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Abstract. The past decade of experience has demonstrated that the generic pro-
gramming methodology is highly effective for the design, implementation, and
use of large-scale software libraries. The fundamental principle of generic pro-
gramming is the realization of interfaces for entire sets of components, based
on their essential syntactic and semantic requirements, rather than for any par-
ticular components. Many programming languages have features for describing
interfaces between software components, but none completely support the ap-
proach used in generic programming. We have recently developed G, a language
designed to provide first-class language support for generic programming and
large-scale libraries. In this paper, we present an overview of G and analyze the
interdependence between language features and libraries design in light of a com-
plete implementation of the Standard Template Library using G. In addition, we
discuss important issues related to modularity and encapsulation in large-scale
libraries and how language support for validation of components in isolation can
prevent many common problems in component integration.

1 Introduction

In the 1980s Musser and Stepanov developed a methodology for creating highly reusable
algorithm libraries [1-4], using the term “generic programming” for their wotkeir
approach was novel in that the algorithms in their libraries were not written based on
any particular data structure. Rather, the algorithms were written based on specifications
of requirements that a structure would have to meet in order for the algorithm to be cor-
rect. Such algorithms (“generic algorithms”) were therefore able to operate on any data
structure at all, provided the structure met the specified requirements. For example, a
given generic algorithm could operate on linked lists, arrays, red-black trees (repre-
senting ordered sequences), and any other structure (in particular, structures developed
independently of the generic library) meeting the requirements of that algorithm. Early
versions of generic algorithm libraries were implemented in Scheme, Ada, and C.

In the early 1990s Stepanov and Musser took advantage of the template system in
C+ [5] to construct the Standard Template Library (STL) [6,7]. The STL became part of
the G+ Standard, which brought their style of generic programming into the mainstream.
Since then, the methodology has been successfully applied to the creation of libraries
for numerous domains [8-12].

! The term “generic programming” is often used to mean any use of “generics”, i.e., any use of
parametric polymorphism or templates. The term is also used in the functional programming
community for function generation based on algebraic datatypes (“polytypic programming”).
Here, we use the term “generic programming” solely in the sense of Musser and Stepanov.



The ease with which programmers implement and use generic libraries varies greatly
depending on the language features available for expressing polymorphism and require-
ments on type parameters. In [13] we performed a comparative study of modern lan-
guage support for generic programming, implementing a representative subset of the
Boost Graph Library [9] in each of six languages. While some languages performed
quite well, none were ideal for generic programming.

The language presented here, named G, was designed explicitly for generic pro-
gramming. In [14] we laid the foundation for G, defining a core calculus, narfied F
based on System F [15, 16]. I*Rve captured the essential features for generic pro-
gramming in a small formal system and proved type safety. The language G applies the
ideas from F to a full programming language capable of implementing the entire STL.

1.1 Contributions
The contributions of this paper are the design and evaluation of a language for generic
programming:

e We give a high-level and intuitive description of the language G. A formal descrip-
tion of the idealized core of G, named Fis presented in [14]. We leave a formal
description of the full language G for future work.

e We evaluate the design of G with respect to implementing the Standard Template
Library. The STL is a large generic library that exercises all aspects of the generic
programming methodology. The STL is therefore a fitting first test for validating
the design of G.

e We evaluate the design of G with respect to scalability issues in software develop-
ment. In particular, we show how G provides support for the independent validation
of components and support for component integration.

Many elements of G can be found in other programming languages, but G is unique
in providing a carefully selected combination of language features for generic program-
ming. In terms of interface description, the closest relative to G is Haskell's type classes.
However, G differs in that 1) the concept feature in G integrates nested types and type
sharing (similar to ML), 2) model definitions in G obey normal scoping rules, and 3) G
explores design issues of type classes for non-type-inferencing languages.

1.2 Road Map

In Section 2 we review the essential ideas and terminology of generic programming and
present an overview of the language G in Section 3. We review the high-level structure
of the Standard Template Library in Section 4 and analyze the use of language features
in G to implement the STL in Section 5. In Section 6 we show how component devel-
opment and integration is facilitated by the G type system. Related work is discussed in
Section 7. We conclude the paper in Section 8.

2 Generic Programming
Defining characteristics of the generic programming methodology are the following:
e Algorithms are expressed with minimal assumptions about data abstractions, and
vice versa, making them maximally interoperable. This is accomplished by taking
a concrete algorithm and lifting the non-essential requirements. For example, an
algorithm on linked-lists becomes an algorithm on forward iterators.



e Absolute efficiency is required. Algorithms are never lifted to the point where they
lose efficiency. When a single generic algorithm can not achieve the best efficiency
for all input types, multiple generic algorithms are implemented and automatic al-
gorithm selection is provided.

The notion of abstraction is fundamental to generic programming: generic algo-
rithms are specified in terms of abstract properties of types, not in terms of particular
types. Aconceptis a set of requirements on a type (or on several types) and these
requirements may be semantic as well as syntactic. A concept may incorporate the
requirements of another concept, in which case the first concept is seafirte the
second. A type (or list of types) that meets the requirements of a concept is said to
modelthe concept.

Concepts are used to specify interfaces to a generic algorithm anddhasain
the type parameters to that algorithm. A generic algorithm may only be used with type
arguments that model its constraining concepts.

An example of a concept from the STLligout Iterator (a sans-serif font is used to
distinguish names of concepts). This concept is a refinement ofstignable, Copy
Constructible, and Equality Comparable concepts. In addition, a type is a model of
Input Iterator if it satisfies the following:

¢ |t has increment and dereference functions;

e It has two associated helper types: a value type, which is the return type of the
dereference operator, and a difference type, which is some modgjnetiintegral
suitable for measuring distances between iterators; and

e Given objecta andb of typeX, a == b implies*a is equivalent toxb; and

e The increment and dereference operators must be constant time.

In general, a concept consists of five kinds of requirements: operaasseciated
types nested requirements, semantic invariants, and complexity guarantees. To further
elaborate, associated types are types needed for the operations required by the concept
and that are determined by the modeling type but which may vary from one model of
the concept to another.

In C+, the typesint* and list<char>::iterator are examples of types that
modelinput Iterator. The associated value type fart* is int and the associated value
type forlist<char>::iterator is char. The concepinput Iterator is directly used as
a type requirement in over 28 of the STL algorithms. One example isdpg algo-
rithm, which requires the first range to be a modehgfit Iterator. The following is the
signature for the € STL copy algorithm:

template<class InputIlterator, class Outputlterator>

OutputIterator
copy(InputIterator first, InputIterator last, OutputIterator result);

3 Overview of G

G is a statically typed imperative language with syntax and memory model similar to
C+. We have implemented a compiler that translates G+tplilit G could also be
interpreted or compiled to byte-code. Compilation units are separately type checked



and may be separately compiled, relying only on forward declarations from other com-
pilation units (even compilation units containing generic functions and classes). The
languages features of G that support generic programming are the following:

Concept and model definitions;

Constrained polymorphic functions, classes, structs, and type-safe unions;
Implicit instantiation of polymorphic functions; and

Concept-based function overloading.

In addition, G includes the usual basic types and control constructs of a general purpose
programming language.
Concepts are defined using the following syntax:

decl «— concept id <id,...> { cmem ... };

cmem — funsig | fundef // Operations
| type id; // Associated types
| ty == ty; // Same-type constraints
| refines id<ty, ...>; | require id<ty, ...>;

The identifiers in the<>’s are place holders for the modeling type (or list of types).
The distinction betweenef ines andrequire is that refinement brings in the associ-
ated types from the “super” concept and also plays a role in function overloading. The
following is the definition of th&nputIterator conceptin G.
concept InputIterator<X> {
type value;
type difference;
refines EqualityComparable<X>;
refines Regular<X>; // this includes Assignable and CopyConstructible
require SignedIntegral<difference>;
fun operator*(X b) -> value@;
fun operator++(X! c) -> X!;
};
The modeling relation between a type and a concept is established with a model
definition using the following syntax.

decl — model [<id,...>] [where { constraint, ... }| id <ty,...> { decl ... };

A model may be parameterized: the identifiers in ¢h& are type parameters and the
where clause introduces concept and same-type constraints:

constraint «— id<ty, ...> | ty == ty

The following statement establishes that all pointer types are modetpatIterator.
model <T> InputIterator<Tx*> {
type value = T;
type difference = ptrdiff_t;

s

A model definition must satisfy all requirements of the concept. Requirements for as-
sociated types are satisfied by type definitions. Requirements for operations may be
satisfied by function definitions in the model, by #igere clause, or by functions in

the lexical scope preceding the model definition. Refinements and nested requirements
are satisfied by preceding model definitions.



The syntax for polymorphic functions is shown below. The return type of a function
is delimited by->.

fundef «— fun id [<id,...>] [where { constraint, ... }]
(ty pass [id], ...) => ty pass { stmt ... }
funsig — fun id [<id,...>] [where { constraint, ... }]

(ty pass [id], ...) => ty pass;
decl — fundef | funsig
pass «— ! | @ | /* nothing */ | &
The default parameter passing mode in G is read-only pass-by-reference, which can
also be specified witk. Read-write pass-by-reference is indicated!bgnd pass-by-
value bye. The body of a polymorphic function is type checked separately from any
instantiation of the function. Thehere clause introduces surrogate model definitions
and signatures (for all required concept operations) into the scope of the function. The
genericdistance function is a simple example.
fun distance<Iter> where { InputIterator<Iter> }
(Iter@ first, Iter last) -> InputIterator<Iter>.difference@ {
let n = zero();
while (first != last) { ++first; ++n; }
return n;

}

The dot notation used in the return type refers to an associated type, in this case the
difference type of the iterator.

assoc «— id<ty, ...>.id | id<ty, ...>.assoc
ty < assoc

Insidedistance we use the following three kinds of statements. Tke statement
introduces a variable bound to the value of the expression on the right-hand side. The
scope is to the end of the enclosing block and the type of the variable is the type of the
right-hand side. G includeile, return, and the usual control constructs of.C

stmt «— let id = expr; | while (expr) stmt | return expr; | ...

Multiple functions with the same name may be defined, and static overload reso-
lution is performed by G to decide which function to invoke at a particular call site
depending on the argument types and also depending on which model definitions are
in scope. When more than one overload may be called, the more specific overload is
called if one exists (“more specific” is a partial order). Theere clause and the con-
cept refinement hierarchy are a factor in the partial ordering.

The syntax for polymorphic classes, structs, and unions is defined below.

decl <+ class id polyhdr { classmem ... };

decl «— struct id polyhdr { mem ... };

decl < union id polyhdr { mem ... };

mem «— ty id;

classmem «— mem

| polyhdr id(ty pass [id], ...) { stmt ... }
| ~ad() { stmt ... }

polyhdr «— [<id,...>] [where { constraint, ... }]

Classes consist of data members, constructors, and a destructor. There are no member
functions; normal functions are used instead. Data encapsulationi¢/private) is
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Fig. 1. High-level structure of the STL.

specified at the module level instead of inside the class. Class, struct, and unions are
used as types using the syntax below. Such a type is well-formed if the type arguments
are well-formed and if the requirements in its where clause are satisfied.

ty — id[<ty, ...>]
The syntax for calling functions (or polymorphic functions) is the C-style notation:

expr «— expr(expr, ...)

Arguments for the type parameters of a polymorphic function need not be supplied at
the call site: G will deduce the type arguments by unifying the types of the arguments
with the types of the parameters aimdplicitly instantiate the polymorphic function.
All of the requirements in thehere clause must be satisfied by model definitions in
the lexical scope preceding the function call. The following is a program that calls the
distance function, applying it to iterators of typent*.
fun main() -> int@ {

let p = new int[8];

let d = distance(p, p + 4);

return d == 4 7 0 : -1;

¥
A polymorphic function may be explicitly instantiated using this syntax:

expr «— expr<|ty, ...|>

4 Qverview of the STL

The high-level structure of the STL is shown in Fig. 1. The STL contains over fifty
generic algorithms. Prior to the STL, algorithms such as these were implemented in
terms of concrete data structures such as linked lists and arrays. The STL generic al-
gorithms abstract away from the non-essential characteristics of these data structures,
implementing them in terms of a family of iterator abstractions. As a result, the STL
algorithms may be used with an infinite set of concrete data structures, i.e., any data
structure that exports iterators with the required capabilities.

Fig. 2 shows the hierarchy of STL's iterator concepts. An arrow indicates that the
source concept is a refinement of the target. The iterator concepts arose from the re-
quirements of algorithms: the need to express the minimal requirements for each al-
gorithm. For example, theerge algorithm passes through a sequence once, so it only
requires the basic requirementsmiut Iterator. On the other handort_heap requires
iterators that can jump arbitrary distances, so it requReeslom Access lterator.
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Fig. 2. Iterator concept hierarchy.

The STL includes a handful of common data structures. When one of these data
structures does not fulfill some specialized purpose, the programmer is encouraged to
implement the appropriate specialized data structure. All of the STL algorithms can
then be made available for the new data structure at the small cost of implementing
iterators for the specialized data structure.

Many of the STL algorithms are higher-order: they take functions as parameters,
allowing the user to customize the algorithm to their own needs. The STL defines over
25 function objects for creating and composing functions.

The STL also contains a collection of adaptor classes, which are parameterized
classes that implement some concept in terms of the type parameter (which is the
adapted type). For example, theck_insert_iterator adaptor implementSutput
Iterator in terms of any model oBack Insertion Sequence. The genericopy algorithm
can then be used withack_insert_iterator<list<int>> to append some integers
to a list. Adaptors play an important role in the plug-and-play nature of the STL and
enable a high degree of reuse. For examplefthel_last_subsequence function is
implemented usindind_subsequence and thereverse_iterator adaptor.

5 Analysis of G and the STL

In this section we analyze the interdependence of the language features of G and generic
library design in light of implementing the STL. A primary goal of generic program-
ming is to express algorithms with minimal assumptions about data abstractions, so we
first look at how the polymorphic functions of G can be used to accomplish this. An-
other goal of generic programming is efficiency, so we investigate the use of function
overloading in G to accomplish automatic algorithm selection. We conclude this section
with a brief look at implementing generic containers and adaptors in G.

AlgorithmsFig. 3 depicts a few simple STL algorithms implemented using polymorphic
functions in G. The STL provides two versions of most algorithms, such as the over-
loads forfind in Fig. 3. The first version is higher-order, taking a predicate function as

its third parameter while the second version reliesg@rator==. The higher-order ver-

sion is more general but for many uses the second version is more convenient. Functions
are first-class in G, so the higher-order version is straightforward to express: a function
type is used for the third parameter. As is typical in the STL, there is a high-degree of
internal reuseremove usesremove_copy and andfind.

Iterators.Fig. 4 shows the STL iterator hierarchy as represented in G. Required op-
erations are expressed in terms of function signatures, and associated types are ex-
pressed with a nestedipe requirement. The refinement hierarchy is established with
the refines clauses and nested model requirements wifuire. In the previous
example, the calls tédind andremove_copy insideremove type check because the
MutableForwardIterator concept refine€nputIterator andOutputIterator.



fun find<Iter> where { InputIterator<Iter> }
(Iter@ first, Iter last,
fun(InputIterator<Iter>.value)->bool@ pred) -> Iter@ {
while (first != last and not pred(*first)) ++first;
return first;
}
fun find<Iter> where { InputIterator<Iter>,
EqualityComparable<InputIterator<Iter>.value> }
(Iter@ first, Iter last, Inputlterator<Iter>.value value) -> Iter@ {
while (first != last and not (*first == value)) ++first;
return first;
¥
fun remove<Iter> where { MutableForwardIterator<Iter>,
EqualityComparable<InputIterator<Iter>.value> }
(Iter@ first, Iter last, Inputlterator<Iter>.value value) -> Iter@ {
first = find(first, last, value);
let i = @Iter(first);
return first == last 7 first : remove_copy(++i, last, first, value);

}

Fig. 3. Some STL Algorithms in G.

There are no examples of nested same-type requirements in the iterator concepts, but the
STL Container concept includes such constraints. Semantic invariants and complexity
guarantees are not expressible in G: they are beyond the scope of its type system.

Automatic Algorithm Selectiofo realize the generic programming efficiency goals, G
provides mechanisms for automatic algorithm selection. The following code shows two
overloads forcopy. (We omit the third overload to save space.) The first version is for
input iterators and the second for random access, which uses an integer counter for the
loop thereby allowing some compilers to better optimize the loop. The two signatures
are the same except for theere clause. We call thisoncept-based overloading
fun copy<Iterl,Iter2> where { InputIterator<Iterl>,
OutputIterator<Iter2, Inputlterator<Iterl>.value> }
(Iteri@ first, Iterl last, Iter2@ result) -> Iter20@ {
for (; first != last; ++first) result << *first;
return result;
}
fun copy<Iterl,Iter2> where { RandomAccessIterator<Iterl>,
OutputIterator<Iter2, InputIterator<Iterl>.value> }
(Iteri@ first, Iterl last, Iter2@ result) -> Iter20@ {
for (n = last - first; n > zero(); --n, ++first) result << xfirst;
return result;

}

The use of dispatching algorithms suchcagy inside other generic algorithms is
challenging because overload resolution is based on the proxy models iihd¢he
clause and not on the models defined for the instantiating type arguments. (This rule
is needed for separate type checking and compilation). Thus, a call to an overloaded
function such asopy may resolve to a non-optimal overload. Consider the follow-
ing implementation ofmerge. The Iterl and Iter2 types are required to model
InputIterator and the body oherge contains two calls teopy.



concept InputIter<X> {
type value;
type difference;
refines EqualityComparable<X>;
refines Regular<X>;
require SignedIntegral<difference>;

concept Bidirectionallter<X> {
refines ForwardIter<X>;
fun operator--(X!) -> X!;

};
izz Zi:;zzzi:£§;|)>_za§??@’ concept MutableBidirectionallter<X> {
3. ’ o refines BidirectionalIlter<X>;
céncept OutputTter<x,T> { refines MutableForwardIter<X>;
refines Regular<X>; ¥
fun operator<<(X!, T) -> X!; concept Ran§0@Acce§sIter<X> {
3 refines BidirectionalIlter<X>;

refines LessThanComparable<X>;

fun operator+(X, difference) -> X@;
fun operator-(X, difference) -> X@;
fun operator-(X, X) -> differenceQ;

concept ForwardIter<X> {
refines DefaultConstructible<X>;
refines InputIter<X>;
fun operator*(X) -> value;

}.

¥ i
<X>

concept MutableForwardIter<X> { concept MutableRandomAccessIter<X> {

X refines RandomAccessIter<X>;
refines Forwardlter<X>; refines MutableBidirectionalIter<X>;
refines Outputlter<X,value>; ’

require Regular<value>; ¥
fun operator*(X) -> value!;

};

Fig. 4. The STL Iterator Concepts in G{erator has been abbreviated Iaer).

fun merge<Iterl,Iter2,Iter3>
where { InputIterator<Iterl>, InputIterator<Iter2>,
LessThanComparable<InputIterator<Iterl>.value>,
InputIterator<Iterl>.value == Inputlterator<Iter2>.value,
OutputIterator<Iter3, InputIterator<Iterl>.value> }
(Iteri@ firstl, Iterl lastl, Iter2@ first2, Iter2 last2, Iter3@ result)
-> Iter3@ {

return copy(first2, last2, copy(firstl, lastl, result));
}

The merge function always calls the slow version ebpy, even though the actual
iterators may be random access. I, @ith tag dispatching, the fast versionadpy is
called because the overload resolution occurs after template instantiation. However, C
does not have separate type checking for templates.

To enable dispatching fotopy the information available at the instantiation of
merge must be carried into the body ekrge (suppose it is instantiated with a ran-
dom access iterator). This can be accomplished using a combination of concept and
model declarations. First, define a concept with a single operation that corresponds to
the algorithm.

concept CopyRange<I1,I2> {

fun copy_range(I1,I1,I2) -> I20;
};

Next, add a requirement for this concept to the type requiremenisr@gfe and replace
the calls tocopy with the concept operatiotopy_range.



fun merge<Iterl,Iter2,Iter3>

where { ..., CopyRange<Iter2,Iter3>, CopyRange<Iterl,Iter3> }

(Iter1@ firstl, Iterl lastl, Iter2@ first2, Iter2 last2, Iter3@ result)
-> Iter3e { ...
return copy_range(first2, last2, copy_range(firstl, lastl, result));

}

The last part of the this idiom is to create parameterized model declaratiahgftange.
Thewhere clauses of the model definitions match thesre clauses of the respective
overloads forcopy. In the body of eackopy_range there is a call taopy which will
resolve to the appropriate overload.
model <Iterl,Iter2> where { InputIterator<Iteril>,
OutputIterator<Iter2, Inputlterator<Iterl>.value> }
CopyRange<Iterl,Iter2> {
fun copy_range(Iterl first, Iterl last, Iter2 result) -> Iter20Q
{ return copy(first, last, result); }
};
model <Iterl,Iter2> where { RandomAccessIterator<Iterl>,
OutputIterator<Iter2, Inputlterator<Iterl>.value> }
CopyRange<Iterl,Iter2> {
fun copy_range(Iterl first, Iterl last, Iter2 result) -> Iter2@

{ return copy(first, last, result); }
};

A call tomerge with a random access iterator will use the second model to satisfy
the requirement foopyRange. Thus, whercopy_range is invoked insidenerge, the
fast version ofcopy is called. A nice property of this idiom is that calls to generic
algorithms need not change. A disadvantage of this idiom is that the interface of the
generic algorithms becomes more complex.

ContainersThe containers of the STL are implemented in G using polymorphic types.
Fig. 5 shows an excerpt of the doubly-linketlst container in G. As usual, a dummy
sentinel node is used in the implementation. With each STL container comes iterator
types that translate between the uniform iterator interface and data-structure specific op-
erations. Fig. 5 shows thie st _iterator which translatesperator* tox.node->data
andoperator++ t0 x.node = x.node->next.

Not shown in Fig. 5 is the implementation of the mutable iteratorlfost (the
list_iterator provides read-only access). The definitions of the two iterator types
are nearly identical, the only difference is thakrator* returns by read-only refer-
ence for the constant iterator whereas it returns by read-write reference for the mutable
iterator. The code for these two iterators should be reused but G does not yet have a
language mechanism for this kind of reuse.

In C+ this kind of reuse can be expressed using the Curiously Recurring Tem-
plate Pattern (CRTP) and by parameterizing the base iterator class on the return type
of operator*. This approach can not be used in G because the parameter passing mode
may not be parameterized. Further, the semantics of polymorphism in G does not match
the intended use here, we wangeneratecode for the two iterator types at library con-
struction time. A separatgenerativemechanism is needed to compliment the generic
features of G. As a temporary solution, we used the m4 macro system to factor the



struct list_node<T> where { Regular<T>, DefaultConstructible<T> } {
list_node<T>* mnext; list_node<T>* prev; T data;

};

class 1ist<T> where { Regular<T>, DefaultConstructible<T> } {
list() : n(new list_node<T>()) { n->next = n; n->prev = n; }
“listO { ... }
list_node<T>* n;

};

class list_iterator<T> where { Regular<T>, DefaultConstructible<T> } {

. list_node<T>* node;

}

fun operator*<T> where { Regular<T>, DefaultConstructible<T> }

(list_iterator<T> x) -> T { return x.node->data; }

fun operator++<T> where { Regular<T>, DefaultConstructible<T> }
(list_iterator<T>! x) -> list_iterator<T>!

{ x.node = x.node->next; return x; }
fun begin<T> where { Regular<T>, DefaultConstructible<T> }
(1ist<T> 1) -> list_iterator<T>@

{ return @list_iterator<T>(1l.n->next); }

fun end<T> where { Regular<T>, DefaultConstructible<T> }
(1ist<T> 1) -> list_iterator<T>@ { return @list_iterator<T>(1l.n); }

Fig. 5. Excerpt from a doubly-linked list container in G.

common code from the iterators. The following is an excerpt from the implementation

of the iterator operators.

define(‘forward_iter_ops’,

‘fun operator*<T> where { Regular<T>, DefaultConstructible<T> }
($1<T> x) -> T $2 { return x.node->data; } ...’)
forward_iter_ops(list_iterator, &) /* read-only */
forward_iter_ops(mutable_list_iter, !) /* read-write */

AdaptorsThereverse_iterator classis a representative example of an STL adaptor.

class reverse_iterator<Iter>
where { Regular<Iter>, DefaultConstructible<Iter> } {
reverse_iterator(Iter base) : curr(base) { }
reverse_iterator(reverse_iterator<Iter> other) : curr(other.curr) { }
Iter curr;

};

TheRegular requirement on the underlying iterator is needed for the copy constructor
andDefaultConstructible for the default constructor. This adaptor flips the direc-
tion of traversal of the underlying iterator, which is accomplished with the following
operator* andoperator++. There is a call teperator-- on the underlying ter type
SOBidirectionalIlterator is required.

fun operator*<Iter> where { BidirectionalIterator<Iter> }
(reverse_iterator<Iter> r) -> Bidirectionallterator<Iter>.value
{ let tmp = @Iter(r.curr); return *--tmp; }



fun operator++<Iter> where { BidirectionalIlterator<Iter> }
(reverse_iterator<Iter>! r) -> reverse_iterator<Iter>!
{ --r.curr; return r; }

Polymorphic model definitions are used to establishithatrse_iterator is a model
of the iterator concepts. The following says thatrerse_iterator is a model of
InputIterator whenever the underlying iterator is amodeBaflirectionalIterator.
model <Iter> where { Bidirectionallterator<Iter> }
InputIterator< reverse_iterator<Iter> > {
type value = Bidirectionallterator<Iter>.value;
type difference = Bidirectionallterator<Iter>.difference;

}’

6 Component Development Benefits

Generic programming has enabled programmers from all over the world to construct
and share interchangeable components. An example of this is the Boost collection of
C+ libraries [17]. While this has benefited programmer productivity, there is room to
improve: the cost of reuse is still too high. Programmers routinely run into compo-
nent integration problems such as namespace pollution, libraries with type errors, doc-
umentation inconsistencies, long compile times, and hard to understand error messages.
Many languages provide the necessary modularity to solve these problems, but lack the
abstractions to express the STL. On the other hand;dD easily express the STL but
lacks modularity. The point of this section is to show that not only is G suitable for
expressing the STL but it also provides modularity.

Namespace pollution issues relatedpe macros are an old story, but generic pro-
gramming brings with it new and subtle issues. For example, function templates in C
rely on argument dependent lookup (ADL) [18] to access user-defined operations, but
ADL breaks namespace modularity. There is tension in between the need to allow for
rich interfaces and user-supplied operations while at the same time ensuring modular-
ity. In G this tension is resolved through the use of conceptswarae clauses that
provide a mechanism for specifying rich interfaces while at the same time separating
library and user namespaces.

Users of generic libraries in+€Care plagued by long compile times and hard to un-
derstand error messages. The reason+s lack of separate compilation and separate
type checking. G addresses both of these problems. In G, generic libraries can be com-
piled to object code so the user need only link them to the executable. Many of the
hard to understand error messages-+nc@me from misuses of generic algorithms. For
example, the following G program misusesable_sort: it requires a random access
iterator butlist only provides bidirectional.

4 fun main() -> int@{

5 let v = Q@list<int>();

6 stable_sort(begin(v), end(v));

7 return O;

8 1%

In C++ this would evoke pages of error messages with line numbers pointing deep inside
the implementation oftable_sort. In contrast, the G compiler prints the following:

test/stable_sort_error.hic:6:



In application stable_sort(begin(v), end(v)),
Model MutableRandomAccessIterator<mutable_list_iter<int>>
needed to satisfy requirement, but it is not defined.

Another problem that plagues generie libraries is that type errors often go unno-
ticed during library development. This is because type checking of templates is delayed
until instantiation. A related problem is that the documented type requirements for a
template may not be consistent with the implementation, which can result in unexpected
compiler errors for the user.

These problems are directly addressed in G: the implementation of a generic func-
tion is type-checked with respect to ithere clause. Verifying that there are no type
errors in a generic function and that the type requirements are consistent is trivial in G:
the compiler will not accept generic functions invoked with inconsistent types.

Interestingly, while implementing the STL in G, the type checker caught several
errors in the STL as defined in*COne such error was iteplace_copy. The imple-
mentation below was translated directly from the GNtJ &tandard Library, with the
where clause matching the requirements fefplace_copy in the G+ Standard [18].

196 fun replace_copy<Iterl,Iter2, T>
197 where { InputIterator<Iterl>, Regular<T>, EqualityComparable<T>,

198 OutputIterator<Iter2, InputIterator<Iterl>.value>,

199 OutputIterator<Iter2, T>,

200 EqualityComparable2<InputIterator<Iteri>.value,T> }

201 (Iteri@ first, Iterl last, Iter2@ result, T old, T neu) -> Iter2@ {
202 for ( ; first != last; ++first)

203 result << *first == old ? neu : *first;

204 return result;

205 }

The G compiler gives the following error message:

stl/sequence_mutation.hic:203:
The two branches of the conditional expression must have the
same type or one must be coercible to the other.

This is a subtle bug, which explains why it has gone unnoticed for so long. The type
requirements say that both the value type of the iteratorTamaist be writable to the
output iterator, but the requirements do not say that the value typ& arelthe same
type, or coercible to one another.

7 Related Work

There is a long history of programming language support for polymorphism, dating
back to the 1970s [15, 16, 19, 20]. An early precursor to G's concept feature can be
seen in CLU’s type set feature [19]. In mathematics, the equivalent notion of algebraic
structure has been in use for an even longer time [21].

The concept feature in G is heavily influenced the type class feature of Haskell [22],
with its nominal conformance and explicit model definitions. However, G’s support
for associated types, same type constraints, and concept-based overloading is novel.
Also, G’s type system is fundamentally different from Haskell's: it is based on System
F [15, 16] instead of Hindley-Milner type inferencing [20]. This difference has some
repercussions. In G there is more control over the scope of concept operations because



where clauses introduce concept operations into the scope of the body. This differ-
ence allows Haskell to infer type requirements but induces the restriction that two type
classes in the same module may not have operations with the same name. A differ-
ence we discuss in [14] is that in G, overlapping models may coexist in separate scopes
but still be used in the same program, whereas in Haskell overlapping models may not
be used in the same program. In [13] we performed a comparative study of support for
generic programming in several language and Haskell performed quite well. We pointed
out that Haskell was missing support for associated types, and work to remedy this has
been reported in [23]. The approach in [23] adds datatype definitions to type classes,
whereas G’s associated types are closer to nested types in ML signatures [24].

Less closely related to G are languages based on subtype-bounded polymorphism [25,
26] such as Java, C#, and Eiffel. We found subtype-bounded polymorphism less suitable
for generic programming and refer the reader to [13] for an in-depth discussion. More
recently, the object-oriented language Scala [27, 28] has added abstract type members
based of the theory of dependent types. A comparison of this with G’s associated types
is planned for future work.

8 Conclusion

This paper presented the design of a new programming language named G and demon-
strated with an implementation of the Standard Template Library that this language is
well-suited to generic programming. We were able to implement all of the abstractions
in the STL in a straightforward manner. Further, G is particularly well-suited for the
development of reusable components due to its support of separate type checking and
compilation. G’s strong type system provides support for the independent validation
of components and G’s system of concepts and constraints allows for rich interactions
between components without sacrificing namespace safety. As a result, the language
features present in G hold some promise to increase programmer productivity with re-
spect to the development and use of generic components.
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