
Concoqtion: Indexed Types Now! ∗

Seth Fogarty
Rice University

sfogarty@cs.rice.edu

Emir Pasalic
Rice University

pasalic@cs.rice.edu

Jeremy Siek
University of Colorado

jeremy.siek@colorado.edu

Walid Taha
Rice University

taha@cs.rice.edu

Abstract
Almost twenty years after the pioneering efforts of Cardelli, the
programming languages community is vigorously pursuing ways
to incorporate Fω-style indexed types into programming languages.
This paper advocates Concoqtion, a practical approach to adding
such highly expressive types to full-fledged programming lan-
guages. The approach is applied to MetaOCaml using the Coq
proof checker to conservatively extend Hindley-Milner type in-
ference. The implementation of MetaOCaml Concoqtion requires
minimal modifications to the syntax, the type checker, and the com-
piler; and yields a language comparable in notation to the leading
proposals. The resulting language provides unlimited expressive-
ness in the type system while maintaining decidability. Further-
more, programmers can take advantage of a wide range of libraries
not only for the programming language but also for the indexed
types. Programming in MetaOCaml Concoqtion is illustrated with
small examples and a case study implementing a statically-typed
domain-specific language.

1. Introduction
Eighteen years ago, Cardelli [3] argued that highly expressive in-
dexed types can be based on Fω [11] and the more expressive cal-
culus of constructions [9]. Today, the practical potential of such ex-
pressive types is widely recognized: They can be used to statically
enforce program properties such as safety of array indexing [31],
type-preservation of source-to-source program transformations [4,
20, 24], type-safety of dynamically generated serializers [15], and
algorithmic invariants of data-structure libraries [5, 23, 31].

Exactly how the original idea is incorporated into a language
design varies dramatically from one language design to the next.
Cardelli’s Quest [3] draws on many different sources for inspira-
tion, and characterizing the semantics (denotationally) became the
focus. Ten years later, DML [32] and Cayenne [1] took two rad-
ically different approaches to designing languages with indexed
types. DML restricts the index language to a decidable domain
(Presburger integer arithmetic) and thereby maintains the decid-
ability of the type system. In general, and especially when indexed

∗ Supported by NSF ITR-0113569 “Putting Multi-Stage Annotations
to Work”, Texas ATP 003604-0032-2003 “Advanced Languages Tech-
niques for Device Drivers”, and NSF SOD-0439017 “Synthesizing Device
Drivers”.

types are added to an existing language, decidability requires a
clear distinction between the computational language and the in-
dex language. In contrast, Cayenne extends what is an otherwise
standard type theory with general recursion. While this renders the
type theory unsound for proofs, it incorporates the key idea that a
programming language is a (potentially unsound) proof language.
The next wave of language designs came three years later, and con-
tinued to reflect these two approaches. Cyclone [13] extends the C
programming language with special-purpose indexed types for safe
multi-threading and memory management. Epigram [2] follows in
the footsteps of Cayenne, expressing programs as proofs in type
theory, but allowing only provably well-founded recursion so as to
guarantee decidability.

Recently, the DML approach has been taken a step further in the
form of Generalized Algebraic Datatypes (GADTs). GADTs aim
to provide an intuitive generalization of the Algebraic Datatypes of
languages such as ML and Haskell [6, 24, 30]. They have been in-
corporated into Haskell [21] and C# [15]. GADTs are a convenient
and practical form of indexed types, as illustrated by many interest-
ing examples in the literature, and techniques have been developed
to further reduce the notational overhead of GADTs [25].

While GADTs provide a powerful tool, they have drawbacks
that can have significant implications for large-scale programming
with indexed types.

First, they do not provide a direct way to express functions on
types. Yet for many problems, functions on types are the natural
way to express dependencies between types. GADTs force the
programmer to express such functions as relations.

Second, at least in the form they are used in Haskell, GADTs
always require that proofs be manipulated at runtime. But for many
problems, proofs need only exist during compilation.

Third, and possibly most significantly, it has not been a design
goal of any of the current GADT proposals to provide the program-
mer with direct means to express and structure proofs. This raises
two questions: First, when will standard mathematical results be
available as GADT libraries, and what will the cost of develop-
ing such libraries be? Second, how readable and maintainable will
these libraries be? Even if GADTs are expressive enough to de-
velop all proofs of interest, there is a risk that they will become the
C++ Template Metaprogramming of functional languages.

To systematically investigate the impact of indexed types on
software engineering practice, the language design must consider
the needs of the proposition language as well as the needs of
the computational language. This goal can only be achieved by
capitalizing on the knowledge and expertise accumulated in the
proof checking community concerning the design of languages for
expressing propositions and proofs.

1.1 Contributions
This paper advocates a practical approach to adding indexed types
to a full-fledged programming language, and compares this ap-
proach to choices made in related languages (Section 2). The ap-

proach has been applied to MetaOCaml using Coq proof terms as
the indexed type language. A prototype implementation is avail-
able online (Section 3).1 Only the front-end of MetaOCaml needs
to be modified, while Coq remains unchanged, thereby preserving
the trustworthiness of the proof checking engine. The implemen-
tation is backward compatible with OCaml, so all existing OCaml
libraries can be used.

For writing programs that take advantage of sophisticated prop-
erties of indexed types, the language compares favorably to GADTs
(Section 4.1). We argue that Concoqtion allows a more natural style
for programming with proofs than Haskell’s GADTs, for example,
by allowing the definition of index-level functions. We also show
how Coq decision procedures can be used to reduce the burden of
proof in Concoqtion programs.

As a case study in domain-specific language implementation,
we develop a tagless staged interpreter in Concoqtion (Section 5).
Tagless staged interpreters (TSI) [20] provide a semantics-based
technique for rapidly implementing domain-specific languages in
a way that avoids both interpretive overhead and all unnecessary
runtime type checking. In particular, type checks are considered
unnecessary if the static type system of the domain-specific lan-
guage ensures that they will never fail at runtime. Compared to
previous work [20], an immediate benefit of Concoqtion is that it
distinguishes clearly between the parts of the TSI technique that in-
volve a type-theoretic development from those that involve a com-
putational development.

The type safety of MetaOCaml Concoqtion has been addressed
in earlier theoretical work by Shao et al. on λH [22], and our
multi-stage extension λH◦ [20] for an explicitly typed core cal-
culus. While useful as theoretical proofs of concept, these calculi
were never intended to be full-fledged programming languages and
lacked full-featured implementations. Technically, MetaOCaml
Concoqtion’s type system goes further than these works in that
it combines index types with Hindley-Milner type inference [19].

2. Concoqtion
We believe that the design of a practical programming language
supporting indexed types must meet four key requirements:

1. The language design should not get in the way of standard pro-
gramming practice. This includes supporting computational ef-
fects when that is part of standard practice, as well as providing
access to pre-existing computational libraries.

2. Type checking should be decidable.

3. The type language should provide a natural way to express
properties of computational values.

4. The programmer should be allowed to express proofs, and to
do so in a style that is most appropriate for expressing machine
checkable proofs.

We advocate an approach to addressing these goals that consists
of the following design choices:

1. Build the new language as an extension of a standard program-
ming language. We refer to this language as either the host or
computational language.

2. Extend the type system of the computational language with
a decidable logical framework. To ensure decidability of type
checking, the computational and logical languages must be kept
separate. The two are tied together through singleton types on
ground values [32].

1 MetaOCaml Concoqtion release 308 alpha 027C-07 [7].

3. Use a constructive type theory. A key advantage of this ap-
proach is that it provides a natural way for properties and proofs
to live in an extension of the world of types for the computa-
tional language. It also allows the programmer to define new
index types as well as functions on types.

4. Use a standard mechanical proof checking framework for the
logical framework. This also means that, in addition to pro-
viding access to computational libraries, the type language will
provide access to substantial libraries of proofs.

We will call this approach Concoqtion to suggest a particular strat-
egy for realizing the approach, namely, by using a well-developed
constructive type theory such as Coq [8]. This approach was first
used by Shao et al. [22] in the context of certified binaries. In pre-
vious work [20] we argued that it is highly suited for the design not
just of intermediate languages, but for programming languages as
well. Understanding the significance of the particular choices made
in this approach requires careful analysis of the interaction between
our four requirements, and in particular, two issues:

Effects and decidability: Simplistic combinations of compu-
tational features and index types either cause type checking to be
undecidable or type safety to be lost. Even if the host language is
purely functional (like Haskell), allowing programs in index types
would require evaluating programs during type checking, making
type checking undecidable. Cayenne [1] chooses to compromise
decidability, whereas Epigram [2] introduces termination analy-
sis, changing the expressivity of the host language. If the language
has other computational effects, designing a sound type system be-
comes substantially more involved.

Proof language, expressivity, and decidability: If the pro-
grammer does not have a way to express proofs explicitly, then
the language design depends critically on the type checker to build
these proofs automatically. This implies that either the language of
expressible properties is limited, that type checking is undecidable
(for example, if the theorem proving engine is complete), or that
not all valid properties can be proven. The first approach is suitable
for domain-specific applications of dependent types, as is the case
in DML and Cyclone. The last two approaches can be problematic
if they occur in the context of large scale software development.
Thus, it is essential that the programmer be able to express proofs
directly. The language must also provide support for doing this in a
convenient and practical manner.

Table 1 summarizes how related languages compare along the
key dimensions discussed above. A full black circle indicates that
the language has the specified property, a white circle indicates
that it does not, and a half-circle indicates that our estimate falls
somewhere in between.

3. MetaOCaml Concoqtion
We developed a conservative extension to MetaOCaml [18]. MetaO-
Caml is a multi-stage extension of OCaml [16]. OCaml is a call-
by-value, polymorphically typed, higher-order functional language
with type inference, side-effects, extensible records, and objects.
The extension will be called MetaOCaml Concoqtion, or simply
Concoqtion when it is clear from the context that the implemen-
tation is what is meant. Concoqtion uses the term language of the
theorem prover Coq to define index types, specify index opera-
tions, represent their properties and construct proofs. Even in the
presence of all OCaml-style effects, type checking in Concoqtion
is decidable.

3.1 Extensions to Types
We extend the type system of MetaOCaml with five syntactic ex-
tensions: explicit universal quantification, index type expressions,
a kind system, an extended form of data-types, and “prooflets”.

!"""#!#!!#"Standard property language

!!!#!!!"#!!Support for computational effects

!!!#!!"!!"#User-defined index types

!!!!"!!!"!!Decidable type checking

"

"

!

MetaD

"

!

"

DMLQuest Cayenne Epigram Cyclone Omega
Haskell w/

GADT
ATS RTS1 Concoqtion

Standard proof language " ! ! ! " " " " !

Extensive libraries (computational) " " " ! " ! " " !

Extensive libraries (logical) " " " " " " " " !

Table 1. Overview of Design Choices in Related Languages

Universal quantification. Given an OCaml type t, Concoqtion
has an explicit universal quantifier type forall a.t, in the style
of System F [11]. These types allow for nested quantification and
more expressive notions of polymorphism than available in OCaml.

Index type expressions. A Concoqtion type ’(c) is an index
type expression, where c is a Coq term. Index type expressions
can occur anywhere an OCaml type can. For example, the type
(’(10), int) sized_array is an application of a (binary) type
constructor representing arrays indexed by their size to the index
’(10) and the type int.

Kind system. Concoqtion extends the OCaml type system
with a System Fω-style kinds. Thus, the full syntax of the
forall types is forall a:k.t, where k is the kind over
which the variable a ranges. Kinds themselves are just Coq
types, and are thus written as ’(c). All OCaml types have
one kind, called ’(OCamlType) which may be omitted from
the quantifier syntax. Only OCamlType-kinded index type ex-
pressions can classify OCaml expressions. Quantifying over
’(OCamlType)s produces first-class parametric polymorphism:
type forall a. ’(a) -> ’(a) is the type of the identity func-
tion. In addition to OCamlType, there are many other kinds that can
be used to classify either indices or type-constructors. Polymor-
phism over index types can be used to specify function invariants.
For example, given an array type constructor indexed by its size,
we can give the function that copies an array of size n the follow-
ing type:

forall n:’(nat).
(’(n),’a) sized_array -> (’(n),’a) sized_array

The kind OCamlType is inhabited in Coq by a set of predefined
constants. Each such constant is named after the corresponding
OCaml type constructor: type int list -> bool can be written
as ’(OCaml_Arrow (OCaml_list OCaml_int) OCaml_bool).
The two notations are treated as equivalent by the type system. The
embedding of OCaml’s types into Coq terms allow us to define
Coq functions that map index types into OCaml types. This facility
is useful, for example, when developing tagless staged interpreters
(Section 5).

Type declarations. Concoqtion extends the OCaml type dec-
larations in two ways. First, parameters of type constructors can
range over any specified kind. For example, the following type syn-
onym defines the type of square matrices of size n:

type (n:’(nat),’a) square_matrix =
(’(n), (’(n),’a) sized_array) sized_array

Second, in algebraic data-type declarations, the OCaml restric-
tion that the result type of each data-constructor must be polymor-

phic in the type’s parameters is relaxed. For example, the OCaml
type ’a list tells us nothing about the structure the list. In Con-
coqtion, by varying the index parameters in the data-constructor’s
result type, we can say more about the structure of a value from its
type. In the extreme case, this extension allows us to express sin-
gleton types whose runtime values are fully determined by the type
of their indices.

type ’b:’(bool) sbool =
| T : ’(true) sbool | F : ’(false) sbool

An expression of type ’(true) sbool is statically known to be
equal to T. Now we can write a type which guarantees that a
function implements negation as specified by the Coq function
not on boolean indices: forall b:’(bool). ’(b) sbool ->
’(not b) sbool.

A final extension to data-constructor declarations allows the pro-
grammer to declare locally quantified type variables. For example,
consider the type listl of lists whose first parameter is a natural
number index indicating its length:

type (’n:’(nat),’a) listl =
| Nil : (’(0),’a) listl
| Cons of let ’m:’(nat) in ’a * (’(m),’a) listl

: (’(m+1),’a) listl

The declaration of the data-constructor Cons uses a locally
quantified variable m of kind nat and states that given some natural
number m, an element of type a, and a list of length m, Cons
produces a list of length m+1.

Prooflets. Concoqtion extends OCaml declarations with the
notion of prooflets. A prooflet is a Coq Vernacular script (the same
language used to interact with the theorem prover) delimited by the
keywords coq and end. Any declarations, definitions or Coq proofs
written in the prooflet are added to the Coq environment and visible
in the following index type expressions. The most common use of
sections is to add definitions of new index types (see an example
in Section 5.3). By issuing commands to Coq in the prooflet, the
programmer can import any standard or separately compiled Coq
library.

Prooflets also allow the programmer to state properties of in-
dices as Coq theorems and then prove them. For example, one
might wish to prove that for any type constructor f over natural
numbers ’(f (m+n)) is equal to ’(f (n+m)).

The proofs of this and similar properties can be constructed
using tactics:

coq
Require Arith.

Lemma comm_eq :

forall m n:nat (f: nat->OCamlType),
(f(m+n))=(f(n+m)).

intros; eauto with arith. Qed.
end

After stating the lemma comm eq in prooflets, Coq goes into
proof mode. Issuing the tactic intros; eauto with arith
proves the lemma. At the Vernacular command Qed, Coq checks
and accepts the theorem, which is then available in the rest of the
Concoqtion program as an index-type function named comm_eq.

3.2 Extensions to Expressions
Concoqtion extends the syntax of OCaml expressions with appro-
priate introduction and elimination constructs for the OCaml type
extensions described above.

Type abstraction and application. The forall types are in-
troduced and instantiated in System F style, using explicit type ab-
straction and application: /\a.e is an expression with type forall
a.t, where a is a variable that may appear in index expressions in
t; e .|t| is an expression of type t’[a := t], where e is an
expression of type forall a.t’. The type variable may also be
annotated with a kind, as in /\n:’(nat). e, in which case it
introduces a kinded forall type forall n:’(nat).t.

By analogy to OCaml’s function declaration syntax, there is
syntactic sugar for writing type abstractions in a let-definition. To
distinguish them from expression variables, type variables appear-
ing in let declarations are surrounded with type-application braces:

let id .|a| (x:’(a)) = x

This notation is syntactic sugar for:

let id = /\a. fun (x:’(a)) -> x

Data-constructors and pattern matching. Data-constructors
that have locally quantified type variables must be fully type-applied
in all their type arguments, then applied to any expression argu-
ments they may require. For example, the following function takes
an integer and adds it twice to a listl increasing its length by two:

let add_twice .|m:’(nat)| x xs =
Cons .|’(1+m)| (x, Cons .|’(m)| (x, xs))

Concoqtion has an extended form of match expressions data-
types whose indices may vary for each constructor.

let rec app .|m:’(nat), n:’(nat)|
(l1 : (’(m), _) listl) (l2 : (’(n), _) listl)
: (’(m+n), _) listl =

match l1 as (’i:’(nat),’a:’(OCamlType)) listl
in (’(i+n),’(a)) listl with

| Nil -> l2
| Cons .| m2:’(nat)| (x,xs) ->

Cons .| ’(m2+n) | (x, app .|’(m2),’(n)| xs l2)

An extended match expression requires two additions. First is
a type pattern, introduced by the keyword as. The type pattern
(’i:’(nat),’a:’(OCamlType)) listl binds the type variables
i and a in the scope of the rest of the match. A type t, following the
keyword in is a result type annotation, which may contain free type
variables bound by the type pattern. When type-checking the match
expression, the type of the discriminated expression l1 is matched
against the type pattern, obtaining a substitution for the type vari-
ables. Applying this substitution to the result type annotation gives
the result of the whole match expression. In each branch of the
case, the type pattern is first matched against the type computed
for the constructor pattern, obtaining a type substitution for that
branch. The type of the body of the branch then must be precisely
the result type annotation to which this substitution is applied. This

allows each branch to have a different type depending on the types
of the indices of the constructor in the branch.

For example, in the Nil case, i is replaced by ’(0), allow-
ing the branch expression to be a list of type (’(0+n),’(a))
listl. In the Cons case, i is replaced by ’(1+m2). This
means that the type of the branch expression must be
(’((1+m2)+n),’(a)) listl. The type computed for the branch
expression is (’(1+(m2+n)),’(a)) listl. By expanding the
Coq definitions of + the Concoqtion type checker determines that
the two types are equal, and accepts the match.

If the type of the discriminated expression is simple enough, the
type pattern may be omitted. In particular, this is the case when the
parameters of the type are comprised entirely of variables (’(i))
and constant index type expressions (|’(0)|) In this situation,
the Concoqtion type checker can infer the particular substitution
binding the type variables to more specific types in each branch.
The restriction on the discriminated expression’s type is necessary
to make computing this substitution decidable – in all other cases
the programmer must use the more general type-pattern notation. In
practice we find that many functions in Concoqtion can be written
using this simpler syntax. Let consider a simple example of omitted
type patterns by writing a zip function on lists with length.

let rec zip .|n:’(nat)|
(l1:(’(n),’a) listl) (l2:(’(n),’b) listl)
: ((’(n),(’a * ’b)) listl) =

match (l1,l2) in (’(n),’a*’b) listl with
| Nil,Nil -> Nil
| Cons .|i:’(nat)| (x,xs), Cons .|j:’(nat)| (y,ys) ->

Cons .|’(j)| ((x,y), zip .|’(i)| xs ys)

The type of the expression (l1,l2) is a pair of lists of length n.
In the first branch, Concoqtion infers that n must be equal to zero,
substituting 0 for n in the result type annotation when checking the
right-hand side.

In the next case, the pattern has the type
(’(S i),’a) listl * (’(S j),’b) listl where the
sub-lists xs and ys are have lengths ’(i) and ’(j) respectively.
The Concoqtion type checker, concludes that since both ’(S i)
and ’(S j) must be equal to n, i and j must be equal. This allows
us to apply zip to xs and ys although the variables representing
their length are different.

3.3 Implementation
The Concoqtion compiler extends the full MetaOCaml compiler,
which itself extends the OCaml 3.08 compiler through a set of
patches that add support for multi-stage programming [29]. An
important design feature of the MetaOCaml implementation is that
it modifies only the front end of the compiler. The same approach
was used with Concoqtion: the Concoqtion type-checker produces
the same intermediate representation that the OCaml type-checker
does, erases all extra type-related annotations, and then invokes the
unmodified OCaml back-end compiler to produce an executable
program.

Concoqtion uses a stand-alone implementation of the Coq theo-
rem prover as a library accessed by the type-checker. Because Coq
and the OCaml compiler are both implemented in OCaml it was
possible to compile and link the two together, allowing them to
share the same runtime and address space. Thus Coq is a single
component of the Concoqtion type-checker. The type-checker acts
as a user in a theorem proving session: it issues commands to the
Coq infrastructure and queries its global state about constants and
theorems.

Coq itself consists of a small secure kernel that provides syntax,
reduction, and type- and convertibility- checking of a core Calculus
of Inductive Constructions. Around this secure layer are numerous
libraries of the theorem prover itself, including support for parsing,

interactive theorem proving, management for compilation, and ac-
cess to libraries of theorems and definitions. To process prooflets,
Concoqtion uses the outer theorem prover layer, passing control to
the internal Coq interpreter for the Vernacular proof scripts. The
Concoqtion type-checker limits itself to a small, well-defined inter-
face to the Coq kernel. No patches or changes to the Coq imple-
mentation are needed.

The unification algorithm in the Concoqtion type-checker uses
the convertibility checker of the Coq kernel to compare index type
expressions for equality. Most of the OCaml type-checker code is
unchanged: it does not interact directly with Coq, continuing to rely
instead on a modified OCaml unification algorithm. The OCaml
unification algorithm is modified to convert between the Coq and
OCaml representations of types on the fly, and to perform kind
checking when necessary. This way the interaction between Coq
and OCaml is isolated to a relatively few places in the OCaml type-
checker.

Whenever a new unifiable variable binding is discovered by the
OCaml type-checker, this information is communicated to the Coq
kernel as a new definitional equality. This allows Coq convertibility
checkers and evaluators to use the equalities between OCaml type
variables discovered by the OCaml unification engine. The Con-
coqtion language extensions do impose some additional syntactic
burden of type annotations, but the type system of Concoqtion uses
the Hindley-Milner inference to propagate some (though not all)
redundant annotations.

Supporting separate compilation in Concoqtion requires main-
taining a consistent Coq state across compilation boundaries. This
is accomplished by ensuring that each Concoqtion compilation unit
gives rise to a compiled Coq theory which can be loaded when type-
checking other compilation units, or even from a stand-alone Coq
application. Prooflets and OCamlType constants are organized into
Coq modules: the programmer can refer to OCaml constants and
theorems with the same naming discipline as in OCaml modules.

4. Programming with Index Types
In this section, we use small examples to compare programming
in Concoqtion to programming with GADTs. First, we illustrate
the utility of index-level functions on the append example from
Section 3.2. We compare Concoqtion and GADTs using the this
example. Next, we show how Coq theorems about index types
can be used in Concoqtion to type-check more programs. Finally,
we demonstrate the features of Concoqtion designed to ease the
creation of Coq proofs in Concoqtion programs by harnessing the
power of Coq tactics and decision procedures.

4.1 Concoqtion Data-types vs. GADTs
While Concoqtion’s extension to algebraic data-types requires data
constructors to be type-applied to their parameters, Haskell and
GADT languages implicitly reconstruct these type applications us-
ing an inference algorithm [21]. However, the inference algorithm
that automatically constructs these applications is undecidable in
the presence of type-level functions, which are therefore not avail-
able in Haskell. Instead, functions over indices must be encoded
relationally: a type function from f : A -> B is represented by a
GADT R whose indices are drawn from both A and B. The values of
type (R x y) are witnesses that x = f y, and need to be manip-
ulated explicitly by Haskell programs. In Concoqtion, the explicit
type application of data constructors is the price we pay to allow
type-level functions over indices. Below, we compare using Con-
coqtion’s type functions and the Haskell’s relational style in pro-
gramming with index types.

Consider the Concoqtion data-type listl for lists of length n
(Section 3.1). The type constructor listl takes two parameters:
the first, an index of kind ’(nat), is the length of the list; the

data Z
data S x

data ListN n a where
Nil :: ListN Z a
Cons :: a -> ListN m a -> ListN (S m) a

data Sum m n s where
SumZ :: Sum Z n n
SumS :: (Sum a n r) -> Sum (S a) n (S r)

data PlusLenL m n a where
PP :: (Sum m n sum) -> (ListN sum a) -> PlusLenL m n a

app :: ListN m a -> ListN n a -> PlusLenL m n a
app Nil ys = PP SumZ ys
app (Cons x xs) ys =

case app xs ys of
PP sum rest -> PP (SumS sum) (Cons x rest)

Figure 1. Lists with length in Haskell

second is the type of the list element. Appending two lists of length
m and n, respectively, results in a list of length m+n. This invariant
is captured in the type of the concatenation function:

app : forall m,n : ’(nat). (’(m),’a) listl
-> (’(n),’a) listl -> (’(m+n),’a) listl

Let us compare the Concoqtion implementation of app (Sec-
tion 3.2) to a similar implementation in Haskell using GADTs [21]
(Figure 1, following an example of Sheard’s [23]). The data-type
ListN plays the same role as listl in Concoqtion, except that the
numeric length indices are encoded as Haskell types built up of type
constructors Z and S. Aside from surface syntactic differences with
Concoqtion, in the sub-index m in the constructor Cons is quanti-
fied implicitly in Haskell. Similarly, when constructing values with
Cons in Haskell, the type application is implicitly reconstructed by
the type-checker.

The Concoqtion type of app directly expresses the fact that
the length of two appended lists is the sum of their length:
(’(m+n),’a) listl. In Haskell, however, we have no way of di-
rectly writing down the type index m+n. Instead, we need to supply
a proof that an index s is the sum of m and n. This proof is encoded
in the auxiliary data-type Sum m n s: if we can construct a value
of type Sum m n s, than we have a proof that m+n = s. When re-
ferring to a list of length m+n, we need to define a completely new
Haskell data-type: PlusLenL m n a.

data PlusLenL m n a where
PP :: (Sum m n sum) -> (ListN sum a) -> PlusLenL m n a

This type, PlusLenL m n a, bundles up witness that there
exists some index s, such that m + n are equal to s together with a
list of type ListN s a.

Both the Concoqtion and Haskell examples use a kind of GADT
for representing lists which are computational data. In Haskell, the
programmer is also forced to use GADTs to encode propositions as
relations between indices. In Concoqtion, on the other hand, we are
free to use GADT-like notation for list values, for which GADTs
are well suited, but use the more natural and concise notation of
Coq for indices and their properties.

4.2 Using Proofs and Casts
Suppose we wish to call a function in Haskell that took a list
of length m+n, (PlusLenL m n a) but all we have is a list of
length n+m, (PlusLenL n m a). To use the value available, the
programmer needs to explicitly prove that addition is commutative
by providing a function of type Sum m n s->Sum n m s. Such a

function can indeed be built by recursively deconstructing a witness
value of type Sum m n s and building another of type Sum n m s.

What about Concoqtion? Again, suppose we had a value x of
type (’(m+n),’a) listl, and what we really need is a value of
type (’(n+m),’a) listl. Somehow, we must use the fact that
addition is commutative to convert between the two types. These
two types are not implicitly convertible (modulo Coq reduction
relations) to each other: we will have to prove them equal and use
that proof to cast from one type to another. To do this we use the
type-safe cast function, which works for any two types we can
prove equal in Coq:

forall a,b. forall p:’(a=b). ’(a) -> ’(b)

First, we prove that lists of equal lengths are equal:

coq
Require Import Arith.
Lemma lemma1 : forall elem, forall m n, (m = n) ->

((OCaml_listl m elem) = (OCaml_listl n elem))
intros; eauto. Qed.

end

Next, can combine lemma1 with a standard Coq library theorem
plus_comm to obtain the following function:

let comm .|a , m:’(nat), n:’(nat)|
(x:(’(m+n),’(a)) listl) : (’(n+m),’(a)) listl =

cast
.| ’(OCaml_listl (m+n) a), ’(OCaml_listl (n+m) a),

’(lemma1 a (m+n) (n+m) (plus_comm m n)) | x

Note also that, since these proofs and properties live entirely in
the logical language, they are erased by the Concoqtion compiler
and incur no runtime overhead.

4.3 Using Built-in Decision Procedures
In writing the function comm in DML [32], the cast would not
be necessary, as the equivalence m+n = n+m would be proven au-
tomatically by a Presburger arithmetic decision procedure that is
built into the DML type-checker. In Concoqtion the added burden
of proof construction can be reduced by using Coq decision pro-
cedures. For example, if the commutativity of addition were not
predefined, the comm function could prove it on the fly:

let comm .|a, m:’(nat), n:’(nat)|
(x:(’(m+n),’(a)) listl) : (’(n+m),’(a)) listl =

cast .| _^(eauto), _^(eauto), _^(omega;eauto)| x

Here we use an alternate form of index expression type, written
^([goal|] script). The omitted goal argument speci-
fies a proposition (in Concoqtion this is a kind), in this case
(’(m+n),)listl = (’(n+m),) listl. This annotation can
sometimes be inferred from the context. The script argument is
a Coq proof script which instructs the theorem prover to use a par-
ticular decision procedure or tactic. The above ^(omega;eauto)
instructs Coq to use the Presburger arithmetic decision procedure
omega together with the standard propositional manipulation pack-
age eauto.

Concoqtion’s advantage over languages with built-in decision
procedures lies in support for greater logical expressiveness and
graceful degradation. Sometimes the proof that is needed cannot
be constructed by any one decision procedure, but can be obtained
by applying several such procedures, with minimal, but necessary
guidance by the user. For example, if the DML-style type-checker
had to show that x*x+2x+1=(x+1)*(x+1), it would fail; in Conco-
qtion this can be proven in Coq as a theorem, added to the standard
set of Coq simplification rules, and used by eauto.

5. Tagless Staged Interpreters
Indexed types can play a powerful role in the implementation of
domain-specific languages (DSLs) [12, 26]. In contrast to C++ Tem-
plates and Template Haskell, a multi-stage language like MetaO-
Caml allows the programmer to implement DSLs as staged inter-
preters: translators from the DSL to MetaOCaml programs that are
both free from the overhead of deconstructing the DSL syntax and
statically guaranteed to be type safe [10]. A staged interpreter in
MetaOCaml can completely eliminate the interpretive overheard
for a language with very simple type structure [26]. But for virtually
any domain-specific language with non-trivial types, we encounter
the problem of Jones optimality for staged interpreters [14, 27].

Tagless staged interpreters (TSI) provide a superior approach
to addressing the superfluous tags that prevent Jones optimality.
In particular, when using a multi-stage language with sufficiently
expressive indexed types we can statically guarantee that staged
interpreters are type and do not produce any unnecessary runtime
tags in the resulting computation [20].

Writing a tagless interpreter requires a bit more work than writ-
ing tagged one, but we argue that this added work structures the
process of implementing a DSL. The tagless staged interpreter ap-
proach requires the programmer to follow a sequence of steps that
produces semantically well-motivated artifacts one would expect
to see in any careful language design. To leverage index types to-
wards a more efficient implementation, the implementation must
reflect more of the design information. After a concise overview of
the development of a tagless staged interpreter, we summarize the
key steps in applying this method to developing an interpreter for
the simply-typed λ calculus.

5.1 Overview
Developing a tagless interpreter proceeds first by developing an in-
terpreter that lacks Jones optimality, and thus will have unnecessary
tags in the result. This builds the framework and reference for the
tagless interpreter:

1. Define a “throw-away” universal domain of tagged values
(val), representing the results of DSL programs. This step may
include definitions of auxiliary types, such as runtime environments
(env).

2. Define an abstract syntax type exp for the DSL.
3. Write an interpreter of type eval0 : exp -> env -> val.
Building the tagless interpreter itself requires the following

steps:
1. Define a index datatype for types (typ) of the DSL. An

index datatype is a datatype that lives strictly on the level of types.
Because the result type of the tagless interpreter will ultimately
depend on this datatype, it must be an index. In Concoqtion, index
datatypes are Coq definitions of inductive sets. In this step we
also need to define index datatypes for any environments (tenv)
or stores that are needed to describe well-typed terms.

2. Define the interpretation of DSL types

evalT : typ -> OCamlType

This is a function at the level of types that maps (syntactic) DSL
types to their meaning (Concoqtion types).

3. Define a indexed datatype for the typing derivations of well-
typed DSL terms (’e:’(tenv),’t:’(typ)) expr. A value of
this indexed type is a proof that the DSL expression expr has the
(DSL) type ’t in the typing environment ’e.

4. Define a partial type-checking function

check_expr : exp -> env -> (’(e),’(t)) expr

5. Define the tagless interpreter as a function of the following
type:

eval_expr : forall e:’(tenv) t:’(typ).
(’(e),’(t)) expr -> ’(evalEnv e) -> ’(evalT t)

6. Stage the interpreter using standard methods [26, 29].
In the rest of this section, we follow the steps above using the

simply typed λ-calculus as a small prototype DSL.

5.2 An Interpreter with Tags: eval0
The untyped DSL expressions are represented, using de Bruijn in-
dices, with the data-type exp. The data-type val represents the uni-
versal domain of values, containing integers and functions returned
by interpreting source programs. For simplicity we represent run-
time environments as lists of values.

type val = I of int | F of val -> val
type env = val list
type exp = P_Var of int | P_Abs of exp

| P_App of exp * exp | P_Const of int

The tagged interpreter is a function mapping object language
expressions exp to values val:

let rec eval0 exp env =
match expr with
| P_Var i -> lookup i env
| P_Const n -> I n
| P_Abs e -> F (fun v -> eval e (v::env))
| P_App(e1,e2) ->

match eval env e1 with F f -> f (eval env e2)

5.3 Types and their Semantics: typ and tenv

In our example the set of DSL types is an index type defined in
Coq. For the simply typed λ-calculus we define the domain typ of
types, and the domain tenv of type assignments

We next provide two Coq functions interpreting object language
types and type assignments. The evalT : typ -> OCamlType
function interprets types by mapping T Int to the OCaml integers
and arrows, T Arr t1 t2, to OCaml functions ’(evalT t1) ->
’(evalT t2). The type assignment interpretation function maps
object language type assignments to the OCaml types for runtime
environments, which are represented as nested tuples with element
types corresponding the variables types in the type assignment.

coq
Inductive typ : Set :=
|T_Int : typ | T_Arr : typ -> typ -> typ.
Inductive tenv: Set :=
| Empty : tenv | Ext : tenv -> typ -> tenv.

Fixpoint evalT (t:typ) : OCamlType :=
match t with
| T_Int => OCaml_int
| T_Arr dom cod => OCaml_Arr (evalT dom) (evalT cod)
end.

Notation "A -*- B" :=
OCaml_Tuple (OCaml_List_cons A

(OCaml_List_cons B OCaml_List_nil)).

Fixpoint evalEnv (e:tenv) : OCamlType :=
match e with
| Empty => OCaml_unit
| Ext env t => (evalEnv env) -*- (evalT t) end.

end

5.4 Well-typed Expressions: expr
Next, we define a Concoqtion data-type that represent typing deriva-
tions for well-typed expressions. Unlike typ and tenv, which were
purely static (index-level) entities, the typing derivations are de-
fined as Concoqtion data-types. The type constructor expr takes

τ ::= int | τ → τ
Γ ::= · | Γ, τ
e ::= n | λτ.e | e e

Γ, τ ` 0 : τ
(JV Z)

Γ ` n : τ

Γ, τ ′ ` (n + 1) : τ
(JV S)

Γ ` n : τ

Γ ` n : τ
(Var)

Γ, τ1 ` e : τ2

Γ ` λe.τ1 → τ2
(Abs)

Γ ` e1 : τ1 → τ
Γ ` e2 : τ1

Γ ` e1 e2 : τ
(App)

Figure 2. Type system of the object language

two indices: the object-type of the term it represents, and the envi-
ronment that assigns types to its free variables. To represent well-
typed object language variables, we use an auxiliary type construc-
tor jvar. These two type constructors correspond to the two judg-
ment forms in Figure 2: each data constructor implements one epony-
mous derivation rule.

type (’e:’(tenv),’t:’(typ)) jvar =
| JV_Z of let ’e1:’(tenv) ’t1:’(typ) in unit

: (’(Ext e1 t1),’(t1)) jvar
| JV_S of let ’e:’(tenv) ’t1:’(typ) ’t2:’(typ) in

(’(e),’(t2)) jvar : (’(Ext e t1),’(t2)) jvar

type (’e:’(tenv),’t:’(typ)) expr =
| Const of int : (’e,’(T_Int)) expr
| Var of (’e,’t) jvar : (’e,’t) expr
| Abs of let ’e:’(tenv) ’dom:’(typ) ’cod:’(typ) in

(’(Ext e dom),’(cod)) expr
: (’(e),’(T_Arr dom cod)) expr

| App of let ’e:’(tenv) ’dom:’(typ) ’cod:’(typ) in
(’(e),’(T_Arr dom cod)) expr * (’(e),’(dom)) expr

: (’(e),’(cod)) expr

In addition to representing typing derivations of DSL programs,
we have to have some way of constructing them out of the untyped
representation of object language programs.

We define a partial function check expr that takes an exp as
its input and constructs a typing derivation. In addition to the un-
typed terms, check expr needs to be able to record types of free
variables while it is checking under λ-abstractions. However, the
types for the free variables cannot be known before running the type
checker. To construct and compare these types, we define two sin-
gleton types ’(e:’(tenv)) r_tenv and ’(t:’(typ)) r_typ.
Similarly, the precise type index for the result of check expr can-
not be known before running the type checker. Here, we hide the
exact type index with an existential:

val check_expr : forall e:’(tenv).
’(e) r_tenv -> preexp -> ’(e) some_expr

In Concoqtion, we can encode the needed existential types using
extended data-types. This is a standard trick, where an existential
type ∃a.t is encoded as a data-type with a locally quantified type
variable a of a data-constructor, where a does not occur in its return
type:

type pretyp = ST of let ’t:’(typ) in ’(t) r_typ
type (’e:’(tenv)) some_jvar =
| SV of let ’t:’(typ) in ’(t) r_typ * (’e,’(t)) jvar
type (’env:’(tenv)) some_expr =
| SE of let ’t:’(typ) in ’(t) r_typ * (’env,’(t)) expr

Due to lack of space, we will show only the most interest-
ing case of check exp in Figure 3. First, the application operator
and operand are checked recursively to construct their own judg-
ments. Second, we open the two existential packages. Note that
we know nothing in particular about the actual type indices of the

let rec check_expr .|e:’(tenv)| (re:’(e) r_tenv) pe : ’(e) some_expr =
match pe in ’(e) some_expr with
| P_App(pe1,pe2) ->

match (check_expr .|’(e)| re pe1, check_expr .|’(e)| re pe2) in ’(e) some_expr with
| SE .|ratorenv:’(tenv), trator:’(typ)| (trator,jtrator),

SE .|randenv:’(tenv), trand:’(typ) | (trand,jtrand) ->
(match trator in ’(e) some_expr with
| RArr .|tdom:’(typ),tcod:’(typ)| (rdom,rcod) ->

let tarr = RArr .|’(trand),’(tcod)| (trand,rcod) in
let p1 = comp_typ .|’(trator),’(T_Arr trand tcod)| trator tarr in
let v = cast_eq_typ .|’(e),’(trator),’(T_Arr trand tcod)| p1 jtrator in
SE .|’(e),’(tcod)| (rcod, (App .|’(e),’(trand),’(tcod)| (v,jtrand))))

Figure 3. Type-checking application.

two well-typed subexpressions. We must explicitly check that the
operator is a function and that the operand’s type matches its do-
main. To do this, we use the function comp typ which takes two
singleton representations of object language types ’(t1) r_typ
and ’(t2) r_typ and compares them, either returning a value
of type (’(t1),’(t2)) eq_typ or raising an exception (see
Appendix A for definition). This value is a runtime representa-
tion of the proof that t1 and t2 are equal, and can be used as
an argument to the function cast_eq_typ to cast from any type
containing t1 to the same type where t1 is replaced by t2. Fi-
nally, we apply the cast to put the operator judgment into the form
(’(e),’(T_Arr trand tcod)) expr and construct the typing
derivation for the application.

5.5 The Tagless Interpreter: evalExp
The tagless interpreter is a function eval, parameterized by a type
t and a type assignment e, that takes an object language expression
of type t under e, a runtime environment of type ’(evalEnv e),
and produces a value of type ’(evalT t).

forall e:’(tenv). forall t:’(typ).
(’(e), ’(t)) expr -> ’(evalEnv e) -> ’(evalT t)

Figure 4 gives the implementation of the interpreter. First, we
define an auxiliary function lookupVar that looks up a well-typed
variable index in a runtime environment whose type is ’(evalEnv e).
The interpreter, evalExp uses Concoqtion’s extended match state-
ment to deconstruct the well-typed object language expression. Note
that each the return types of each branch of this match expression
vary according to the type indices of each data-constructor.

5.6 The Tagless Staged Interpreter
The final step is to stage the interpreter using Concoqtion’s Multi-
stage programming constructs: program fragments of type (’c,
’a) code are constructed using brackets, .<e>. which delays the
evaluation of the expression e of type ’a until runtime. The first
parameter ’c is an environment classifier [28], required for type-
safe runtime execution of code fragments. Except for Concoqtion
and MetaOCaml, no other multi-stage language has this form of
type safety. Inside brackets the programmer can force an expression
e to be evaluated immediately with the escape construct .~e,
causing its result, a piece of code, to be “spliced” into the context
of the escape. Once constructed, a value of type (c,t) code can
be executed using the run annotation (.!e) to produce a value of
type t.

Staging the interpreter involves changing its type to return a
code value. Moreover, we need to change the interpretation of the
type assignments to produce tuples whose elements are of type
code. This removes variable lookup overhead from the runtime of
the generated program. Note that evalEnvS takes an extra param-
eter, a type cls. This parameter used to represent the environment

classifier needed to construct a code type, and is simply passed
along,

coq
Fixpoint evalEnvS (cls:OCamlType) (e:tenv) : OCamlType :=
match e with
| Empty => OCaml_unit
| Ext env t =>

(evalEnvS cls env) -*- (OCaml_code cls (evalT t))
end.

end

The staged version of evalExp is shown in Figure 5. lookupVar
is omitted as it differs only in its type annotations. Aside from the
change in type annotations, the only difference between evalExp
and evalExpS is the addition of brackets and escapes. Let us ex-
amine one case in more detail.

The abstraction case deconstructs an Abs node of type
(’(e),’(evalT T_Arr tdom tcod)) expr. The interpreter
immediately constructs a piece of code containing the function ab-
straction .< fun v -> ... >.. The body of this function is con-
structed and spliced in by a recursive call to evalExpS with a run-
time environment that is extended with the code value .<v>. con-
taining the parameter. Thus, any time the corresponding variable is
evaluated in the body, the piece of code containing the parameter v
will be looked up and spliced in place.

5.7 Discussion
The Tagless Staged Interpreters technique was first described using
the language MetaD [20]. We outline the crucial difference between
the MetaD and the Concoqtion TSI implementations. While MetaD
supports the separation of computational and type languages in
principle, it uses the same inductive family facility for both type-
level indices and for computational data-types. This renders the
separation between indices and programs difficult to perceive. Fur-
ther, the semantics of functions defined over these inductive struc-
tures is different in that only the awkward primitive recursion oper-
ators is allowed in type-level functions, and unrestricted recursion
is allowed in computational functions. In Concoqtion the language
of indices and the language of programs are completely separate:
prooflets and index type expressions ensure that the semantics dis-
tinctions between indices and programs are syntactically visible.

6. Conclusions and Future Work
We have presented Concoqtion, an approach to designing program-
ming languages with indexed types. We argue that this approach
can have significant benefits over GADTs. The approach was ap-
plied to MetaOCaml, extending it with highly expressive indexed
types provided by the Coq proof checker. Small examples and a
case study in tagless staged interpreters are used to illustrate pro-
gramming in the language.

Naturally, the most important direction for future work is build-
ing more applications in MetaOCaml Concoqtion so as to better

let rec lookupVar .|e:’(tenv),t:’(typ)| (j:(’(e),’(t)) jvar) (env: ’(evalEnv e)) : ’(evalT t) =
match j in ’(evalT t) with
| JV_Z .|e:’(tenv),t:’(typ)| _ -> snd env
| JV_S .|e2:’(tenv),t1:’(typ),t2:’(typ)| v’ -> lookupVar .|’(e2),’(t2)| v’ (fst env)

let rec evalExp .|e:’(tenv),t:’(typ)| (j: (’(e),’(t)) expr) (env:’(evalEnv e)) : ’(evalT t) =
match j in ’(evalT t) with
| Const n -> n
| Var v -> lookupVar .|’(e),’(t)| v env
| Abs .|e:’(tenv),td:’(typ),tc:’(typ)| body -> (fun v -> evalExp .|’(Ext e td),’(tc)| body (env,v))
| App .|e:’(tenv), td:’(typ),tc:’(typ)| (rator,rand) ->

(evalExp .|’(e),’(T_Arr td tc)| rator env) (evalExp .|’(e),’(td)| rand env)

Figure 4. The tagless interpreter

let rec evalExpS .|c,e:’(tenv),t:’(typ)| (j: (’(e),’(t)) expr) (env:’(evalEnvS c e)) : (’(c), ’(evalT t)) code =
match j in (’(c), ’(evalT t)) code with
| Const n -> .< n >.
| Var v -> lookupVarS .|’(c),’(e),’(t)| v env
| Abs .|e:’(tenv),td:’(typ),tc:’(typ)| body ->

.< fun v -> .~(evalExpS .|’(c), ’(Ext e td),’(tc)| body (env,.< v >.)) >.
| App .|e:’(tenv), td:’(typ),tc:’(typ)| (rator,rand) ->

.< .~(evalExpS .|’(c), ’(e),’(T_Arr td tc)| rator env) .~(evalExpS .|’(c), ’(e),’(td)| rand env) >.

Figure 5. Tagless staged interpreter evalExpS.

understand the impact of using indexed types. Simultaneously, we
wish to address several engineering issues, such as the integration
of the OCaml and Coq parsers. This will allow us to improve the
concrete syntax of MetaOCaml Concoqtion.

Finally, for the purposes of programming low-level applications
using low-level types, we would like to investigate ways to improve
support for reasoning about OCaml primitive types. Leroy has
already formalized many such types in Coq [17]. These libraries
can be imported directly into Concoqtion. What remains to be
done is to connect them with the computational language, possibly
through special syntax for literals.

References
[1] Lennart Augustsson. Cayenne — a language with dependent types. In

Proceedings of the ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’98), volume 34(1) of ACM SIGPLAN No-
tices, pages 239–250. ACM, June 1999.

[2] Edwin Brady, Conor McBride, and James McKinna. Inductive fami-
lies need not store their indices. In Stefano Berardi, Mario Coppo, and
Ferruccio Damiani, editors, TYPES, volume 3085 of Lecture Notes in
Computer Science, pages 115–129. Springer, 2003.

[3] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul,
editors, Formal Description of Programming Concepts, IFIP State-of-
the-Art Reports, pages 431–507. Springer-Verlag, New York, 1991.

[4] Chiyan Chen and Hongwei Xi. Implementing typeful program trans-
formations. In ACM SIGPLAN Workshop on Partial Evaluation and
Semantics Based Program Manipulation, pages 20–28. ACM Press,
June 2003.

[5] Chiyan Chen and Hongwei Xi. Combining programming with theo-
rem proving. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN
international conference on Functional programming, pages 66–77,
New York, NY, USA, 2005. ACM Press.

[6] James Cheney and Ralf Hinze. First-class phantom types. Technical
Report 1901, Cornell University, 2003.

[7] The MetaOCaml Concoqtion web site. Online at
http://www.metaocaml.org/concoqtion, July 2006.

[8] The Coq. The coq proof assistant : Reference manual : Version 7.2,
February 2002.

[9] Thierry Coquand and Gérard Huet. Constructions: A higher order
proof system for mechanizing mathematics. In EUROCAL85, volume

203 of Lecture Notes in Computer Science, pages 151–184, Berlin,
1986. Springer-Verlag.

[10] Krzysztof Czarnecki1, John O’Donnell, Jörg Striegnitz, and Walid
Taha. Dsl implementation in metaocaml, template haskell, and c++.
In Batory, Consel, Lengauer, and Odersky, editors, Dagstuhl Workshop
on Domain-specific Program Generation, LNCS. 2004. To appear.

[11] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
dans l’arithmétique d’ordre supérieur. Thèse de doctorat d’etat, Uni-
versity of Paris VII, 1972.

[12] Paul Hudak. Modular domain specific languages and tools. In Pro-
ceedings of Fifth International Conference on Software Reuse, pages
134–142. IEEE Computer Society, June 1998.

[13] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings
of the General Track: 2002 USENIX Annual Technical Conference,
June 10–15, 2002, Monterey, California, USA, Berkeley, CA, USA,
2002. USENIX.

[14] N. D. Jones, P. Sestoft, and H. Sondergaard. Mix: a self-applicable
partial evaluator for experiments in compiler generation. Technical
Report DIKU Report 87/08, University of Copenhagen, Denmark,
1987.

[15] Andrew Kennedy and Claudio V. Russo. Generalized algebraic data
types and object-oriented programming. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications. ACM Press, 2005.

[16] Xavier Leroy. Objective Caml, 2000. Available from
http://caml.inria.fr/ocaml/.

[17] Xavier Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In POPL’06: Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 42–54, New York, NY, USA, 2006.
ACM Press.

[18] MetaOCaml: A compiled, type-safe multi-stage programming lan-
guage. Available online from http://www.metaocaml.org/, 2004.

[19] Emir Pasalic, Jeremy Siek, and Walid Taha. Concoqtion: Mixing
dependent types and Hindley-Milner type inference (extended ver-
sion). Technical report, Rice University, 2006. Available from
http://www.metaocaml.org/concoqtion.

[20] Emir Pašalić, Walid Taha, and Tim Sheard. Tagless staged interpreters
for typed languages. In the International Conference on Functional
Programming (ICFP ’02), Pittsburgh, USA, October 2002. ACM.

[21] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Ge-
offrey Washburn. Simple unification-based type inference for GADTs.
submitted to ICFP 2006, April 2006.

[22] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspy-
rou. A type system for certified binaries. ACM SIGPLAN Notices,
31(1):217–232, January 2002.

[23] Tim Sheard. Languages of the future. ACM SIGPLAN Notices,
39(12):119–132, 2004.

[24] Tim Sheard and Emir Pasalic. Meta-programming with built-in type
equality. In Fourth International Workshop on Logical Frameworks
and Meta-Languages (LFM’04), Cork, Ireland, July 2004.

[25] Vincent Simonet and François Pottier. A constraint-based approach
to guarded algebraic data types. ACM Transactions on Programming
Languages and Systems, December 2005.

[26] Walid Taha. A gentle introduction to multi-stage programming. In
Don Batory, Charles Consel, Christian Lengauer, and Martin Odersky,
editors, Domain-specific Program Generation, LNCS. 2004.

[27] Walid Taha, Henning Makholm, and John Hughes. Tag elimination
and Jones-optimality. In Olivier Danvy and Andrzej Filinksi, editors,
Programs as Data Objects, volume 2053 of Lecture Notes in Com-
puter Science, pages 257–275, 2001.

[28] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In The Symposium on Principles of Programming Languages (POPL
’03), New Orleans, 2003.

[29] Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. In Proceedings of the Symposium on Partial Evaluation
and Semantic-Based Program Manipulation (PEPM), pages 203–217,
Amsterdam, 1997. ACM Press.

[30] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. In POPL ’03: Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 224–235, New York, NY, USA, 2003. ACM Press.

[31] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Proceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and Implementation
(PLDI), pages 249–257, Montreal, Canada, 17–19 June 1998.

[32] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In POPL ’99. Proceedings of the 26th ACM SIGPLAN-
SIGACT on Principles of Programming languages, January 20–22,
1999, San Antonio, TX, ACM SIGPLAN Notices, pages 214–227,
New York, NY, USA, 1999. ACM Press.

A. Type-checker auxiliary definitions
(* The Checking *)
type (’t:’(typ)) r_typ =

| RInt :’(T_Int) r_typ
| RArr of let ’tdom:’(typ) ’tcod:’(typ) in

’(tdom) r_typ * ’(tcod) r_typ
: ’(T_Arr tdom tcod) r_typ

type (’e:’(tenv)) r_tenv =
| Empty : ’(Empty) r_tenv
| Ext of let ’e1:’(tenv) ’t:’(typ) in

’(e1) r_tenv * ’(t) r_typ
: ’(Ext e1 t) r_tenv

type (’t1:’(typ),’t2:’(typ)) eq_typ =
Refl_typ of let ’z:’(typ) in unit : (’(z),’(z)) eq_typ

let cast_eq_typ .|f:’(typ -> OCamlType)| .|t1:’(typ),t2:’(typ)|
(p:(’(t1),’(t2)) eq_typ) :’(f t1) -> ’(f t2) =

match p as (’t1:’(typ),’t2:’(typ)) eq_typ
: ’(f t1) -> ’(f t2) with

| Refl_typ .|z:’(typ)| () -> fun x -> x

let combine_arr .|a:’(typ),b:’(typ),c:’(typ),d:’(typ)|
(x:(’(a),’(b)) eq_typ) (y:(’(c),’(d)) eq_typ)

: (’(T_Arr a c),’(T_Arr b d)) eq_typ =
match (x,y) as (’a:’(typ),’b:’(typ)) eq_typ

* (’c:’(typ),’d:’(typ)) eq_typ
: (’(T_Arr a c),’(T_Arr b d)) eq_typ with

| Refl_typ .|z1:’(typ)| (), Refl_typ .|z2:’(typ)| () ->
Refl_typ .|’(T_Arr z1 z2)| ()

let rec comp_typ .|t1:’(typ),t2:’(typ)|
(t1:’(t1) r_typ) (t2:’(t2) r_typ):((’(t1),’(t2)) eq_typ) =
match (t1,t2) in ((’(t1),’(t2)) eq_typ) with

| RInt, RInt -> (Refl_typ .|’(T_Int)| ())
| (RArr .|tdom1:’(typ),tcod1:’(typ)| (rdom1,rcod1),

RArr .|tdom2:’(typ),tcod2:’(typ)| (rdom2,rcod2))->
let p1 = comp_typ .|’(tdom1),’(tdom2)| rdom1 rdom2 in
let p2 = comp_typ .|’(tcod1),’(tcod2)| rcod1 rcod2 in
combine_arr .|’(tdom1),’(tdom2),’(tcod1),’(tcod2)| p1 p2

	Introduction
	Contributions

	Concoqtion
	MetaOCaml Concoqtion
	Extensions to Types
	Extensions to Expressions
	Implementation

	Programming with Index Types
	Concoqtion Data-types vs. GADTs
	Using Proofs and Casts
	Using Built-in Decision Procedures

	Tagless Staged Interpreters
	Overview
	An Interpreter with Tags: eval0
	Types and their Semantics: typ and tenv
	Well-typed Expressions: expr
	The Tagless Interpreter: evalExp
	The Tagless Staged Interpreter
	Discussion

	Conclusions and Future Work
	Type-checker auxiliary definitions

