:(fn(t,t)→t)∗t. /∗ body ∗/)

The accumulate function is now curried, first taking a dictionary
argument and then taking the normal arguments.
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accumulate[int](ls)
=⇒
((accumulate[int])(Monoid 67))(ls)

In the body ofaccumulate there are model member accesses. These
are translated into tuple member accesses.

let binary op = Monoid<t>.binary op in
let identity elt = Monoid<t>.identity elt in
=⇒
let binary op = (nth (nth Monoid 18 0) 0) in
let identity elt = (nth Monoid 18 1) in

The formal translation rules are in Figure 9. We write[t 7→σ]τ
for the capture avoiding substitution ofσ for t in τ . We write
[t 7→σ]τ for simultaneous substitution. The functionFTV returns
the set of free type variables andCV returns the concept names
occurring in thewhere clauses within a type. We writedistinct t
to mean that each item in the list appears at most once. We subscript
a nested tuple type with a non-empty sequence of natural numbers
to mean the following:

(τ1 × . . .× τk)i = τi

(τ1 × . . .× τk)i,n = (τi)n

The environmentΓ consists of four parts: 1) the usual type
assignment for variables, 2) the set of type variables currently in
scope, 3) information about concepts and their corresponding dic-
tionary types, and 4) information about models, including the iden-
tifier and path to the corresponding dictionary in the translation.

The (MEM) rule uses the auxiliary function[(c, ρ, n, Γ) to
obtain a set of concept members together with their their types and
the paths (sequences of natural numbers) to the members through
the dictionary. A path instead of a single index is necessary because
dictionaries may be nested due to concept refinement.

[(c, ρ, n, Γ) =
M := ∅
for i = 0, . . . , |c′| − 1

M := M ∪ [(c′
i, [t 7→ρ]ρ′

i, (n, i), Γ)
for i = 0, . . . , |x| − 1

M := M ∪ {xi : ([t 7→ρ]σi, (n, |c′|+ i))}
returnM

whereconcept c<t>{refines c′<ρ′>; x : σ; } 7→ δ ∈ Γ

The (TABS) rule uses the auxiliary function[w to collect proxy
model definitions from thewhere clause of a type abstraction
and also computes the dictionary type for each requirement. The
function[m, defined below, is applied to each concept requirement.

[w([], Γ) = (Γ, [])

[w((c<ρ>, c′<ρ′>), Γ) =
generate freshd
(Γ, δ) := [m(c, ρ, d, [], Γ)

(Γ, δ′) := [w(c′<[t 7→ρ]ρ′>, Γ)
return(Γ, (δ, δ′))

whereconcept c<t>{refines c′<ρ′>; x : σ; } 7→ δ ∈ Γ

The function [m(c, ρ, d, n, Γ) collects the model definitions
and dictionary type for the modelc<ρ>. The model information
inserted into the environment includes a dictionary named and a
pathn that gives the location insided for the dictionary ofc(τ).

[m(c, ρ, d, n, Γ) =
checkΓ ` ρ −
τ := []
for i = 0, . . . , |c′| − 1

(Γ, δ′) := [m(c′
i, [t 7→ρ]ρ′

i, d, (n, i), Γ)

Figure 8. Well-formedness of FG types and translation to System
F types. Formation of dictionary types.

Γ ` τ  τ ′

(TYVAR)
t ∈ Γ

Γ ` t t

(TYABS) Γ ` σ  σ′ Γ ` τ  τ ′

Γ ` fn σ → τ  fn σ′ → τ ′

(TYTABS)
(Γ′, δ) = [w(c<ρ>, (Γ, t)) Γ′ ` τ  τ ′

Γ ` ∀t where c<ρ>. τ  ∀t. fn δ → τ ′

Figure 10. Well-formed FG environment that is in correspondence
with a System F environment.

Γ Σ

∅ ∅
Γ Σ Γ ` τ  τ ′

Γ, x : τ  Σ, x : τ ′
Γ Σ

Γ, t Σ, t

Γ Σ (−, δ) = [m(c, τ ,−,−, Γ)

Γ, (model c<τ> 7→ (d, [])) Σ, d : δ

Γ Σ 0 < |n| d : δ ∈ Σ (−, δn) = [m(c, τ ,−,−, Γ)

Γ, (model c<τ> 7→ (d, n)) Σ

Γ Σ (Γ′, δ′) = [w(c′<τ>, (Γ, t)) Γ′ ` σ  σ′

Γ, (concept c<t>{refines c′<τ>; x : σ; } 7→ δ′@σ′) Σ

τ := τ , δ′

τ := τ@[t 7→ρ]σ
Γ := Γ, (model c<ρ> 7→ (d, n))
return(Γ, τ)

whereconcept c<t>{refines c′<ρ′>; x : σ; } 7→ δ ∈ Γ

Figure 8 defines the translation from FG types to System F types.
We now come to our main result for this section: translation

produces well typed terms of System F, or more precisely, ifΓ ` e :
τ  f andΣ is a System F environment corresponding toΓ, then
there exists some typeτ ′ such thatΣ ` f : τ ′. Figure 10 defines
what we mean by correspondence between an FG environment and
System F environment.

Several lemmas are used in the theorem. The proofs of these
lemmas are omitted here but appear in the accompanying technical
report [55]. The technical report formalizes the lemmas and the-
orem in the Isar proof language [42] and the Isabelle proof assis-
tant [43] was used to verify the proofs.

The first lemma relates the type of a model member returned by
the [ function to the member type in the dictionary for the model
given by the[m.
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Figure 9. Type Rules for FG and Translation to System F

Γ ` e : τ  f

(CPT)

distinct t (Γ′,−) = [w(c′<ρ>, (Γ, t)) Γ′ ` τ  τ ′

δ = ([t′ 7→ρ′]δ′)@τ ′ Γ, (concept c<t>{refines c′<ρ>; x : τ ; } 7→ δ) ` e : τ  f c 6∈ CV(τ)

Γ ` concept c<t>{refines c′<ρ>; x : τ ; } in e : τ  f

(MDL)

concept c<t>{refines c′<ρ′>; x : τ ; } 7→ δ ∈ Γ Γ ` ρ τ ′ Γ ` e : σ  f

model c′<[t 7→ρ]ρ′> 7→ (d′, n) ∈ Γ x : [t 7→ρ]τ ⊆ y : σ d fresh
Γ, (model c<ρ> 7→ (d, [])) ` e : τ  f d′′ = ( nth . . . ( nth d′ n1) . . . nk)

Γ ` model c<ρ> {y = e; } in e : τ  let d = (d′′@[y 7→f ]x) in f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, δ) = [w(c<ρ>, (Γ, t)) Γ′ ` e : τ  f

Γ ` Λt where c<ρ>. e : ∀t where c<ρ>. τ  Λt. λd : δ. f

(TAPP)
Γ ` σ  σ′ Γ ` e : ∀t where c<ρ>. τ  f model c<[t 7→σ]ρ> 7→ (d, n) ∈ Γ

Γ ` e[σ] : [t 7→σ]τ  f [σ′]( nth . . . ( nth d n1) . . . nk)

(MEM)
Γ ` ρ ρ′ (model c<ρ> 7→ (d, n)) ∈ Γ (x : (τ, n′)) ∈ [(c, ρ, n, Γ)

Γ ` c<ρ>.x : τ  ( nth . . . ( nth d n′
1) . . . n′

k)
(VAR)

x : τ ∈ Γ
Γ ` x : τ  x

(ABS)
Γ, x : σ ` e : τ  f Γ ` σ  σ′

Γ ` λx : σ. e : fn σ → τ  λx : σ′. f
(APP)

Γ ` e1 : fn σ → τ  f1 Γ ` e2 : σ  f2

Γ ` e1(e2) : τ  f1(f2)

LEMMA 1.

If (x : (τ, n′)) ∈ [(c, ρ, n, Γ) and(−, δn) = [m(c, ρ,−,−, Γ)

thenΓ ` τ  δn′

The next lemma states that the type of the dictionaries in the
environment match the concept’s dictionary typeδ. The purpose
of the sequencen is to map from the dictionaryd for a “derived”
concept to the nested tuple for the “super” conceptc.

LEMMA 2.

If (model c<τ> 7→ (d, n)) ∈ Γ andΓ Σ

and(−, δ) = [m(c, τ ,−,−, Γ)

thenΣ ` ( nth . . . ( nth d n1) . . . nk) : δ

The following lemma states that extending the FG environment
with proxy models from awhere clause, and extending the System
F environment withd : δ, preserves the environment correspon-
dence.

LEMMA 3.

If Γ Σ and(Γ′, δ) = [w(c<ρ>, Γ)

thenΓ′  Σ, d :δ

We now state the main result. The proof is in the Appendix.

THEOREM 1 (Translation preserves well typing).

If Γ ` e : τ  f andΓ Σ

then there existsτ ′ such thatΣ ` f : τ ′ andΓ ` τ  τ ′

5. Associated Types and Same-Type Constraints
Associated typesare types that play a role in the operations of a
concept, that may vary from model to model, and that are deter-
mined by the type parameters of the concept. An example of an
associated type is the “pointed-to” type of an iterator. In Standard
ML, associated types are typically represented with nested types
within a signature. Similarly, in FG nested types within a concept
are used to represent associated types. The followingIterator con-
cept declares a requirement for a nested type namedelt.

concept Iterator<Iter> {
types elt;
next : fn(Iter)→Iter,
curr : fn(Iter)→elt,
at end : fn(Iter)→bool;

}

Any model of theIterator concept must provide a type assignment
for elt.

model Iterator<list int> {
types elt = int;
next = (λ ls : list int. cdr[int](ls)),
curr = (λ ls : list int. car[int](ls)),
at end = (λ ls : list int. null[int](ls));

}

In the following code theaccumulate function is modified to
take an iterator as input instead of a list. The function is now
parameterized on the iterator type, not on the element type of
the list. However,accumulate still needs a way to refer to the
element type, for example, to write the return type and to state
the requirement that the element type must modelMonoid. We
extend the model member access syntax to apply to associated
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Figure 11. FG with Associated Types and Same Type Constraints

c ∈ Concept Names
s, t ∈ Type Variables
x, y ∈ Term Variables
ρ, σ, τ ::= t | fn τ → τ | ∀t where c<σ>; σ = τ . τ

| c<τ>.t
e ::= x | e(e) | λy : τ . e

| Λt where c<σ>; σ = τ . e | e[τ ]
| concept c<t> {

types s; refines c<σ>;

x : τ ; σ = τ ;

} in e
| model c<τ> {

types t = σ;

x = e;
} in e

| c<τ>.x

| type t = τ in e

types: Iterator<Iter>.elt. The accumulate function can now be
expressed as follows.

let accumulate =
(Λ Iter where Iterator<Iter>, Monoid<Iterator<Iter>.elt>.

fix (λ accum : fn(Iter) →Iterator<Iter>.elt.
λiter : Iter. /∗ body ∗/))

From inside a generic function, associated types are opaque, that
is, no information is known about them unless otherwise specified.
For example, associated types from different models are assumed to
be different types. However, an algorithm may need two associated
types to be the same type, such as in the merge algorithm shown
below, where the element type of the two iterators must be the same
type. To accommodate this, we introducesame-type constraints.

let merge =
(Λ Iter1, Iter2, OutIter where

Iterator<Iter1>, Iterator<Iter2>,
OutputIterator<OutIter, Iterator<Iter1>.elt>,
LessThanComparable<Iterator<Iter1>.elt>;
Iterator<Iter1>.elt = Iterator<Iter2>.elt. /∗ body ∗/)

5.1 Syntax and Typing Rules

The syntax of FG with associated types and same-type constraints
is given in Figure 11 with the additions highlighted in gray. The
syntax for concepts is extended to include requirements for asso-
ciated types and for type equalities. We add type assignments to
models declarations. In addition, where clauses are extended with
type equalities.

We have also added an expression for creating type aliases.
Type aliases were singled out in [14] as an important feature and
the semantics of type aliases is naturally expressed using the type
equality infrastructure for same-type constraints.

Type checking is complicated by the addition of same-type con-
straints because type equality is no longer syntactic equality: it
must take into account the same-type declarations. We extend en-
vironments to include type equalities, and introduce a new type
equality relationΓ ` σ = τ . This relation is the congruence
that includes all the type equalities inΓ. Deciding type equality
is equivalent to the quantifier free theory of equality with uninter-
preted function symbols, for which there is an efficientO(n log n)

time algorithm [41]. We prefix operations on sets of types and type
assignments withΓ ` because type equality now depends on the
environmentΓ.

Figure 13 gives the typing rules for FG with associated types
and same-type constraints and the translation to System F. The
(MDL) rule must check that all required associated types are given
type assignments and that the same-type requirements of the con-
cept are satisfied. Also, when comparing the model’s operations to
the operations in the concept, in addition to substitutingρ for the
concept parameterst, occurrences of associated types must be re-
placed with their type assignments from the body of the model and
from models of the conceptsc refines. The (TABS) and (TAPP)
rules are changed to introduce same-type constraints into the en-
vironment and to check same-type constraints respectively. The
(APP) rule has been changed from requiring syntactic equality be-
tween the parameter and argument types to requiring type equality
based on the congruence of the type equalities in the environment.
The new rule (ALS) for type aliasing checks the body in an envi-
ronment extended with a type equality that expresses the aliasing.

5.2 Translation

The main idea of the translation is to turn associated types into extra
type parameters on type abstractions, an approach we first outlined
in [19] and which is also used in [8]. The following code shows an
example of this translation. Thecopy function requires a model of
Iterator, which has an associated typeelt.

let copy = (Λ Iter, OutIter where Iterator<Iter>,
OutputIterator<OutIter, Iterator<Iter>.elt>. /∗ body ∗/)

An extra type parameter for the associated type is added to the
translated version ofcopy.

let copy =
(Λ Iter, OutIter, elt.
(λ Iterator 21:(fn(Iter)→Iter)∗(fn(Iter)→elt)∗(fn(Iter)→bool),

OutputIterator 23:(fn(OutIter,elt)→OutIter).
/∗ body ∗/)

However, there are two complications here that are not present
in [8]: same-type constraints and concept refinement. Due to the
same-type constraints, all type expressions in the same equivalence
class must be translated to the same System F type. Fortunately, the
congruence closure algorithm for type equality [41] is based on a
union-find data structure which maintains a representative for each
type class. Therefore the translation outputs the representative for
each type expression. The translation of themerge function shows
an example of this. There are two type parameterselt1 and elt2
for each of the twoIterator constraints. Note that in the types for
the three dictionaries, onlyelt1 is used, since it was chosen as the
representative.

let merge =
(Λ In1, In2, Out, elt1, elt2.
(λ Iterator 78:(fn(In1)→In1)∗(fn(In1)→elt1)∗(fn(In1)→bool),

Iterator 80:(fn(In2)→In2)∗(fn(In2)→elt1)∗(fn(In2)→bool),
OutputIterator 84:(fn(Out,elt1)→Out),
LessThanComparable 88:(fn(elt1,elt1)→bool). /∗ body ∗/))

The second complication is the presence of concept refinement.
As mentioned in [8], this causes there to be extra type parameters
for not just the associated types of a conceptc mentioned in the
where clause, but also an extra type parameter for every associated
type in concepts thatc refines. Furthermore, there may be diamonds
in the refinement diagram. To preclude duplicate associated types
we keep track of which concepts (with particular type arguments)
have already been processed.

Figure 13 presents the translation from FG with associated types
and same-type constraints to System F. We omit the (Mem), (Var),

PLDI’05, 8 2005/4/19



and (Abs) rules since they do not change. The functions[ and[m

need to be changed to take into account associated types that may
appear in the type of a concept member or refinement. For example,
in the body of function below, the expression<B(r)>.bar(x) has
type <B(r)>.z, not just z. Also, the refinement forA(z) in B
translates to<B(r)>.z modelingA.

concept A<u> { foo : fn(u)→u; } in
concept B<t> {

types z;
refines A<z>;
bar : fn(t)→z;

} in
(Λ r where B<r>.
λx:r. A<B<r>.z>.foo(B<r>.bar(x)))

We define a function[a to collect all the associated types from a
conceptc and from the concepts refined byc and map them to their
concept-qualified names.

[a(c, τ) =
S := s : c<τ>.s
for i = 0, . . . , |c′| − 1

S := S, [a(c′
i, S(τ ′

i))
returnS

where

concept c<t>{types s ; refines c′<τ ′>; x : σ; ρ = ρ′} ∈ Γ

Here is the new definition of[.

[(c, τ , n, Γ) =
S := [a(c, τ), t : τ
M := ∅
for i = 0, . . . , |c′| − 1

M := M ∪ [(c′
i, S(τ ′

i), (n, i), Γ)
for i = 0, . . . , |x| − 1

M := M ∪ {xi : (S(σi), (n, |c′|+ i))}
returnM

where

concept c<t>{types s ; refines c′<τ ′>; x : σ; ρ = ρ′} ∈ Γ

We used[m in Section 4 to collect the the models from a
conceptc and the concepts thatc refines. We change[m to also
collect the same-type constraints from the concepts. In addition,
for every associated types in c we generate a fresh type variable
s′ and add the same-type constraints′ = <c(τ)>.s. The function
[m also returns a substitution mapping the associated type names
to these generated type variables.

[m(c, ρ, d, n, Γ) =
checkΓ ` ρ − and generate fresh variabless′

Γ := Γ, s′ = c<ρ>.s
A := [a(c, ρ), t : ρ
τ := []
for i = 0, . . . , |c′| − 1

(Γ, s, δ′) := [m(c′
i, A(ρ′

i), d, (n, i), Γ)
τ := τ , δ′

τ := τ@A(σ)

Γ := Γ, A(η) = A(η′)
Γ := Γ, model c<ρ> 7→ (d, n, A)
return(Γ, (s, s′), τ)

where

concept c<t>{types s ; refines c′<ρ′>; x : σ; η = η′} ∈ Γ

Thewhere clause of a type abstraction is processed sequentially
so that later requirements in thewhere clause can refer to require-
ments (e.g., their associated types) that appear earlier in the list.

[w([], Γ) = (Γ, [])

Figure 12. Well-formed FG types (now with associated types and
same-type constraints) and translation to System F types.

Γ ` τ  τ ′

(TYVAR)
t ∈ Γ

Γ ` t [t]Γ

(TYABS) Γ ` σ  σ′ Γ ` τ  τ ′

Γ ` fn σ → τ  fn σ′ → τ ′

(TYTABS)
(Γ′, s, δ) = [w(c<ρ>, (Γ, t)) Γ′ ` τ  τ ′

Γ ` ∀t where c<ρ>, η = η′ . τ  ∀t, s . fn δ → τ ′

(TYASC)
Γ ` ρ ρ′ Γ ` model c<ρ> . . . ∈ Γ

Γ ` c<ρ>.x [c<ρ>.x]Γ

[w((c<ρ>, c′<ρ′>), Γ) =
generate freshd
(Γ, s, δ) := [m(c, ρ, d, [], Γ)

(Γ, s′, δ′) := [w(c′<[t 7→ρ]ρ′>, Γ)
return(Γ, (s, s′), (δ, δ′))

where

concept c<t>{types s ; refines c′<ρ′>; x : σ; η = η′} ∈ Γ

Figure 12 shows the changes to the translation of FG types to Sys-
tem F types. Type variables and member access types are mapped
to their representative, written as[−]Γ.

The proof that the translation to System F preserves well typing
can be modified to take into account the changes we have made for
associated types and same-type constraints and will appear in the
first author’s Ph.D. thesis.

THEOREM 2 (Translation preserves well typing).

If Γ ` e : τ  f andΓ Σ

then there existsτ ′ such thatΣ ` f : τ ′ andΓ ` τ  τ ′

6. Conclusion
The main contribution of this paper is the development of a lan-
guage, named FG, that provides first-class support for concepts,
thereby capturing the essence of language support for generic pro-
gramming. We present a formal type system for the language and
provide semantics via a translation to System F. We prove that the
translation preserves typing, and thus type soundness for FG.

There are several language features that are important for
generic programming that we do not cover in this paper due to
space considerations as well as a desire to provide an uncluttered
presentation of concepts. Those features include:

Nested Requirements.Concepts often include requirements on
associated types. For example, a container’s associated iterator a
would be required to model theIterator concept. This form of
concept composition is slightly different from refinement but close
enough that we did not wish to clutter our presentation of FG.
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Figure 13. Type Rules for FG with Associated Types and Same-Type Constraints and Translation to System F

Γ ` e : τ  f

(CPT)

distinct t distinct s concept c′<t′>{. . .} 7→ δ′ ∈ Γ Γ, t, s ` ρ ρ′ Γ, t, s ` τ  τ ′

Γ, t, s ` σ  ν Γ, t, s ` σ′  ν′ δ = ([t′ 7→ρ′]δ′)@τ ′

Γ, (concept c<t>{types s ; refines c′<ρ>; x : τ ; σ = σ′} 7→ δ) ` e : τ  f

Γ ` concept c<t>{types s ; refines c′<ρ>; x : τ ; σ = σ′} in e : τ  f

(MDL)

concept c<t>{types s′ ; refines c′<ρ′>; x : τ ; η = η′} 7→ δ ∈ Γ Γ ` ρ τ ′ Γ ` ν  ν′ Γ ` e : σ  f

s′ ⊆ s S = t : ρ, s′ : [s 7→ν]s′ Γ ` model c′<S(ρ′)> 7→ (d′, n, A′ ) ∈ Γ S′ = S,∪A′

Γ ` x : S′(τ) ⊆ y : σ Γ ` S′(η) = S′(η′) d fresh

Γ, (model c<ρ> 7→ (d, [], (∪A′, s′ : [s 7→ν]s′) )) ` e : τ  f d′′ = ( nth . . . ( nth d′ n1) . . . nk)

Γ ` model c<ρ> { types s = ν; y = e} in e : τ  let d = (d′′@[y 7→f ]x) in f

(TABS)
distinct t t ∩ FTV(Γ) = ∅ (Γ′, s , δ) = [w(c<ρ>, (Γ, t)) Γ′, τ = τ ′ ` e : τ  f

Γ ` Λt where c<ρ>, τ = τ ′ . e : ∀t where c<ρ>, τ = τ ′ . τ  Λt, s . λd : δ. f

(TAPP)

Γ ` σ  σ′ Γ ` e : ∀t where c<ρ>, η = η′ . τ  f

Γ ` model c<[t 7→σ]ρ> 7→ (d, n, s : ν ) ∈ Γ Γ ` [t 7→σ]η = [t 7→σ]η′

Γ ` e[σ] : [t 7→σ]τ  f [σ′, ν ]( nth . . . ( nth d n1) . . . nk)

(ALS)
t /∈ FTV(Γ) Γ, t = τ ` e : τ  f

Γ ` type t = τ in e : τ  f
(APP)

Γ ` e1 : fn σ → τ  f1 Γ ` e2 : σ′  f2 Γ ` σ = σ′

Γ ` e1 e2 : τ  f1(f2)

Implicit instantiation of type abstractions. Ideally we would
introduce a subsumption rule based on Mitchell’s containment rela-
tion [38]. However, that relation is undecidable [61]. There are two
interesting restrictions that are decidable: no coercion under a func-
tion arrow [30] and restriction of type arguments to monomorphic
types [46]. We plan further investigation in this area.

Statically resolved function overloading, as in C++ and Java.
This feature is needed to remove the clutter of model member
access such asMonoid<t>.binary op.

Named models, as in [22]. This feature provides a mechanism
for managing overlapping models, and would be a straightforward
addition to FG.

Parameterized models(equivalent to parameterized instances
in Haskell) are important for the case when the modeling type is
parameterized, such aslist<T>.

Defaults for concept members(as in Haskell) provide a mech-
anism for implementing a rich interface in terms of a few functions.

Algorithm specialization is used in C++ to provide automatic
dispatching to different versions of an algorithm based on prop-
erties of a type, such as an iterator providing random access. The
natural way to add this to FG would be to have function overloading
based on the where clauses of generic functions [20].

A. Appendix
PROOF. (of Theorem 1) The proof is by induction of the derivation
of Γ ` e : τ  f .

Cpt Let Γ′ = Γ, concept c<t>{refines c′<ν>; x : τ ; }. By
inversion we have:

concept c′<t′>{. . .} 7→ δ ∈ Γ (1)

Γ, t ` τ  τ ′ (2)

Γ′ ` e : τ  f (3)

c 6∈ CV(τ) (4)

From the assumptionΓ  Σ and from (1) and (2) we have
Γ′  Σ. Then by (3) and the induction hypothesis we have
Σ ` f : τ ′ and Γ′ ` τ  τ ′. Then from (4) we have
Γ ` τ  τ ′.

Mdl LetΓ′ = Γ, (model c<ρ>) 7→ (d, []). We have the following
by inversion:

Γ ` e : σ  f (5)

model c′<[t 7→ρ]ρ′> 7→ (d′, n′) ⊆ Γ (6)

x : [t 7→ρ]τ ⊆ y : σ (7)

Γ′ ` e : τ  f (8)

concept c<t>{refines c′<ρ′>; x : τ ; } 7→ δ ∈ Γ (9)

Let Σ such thatΓ  Σ. With (5) and the induction hypothesis
there existsσ′ such thatΣ ` f : σ′ andΓ ` σ  σ′. Next, let

r = ( nth . . . ( nth d′ n′
1) . . . n′

k)
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FromΓ  Σ and (9) we have(−, δ′) = [w(c′<ρ′>, Γ). and
therefore(−, [t 7→ ρ]δ′) = [w(c′<[t 7→ρ]ρ′>, Γ). Together
with (6) and Lemma 2 we haveΣ ` r : [t 7→ ρ]δ′. With (7)
we have a well typed dictionary:

Σ ` (r@[y 7→f ]x) : δ (10)

Let Σ′ beΣ, d : δ soΓ′  Σ′. Then with (8) and the induction
hypothesis there existsτ ′ such thatΣ′ ` f : τ ′ andΓ′ ` τ  
τ ′. From (10) we showΣ ` let d = (r@[y 7→f ]x) in f : τ ′.

TAbs By inversion we have:

(Γ′, δ) = [w(c<ρ>, (Γ, t)) (11)

Γ′, t, M ` e : τ  f (12)

From the assumptionΓ  Σ we haveΓ, t  Σ, t. Then
with (11) we apply Lemma 3 to getΓ′  Σ, t, d : δ. We
then apply the induction hypothesis with (12), so there exists
τ ′ such thatΣ, t, d : δ ` f : τ ′ and Γ′ ` τ  τ ′.
Hence we haveΣ, t ` λd : δ. f : fn δ → τ ′ and
thereforeΣ ` Λt. λd : δ. f : ∀t. fn δ → τ ′. Also, from
Γ′ ` τ  τ ′ we haveΓ, t ` τ  τ ′. Then with (11) we have
Γ ` ∀t where c<ρ>. τ  ∀t. fn δ → τ ′.

TApp By inversion of the (TAPP) rule we have:

Γ ` σ  σ′ (13)

Γ ` e : ∀t. where c<ρ>. τ  f (14)

model c<[t 7→σ]ρ> 7→ (d, n) ∈ Γ (15)

From (14) and the induction hypothesis there existsτ ′ such that
Σ ` f : τ ′ andΓ ` ∀t where c<ρ>. τ  τ ′. By inversion
there existsδ, τ ′′, andΓ′ such that

τ ′ = ∀t. fn δ → τ ′′ (16)

(Γ′, δ) = [w(c<ρ>, Γ) (17)

Γ′ ` τ  τ ′′ (18)

Using (16) we have

Σ ` f [σ′] : [t 7→σ′]( fn δ → τ ′′) (19)

From (17) and (13) we have

(Γ′, [t 7→σ′]δ) = [w(c<[t 7→σ]ρ>, Γ)) (20)

Let d′ = ( nth . . . ( nth d n1) . . . nk). From the assumption
Γ Σ, (15), and (20) we apply Lemma 2 to getΣ ` d′ : [t 7→
σ′]δ. Then with (19) we haveΣ ` f [σ′](d′) : [t 7→ σ]τ ′′ and
from (13) and (18) we haveΓ ` [t 7→σ]τ  [t 7→σ′]τ ′′.

Mem By inversion we have

(model c<τ> 7→ (d, n)) ∈ Γ (21)

x : (τ, n′) ∈ [(c, τ , n, Γ) (22)

From the assumptionΓ  Σ and (21), we have the following
by inversion.

(d : δ) ∈ Σ (23)

(−, δn) = [m(c, τ ,−,−, Γ) (24)

From (23) we haveΣ ` d : δ and with (22) we show

Σ ` ( nth . . . ( nth d n′
1) . . . n′

k) : δn′

From (22), (24), and Lemma 1 we haveΓ ` τ  δn′ .
Var, Abs, App The proofs of these cases are straightforward and

omitted for brevity.
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