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Abstract

Generic libraries, such as the C++ Standard Template Library
(STL), provide flexible, high-performance algorithms and data
types, along with functional specifications and performance guar-
antees. It is left as a nontrivial task to the library user to choose
appropriate algorithms and data types for a particular problem. In
the present paper, we describe an automatic analysis to aid library
users in selecting types for use in generic programs. The analysis
is based on manipulation and comparison of symbolic complexity
expressions, constructed using cost-bound functions and abstract
interpretation of program behaviour. Our analysis serves to detect
and rectify “performance bugs” by recommending type selections
that will improve performance.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Languages Constructs and Features—Abstract data
types; D.3.3 [Programming Languages]: Language Constructs
and Features—Polymorphim; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems—
Computations on discrete structures

General Terms Performance, Languages

Keywords  Generic programming, library-oriented software, com-
plexity analysis, performance, concepts, abstract interpretation,
cost-bound functions

1. Introduction

The C++ Standard [2] defines the C++ Standard Library, including
the Standard Template Library (STL) [3, 22], a generic library pro-
viding containers, searching and sorting algorithms, and iterators
to connect the two. Generic library designers are concerned with
optimising two aspects of their implementations: Genericity and
performance. Mechanisms like C++ templates simultaneously sat-
isfy both of these aims by parametrising data types and functions
in a flexible, reiisable way that preserves high performance of the
instantiated code.

Pursuant to the focus on performance, the Standard defines
upper-bound performance requirements for data structures and al-
gorithms in addition to functional requirements. These informal
performance descriptions stipulate guarantees that any Standard-
compliant STL implementation must satisty, allowing the library’s
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user to consider performance implications when making decisions
about data types and algorithms.

One of the most important aspects of generic programming is
that algorithms and containers are decoupled: Algorithms operate
on arbitrary containers, including those provided by STL and user-
implemented containers; likewise, user-implemented generic algo-
rithms can operate on the full range of STL containers. It is often
the case that STL provides multiple functionally-equivalent algo-
rithms and containers that differ with respect to performance. Each
is useful on a certain class of problems, and the library user must
make choices about which are appropriate for a given program.

For example, sort is usually the function recommended
for sorting. It is required to perform “approximately
O(Nlog N) ...comparisons on average” [25.3.1.1(2)], but
an implementation can meet this requirement with quicksort
[13], which has O(N?) worst-case performance. The Standard
recommends that another sorting algorithm be used if worst-case
performance is extremely important: “If the worst-case behaviour
is important, stable_sort or partial_sort should be used.”

Likewise, one usually achieves optimal performance by using
the container vector. This is true so often that many novice STL
programmers use vector almost exclusively. One would be mis-
guided in doing so, however, since there are cases where vector is
asymptotically inferior to, e.g., list. We will consider such a case
in this paper (see Section 1.2). Note that it is more difficult to se-
lect the proper container than it is to select the right algorithm:
Whereas one can choose a sorting algorithm based on local prop-
erties, choosing a particular container affects program complexity
non-locally. To achieve optimal performance, one must consider
the container’s use during the entire program.

In order to help STL users avoid mistakes that can arise from
“vector-is-always-best”-style assumptions, we present a method
utilising abstract interpretation and symbolic cost-bound functions
to check a generic program for performance bugs—poor program
performance caused by improper type or algorithm choices. The
type selection problem can be defined as follows: Given a program
p with a type variable c that is constrained to model certain con-
cepts! (e.g., to be a BacklInsertionSequence), and type library T,
find a type ¢ € T that meets the constraints imposed on ¢ such
that p achieves the highest possible performance. We will present
a method to aid users in solving this kind of component-selection
problem.

Although previous work has considered automatic complex-
ity analysis [4, 6, 5, 10, 11, 19, 20, 25, 24, 28, 29], we study
the problem in the context of generic programming and at an ab-

!'The term concept is used in generic programming to refer to an abstraction
over types defined by a set of requirements that modelling types must
satisfy. [3]



stract, implementation-independent level—we consider only the
specification of STL rather than any particular implementation.
This allows us to make general recommendations applicable to any
C++ compiler with any standard-conforming implementation of the
STL. Because we perform an analysis at an abstract level, we ma-
nipulate symbolic constants that represent particular implementa-
tion factors (e.g., the cost of incrementing a certain iterator) in lieu
of the actual constants for a particular combination of library im-
plementation, platform, compiler, etc.

In some cases, we will be unable to make a concrete recom-
mendation. Complexities naturally form a partial order (see Sec-
tion 2.10), and there are cases where two or more containers have
incomparable? asymptotic complexity in a particular program; we
cannot recommend a particular type in such cases. This is accept-
able, however, because one is not, even in principle, able to select
one such container as better than the others since this is a platform-
and implementation-specific matter.

Although we report here on a prototype implementation for C++
and the STL, the approach is suitable for generic libraries in gen-
eral. Also, we discuss the analysis only for a single type variable,
but it can be used to select multiple data types simultaneously.

1.1 Organisation

The remainder of the paper is organised as follows: Section 1.2
presents a motivating example, Section 2 presents our analysis,
Section 3 returns to our example with some preliminary results,
Section 4 describes related work, Section 5 discusses future work,
and Section 6 concludes.

1.2 Motivating example

To describe our work, we present an example adapted from a pop-
ular textbook for STL programmers [17]. In this example, we con-
sider the task of filtering failing students from a sequence—given
a sequence of students, we remove those who are failing and put
these into a separate sequence. Figure 1 shows the C++ implemen-
tation of a function extract_fails that performs this task. This func-
tion is parametrised (at the type level) by C, the type of the input
sequence; this type C must model the concept BacklnsertionSe-
quence and hold values of type Student_info. The function ex-
tract_fails removes all failing students, where failure is determined
by the predicate fgrade, from students and returns a sequence of
these failing students, maintaining stable element order for both the
original sequence and the sequence returned.

The decision, then, for a programmer who wishes to use ex-
tract_fails is to choose a suitable container type C. Because vector
is often the most efficient STL data structure (c.f. Section 1), a naive
STL user might assume that vector is the correct choice for this ex-
ample, but it is not—vector provides a very efficient data structure
when elements are added and removed primarily from the end of
the sequence, but it performs badly when insertions and deletions
occur in the middle of the sequence such as the deletion (erase) in
our example.

Our analysis considers three choices for C: list, vector, and
deque. After analysing the performance of each container in the
context of the example program, it correctly recommends the use of
list. It also determines that there is not enough information to rec-
ommend vector over deque or vice versa since these data structures
have similar asymptotic complexities for the operations used, and
it would be impossible to recommend one over the other without
considering the details of a particular combination of library im-

2 Recall from order theory: If we have a partial order relation < and z £ y
and y A « then z and y are said to be incomparable. Consider, e.g.,
O(m? +n) and O(m + n?).
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Requires: Type C is a model of BacklnsertionSequence. Type
C’s value type is convertible to Student_info.

Effects: Removes all elements from students for which fgrade
returns true.

Returns: A container of type C holding all elements removed
from students.

Note: extract_fails is stable—the elements remaining in students
and the elements in the container returned are in the same relative
order as they originally were in students.

template <typename C>
C extract_fails (C& students)
{ C fail ;
typename C:iterator iter =
students . begin () ;
while (iter != students.end ())
{ if (fgrade (% iter))

{ fail.push_back (% iter) ;

iter = students.erase (iter) ;
else
++ iter ;

}

return fail ;

Figure 1. C++ code for our example: An algorithm to filter failing
students from a sequence.

plementation and machine. These results correspond to those from
an informal benchmark.

2. Methodology

At a very general level, we must do the following to solve the type
selection problem: We must be able to represent programs, types,
and complexities. Then, using these representations, we must build
complexity expressions describing the behaviour of a program with
each type of interest. Finally, we can compare the complexities of
the instantiations and emit appropriate diagnostic messages about
any performance bugs detected by the analysis.

The first step to solving a problem is choosing a proper
representation—we must be able to represent the relevant factors
about STL programs including information about types, control
structures, and state. In the case of our extract_fails example, we
need to represent the types of variables, the series of library calls
(e.g., students.begin (), iter.operator!= (students.end ())), the
C++ control constructs (e.g., while, if), and state (e.g., the size of
students).

Additionally, we must represent certain operational and perfor-
mance descriptions of the STL itself: For example, how particular
algorithms alter the sizes of containers, and the complexity of as-
sorted algorithms as functions of the types and values of their argu-
ments. Operational definitions of the library are necessary because
the complexity of calling library functions depends on the values
computed during execution [27]. We must also be able to repre-
sent complexities. In our example, we must represent, e.g., that the
complexity of vector<Student.info>.push_back is O(1) amor-
tised and that it increases the size of the vector by one element.

Finally, we must represent concept information, Vviz.
which types are models of which concepts, for example that
vector<Student_info> models the BacklnsertionSequence
concept and that its iterator type models RandomAccesslterator.
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Figure 2. Overview of the complexity analysis.

Once one has represented a program and the relevant library,
type, and language information, one can begin the first phase of
the analysis. Given the constraints on each type variable (e.g., that
C must model BacklnsertionSequence) and the library of defined
types, one must find all acceptable types with which each type vari-
able can be instantiated. The next step is to replace each library call
with an expression representing the complexity of that call. This
depends on several factors: The function called, properties of the
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arguments passed to this function, and the store in which the call is
evaluated. After this has been performed, we can produce a sym-
bolic complexity expression for the program by associating folding
rules with each language construct, and then recursively applying
these rules, which compute the symbolic complexity of program
fragment given the complexities of its subterms. For our example,
we infer that vector<Student_info>, deque<Student_info>, and
list<Student_info> are types that meet the requirements on type
variable C. We then must replace each library call with the com-
plexities we represented in the previous step, combine these in a
suitable way, and compare the complexities for the three containers
to issue recommendations to the user.

By comparing programs’ complexities, one can determine the
best type (if one exists) to use for a particular type variable and
make an appropriate recommendation to a user if some other type is
currently selected. In the case where two or more types are incom-
parable, the analysis can report this to the user, providing choices
to consider. For example, if vector and deque are incomparable but
each is better than list, the analysis can suggest that the user care-
fully consider the choice between vector and deque but need not
consider list.

Figure 2 shows an overview of the analysis; numbers in paren-
theses will refer to the labels in this diagram to put each component
of the analysis into perspective. The inputs to the analysis are: A
generic program (2), complexity definitions for each library func-
tion (1), and effects definition for each library function (3).

2.1 Program Representation

< stmt> u= Assign<id> <= <expr>
| Temp <id> <= < expr>
| Loop <id> < stmt> End
| Branch < case > End
| <expr>

< case> u= Case < stmt> End

< expr > = <id>
| < const >
| Call < fId> (< id >")
| <mod>.< fId> (<id>")

< module > == < mld>

| <mod>.<mlId>

Figure 3. Grammar for CSimp, a simple composition language for
representing library-oriented programs.

To represent a library-oriented generic program (2), we define
a simple composition language [1]. This language must be able
to represent: assignments, iterations, conditions, library calls, and
(non-library) function calls. For our prototype implementation, we
have defined a language, CSimp, the grammar for which is shown
in Figure 3. An abbreviated version of the CSimp implementa-
tion of our running example is shown in Figure 4. An example
input—a library-oriented program viewed as a composition of li-
brary components—is shown in Figure 5. Notice that each library
call has been numbered; this numbering is used to associate the
proper store and arguments with each call.

2.2 Complexity

Next, we replace each library call by a cost-bound function (4)
[20]—a function that returns bounds on the cost of executing the
original function given the same inputs. These functions are de-
clared and are based on the C++ Standard’s specification of the
STL.



c.dflt_cons(fail)

Temp beg_students<=c.begin(students)
c.iter _t.copy-cons(iter , beg_students)

Temp size_students <=5
Loop size_students
Temp end_students<=c.end(students)
c.iter_t.!=(iter, end_students)
Temp st_iterl <=c.iter_t.deref(iter)
Call fgrade(st_iterl)
Branch
Case
Temp st_iter2<=c.iter_t.deref(iter)
c.push_back(fail , st_iter2)

Assign iter<=c.erase(students , iter)
End
Case
c.iter _t.++(iter)
End
End
End

c.copy-cons(result, fail)

Figure 4. CSimp implementation of the example.

Seq
LibCall1() LibCall2(x) Loop 5 times

|
/ \

LibCall3(x, y) LibCall4(a, b)

Figure 5. Input to the analysis: A composition of library calls.

2.3 Complexity Representation

In an introductory algorithms course, Big-O (O) notation [16] is
often used to describe the complexities of the algorithms studied.
While a useful abstraction, Big-O complexities are too imprecise to
represent the algorithms and operations provided by STL: In certain
cases, the C++ Standard makes requirements on the precise number
of operations that an algorithm may (or must) perform; amortised
analyses are required to account for memory operation costs when
a container must be “physically” relocated.

We have identified that the STL requirements are specified
at three distinct levels of precision. Exact counts specify pre-
cisely how many of a particular kind of operation may or must
be performed. Amortised complexities [7] require that, on aver-
age, each operation in a sufficiently-long sequence has a partic-
ular complexity. Approximate complexities make requirements on
average complexity, but allow for worse complexity in suitably
rare cases. Figure 7 illustrates examples of these complexity re-

0

<comp > u= <comp> (;) <comp>
Sequence
| < comp> () < comp>
Branch
| < <comp>, <comp> >
Range
| <comp> <op2> <comp>
| <op1> (< comp>)
| constmin | constmax
Symbolic constant
| < expr>
Value expression
< comp > )
|- * 1/
Operators
log | min | max

| (
< op2 > n= +

< op1 > =

Figure 6. Grammar for complexity expressions.

E.g.,accumulate (first, last,
init, binary_op): “Computes
its result by initialising the ac-
cumulator acc with the initial
value init and then modifies
it with ...acc = binary_op

Complexity from C++ Stan- | Equivalent complexity ex-
dard pression
Exact operation count: A fst Ist init bop .

let cbop =

compFuncFor(bop) in
let elts =

fst.container.elts in
cbop (init, elts)

+ cbop(elts, elts)

*(Ist-fst-1)

(acc, * i) for each iterator i in
the range [first, last) in order.”
[26.4.1(1)]

Amortised complexity:

A thiselt .
<constmin,
E.g., vector<T>::push_back constmax * this.size>
(t): “A vector ...supports
(amortised) constant-time in-

sert and erase.” [23.2.4(1)]

(Hand analysis shows that
the worst-case complexity of
push_back should be linear)

A fst mid Ist .
let cmp =
(last - first)
* log (middle - first) in
cmp * <constmin,
constmax>

Approximate complexity:

E.g., partialsort  (first,
middle, last): “It takes ap-
proximately (last — first) x
log(middle — first) compar-
isons.” [25.3.1.3(2)]

(We  interpret  “approxi-
mately” to mean roughly O;
the symbolic constants const-
min and constmax represent
the “approximateness”.)

Figure 7. Complexities representation.

quirements; angle brackets enclose complexity ranges in the format
< best case, worst case >.

To represent complexities for the purpose of our analysis, we
define a simple range-based complexity language that designates
complexities as pairs of best and worst cases; this is shown in
Figure 6. Notice that combinators for sequencing operations (;) and
branching (.) are abstract in the sense that they do not commit to
a particular “complexity semantics” for these language concepts.
Encodings in our language for the examples from the C++ Standard
are also shown in Figure 7.



2.4 Complexity Program

Seq
LibCall2
<c2l*x, c2h*x"2>

LibCalll

<0, 0> Loop 5 times

Seq

7/ N\

LibCall3 LibCall4
<c3I*x, c3h*x*y> <c4l, c4h*log(a)>

Figure 8. Complexity program: Each library call has been re-
placed by a complexity expression.

Now that we can represent the complexities of library calls, we
construct a tree (7) representing the program where each library
call has been replaced by the complexity expression associated
with that call. The structure of the tree (i.e., the control structures)
remains intact. Figure 8 shows an example complexity program.
The variables z, y, and a in the complexity expressions are pa-
rameters to the library call the expression represents. The constants
(beginning with ‘c’) are generated symbolic constants representing
implementation-specific performance factors.

2.5 Program State

As mentioned in Section 2.2, each cost-bound function repre-
sents the complexity of a particular library call and requires
the arguments to the original library call as inputs. Because the
performance-relevant factors of a data structure (e.g., the size of a
container) change over the course of program execution, we must
estimate a store for each library call.

2.6 Effects Definitions
Seq

']
LibCallZI

LibCalll

Seq
sl s2 s3

Letx=ein For _ from 5 do

\

Seq Seq

|
LibCall3 I

s4 s5

\QbCanA

Seq s8

/7

Figure 9. Effects program: Each library call has been replaced by
an effects program.

To represent the effect of executing a library call, we define
While', a simple untyped imperative language based on While, a
language defined in [23]. While’ adds extensible structures, refer-
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ences, and let bindings. For each library call, we define an effects
function that simulates calling the associated library function—
both in terms of the result returned and in terms of effects (changes
to the store). As with the cost-bound functions in Section 2.4, a tree
is constructed (6) representing the program in which each library
call is replaced (5) by the associated effects definition. Figure 9
shows an example of such an effects program; the leaves (begin-
ning with ‘s’) represent statements.

For instance, consider the effects
incrementing a list<T> iterator:

definition for post-

template (t)
list-of-<t>-iter.post_increment
let temp := this in
this.position :=
return temp
end

(this) is

this . position + 1 ;

As expected, the position of the iterator is increased, and a
temporary iterator representing the old position is returned.

2.7 Store Estimation

Seq
1
beCallZI

LibCalll

Seq Letx=ein For _ from 5 do

N
N
N

x->vl X->v3
y->v2 Seq y->v4 Seq

/ \ LibCall3 | \ LibCall4
N

s4 s5 Seq s8
/ \

s6 s7

x->v7
y->v8

x>V
y>v6

Figure 10. Effects program with abstract stores.

Since we do not have the inputs to the program whose behaviour
we are analysing, we use an abstract interpretation (8) [8, 14] to
approximate the effects of running the program on any possible
input. The semantics for the abstract interpretation of While’ is
defined in Appendix A. The result of this phase of the analysis is
an abstract store (9) associated with each library call. This store
associates each variable with a safe approximation of its value.
Figure 10 illustrates an effects program with a store for each library
call.

2.8 Combining Cost-Bound Functions and State

Combining the complexity program described in Section 2.2 with
the abstract environments discussed in Section 2.5, we can replace
(10) the arguments to each cost-bound function using the appropri-
ate store (i.e., the store that represents the global state immediately
prior to the associated library call) to generate a closed complexity
program (11). Figure 11 shows an example of such a program.

2.9 Complexity Simplification

Now, we are ready to perform the final step in the conversion from
a program to a complexity expression: By applying a set of simpli-
fication rules (12) to the closed complexity program, we can sys-
tematically reduce it to a single complexity expression (13). This
is performed by associating a particular folding rule with each lan-
guage construct in our composition language, and then recursively
applying these rules, which compute the (symbolic) complexity of



Seq
<c2l*4, c2h*17/2>

<0, 0> Loop 5 times

Seq

/7 \

<c31*2, c3h*3*7> <c4l, c4h*log(8)>

Figure 11. Closed complexity program: Each variable has been
replaced by the appropriate abstract value.

a language construct given the complexities of its constituents. For
example, consider the following rule for sequencing:

SEQUENCING
Vi € [1.n].ss — ¢

Seq([s1.-sn]) = ¢1(5)--(; )en

As expected, the complexity of a sequence is the “sum” of
the complexities of the constituent statements. Sum is defined in
terms of a sequential complexity combinator, (;). To define (;)
and the branch combinator, (.), we are currently using a symbolic
range-propagation calculus similar to that presented by Blume and
Eigenmann [4]. The complete definition of the simplification may
be found in Appendix B.

2.10 Complexity Comparison

Finally, we compare complexity expressions mechanically via sym-
bolic limit analysis—we examine the limits of ratios of complexity
expressions as the input size approaches infinity since we are in-
terested in our program’s performance as the size of the input in-
creases. At present, we are doing so using Maple [21], a symbolic
mathematics package, to perform this limit analysis; we manually
select the induction variable.

If ¢1 and ¢z are the symbolic complexity expressions for a pro-
gram instantiated with types ¢; and ¢2, respectively, we examine the
ratio lims— o <+ where s is an appropriate induction variable (e.g.,
size in the case of containers). If the limit of this expression is 0
then t2’s complexity dominates ¢1’s, and, thus, ¢; is a better choice.
If the limit is some expression containing symbolic constants, then
the complexities are incomparable—implementation-specific fac-
tors must be considered to determine which type is a better choice.

This stage of the analysis is presently performed by hand—the
implementation produces complexity terms in Maple syntax, but
the actual limit analysis must be performed externally.

3. Results

Returning to the motivating example from Section 1.2, we consider
some results from our prototype implementation of the analysis.
Using the CSimp version of the example program (Figure 4), ef-
fects and cost-bound function definitions for deque, list, and vec-
tor, and an encoding of the refinement relationship for the con-
tainers and associated iterators, the analysis correctly predicts that
list<Student_info> is the correct container selection—that it is
better than either deque or vector.
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If we compare deque against vector, the limit expression con-
verges to a ratio involving the costs of the associated push_back
and erase operations:

deque__of __student_in fo___push_back___max_const
+ deque__of__student_info___erase___max_const

vector__of __student_in fo___push_back___max_const
+ wvector__of __student_info___erase___max_const

This is the correct result: program complexities naturally form
a partial order (consider O(m * n?) and O(m? * n)), and, there-
fore, there exist pairs of complexities that are incomparable. In such
cases, an analysis should indicate that it is unable to produce a def-
inite result. This is precisely what we would like—in this case, the
difference in performance between the data types depends on im-
plementation constants; were one to consider particular implemen-
tations of vector and deque, one could examine the costs for these
operations in the specific implementation and, thus, make an in-
formed selection. In this particular case, the costs associated with
push_back and erase must be compared to determine which data
type is the better choice.

4. Related Work

Blume and Eigenmann [4] discuss symbolic range propagation in
the context of program parallelisation, where each range represents
the set of possible values for a program variable. They present a
collection of rewrite rules for simplifying range expressions and
then for propagating these ranges through a program. Although
their work is applied to a different problem, our complexity sim-
plification serves the same purpose as their rewrite rules.

Sitaraman et al. [28] study both functional and complexity re-
quirements for object-oriented programs in the Resolve framework
[24]. They consider object-based abstract data types, specifying
complexity requirements using a variant of Big-O notation and as-
suming a constant-time swap operator. Like we do, they use “value-
based performance specifications” [18], but their analysis is not as
general as ours: We consider concept-based libraries at a generic
level and operate with abstract values representing all possible in-
puts rather than specific ones.

Cohen and Zuckerman [6] describe a two-language approach
to analysing program complexity. They consider concrete imple-
mentations, probabilistic branching, and complexity expressions in
terms of symbolic constants. Programs in their implementation lan-
guage, PL, are converted to complexity expressions via a syntax-
directed translation. Then, these complexity expressions are in-
teractively manipulated via a second language, EL. Our approach
is similar—CSimp corresponds to PL and Maple to EL—but for
generic programs and with automated symbolic analysis rather than
interactive manipulation.

Dornic, et al. [9] present a type-system-like time system for
a purely functional language with higher-order functions. They
describe a programming language that has both type and time
systems. The time system assigns each expression a time: Unit time
is assigned to each primitive operation; plambda is used to provide
abstraction at the time level. All recursive functions and, thus also,
functions that call recursive functions are assigned the time type
long, which limits the applicability and precision of the analysis.
By using this time system, each function’s time can be checked
separately, eliminating the need for a whole-program analysis. In
the present version, time (and type) annotations are required, but
reconstruction is listed as future work.

Ermedahl and Gustafsson [10, 11] describe an idea to calculate
worst-case execution time for real-time programs. They do so by
using data flow analysis over an abstract environment to determine
the possible values of variables at various control points in the



program. Abstract environments are merged at the control points
at the ends of loops, functions, and programs. Since the analysis
is in a real-time context, where there are time budget annotations,
termination is guaranteed—when the analysis can show that the
program may exceed its budget, the analysis is terminated. Our use
of abstract interpretation is inspired by this work.

Cohen and Weitzman [5] present a three-tool method for pro-
gram analysis. All three tools are interactive and are implemented
via a combination of definite clause grammars (DCG’s) and sym-
bolic simplification in Maple. The first tool “compiles” a program
to a time formula, relying on the user to provide the probabilities
with which branches are taken. DCG’s are used to parse the high-
level program, to associate each language construct with a time for-
mula, and to prompt the user for input. Maple is then used to sim-
plify the resulting time formula. The second uses DCG’s to gen-
erate finite-difference equations which are then solved by Maple’s
rsolve to obtain bounds on loop trip counts; this is applicable only
in simple cases and is not as general as the method presented in
[30]. The third tool converts a program to a Markovian transition
matrix representation that the user can then manipulate in Maple to
estimate average-case performance.

5. Future Work
5.1 Translation

For the purposes of the present work, the programs under scrutiny
have been manually translated to CSimp, our library-oriented com-
position language. It should be possible to extract this informa-
tion directly from the source program, given a means to distinguish
which calls are library calls and which are calls to user functions.

Likewise, the effects definitions, refinement relationship for
generic types, and cost-bounds functions have been manually en-
coded. If the library’s requirements were specified in some formal
system (e.g., Tecton [15]), it would be possible to automatically
generate effects definitions; it would, however, not be possible to
extract these definitions from a particular implementation of the li-
brary, since this would capture the idiosyncrasies of the specific
implementation rather than the behaviours common to all possible
implementations.

Applying the analysis to a language that directly supports
generic programming, such as G [26], would allow extraction of
the refinement relationship.

5.2 Loop Bounds

One of the major limitations of the present analysis is that loop
bounds must be determined manually and must be statically known.
The reason for this is that the abstract integers introduce infinite
ascending chains into the lattice of abstract values. Requiring static
bounds for loop iterations avoids possible nontermination of the
analysis.

The traditional solution to this problem is to define a widening
operator. This would allow our analysis to handle programs with
general loops (i.e., loops without static constant bounds). It remains
to be seen if an appropriate widening operator could be defined that
would maintain an acceptable level of precision for the analysis.

An alternate possibility is to incorporate a loop-bound analysis
[12] to automatically determine lower and upper iteration bounds
for each loop in the program. These bounds could then be used with
the current abstract interpreter.

5.3 Induction Variable Detection

Presently, the induction variables used in the symbolic limit analy-
sis must be selected manually. In order to fully automate the analy-
sis, induction variables detection [30] would be necessary.
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5.4 Complexity Calculus

The complexity calculus we use is based on that in [4]. It may be
possible to achieve better results by extending or parametrising the
calculus to make it more expressive. A calculus incorporating con-
ditions, for instance, would be better able to capture the complexi-
ties expressed in the STL specification—some complexities depend
on what concepts a particular type models (advance, e.g., provides
a more efficient implementation for random-access iterators than
for input iterators).

5.5 Interprocedural Analysis

At present, we handle only a single procedure composed of basic
blocks, conditions, and loops. It would be useful to extend the
analysis to multiple procedures, particularly if user-level generic
procedures were allowed.

6. Conclusions

We have presented an analysis based on cost-bound functions and
abstract-interpretation approximation of program states for generic
programs. If such analyses were integrated into compilers for pro-
gramming languages supporting generic programming, it could be
a great aid to library users in choosing data types for their programs
in order to avoid performance bugs.

A. Abstract Interpretation for While’

Following is a denotational semantics for the abstract interpretation
of While’, our language for approximating program effects.

We will use the following meta-variables: z is used for vari-
ables, p for 1-value patterns, f for fields in structures, v for values,
e for expressions, s for statements, ¢ for integer constants, and o
for (abstract) stores.

The definitions of LI and £ are not shown.

Patterns (P : Pattern — Lvalue Set)

Plz]o = {z}

PlDeref pJo = letps’ =P[p]oin
let ps” = map (Me.E[e]o) ps’ in
{p"|(Ref p”) € ps"}

Plp.flo = letps'=P[p]oin{p".f]p’ € ps'}

Statements (S : Statement x Store — Sﬁe)



Slp =1 v]o = oz ]
Slp.f =1v]o = oz + structUpdate(
o(x), f )]
Slp:=e]o = letps’'=P[p]oin
letv=_E[e]o in
if card(ps’) =1
then let {p'} = ps’ in
S[p’ =1 v]
else let s = {S[p' :=1 v]o
|p" € ps'}in
fold (U) (es U {c})
S[Skip]o = o
S[s1; s2]o = leto’ =8[s1]o in S[s2]o’

S[If e then sy else s2]o0 = letb=E[e]o in
case b of
true — S[si]o
false — S[s2]o
T — letoy =S[s1]o in
let o2 = S[s2]o in
o1 Uoo
let < i1, in >=1iin
ifip, =0
then o
else let i’ =
< max(0,4; — 1),
i, — 1> in
S[Letz =iin (s;
For z from i’ do s) o
letv=_E[e]o in
let o’ = o[z — v]in
let " = S[s]o in
oz o(2)

S[For z fromido slo =

S[Letz = eins]o =

Expressions (€ : Exp;e\)gsion x Store — V/;;h/le)

B. Complexity Simplification Rules

Following are the simplification rules used when folding a com-
plexity program into a complexity expression. Library calls and as-
signments are labelled in order to match each with the proper store.

We will use the following meta-variable naming scheme: a is
used for variables, x for I-values and X for their types, m.f for
library functions, f for non-library functions, F' for complexity
functions, s for statements, e for expressions, / for labels (on library
functions and assignments), and ¢ for integer values.

£ is the While’ semantic function for expressions from Ap-
pendix A. X maps labels to abstract stores, as computed by the ab-
stract interpretation step of the analysis. o maps library functions
to the corresponding cost-bound functions. The following rules de-
fine —, the complexity simplification on CSimp abstract syntax.

LIBRARY CALL
(Il)=o or(m.f)=F E[F(ar..an)]o =c
LibCall(m. f, [a1..ax])@l — ¢

The complexity of a library call is determined by looking up the
complexity function F' corresponding to the library function m. f
and then evaluating the application of F' to m.f’s arguments with
the proper store.

(NON-LIBRARY) FUNCTION CALL

FuncCall(f, [a1..an]) — 0

The complexity of a non-library call is ignored. (The cost of
non-library function calls is assumed invariant with respect to the
types with which we instantiate the program’s type variables.) This
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assumption could be relaxed if the implementation were extended
to an interprocedural analysis (see Section 5.5).

SEQUENCING
Vi € [1.n].8s — ¢
Seq([s1.5]) — 1) )en
The complexity of a sequence of statements is the (;)-sum of
the complexities of the statements.

ASSIGNMENT

typeOf(z) = X LibCall(X .assignment, [z, a] )@l — ¢

Assign(z,a)Ql — ¢

An assignment is simplified by inferring the proper assignment
operator (from the type of the 1-value argument) and then treating
the assignment as a library call to the proper assignment operator.

TEMP ASSIGNMENT
e —C

TempAssign(z,e) — ¢
The complexity of a temporary assignment is the complexity of
evaluating its expression. (The cost of the assignment is ignored.)

BRANCH
Vi€ [l.n].s;i — ¢
Branch([si..sn]) — c1(.)..(-)cn
The complexity of a branch is the (.)-sum of the complexities
of the cases.

CASE
s—c
Case(s) — ¢
The complexity of a case expression is that of the statement
evaluated in the case.

Loop
s—c

Loop(i,s) — i*c
The complexity of the loop is the product of the trip-count
bound, 4, and the complexity of the body of the loop.
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