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Abstract. Templates are a powerful but poorly understood feature of
the C++ language. Their syntax resembles the parameterized classes of
other languages (e.g., of Java). But because C++ supports template spe-
cialization, their semantics is quite different from that of parameterized
classes. Template specialization provides a Turing-complete sub-language
within C++ that executes at compile-time. Programmers put this power
to many uses. For example, templates are a popular tool for writing
program generators.

The C++ Standard defines the semantics of templates using natural lan-
guage, so it is prone to misinterpretation. The meta-theoretic properties
of C++ templates have not been studied, so the semantics of templates
has not been systematically checked for errors. In this paper we present
the first formal account of C++ templates including some of the more
complex aspects, such as template partial specialization. We validate our
semantics by proving type safety and verify the proof with the Isabelle
proof assistant. Our formalization reveals two interesting issues in the
C++ Standard: the first is a problem with member instantiation and the
second concerns the generation of unnecessary template specializations.

1 Introduction

We start with a review of C++ templates, demonstrating their use with some
basic examples. We then review more advanced uses of templates to perform
compile-time computations and to write program generators. The introduction
ends with an overview of the technical contributions of this paper.

1.1 Template Basics

The following definition is an example of a class template that defines a container
parameterized on the element type T and length n.

template<class T, int n>
class buffer {

T data[n];
public:

void set(int i, T v) { data[i] = v; }
T get(int i) { return data[i]; }

};



A template specialization provides an alternate implementation of a template
for concrete template arguments. For example, the above template is not space-
efficient when T=bool because a bool may be larger than a single bit in C++. The
following specialization for element type bool uses a compressed representation,
dedicating a single bit for each element.

template<int n>
class buffer<bool, n> {

int data[(n + BITS PER WORD − 1)/BITS PER WORD];
public:

void set(int i, bool v) { /∗ complicated bit masking ∗/ }
T get(int i) { /∗ complicated bit masking ∗/ }

};

The above definition is called a partial template specialization because there is
still a template parameter left. We refer to <bool,n> as the specialization pattern.
The following is an example of a full specialization:

template<>
class buffer<bool, 0> {
public:

void set(int i, bool v) { throw out of range(); }
T get(int i) { throw out of range(); }

};

When a template is used, C++ performs pattern matching between the tem-
plate arguments and the specialization patterns to determine which specializa-
tion to use, or whether a specialization needs to be generated from a class tem-
plate or a partial specialization. Consider the following program that defines
three objects.

int main() {
buffer<int,3> buf1;
buffer<bool,3> buf2;
buffer<bool,0> buf3;

}

The type buffer<int,3> matches neither of the specializations for buffer, so C++

will generate a specialization from the original buffer template by substituting
int for T and 3 for n. This automatic generation is called implicit instantiation.
The resulting template specialization is shown below.

template<>
class buffer<int,3> {

int data[3];
public:

void set(int i, int v);
int get(int i);

};

Note that definitions (implementations) of the members set and get were not
generated. Only the declarations of the members were generated. The definition



of a member is generated only if the member is called. So, for example, the
following code

buf1.get(2);

causes C++ to generate a member definition for buffer<int,3>::get.

template<>
int buffer<int,3>::get(int i) { return data[i]; }

The above is an example of a member defined separately from a class.
The type, buffer<bool,3> matches the partial specialization, but not full spe-

cialization of buffer, so C++ will generate a specialization from the partial spe-
cialization.

Last but not least, the type buffer<bool,0> type matches the full specialization
of buffer, so C++ does not need to generate a specialization.

1.2 Compile-time programming with templates

A small compile-time computation is performed in the buffer<bool,n> specializa-
tion to compute the length of the data array:

int data[(n + BITS PER WORD − 1)/BITS PER WORD];

The ability to pass values as template parameters and to evaluate expressions
at compile time provides considerable computational power. For example, the
following power template computes the exponent xn at compile-time.

template<int x, int n> struct power {
static const int r = x ∗ power<x, n − 1>::r;

};
template<int x> struct power<x, 0> {

static const int r = 1;
};
int array[power<3, 2>::r];

The static keyword means the member is associated with the class and not with
each object. The const keyword means the member is immutable.

There are limitations, however, to what kinds of expressions C++ will evalu-
ated at compile time: only arithmetic expressions on built-in integer-like types.
There are similar restrictions on the kinds of values that may be passed as tem-
plate parameters. For example, a list value can not be passed as a template
parameter. Fortunately, it is possible to encode data structures as types which
can be then be passed as template parameters. The following creates a type
encoding for cons-lists.

template<class Head, class Tail> struct Cons { };
struct Nil { };
typedef Cons< int, Cons< float, Nil > list of types;

In general, templates can be used to encode algebraic datatypes [5] such as those
found in SML [8] and Haskell [1].



This paper omits value template parameters and compile-time expressions
because they are technically redundant: we can encode computations on integer-
like values as computations on types. For example, the following types encode
natural numbers.

template<class T> struct succ { };
struct zero { };
typedef succ<zero> one;
typedef succ< succ<zero> > two;

The following is the power template reformulated for types. The definition of mult

is left as an exercise for the reader.1

template<class x, class n> struct power { };

template<class x, class p> struct power<x, succ<p> > {
typedef mult<x, power<x, p>::r>::r r;

};
template<class x> struct power<x, zero> {

typedef one r;
};

1.3 Metaprogramming with templates

The combination of templates and member functions enables compile-time pro-
gram generation in C++, often referred to as template metaprogramming [3, 4, 17].
Member functions can be used to represent run-time program fragments while
templates provide the ability to compose and select fragments. We revisit the
power example, but this time as a staged metaprogram that takes n as a compile-
time parameter and generates a program with a run-time parameter x.

template<class n> struct power {};

template<class p>
struct power< succ<p> > {

static int f(int x){ return x ∗ power<p>::f(x); }
};
template<> struct power<zero> {

static int f(int x) { return 1; }
};
int main(int argc, char∗ argv[]) {

return power<two>::f(atoi(argv[1])); // command-line input
}

The bodies of functions, such as in main and f, contain run-time code. Type
expressions, such as power<two> and power<p> represent escapes from the run-
time code back into the compile-time level. The power metaprogram is recursive

1 A C++ expert will notice missing typename keywords in our examples. We do this
intentionally to avoid confusing readers unfamiliar with C++ with syntactic clutter.



but the generated program is not. The generated program has a static call tree of
height 3. An optimizing C++ compiler is likely to simplify the generated program
to the following one, but such optimization is not required by the C++ Standard.
The compiler is required to preserve the call-by-value semantics when it performs
function inlining.

int main(int argc, char∗ argv[]) {
int x = atoi(argv[1]);
return x ∗ x;

}

The inline keyword of C++ does not force inlining. It is only a suggestion to
the compiler. The performance of the generated programs is therefore brittle and
non-portable. Compilers rarely publicize the details of their inlining algorithm,
and the algorithms are heuristic in nature and hard to predict. Furthermore, the
inlining algorithm can vary dramatically from one compiler to the next. See [6]
for an alternative approach based on macros that guarantees inlining.

The subset of C++ we study in the paper includes just enough features to ex-
hibit both the compile time and run time computations needed to write template
metaprograms.

1.4 Contributions

We present the first formal account of C++ templates. We identify a small subset
of C++ called C++.T and give a semantics to C++.T by defining:

1. template lookup (Section 3.1)
2. type evaluation (Section 3.2),
3. expression evaluation and well-typed expressions (Section 4), and
4. template instantiation (Section 5).

C++.T includes the partial specialization feature of C++, so template lookup is
nontrivial. To maintain a clear focus, C++.T does not include features of C++

that are orthogonal to templates, such as statements, imperative assignment,
and object-oriented features such as inheritance.

A C++.T program is “valid” if and only if the template instantiation process
succeeds. This definition is unusual because some potentially non-terminating
evaluation (type evaluation) is performed as part of determining whether a pro-
gram is “valid”. We show that C++.T is type safe in the sense that if template
instantiation succeeds, run-time execution of the program will not encounter
type errors(Theorem 1, Section 5.1). We wrote the proof in the Isar proof lan-
guage [9, 19] and mechanically verified the proof using the Isabelle proof assis-
tant [10]. Due to space considerations, we do not present the Isar proof in this
paper but refer the reader to the accompanying technical report [15].

Formalizing C++.T revealed two issues with the C++ Standard:

1. The Standard’s rule for member instantiation requires the point of instanti-
ation to come too soon, possibly before the definition of the member. In our



semantics we delay member instantiation to the end of the program, which
corresponds to the current practice of the GNU and Edison Design Group
C++ compilers.

2. The Standard requires the permanent generation of a template specializa-
tion whenever a member is accessed. However, if such a specialization is only
needed temporarily, the compiler should be allowed to discard the special-
ization, analogously to the way procedure activation frames are discarded
when a function returns, thereby improving the space-complexity for tem-
plate programs.

2 Overview of the formalization

The semantics of C++.T includes compile-time and run-time components. The
compile-time components concern template lookup, type evaluation, type-checking,
and template instantiation, whereas the run-time component concerns expres-
sion evaluation.

C++.T contains syntactic categories for types, expressions (or terms), and
definitions. A program is a sequence of definitions. We use the metavariable τ
for types, e for expressions, v for values, d for definitions, and p for programs.

Type evaluation (§3.2)
T | P ` τ ⇓ τ⊥

Well-formed types (§3.3)
T | P ` τ wf

Type eval. in expr. (§4)
T | P ` e ⇓ e

OO

Well-typed expressions (§4)
T | P | Γ ` e : τ⊥

OO

Expr. eval.(§4)
F | T ` e ⇒ v⊥

Program instantiation (§5)
T | F ` p ⇓ T ; F

iiSSSSSSSSSSSSSS

ccGGGGGGGGGGGGGGGGGGGGGGGGG

OO

Fig. 1. Semantic judgments and their dependencies.

Fig. 1 shows the semantic judgments for C++.T. The type and expression
evaluation judgments are given in a big-step operational style. The variable T
stands for a set of template definitions and P for a set of in-scope type parame-
ters. The judgment for program instantiation also serves to define valid C++.T
programs. The program instantiation judgment recursively processes a program:
the first definition in the program is processed and then this judgment is applied
again to process the rest of the program. The instantiation process results in
updated sets of template and function definitions. The notation X⊥ stands for
the disjoint union of X and {⊥} where ⊥ denotes an error. The notation bxc



injects an element of X into X⊥. The variable Γ is a type assignment for term
variables and F is a set of function definitions.

The main theorem, shown below, states that valid programs are type safe.
The first premise says that the program successfully instantiates, producing a
set of template definitions T and a set of function definitions F . The second
and third premise say that the program defines an Main template with a main

member function. The fourth premise says that the program terminates with an
answer (either an error or a value). The conclusion is that the answer must be
a value of the appropriate type, thereby ruling out the error case.

Theorem 1. (Type Safety) If

1. ∅ | ∅ | ∅ ` p ⇓ T ;F , and
2. Main〈〉{main : int→ int} ∈ T , and
3. Main〈〉 has main(x:int)→ int{e} ∈ F , and
4. F | T ` Main〈〉.main(n)⇒ a

then there exists v such that a = bvc and T | ∅ | ∅ ` v : int.

(The type safety theorem is proved in Section 5.) The lemmas in the following
sections lead up to this type safety result.

3 Types and Templates

The syntax of types and templates is defined by the following grammar. We use
an abstract syntax for the sake of conciseness and readability for those unfamiliar
with C++ template syntax.

Abstract syntax of types and templates τ ∈ T T

Type variables α ∈ TyVar
Template names t ∈ TmName
Member names m, f, a ∈ MemName

Type expressions τ ∈ T ::= α | τ.a | t〈τ1..τn〉 | τ → τ | int
Member kind κ ∈ K ::= fun | type
Templates T ::= t〈π1..πn〉 {m : κ τ}

Type patterns π ∈ Π ::= α | t〈π1..πn〉 | π1 → π2 | int
Residual types r ∈ R ::= t〈r1..rn〉 | r → r | int

A type in C++.T can be a type variable, member type access, template iden-
tifiers, function type, or int. We pick out two subsets of T: type patterns Π and
residual types R. Type patterns are types without member type access. Residual
types are restricted to template identifiers, functions, and int. When applied to
closed types, type evaluation produces residual types.



The member access type expression τ.a refers to a nested type definition.
The τ should refer to a template specialization with a member named a. In
the concrete syntax of C++, type member access is written τ::a. The template
identifier type expression t〈τ1..τn〉 refers to the specialization of template t for
the type arguments τ1..τn. The function type expression τ1 → τ2 corresponds to
the C++ syntax τ2(*)(τ1).

There are no variable binders in T so the set of free type variables (FTV) of
a type is simply the collection of type variables occurring in the type. A type is
closed if it contains no type variables.

The syntax t〈π1..πn〉{m : κ τ} is used for both class templates and class
template specializations. When all of the patterns are variables, the declara-
tion is a class template: t〈α1..αn〉{m : κ τ}. When the patterns contain no
type variables, then the declaration is a full specialization of a class template:
t〈τ1..τn〉{m : κ τ} where FTV(t〈τ1..τn〉) = ∅. Everything in between corresponds
to partial specializations of class templates. When referring to things of the gen-
eral form t〈π1..πn〉{m : κ τ} we will use the term “template” even though we
ought to say “template or specialization”.

We restrict templates to contain just a single member to reduce clutter in the
semantics. Expressiveness is not lost because a template with multiple members
can always be expressed using multiple templates. In the following example, we
split template A into two templates A1 and A1 and change the use of member x

in A2 to A1<T>::x.

template<class T>

struct A {

typedef T x;

typedef foo<x> y;

};

=⇒

template<class T>

struct A1 {

typedef T x;

};

template<class T>

struct A2 {

typedef foo<A1<T>::x> y;

};

A type member is written m : type τ and is equivalent to the C++ syntax
typedef τ m;. A member function declaration is written f : fun τ1 → τ2 and is
equivalent to the C++ syntax static τ2 f(τ1);. The definition (implementation)
of a member function is written separately and the syntax for that is introduced
in Section 4.

We define the following function to return the set of template names from a
set of templates.

names : Set T → Set TmName

names(T ) , {t | t〈π1..πn〉{m : κ τ} ∈ T}

We also need the notion of when a type is defined and when a type is complete.

Definition 1.

– A type τ is defined in T iff ∃τ ′,m, κ, τ ′′.τ ′
.= τ ∧ τ ′{m : κ τ ′′} ∈ T .

– A type τ is complete in T iff τ is defined in T and τ ∈ R.



3.1 Template lookup, matching, and ordering

As mentioned in Section 1, template lookup is non-trivial because C++ supports
partial specialization. The use of a template resolves to the most specialized tem-
plate that matches the given template arguments, according to Section [14.5.4.1
p1] of the C++ Standard. So our goal is to define “most specific” and “matches”.

Template arguments are matched against the specialization pattern of candi-
date templates. In the C++ Standard, the matching is called template argument
deduction (see Section [14.8.2.4 p1] of the C++ Standard). The following defines
matching.

Definition 2. A type τ1 matches a type τ2 iff there exists a substitution S such
that S(τ2) = τ1.

To define “most specialized” we first need to define the “at least as specialized”
relation on types. This relation is defined in terms of matching. (See Sections
[14.5.4.2 p1] and [14.5.5.2 p2-5] of the C++ Standard.)

Definition 3. If τ1 matches τ2, then we write τ2 ≤ τ1 and say that τ1 is at
least as specialized as τ2.

The ≤ relation is a quasi-order, i.e., it is reflexive and transitive. If we identify
type patterns up to renaming type variables, then we have antisymmetry and
the ≤ relation is a partial order.

Proposition 1. If τ1 ≤ τ2 and τ2 ≤ τ1 then there exists a variable renaming
S such that S(τ2) = τ1. A renaming is a substitution that maps variables to
variables and is injective.

We use the following notation .= for type pattern equivalence and use it to define
a notion of duplicate template definitions.

Definition 4.

– π1
.= π2 , π1 ≤ π2 and π2 ≤ π1.

– Template π1{m1 : κ1 τ ′1} and template π2{m2 : κ2 τ ′2} are duplicates if
π1

.= π2.
– There are no duplicates in T if no two templates in T are duplicates of

one another.

We extend the ≤ type relation to templates as follows:

Definition 5. π1{m1 : κ1 τ1} ≤ π2{m2 : κ2 τ2} , π1 ≤ π2

This extension is a partial order on the set of template definitions in a valid
program because we do not allow duplicate templates (duplicates would cause
antisymmetry to fail).

Definition 6. Given a set of template definitions T and the ordering ≤, the
most specific template, if it exists, is the greatest element of T , written max T .



We define the following lookup function to capture the rule that the use of a
template resolves to the most specific template that matches the given template
arguments.

lookup : Set T × T → D⊥

lookup(T, τ) ,

{
bmax{π{m} ∈ T | π ≤ τ}c if the max exists
⊥ otherwise

The inst function maps a set of templates and a type to the template spe-
cialization obtained by instantiating the best matching template from a set of
templates.

inst : Set T × T → D⊥

inst(T, τ) ,

bτ{m : κ S(τ ′)}c where lookup(T, τ) = bπ{m : κ τ ′}c
and S(π) = τ

⊥ otherwise

Definition 7. A set of types N instantiates to a set of templates T in T ′ , for
each type τ ∈ N , inst(T ′, τ) = bτ{m : κ τ ′}c iff τ{m : κ τ ′} ∈ T .

The following lookupmem function maps from a set of template, a type, and
a member name to a type.

lookupmem : Set T × T×MemName → (K × T)⊥

lookupmem(T, τ,m) ,

{
b(κ, τ ′)c inst(T, τ) = bτ{m : κ τ ′}c
⊥ otherwise

Next we show that member lookup produces closed types. For this lemma
we need to define the free type variables of a set of template definitions.

Definition 8. FTV(T ) , {α | π{m : κ τ} ∈ T ∧ α ∈ FTV(τ)− FTV(π)}

Lemma 1. (Member lookup produces closed types.) If lookupmem(T, τ,m) =
b(κ, τ ′)c and FTV(τ) = ∅ and FTV(T ) = ∅ then FTV(τ ′) = ∅

Proof. A straightforward use of Proposition 4.

3.2 Type evaluation

The rules for type evaluation are complicated by the need to evaluate types un-
derneath type variable binders. In the following example, the type A<A<int>::u>
is underneath the binder for T but it must be evaluated to A<float>.



template<class T>

struct A {

typedef float u;

};

template<class T>

struct B {

static int foo(A<A<int>::u> x)

{ return x; }

};

=⇒

template<class T>

struct A {

typedef T u;

};

template<class T>

struct B {

static int foo(A<float> x)

{ return x; }

};

The need for evaluation under variable binders is driven by the rules for deter-
mining the point of instantiation for a template. Section [14.6.4.1 p3] of the C++

Standard [7] says that the point of instantiation for a specialization precedes the
first declaration that contains a use of the specialization, unless the enclosing
declaration is a template and the use is dependent on the template parameters.
In that case the point of instantiation is immediately before the point of instan-
tiation for the enclosing template. In the above example, the type A<A<int>::u>
is in an instantiation context and does not depend on the template parameter T.
So we need to instantiate A<A<int>::u>, but it must first evaluate to A<float>
so that we can check whether this type was already instantiated.

The evaluation rules for type expressions are defined below. The rule (C-VarT)
says a type variable α evaluates to itself provided α is in scope. Rule (C-MemT1)
defines type member access τ.a analogous to a function call. First evaluate τ .
If the result is of the form t〈τ1..τn〉 and has no free variables, lookup the type
definition τ ′ for member a. The substitution of type arguments τ1..τn for tem-
plate parameters is performed as part of lookup. The member type is evaluated
to τ ′′ and that is the result. An alternative design would perform the lookup
and substitution whenever a template identifier such as t〈τ1..τn〉 is evaluated.
We choose to delay the lookup and instantiation to the last possible moment to
better reflect the on-demand nature of C++ instantiation.

Rule (C-MemT2) handles the case when the τ in τ.a evaluates to a type τ ′

with free variables. In this case the result is just τ ′.a. We write explicit rules
to capture and propagate all errors so that we can distinguish between a non-
terminating type expression and an error. The rest of the rules are straightfor-
ward; they simply evaluate the nested types and put the type back together.

Several of the type evaluation rules test if a type contains free variables, which
is not a constant-time operation. However, an implementation of type evaluation
could keep track of whether types contain any free variables by returning a
boolean value in addition to the resulting type.



Type evaluation. T | P ` τ ⇓ τ ′⊥

α ∈ P

T | P ` α ⇓ bαc(C-VarT)

T | P ` τ ⇓ bt〈τ1..τn〉c
S

i FTV(τi) = ∅
lookupmem(T, t〈τ1..τn〉, a) = btype τ ′c T | P ` τ ′ ⇓ bτ ′′c

T | P ` τ.a ⇓ bτ ′′c(C-MemT1)

T | P ` τ ⇓ bτ ′c FTV(τ ′) 6= ∅
T | P ` τ.a ⇓ bτ ′.ac(C-MemT2)

t ∈ names(T ) ∀i ∈ 1..n. T | P ` τi ⇓ bτ ′ic
T | P ` t〈τ1..τn〉 ⇓ bt〈τ ′1..τ ′n〉c

(C-TmT)

T | P ` τ1 ⇓ bτ ′1c T | P ` τ2 ⇓ bτ ′2c
T | P ` (τ1 → τ2) ⇓ bτ ′1 → τ ′2c

(C-ArrowT)

T | P ` int ⇓ bintc(C-IntT)

Error propagation rules

α /∈ P

T | P ` α ⇓ ⊥

T | P ` τ ⇓ bt〈τ1..τn〉cS
i FTV(τi) = ∅

lookupmem(T, t〈τ1..τn〉, a) = ⊥
T | P ` τ.a ⇓ ⊥

T | P ` τ ⇓ bτ ′c
FTV(τ ′) = ∅

¬∃tτ1..τn.τ ′ = t〈τ1..τn〉
T | P ` τ.m ⇓ ⊥

T ` τ ⇓ ⊥
T ` τ.m ⇓ ⊥

t /∈ T

T | P ` t〈τ1..τn〉 ⇓ ⊥
∃i ∈ 1..n. T ` τi ⇓ ⊥

T ` t〈τ1..τn〉 ⇓ ⊥
∃i ∈ 1, 2. T ` τi ⇓ ⊥
T ` (τ1 → τ2) ⇓ ⊥

Proposition 2. (Properties of type evaluation)

1. If T | P ` τ ⇓ bτ ′c then FTV(τ ′) ⊆ P .

2. If T | ∅ ` τ ⇓ bτ ′c then τ ′ ∈ R.

3. ∃TPτ. ¬∃a. T | P ` τ ⇓ a. For example, let T = {A〈α〉{x : type A〈A〈α〉〉.x}, },
P = ∅, and τ = A〈int〉.x. Then type evaluation does not terminate and so
no such a exists.



3.3 Well-formed types

Well-formed types are types that do not contain out-of-scope type parameters
or use undefined template names. The following is the definition of well-formed
types.

Well-formed types T | P ` τ wf

α ∈ P

T | P ` α wf
T | P ` τ wf

T | P ` τ.a wf
t ∈ names(T ) ∀i ∈ 1..n. T | P ` τi wf

T | P ` t〈τ1..τn〉 wf

T | P ` τ1 wf T | P ` τ2 wf
T | P ` τ1 → τ2 wf

T | P ` int wf

Proposition 3. (Properties of well-formed types)

1. If T | P ` τ wf then FTV(τ) ⊆ P .
2. If T | P ` τ wf and T ⊆ T ′ then T ′ | P ` τ wf.

3.4 Type substitution

A substitution is a function mapping type variables to types that acts like
the identity function on most of its domain except for a finite number of el-
ements. Substitutions are extended to types with the following definition. The
line S(α) = S(α) may look strange, but is not in fact a circular definition. We
are given S that is a function on type variables and building a function, also
called S, on type expression. The α on the left hand side is viewed as a type
expression whereas the α on the right is viewed as a type variable.

Simultaneous substitution on types. S(τ) ∈ T

S(α) = S(α)
S(τ1 → τ2) = S(τ1) → S(τ2)
S(t〈τ1..τn〉) = t〈S(τ1)..S(τn)〉

S(τ.a) = S(τ).a
S(int) = int

Proposition 4. FTV(S(τ)) =
⋃

α∈FTV(τ) FTV(S(α))

Proof. By induction on the structure of τ .



4 Expressions and Functions

The expressions of C++.T include variables, integers, object creation, static mem-
ber function access, and function application. (In C++ the syntax for static mem-
ber access is τ::f and the syntax for object creation is τ().)

Abstract syntax of expressions. e ∈ E F

Expressions e ∈ E ::= x | n | obj τ | τ.f | e e
Values v ∈ V ::= n | obj τ | τ.f
Member functions F ::= t〈π1..πn〉 has f(x :τ) → τ{e}

The definition of a static member function has of the form τ has f(x : τ1) →
τ2{e}. The type τ is the owner of the function and f is the name of the function.
The function has a parameter x of type τ1 and return type τ2. The expression e
is the body of the function.

During the instantiation process, all the types occurring in an expression are
evaluated.

Definition 9. (Type evaluation inside an expression) T | P ` e ⇓ e′ iff every
type τ occurring in expression e is replaced with τ ′ where T | P ` τ ⇓ bτ ′c to
produce expression e′.

Substitution of expressions for expression variables is defined below. There
are no variable binders inside expressions, so substitution is straightforward. We
also extend type-substitution to expressions.

Substitution on expressions e[y := e] ∈ E S(e) ∈ E

x[y := e] =

{
e y = x

x otherwise
(e1 e2)[y := e] = e1[y := e] e2[y := e]

τ.f [y := e] = τ.f
obj τ [y := e] = obj τ

n[y := e] = n

S(x) = x
S(e1 e2) = S(e1) S(e2)

S(τ.f) = S(τ).f
S(obj τ) = obj S(τ)

S(n) = n

A big-step operational semantics for the run-time evaluation of expressions is
defined by a judgment of the form F | T ` e ⇒ v⊥. The main computational rule
is (R-App), which evaluates a function application expression. The expression
e1 evaluates to a member function expression τ.f and the operand e2 evaluates
to e′2. The body of the member function τ.f is found in F . The argument e′2
is substituted for parameter x in the body e, which is then evaluated. The
parameter and return types are required to be complete types because C++ has



pass-by value semantics: we need to know the layout of the types to perform the
copy.

Similarly, in the (R-Obj) rule, the type of the object must be complete so that
we know how to construct the object. The semantics includes error propagation
rules so that we can distinguish between non-termination and errors. The (R-
AppE1) rule states that a function application errors if either e1 or e2 evaluates
to an error. Strictly speaking, this would force an implementation of C++.T to
interleave the evaluation of e1 and e2 so that non-termination of either would
not prevent encountering the error. Preferably we would allow for a sequential
implementation but that is difficult to express with a big step semantics.

Run-time evaluation. F | T ` e ⇒ v⊥

F | T ` n ⇒ bnc(R-Int)

τ is complete in T

F | T ` obj τ ⇒ bobj τc(R-Obj)

F | T ` τ.f ⇒ bτ.fc(R-Mem)

F | T ` e1 ⇒ bτ.fc F | T ` e2 ⇒ be′2c τ has f(x :τ1) → τ2{e} ∈ F
τ1 and τ2 are complete in T F | T ` e[x := e′2] ⇒ be′c

F | T ` e1 e2 ⇒ be′c(R-App)

Error propagation rules

(R-AppE1)
∃i ∈ 1, 2. F | T ` ei ⇒ ⊥

F | T ` e1 e2 ⇒ ⊥

F | T ` e1 ⇒ bτ.fc
¬∃x, τ1, τ2, e. τ has f(x :τ1) → τ2{e} ∈ F

F | T ` e1 e2 ⇒ ⊥

F | T ` e1 ⇒ bτ.fc F | T ` e2 ⇒ be′2c
τ has f(x :τ1) → τ2{e} ∈ F

F | T ` e1[x := e′2] ⇒ ⊥
F | T ` e1 e2 ⇒ ⊥

F | T ` e1 ⇒ bτ.fc
τ has f(x :τ1) → τ2{e} ∈ F

∃i ∈ 1, 2. τi is not complete in T

F | T ` e1 e2 ⇒ ⊥

F | T ` x ⇒ ⊥
τ is not complete in T

F | T ` obj τ ⇒ ⊥

Proposition 5. If F | T ` e ⇒ be′c then e′ ∈ V.

Proof. By induction on evaluation.



The definition of well-typed expressions is defined by a judgment of the form
T | P | Γ ` e : τ⊥. This typing judgment is used to type check expressions in
the body of member functions of templates and specializations. If an expression
contains a type that contains type variables, the type of the expression cannot
be determined and is assigned the type ⊥. This does not indicate a type error.
When the member function is instantiated the type variables are replaced by
closed types and the body is type checked again (See Section 5).

Well-typed expressions. T | P | Γ ` e : τ⊥

x : τ ∈ Γ FTV(τ) = ∅
T | P | Γ ` x : bτ ′c(T-Var1)

x : τ ∈ Γ FTV(τ) 6= ∅
T | P | Γ ` x : ⊥(T-Var2)

T | P | Γ ` n : bintc(T-Int)

t〈τ1..τn〉 is complete in T

T | P | Γ ` obj t〈τ1..τn〉 : bt〈τ1..τn〉c
(T-Obj1)

FTV(τ) 6= ∅
T | P | Γ ` obj τ : ⊥(T-Obj2)

T | P ` τ wf FTV(τ) = ∅ τ{f : fun τ ′} ∈ T

T | P | Γ ` τ.f : bτ ′c(T-Mem1)

FTV(τ) 6= ∅
T | P | Γ ` τ.f : ⊥(T-Mem2)

T | P | Γ ` e1 : τ → τ ′ T | P | Γ ` e2 : τ

T | P | Γ ` e1 e2 : bτ ′c(T-App1)

T | P | Γ ` e1 : a1 T | P | Γ ` e2 : a2

a1 = ⊥ ∨ a2 = ⊥
T | P | Γ ` e1 e2 ⇓ e′1 e′2 : ⊥(T-App2)

Lemma 2. (Substitution preserves well-typed expressions) If T | ∅ | x : τ1 ` e :
τ2 and T | ∅ | ∅ ` e′ : τ1 then T | ∅ | ∅ ` e[x := e′] : τ2.



Proof. By induction on the typing judgment.

Lemma 3. (Environment weakening for well-typed expressions) If T | P | Γ `
e : τ2 and T ⊆ T ′ then T ′ | P | Γ ` e : τ2.

Proof. By induction on the typing judgment. The cases for (T-Obj1) and (T-Mem1)
use Proposition 3.

The following defines when a member function is used in an expression and
when a member function is used in a set of function definitions and when a
member function is defined.

Definition 10.

– τ.f ∈ e , τ.f is a subexpression of e and τ ∈ R.
– funused(e) , {τ.f | τ.f ∈ e}
– τ.f ∈ F , there is a member function π has f ′(x : τ1) → τ2{e} ∈ F such

that τ.f ∈ e.
– funused(F ) , {τ.f | τ.f ∈ F}
– A function τ.f is defined in F iff ∃τ ′, x, τ1, τ2, e.τ

′ .= τ ∧ τ ′ has f(x :τ1) →
τ2{e} ∈ F .

– fundef (F ) , {τ.f | τ.f is defined in F}

Lemma 4. If F | T ` e ⇒ be′c then funused(e′) is a subset of funused(e) ∪
funused(F ).

Proof. By induction on the evaluation judgment. The case for application relies
on the fact that the functions used in e1[x := e2] are a subset of the functions
used in e1 and e2.

Definition 11. (Well typed function environment) We write T ` F if, for all
full member specializations r has f(x : τ1) → τ2{e} ∈ F (note that r ∈ R) we
have

1. r{f : fun τ1 → τ2} ∈ T
2. T | ∅ | x : τ1 ` e : τ2

3. τ1 and τ2 are complete in T

Lemma 5. (Type safety of expression evaluation) If

1. T | ∅ | ∅ ` e : bτc and
2. F | T ` e ⇒ ans and
3. every function used in e and F is defined in F and
4. T ` F and
5. there are no duplicates in T

then there exists v such that ans = bvc and T | ∅ | ∅ ` v : bτc.

Proof. By induction on the evaluation judgment. The cases for application (in-
cluding the cases for error propagation) rely on the assumptions that T ` F ,
every function used in e and F is defined in F , and that there are no duplicates
in T . Also, the application cases use Proposition ?? and Lemmas 2, and 4. The
two cases for object construction rely on the requirement for a complete type in
the typing rule (T-Obj1). The other cases are straightforward.



4.1 Member function processing

During program instantiation there are two places where member function def-
initions are processed, when a user-defined function definition is encountered
and when a member function is instantiated. We abstract the member function
processing into a judgment of the form T ;F ` π has f(x : τ) → τ{e} ⇓ T ′;F ′.
The definition is shown below.

Process member function T ;F ` π has f(x :τ) → τ{e} ⇓ T ;F

(MemFun)
T1 | FTV(π) ` τ1 ⇓ bτ ′1c T1 | FTV(π) ` τ2 ⇓ bτ ′2c T1 | FTV(π) ` e ⇓ be′c

N = {τ | τ ∈ e′ ∨ τ ∈ {π, τ ′1, τ
′
2}}

N ′ = {τ ∈ N | τ is not defined in T1}
N ′ instantiates to T2 in T1

T1 ∪ T2 | FTV(π) | x : τ ′1 ` e′ : a (FTV(π) 6= ∅ ∧ a = ⊥) ∨ a = bτ ′2c
F2 = {π has f(x :τ ′1) → τ ′2{e′}}

T1 | F1 ` π has f(x :τ1) → τ2{e} ⇓ T1 ∪ T2; F1 ∪ F2

The type parameters and types in the body of the function are evaluated
with FTV(π) for the in-scope type parameters. We record all of the types that
need to be instantiated in the set N ′ and put all of the instantiations in set T2.
We type check the body of the function in an environment extended with T2. If
there are free type variables in the template pattern π, then type checking may
result in ⊥. Otherwise the type of the body must equal the return type.

5 Programs and the instantiation process

A program is a sequence of template and function definitions:

Abstract syntax of programs p ∈ P

Definitions d ∈ D ::= T | F
Programs p ∈ P ::= d∗

The program instantiation judgment, defined below, performs type evaluation,
template instantiation, and type checking on each definition. The following aux-
iliary definitions are used in the definition of program instantiation.

Definition 12.

– τ.f is defined in F iff ∃τ ′xτ1τ2e.τ
.= τ ′ ∧ τ ′ has f(x :τ1) → τ2{e} ∈ F .

– We write τ ∈ e iff obj τ is a subexpression of e and τ ∈ R.
– The notation X, z stands for {z} ∪X where z /∈ X.



There are four rules for program instantiation:
(C-Nil): Program instantiation is finished when there are definitions for all

of the functions used in the program.
(C-InstFun): Once the entire program has been processed we instantiate

member functions that are used but not yet defined. and instantiates the func-
tion. We find the best matching template and the corresponding member func-
tion definition. The matching substitution S is applied to the type parameters
and the body of the function. We then process the instantiated member function
with rule (MemFun).

(C-Tm): For template definition, we check that the template is not already
defined and then evaluate the template’s member. We then insert the evaluated
template into T and process the rest of the program.

(C-Fun): For member function definitions, we check that there is a template
defined with a member declaration for this function. Then we check that there
is not already a definition for this function. We then apply the (MemFun) rule
to the member function and then process the rest of the program.

Program instantiation T | F ` p ⇓ T ;F

funused(F ) ⊆ F

T | F ` ε ⇓ T ; F
(C-Nil)

τ.f ∈ funused(F1)− F1 lookup(T1, τ) = π{f : fun τ1 → τ2}
π has f(x :τ1) → τ2{e} ∈ F1 S(π) = τ

T1; F1 ` τ has f(x :S(τ1)) → S(τ2){S(e)} ⇓ T2; F2 T2 | F2 ` ε ⇓ T ′; F ′

T1 | F1 ` ε ⇓ T ′; F ′

(C-InstFun)

π is not defined in T T | FTV(π) ` τ ⇓ bτ ′c
{π{m : κ τ ′}} ∪ T | F ` p1 ⇓ T ′; F ′

T | F ` π{m : κ τ} :: p1 ⇓ T ′; F ′(C-Tm)

π.f is not defined in F1 lookupmem(T1, π, f) = b(fun, τ1 → τ2)c
T1; F1 ` π has f(x :τ1) → τ2{e} ⇓ T2; F2 T2 | F2 ` p1 ⇓ T ′; F ′

T1 | F1 ` π has f(x :τ1) → τ2{e} :: p1 ⇓ T ′; F ′(C-Fun)

5.1 Type Safety

For the purposes of proving type safety, we need to show that the semantics of
program instantiation establish the appropriate properties needed by Lemma 5
(Type soundness for evaluation). The following lemma captures the invariants
that are maintained during program instantiation to achieve this goal.



Lemma 6. (Type preservation for program instantiation) If T | F ` p ⇓ T ′;F ′,
and

1. T ` F , and
2. there are no duplicates in T , and
3. FTV(T ) = ∅

then

1. funused(F ′) ⊆ F ′, and
2. T ′ ` F ′, and
3. there are no duplicates in T ′, and
4. FTV(T ′) = ∅

Proof. By induction on the instantiation of p. The case for template definitions
uses Proposition 2 (Properties of type evaluation) and and Lemma 3 (Envi-
ronment weakening for well-typed expressions). The cases for member function
definitions and member function instantiation use Proposition 2 and Lemma 3.
In addition they use Lemma 1 (Member lookup produces closed types).

The proof of the type-safety theorem is a straightforward use of Lemma 6
(Type preservation for program instantiation) and Lemma 5 (Type safety of ex-
pression evaluation).

Theorem 1.(Type Safety) If

1. ∅ | ∅ | ∅ ` p ⇓ T ;F , and
2. Main〈〉{main : int→ int} ∈ T , and
3. Main〈〉 has main(x:int)→ int{e} ∈ F , and
4. F | T ` Main〈〉.main(n)⇒ ans

then there exists v such that ans = bvc and T | ∅ | ∅ ` v : int.

Proof. From Main〈〉{main : int→ int} ∈ T we have T | ∅ | ∅ ` Main〈〉.main(n) :
int. By Lemma 6 we know that all the functions used in F are defined, T ` F ,
there are no duplicates in T , and there are no free type variables in T . From
Main〈〉 has main(x:int) → int{e} ∈ F we know that the function used in
Main〈〉.main(n) is defined, so we apply Lemma 5 to obtain v such that ans = bvc
and T | ∅ | ∅ ` v : int.

6 Discussion

The semantics defined in this paper instantiates fewer templates than what is
mandated by the C++ standard. In particular, the C++ standard says that mem-
ber access, such as A<int>::u, causes the instantiation of A<int>. In our se-
mantics, the member access will obtain the definition of member u but it will
not generate a template specialization for A<int>. We only generate template
specializations for types that appear in residual program contexts that require



complete types: object construction and function parameters and return types.
Our type-safety result shows that even though we produce fewer template spe-
cializations, we produce enough to ensure the proper run-time execution of the
program. The benefit of this semantics is that the compiler is allowed to be more
space efficient.

The semantics of member function instantiation is a point of some contro-
versy. Section [14.6.4.1 p1] of the Standard says that the point of instantiation
for a member function immediately follows the enclosing declaration that trig-
gered the instantiation (with a caveat for dependent uses within templates). The
problem with this rule is that uses of a member function may legally precede its
definition and the definition is needed to generate the instantiation. (A use of a
member function must only come after the declaration of the member function,
which is in the template specialization.) In general, the C++ Standard is for-
mulated to allow for compilation in a single pass, whereas the current rules for
member instantiation would require two passes. Also, there is a disconnect be-
tween the Standard and the current implementations. The Edison Design Group
and GNU compilers both delay the instantiation of member functions to the end
of the program (or translation unit). We discussed this issue on C++ committee2

and the opinion was that this is a defect in the C++ Standard and that instanti-
ation of member functions should be allowed to occur at the end of the program.
Therefore, C++.T places instantiations for member functions at the end of the
program.

7 Related work

Recently, Stroustrup and Dos Reis proposed a formal account of the type system
for C++ [11, 12]. However, they do not define the semantics of evaluation and
they do not study template specialization. The focus of the work by Stroustrup
and Dos Reis is to enable the type checking of template definitions separately
from their uses. Siek et al. [14] also describe an extension to improve the type
checking of template definitions and uses.

Wallace studied the dynamic evaluation of C++, but not the static aspects
such as template instantiation [18].

C++ templates are widely used for program generation. There has been con-
siderable research on language support for program generation, resulting in lan-
guages such as MetaOCaml [2] and Template Haskell [13]. These languages pro-
vide first-class support for program generation by including a bracket construct
to delay computation, creating a piece of code, and an escape construct, that
forces a computation and splices the result into the generated code. The ad-
vanced type system used in MetaOCaml guarantees that the generated code is
type safe. There are no such guarantees in C++. The formal semantics defined
in this paper will facilitate comparing C++ with languages such as MetaOCaml

2 A post to the C++ committee email reflector on September 19, 2005, with a response
from John Spicer.



and will help in finding ways to improve C++. The C++ Standards Committee
has begun to investigate improved support for metaprogramming [16].

8 Conclusion

This paper presents a formal account of C++ templates. We identify a small
subset, named C++.T that includes templates, specialization, and member func-
tions. We define the compile-time and run-time semantics of C++.T, including
type evaluation, template instantiation, and a type system. The main technical
result is the proof of type safety, which states that if a program is valid (tem-
plate instantiation succeeds), then run-time execution of the program will not
encounter type errors. In the process of formalizing C++.T, we found two in-
teresting issues: the C++ Standard instantiates member functions too soon and
generates unnecessary template specializations.

From the point of view of language semantics and program generation re-
search, it was interesting to see that C++.T involves a form of evaluation under
variable binders at the level of types but not at the level of terms. It will be
interesting to investigate how this affects the expressivity of C++ templates as a
mechanism for writing program generators.
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