
Family Polymorphism

Erik Ernst

Department of Computer Science
University of Aalborg, Denmark

eernst@cs.auc.dk

Abstract. This paper takes polymorphism to the multi-object level.
Traditional inheritance, polymorphism, and late binding interact nicely
to provide both flexibility and safety – when a method is invoked on an
object via a polymorphic reference, late binding ensures that we get the
appropriate implementation of that method for the actual object. We
are granted the flexibility of using different kinds of objects and differ-
ent method implementations, and we are guaranteed the safety of the
combination. Nested classes, polymorphism, and late binding of nested
classes interact similarly to provide both safety and flexibility at the level
of multi-object systems. We are granted the flexibility of using different
families of kinds of objects, and we are guaranteed the safety of the com-
bination. This paper highlights the inability of traditional polymorphism
to handle multiple objects, and presents family polymorphism as a way
to overcome this problem. Family polymorphism has been implemented
in the programming language gbeta, a generalized version of Beta, and
the source code of this implementation is available under GPL.1

1 Introduction

Imagine a hotel lobby with a few people standing around, waiting. The reception-
ist decides to get things going by asking a man “Are you a husband?” and asking
a woman “Are you a wife?”. Upon receiving two affirmative – though slightly
baffled – answers, those two people are assigned to the same room, together with
the little girl who said “Erm, yeah, and I’m a daughter!”

The reason why this might not be entirely appropriate is that those people
may very well be ‘husband’, ‘wife’, and ‘daughter’, but it makes a big difference
whether or not they play these roles in the same family.

Family polymorphism is a programming language feature that allows us to
express and manage multi-object relations, thus ensuring both the flexibility of
using any of an unbounded number of families, and the safety guarantee that
families will not be mixed. It is, in a sense, a programming language feature that
solves problems with the same structure as the hotel room assignment problem.

Traditional inheritance, polymorphism, and late binding of methods provide
both flexibility and safety in the following sense. A polymorphic reference x may
at run-time refer to an object which is an instance of some class Ci chosen from
1 http://www.cs.auc.dk/~eernst/gbeta/.

J. Lindskov Knudsen (Ed.): ECOOP 2001, LNCS 2072, pp. 303–326, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

http://www.cs.auc.dk/~eernst/gbeta/

304 Erik Ernst

a set of classes C = {C0 . . . Ck}. We may invoke a method m on x, typically us-
ing syntax such as x.m(), and each of the classes may provide its own method
implementation for m or inherit an implementation defined elsewhere. Late bind-
ing ensures that the chosen implementation of m is the one associated with Ci

(if any), i.e., the appropriate implementation for the actual object. Static type
checking may be used to ensure that there is indeed an implementation for every
invocation.

All in all, this provides the flexibility of using several classes and several
method implementations, and the safety of ensuring that the chosen method
implementation is always appropriate for the actual object. It is important to
note that the same call-site, x.m(), is reused with all those pairs consisting of a
class and a method implementation; that it does not depend on the exact class
of x or the exact choice of implementation of m; and moreover that the set of
class/method pairs is open-ended.

Now consider the situation where two or more objects are involved, for in-
stance where one object is given as an argument to a method on the other
object, x.m(y). In this case, traditional object-oriented languages such as the
Javatm programming language [2] and C++ [25] will only allow us to associate
two compile-time constant classes with this expression, namely the statically
known class of x, Cx, and the statically known argument type of m, the class Cm.
At run-time, x may refer to an instance of any subclass of Cx and y may refer
to an instance of any subclass of Cm. There is no way to ensure statically that
a particular subclass C

′
x of Cx is always paired up with a particular subclass C

′
m

of Cm.
Note that multiple dispatch [5,10,23] solves a different problem: With multi-

ple dispatch it is possible to choose a method implementation based on the actual
classes of x and y – but we do not want to choose a method implementation for
an arbitrary combination of classes, we want to ensure that the combinations of
classes are not arbitrary.

The fact is that the traditional notion of polymorphism is unable to capture
relations between several objects and their methods – it only handles the case
with one object and its methods, and multi-object relations are always specified
in terms of a fixed number of compile-time constant classes, i.e., essentially
monomorphically. As we shall see in Sect. 3, this means that we must give up
either flexibility or safety, we cannot have both at the same time.

We use the term family polymorphism to describe a generalized kind of poly-
morphism that will allow us to statically declare and manage relations between
several classes polymorphically, i.e., in such a way that a given set of classes may
be known to constitute a family – that family being characterized by having cer-
tain relations between its members – but it is not known statically exactly what
classes they are.

The contributions of this work are the concept of family polymorphism,
the underlying programming language mechanism, the associated static anal-
ysis techniques, and the implementation in a full-scale programming language,
gbeta [13]. The notion of dependent types that makes family polymorphism pos-

Family Polymorphism 305

sible has been present in some form in the Beta [19] community for many years
(it is described informally in [19]), but the static analysis and the implementation
have not been complete before gbeta.

The rest of this paper is structured as follows: Section 2 argues that the multi-
class perspective is becoming more and more important. Section 3 describes the
problems with current approaches in more detail, by means of a running example
in Java and C++. The way these problems are solved with family polymorphism
is described in Sect. 4. Finally, Sect. 5 covers related work, and Sect. 6 concludes.

2 We Need Class Families

Traditional object-orientation allows us to express a concept and several vari-
ations and/or implementations thereof by means of the class and inheritance
mechanisms. However, there are many signs that this single-class perspective is
becoming obsolete or at least insufficient.

A main motivational point of generative programming [12] and software prod-
uct line approaches (e.g. [4]) is that modern software engineering must support
variability at a more global scale than the individual class. This means that
variants must be composed consistently across an application.

Languages and systems supporting advanced separation of concerns – such as
aspect-oriented programming [14], composition filters [1], and multi-dimensional
separation of concerns [26] – often emphasize the handling of cross-cutting con-
cerns, i.e., issues involving more than one class. This means that they add sup-
port for the creation of class family variants.

Even in more traditional languages like Java and C++ it is possible to express
class families, and the momentum behind the abovementioned research efforts
supports the claim that the multi-class perspective cannot be ignored.

When a system contains more than one variant of a class family at the same
time, it becomes necessary to maintain consistency in the usage of family mem-
bers, i.e., to avoid mixing the families inappropriately. In this case it is not
sufficient to be able to choose variants statically, there must also be support for
management of multiple class family variants at run-time. As described in the
next section, this causes a dilemma. Family polymorphism is a mechanism that
can be used to resolve this dilemma.

3 Handling Graphs with Traditional Polymorphism

In this section we will present an example of a class family, and draw the attention
to an unfortunate choice between safety and flexibility in reuse that we are forced
to make. It is a property of the type systems of Java and C++ that we cannot have
both safety and reuse flexibility at the same time, but this property is shared
with more advanced type systems such as those of GJ [6] and Cecil [11,15]. We
will return to this topic in Sect. 3.3 and 4.2.

Consider the concept of a graph, consisting of a set of nodes connected in
some way by a set of edges. The graph concept plays the “organizing” role,

306 Erik Ernst

offering a common frame of reference under which the concept of node and the
concept of edge make sense. Moreover, there are many different kinds of graphs
– colored graphs, weighted graphs, labelled graphs, etc.

In this context we will concentrate on a simple Graph and an OnOffGraph.
The latter adds support for switching each edge on and off, for instance to model
communication networks where individual links may now and then be broken.

A Graph is not just one graph in the usual sense, it represents all nodes and
edges of a particular kind, and these nodes and edges may then be organized
and reorganized into any number of concrete graphs. In Sect. 4 we shall look at
some data structures that may be used to hold the nodes and edges of a concrete
graph.

3.1 The Näıve Approach

It is not hard to express graphs by means of two families of classes as described
in the previous section. A definition of such class families in Java is given in
Fig. 1. The first family consists of the classes Node and Edge, and the second
family consists of the classes OnOffNode and OnOffEdge. A sample class Main
contains code to show usage of these class families. It might seem more natural
to express a class family by means of inner classes in Java, but since they would
add syntactic complexity and would exhibit the same problems, we chose to
avoid inner classes in this example.

The method touches on Node tests whether or not a given Edge is connected
to the receiver Node. It would presumably be used to find paths through the
graph. In a simple Graph the answer only depends on the graph structure, but
in an OnOffGraph it also depends on the enabledness of the Edge.

The mainmethod in Main invokes a method build three times, with different
arguments. The method build expects to receive a Node and an Edge, both from
the same class family. It then proceeds to connect the Node and the Edge, and
finally invokes the method touches on the Node with the Edge as an argument.
The third argument to build is a boolean which shows the expected result.

In the first two cases, build is used as it was intended, and it produces the
expected result. However, in the third case we break the “rules” and invoke build
with two objects from different class families. This causes a ClassCastException
at run-time. The fourth case is confusing and probably unintended, but does not
directly cause run-time errors.

The third invocation is type correct, since an OnOffNode is-a Node and an
Edge is-an Edge. And if the OnOffNode had only been known statically as a Node,
the failing third invocation of build would have looked just like the successful
first invocation, according to the type system.

The problem is obviously that we have been unable to express the actual
requirements. As we can see in the implementation of touches in the class
OnOffNode, the argument of type Edge must really be an OnOffEdge – otherwise
the dynamic cast will fail. Since method arguments in Java are in-variant, we
must use Edge as the argument type and then use a dynamic cast in the method
body. Of course, we may then invoke the method with an instance of Edge as

Family Polymorphism 307

class Node {

boolean touches(Edge e) { return (this==e.n1) || (this==e.n2); }

}

class Edge { Node n1,n2; }

class OnOffNode extends Node {

boolean touches(Edge e) {

return ((OnOffEdge)e).enabled? super.touches(e) : false;

}

}

class OnOffEdge extends Edge {

boolean enabled;

OnOffEdge() { this.enabled=false; }

}

public class Main {

static void build(Node n, Edge e, boolean b) {

e.n1=e.n2=n;

if (b == n.touches(e)) System.out.println("OK");

}

public static void main(String[] args) {

build(new Node(), new Edge(), true);

build(new OnOffNode(), new OnOffEdge(), false);

build(new OnOffNode(), new Edge(), true); // ClassCastException!

build(new Node(), new OnOffEdge(), true); // "works"

}

}

Fig. 1. Reuse: Yes – Safety: No

argument, and the error will only be detected at run-time. The type system will
not allow us to express the connection between the members of a class family, it
will only allow us to create a type hole such that all combinations of members
of these families, including the correct combinations, are allowed.

It may be argued that this is not a “type hole”, it is a dynamic cast, and
the people who use dynamic casts deserve what they get. The point is that
the programmer is forced into writing a program with incomplete compile time
type checking because the discipline which should be imposed on the choice of
arguments cannot be expressed. So it is a type hole, even if it is one we have
explicitly asked for.

Apart from this, the example exhibits the very nice property that the method
build works both for a simple Graph and for an OnOffGraph. In other words,
we are allowed to reuse the method build with several different class families,
without any static dependency on the actual choice of family.

308 Erik Ernst

3.2 Working Out Safety

We have the option of shifting the trade-off in favor of safety, giving up on some
reuse opportunities. An alternative expression of the class families is given in
Fig. 2, and it is obviously a bit less straightforward than the previous version.

In this case we use the language C++, because Java does not (currently)
support genericity and hence does not allow this kind of solution. For brevity, we
use the keyword struct and not class, thus avoiding the need for accessibility
declarations.

In this approach, we use type parameters to establish “pre-families”, i.e., sets
of type parameterized classes such that mutually recursive families of classes
can be created by template instantiation, as with Node and Edge, and with
OnOffNode and OnOffEdge.

In line with Fig. 1 there is a main function where the two class families are
used, and the usage is expressed in two almost identical functions, build1 and
build2. These two functions have the same functionality as the method build
in Fig. 1.

The difference between the situation in Fig. 1 and the situation in Fig. 2 is
that the members of the class families are related in different ways according to
the type systems.2 In Fig. 1, OnOffNode is a subclass of Node and OnOffEdge is a
subclass of Edge. This is not the case in Fig. 2. In other words, in the first figure
the families are related by a memberwise subclass relation, and in the second
figure the families consist of unrelated classes.

Since there is no relation between a member of one family and a member of
another family, there is no danger of mixing members of different families. Hence,
this closes the type hole – as we should also expect, given that the second example
is expressed without dynamic casts. Statements mixing the two families, like the
two function calls which are commented out in main, will cause the program to
be rejected at compile time.

The result is that we have gained safety and lost reuse.
Note that we could also have achieved the same trade-off in Java by tex-

tually copying the inherited material from Node to OnOffNode, and from Edge
to OnOffEdge, and then removing the ‘extends’ clauses – except of course that
textual copying creates maintenance and comprehension problems.

At this point, C++ programmers would immediately remark that the loss of
reuse is a non-problem: We could simply change build into a template function
with the argument types being template arguments. That would make it possible
to write just one (template) function build with textually the same body as
build1 and build2. We could then invoke it in place of both build1 and build2
in main.

The reason why this is not a solution is that each call-site for this build
template function would be associated with a compile-time fixed choice of family.
E.g., the first call-site in mainwould then be an invocation of build<Node,Edge>,
2 Since types and classes may be considered to coincide for the subset of Java and C++
that we are concerned with, we will sometimes use expressions such as ‘the class X’
where ‘the type associated with the class X’ would have been more precise.

Family Polymorphism 309

template <class N, class E> struct NodeF;

template <class N, class E> struct EdgeF { N *n1,*n2; };

template <class N, class E> struct NodeF {

virtual bool touches(E* e)

{ return (this==e->n1) || (this==e->n2); }

};

struct Edge;

struct Node: public NodeF<Node,Edge> {};

struct Edge: public EdgeF<Node,Edge> {};

template <class ON, class OE>

struct OnOffEdgeF: public EdgeF<ON,OE> {

bool enabled;

OnOffEdgeF(): enabled(false) {}

};

template <class ON, class OE>

struct OnOffNodeF: public NodeF<ON,OE> {

bool touches(OE* e) {

return e->enabled? NodeF<ON,OE>::touches(e) : false;

}

};

struct OnOffEdge;

struct OnOffNode: public OnOffNodeF<OnOffNode,OnOffEdge> {};

struct OnOffEdge: public OnOffEdgeF<OnOffNode,OnOffEdge> {};

void build1(Node* n, Edge* e, bool b) {

e->n1=e->n2=n;

if (b == n->touches(e)) cout << "OK\n";

}

void build2(OnOffNode* n, OnOffEdge* e, bool b) {

e->n1=e->n2=n;

if (b == n->touches(e)) cout << "OK\n";

}

int main(int argc, char *argv[]) {

build1(new Node(), new Edge(), true);

build2(new OnOffNode(), new OnOffEdge(), false);

// build1(new OnOffNode(), new Edge(), false); // type error

// build2(new OnOffNode(), new Edge(), false); // type error

return 0;

}

Fig. 2. Safety: Yes – Reuse: No

310 Erik Ernst

and the second call-site an invocation of build<OnOffNode,OnOffEdge>, even
though there is no need to explicitly write the part in angle brackets.

In spite of the fact that the template function call would look very much
like a function taking dynamically polymorphic arguments, the difference has
far-reaching consequences:

1. First, whenever a node and an edge should be delivered to a template func-
tion such as build via a number of intermediate functions, every function
in the entire call chain must be a template function, and the exact types of
those objects must be known statically at the original call-site (either exactly
Node and Edge, or exactly OnOffNode and OnOffEdge, never anything like
“any pair of classes that makes up a consistent subfamily of Graph”).

2. Second, a template function may be a member function, but it cannot be a
virtual member function. This means that we must not only know the exact
type of every node and edge everywhere, we must also know statically what
methods implementations of other classes are being used on them.

3. Third, we cannot have lists, sets, hash tables, or other data structures con-
taining nodes and edges belonging together. We can only have data struc-
tures containing members of one, statically selected and then fixed family of
nodes and edges.

4. Finally, it is perfectly reasonable to assume that a sub-family of Node and
Edge would provide an implementation of an interface specified by Node
and Edge. When using this implementation sub-family in a large, complex
system, the template based approach would make large parts of this complex
system statically dependent on that sub-family, because all usages of nodes
and edges would have to be performed in a context where the exact classes
of the members of the sub-family are known statically. This would make
the system as a whole more fragile, as would any forced dependency on
implementation details.

In short, the lack of dynamic polymorphism in multi-object settings causes the
same kinds of problems that would arise if we were to give up dynamic polymor-
phism in the well-known single-object setting.

3.3 The Scope of This Problem

If the problems outlined in the previous sections were specific for the Java and
C++ language designs and well-known solutions were available elsewhere, the
issue would not be of much interest. We will therefore argue that those problems
arise in many different language designs, and no good solutions are known to us
– apart from the family polymorphism which is the main topic of this paper.

An approach which is similar to the one taken in Fig. 2 can be used in other
languages with support for genericity based on type parameterization. In the
following we will consider the relation between these approaches.

Many different proposals have been made for the addition of genericity to
Java based on parametric polymorphism [21,6,9,24, and others]. F-bounds [8]

Family Polymorphism 311

make it possible to design the genericity mechanism in such a way that a type
parameterized class may be type checked once and for all – as opposed to C++
templates where type checking must essentially be performed from scratch at
each instantiation. Moreover, using a homogeneous translation scheme (as in
GJ [6]) just one version of the code is generated for one generic entity, thus
making it possible to support “virtual template methods” in Java (late binding
is by default used for all methods in Java, so an ordinary Java method would
correspond to a virtual member function in C++). This is the approach taken in
GJ. Hence, the problem with virtual template member functions is less serious
than the other problems – it is a consequence of the macro-like nature of the
C++ template mechanism.

As described in [7], a somewhat more involved technique than the one used
in Fig. 2 must be employed in order to express families of mutually recursive
classes with genericity based on F-bounds, but it is still possible.

Note, however, that the C++ approach where each template instantiation is
statically analyzed separately is in a sense the maximally flexible approach. Any
kind of constraints that could be specified on type parameters of a generic entity
in order to enable type checking of the entity as such (and not per instantiation)
would only be able to reduce the flexibility, compared to the C++ approach.
This is because constraints on the type arguments will only be sufficiently strict
if every possible choice of type arguments will actually make the implementation
type safe, and in those cases the C++ style per-instantiation checking would also
succeed. In other words, there is no hope that constrained type arguments could
afford us greater flexibility at instantiation sites than what we have already seen
in C++.

On the other hand, it is possible in very advanced type systems such as the
one used in Cecil [15] to explicitly declare that a given parameterized class is,
e.g., co-variant in a given type argument and contra-variant in another type
argument. The problem is, however, that this would not help us. For instance,
EdgeF<N,E> is in-variant in N, and NodeF<N,E> is contra-variant in E. Hence,
any attempt to declare that NodeF<N,E> and EdgeF<N,E> are co-variant in N
and E would simply make their implementations type incorrect. So any approach
based on (possibly constrained) type parameterization of individual classes and
methods will not allow us to obtain polymorphism at the level of class families.

This should not be a surprise, since any mechanism in a type system that
would establish a memberwise subtyping relation between the members of class
families would also allow us to mix classes from different families, as it was done
in Fig. 1, in the last invocation of build. In other words, if we could do such a
thing, the type system in question would be unsound.

In summary, the approach taken in Fig. 2 can be used in other languages with
genericity mechanisms based on type parameterization, but it does not solve the
problems associated with: excessive propagation of templatization; the lack of
type safe data structures for class family member instances (except for data
structures statically bound to one particular family); the widespread propaga-

312 Erik Ernst

tion of static dependencies on implementation details; and the lack of dynamic
polymorphism.

Hence, in order to achieve a safe and flexible mechanism, we must strive for
something other than memberwise subtyping. In the next section we shall see
how the notion of classes as attributes makes it possible to establish a safe and
useful kind of family polymorphism.

4 Handling Graphs with Family Polymorphism

The main problem in the approaches considered so far is that the family itself is
not represented explicitly. As long as the family is only implicitly present, it is
hard to conceive of any other kind of polymorphism for families of classes than
the one based on a memberwise subtype relationship.

However, if we introduce the notion of classes as attributes of objects then it
is suddenly possible to use an object as a repository of classes – a class family.
If we moreover introduce the notion of late binding of such class attributes
then it becomes possible to specify a number of families of classes by means
of an ordinary inheritance network describing variants of the enclosing object,
the family object. For each such family object it is statically known that it is a
repository for some variant of the class family declared in the statically known
type of the family object, but it is not statically known which class family it is.

This is the approach taken in gbeta. The gbeta type system is consistent
with the type system design for Beta3 that is described informally in [19], but
it is stricter than the actual implementation of type checking in the Mjølner
implementation of Beta [29]. In the languages gbeta and Beta, classes and
methods (and more) have been unified into the single abstraction called a pattern.
This means that we may use words like ‘class’ and ‘method’, but the denoted
entities will in both cases be patterns, so these words are simply synonyms for
the word ‘pattern’ with an added hint to the reader about how to understand the
role played by that pattern in the given context. Consequently, class attributes
are really pattern attributes and late binding of class attributes is late binding
of pattern attributes, normally designated as virtual patterns.

To make this concrete, we will present and discuss a version of our class
family example written in gbeta, as shown in Fig. 3.

In the gbeta version of the class family example, the two class families are
declared explicitly as the pattern Graph and the subpattern (think ‘subclass’)
OnOffGraph. Each instance of Graph or a subpattern of Graph will have two at-
tributes named Node and Edge. These two attributes will be patterns (‘classes’),
and they are known to belong together, forming a family of mutually recursive
patterns (‘classes’). That is, an object myGraph is known to contain a class family
whose members are accessible as myGraph.Node and myGraph.Edge, respectively.

As we shall see below, the type system does not allow us to mix members
of different class families – in other words, when myGraph and yourGraph are
3 The gbeta type system is considerably more expressive than the Beta type system,
but the Beta type system comes out as a special case.

Family Polymorphism 313

(# Graph:

(# Node:<

(# touches:<

(# e:^Edge; b: @boolean

enter e[]

do (this(Node)=e.n1) or (this(Node)=e.n2) -> b

exit b

#);

exit this(Node)[]

#);

Edge:< (# n1,n2: ^Node exit this(Edge)[] #)

#);

OnOffGraph: Graph

(# Node::< (# touches::< !(# do (if e.enabled then INNER if)#)#);

Edge::< (# enabled: @boolean #)

#);

build:

(# g:< @Graph; n: ^g.Node; e:^g.Edge; b: @boolean

enter (n[],e[],b)

do n->e.n1[]->e.n2[];

(if (e->n.touches)=b then ’OK’->putline if)

#);

g1: @Graph; g2: @OnOffGraph

do

(g1.Node, g1.Edge, true) -> build(# g::@g1 #);

(g2.Node, g2.Edge, false) -> build(# g::@g2 #);

(* (g2.Node, g1.Edge, false) -> build(# g::@g1 #); type error *)

(* (g2.Node, g1.Edge, false) -> build(# g::@g2 #); type error *)

#)

Fig. 3. Reuse: Yes – Safety: Yes

not statically known to be the exact same object, the patterns myGraph.Node
and yourGraph.Node are considered to be unrelated (unless of course they are
statically known, e.g., because of a type exact reference to the enclosing object,
and those statically known patterns are related). Also note that the type system
will distinguish between an unbounded number of class families because they
are associated with instances (e.g., myGraph) and not with classes (e.g., Graph).
If they had been associated with classes then the type system would at most
have been able to distinguish between a fixed number of families, determined
at compile-time – increasing the danger that objects could be mixed inappro-
priately, because conceptually separate families would have to be treated as one
family by the type system.

To continue with the example, Node and Edge are specified with the same
attributes as they were in Fig. 1 and Fig. 2. The further-binding of Node and
Edge in OnOffGraph, corresponding to the classes OnOffNode and OnOffEdge, are

314 Erik Ernst

also incrementally specified in a similar manner as previously. The expressions
exit this(· · ·)[] specify that the result of evaluating a Node or an Edge is a
reference to that object itself (in Beta and gbeta the evaluation semantics of a
class must be specified explicitly).

Finally, a method build is defined, one instance of each kind of graph is
declared, and build is invoked twice, once with members of the Graph family
and once with members of the OnOffGraph family. The two last statements are
commented out; they demonstrate mixing of families, and if they are included
the type system detects that they are not type safe.

We have to clarify a few points about the example. First, argument passing
to methods and functions, assignment, and other evaluations are expressed in
Beta and gbeta with the ‘->’ operator, and the direction of the dataflow is left-
to-right (where most other languages employ a right-to-left direction, opposite
to the reading direction). It might help to think of the ‘->’ as similar to the pipe
symbol used on the command line in many operating systems.

Second, Beta and gbeta provide a kind of transparency: it is invisible in
many places whether a result is stored or computed. Thus, g1.Node denotes a
pattern, but when it is used in an evaluation context it gives rise to an object
instantiation, and the new object is the result of the expression; in other words,
a ‘new’ operator is implicitly added to the expression.

Third, build accepts four arguments, namely g, n, e, and b; n and e are
received by reference, b is received by value, and g is a constant attribute of
each invocation of build.

There are many reasons why the different argument modes are specified syn-
tactically the way they are (some of them historic), but for the purposes of this
discussion we will just mention that a syntactic form like the following might
work better to communicate the actual semantics of the invocations of build;
note that this is for illustration, it is not valid gbeta syntax:

build(g1, new g1.Node(), new g1.Edge(), true);
build(g2, new g2.Node(), new g2.Edge(), false);

It is essential to ensure that the first argument to build (g1 and g2, respectively)
is constant throughout the evaluation of the arguments and the execution of the
method. Only then is it known for sure that we are not mixing different families.
If we were to provide this argument as an ordinary (assignable) by-reference
argument, then the gbeta type analysis would not accept the implementation of
build as type safe.

On the other hand, it makes no difference whether the graph given as an
argument to build is an instance of Graph, of OnOffGraph, or of any other
subpattern of Graph. We just need to know that it is some kind of a repository
for a family consisting of Node and Edge, i.e., that it is an instance of a pattern
that is less than or equal to Graph. This means that build can be reused with
an unbounded number of different subfamilies of Graph, and it means that each
invocation is guaranteed to not mix up different families. That amounts to the
conclusion that the class family example has now been expressed with both
safety and reuse opportunities preserved.

Family Polymorphism 315

4.1 Revisiting the Problems

Let us reconsider the issues described near the end of Sect. 3.2, associated with
the template method based approach:

1. Type checking with family polymorphism is based on an ordinary subtype
constraint on the family object, so there is no need for exact static knowledge
about any of the involved classes. The relations between the involved classes
must be captured, but that may be expressed by means of the identity of
the family object.

2. There are no special considerations about the methods of other classes –
build could as well have been a virtual method. As mentioned, this problem
can also be solved in other ways.

3. Data structures may be constructed to hold nodes and edges from a family
whose family object is an instance of an arbitrary (not statically known)
subpattern of Graph. Such data structures are ‘family polymorphic’.

4. Since it is easy to hide the actual class of the family object by ordinary dy-
namic polymorphism, there is no need to propagate static knowledge about
every subfamily of Graph to all usage points in a large system.

For instance, if we wish to operate on a list of nodes and a list of edges belonging
together in the same subfamily of Graph, then we may use the following data
structure:

NodesAndEdges:
(# g:< @Graph;

nodes: @list(# element::g.Node #);
edges: @list(# element::g.Edge #)

#)

This pattern is parameterized by the immutable object reference g, and it con-
tains the list nodes with elements of type g.Node, and the list edges with
elements of type g.Edge. In essence, it is a package containing two lists holding
instances of members of a class family.

We can create a subpattern of this data structure to hold some nodes and
edges belonging to a family object myGraph which is an instance of a subpattern
of Graph, say LabelledGraph:

myGraph: @LabelledGraph;
myNodesAndEdges: @NodesAndEdges(# g::@myGraph #)

This declares myNodesAndEdges to be an object which is an instance of a subpat-
tern of NodesAndEdges where the attribute g is immutably bound to myGraph.
At this point we can pass myNodesAndEdges as an argument to methods such as
this one:

listBuild:
(# ne:< @NodesAndEdges;

n: ^ne.g.Node; e: ^ne.g.Edge

316 Erik Ernst

do ne.nodes.head -> n[];
ne.edges.head -> e[];
(n,e,true) -> build(#g::@ne.g#)

#)

This method receives ne as a constant argument and thereby provides access
to a class family object – namely ne.g – and a list of nodes belonging to that
family – ne.nodes – and finally a list of edges belonging to the same family –
ne.edges. The method starts by calling head twice, extracting the first element
of the two lists (and omitting the check for an empty list. . .) and then invokes
build. Note that we could have threaded ne through any number of method
invocations as an ordinary by-reference argument, known only as an instance of
a pattern that is less than or equal to NodesAndEdges. For example:

m1: (# x: ^NodesAndEdges enter x[] do listBuild(# ne::@x #)#);
m2: (# x: ^NodesAndEdges enter x[] do x[]->m1 #);
m3: (# x: ^NodesAndEdges enter x[] do x[]->m2 #)

In this example, m3 calls m2 which calls m1, each time passing x – known as an
instance of NodesAndEdges or a subpattern – to the next method. None of these
methods depend on the exact classes in the class family and, of course, neither
does listBuild nor build. We could invoke it with ne[]->m3, where ne is any
reference whose declared type is NodesAndEdges or a subpattern thereof, e.g.,
myNodesAndEdges[]->m3.

This shows that we can package and re-package a family of classes and some
instances of those classes, and we can statically ensure that the classes belong
to the same family and the objects belong to the classes – without knowing
statically what classes the family contains.

4.2 Revisiting the Alternative

In an approach based on parametric polymorphism, i.e., type parameterization,
type safety in the management of class families is achieved by avoiding subtyp-
ing relationships between families. This implies that every individual piece of
code dealing with a class family is either monomorphic (statically tied to one
particular class family) or it is inside a generic entity with the family members
as type parameters. In the first case, reuse opportunities are obviously lost. Let
us consider the second case more closely.

Any execution of code inside a type parameterized entity corresponds to a
ground instantiation of that entity – a direct or indirect instantiation having
actual type parameters all of which are types not containing type variables.
This is enforced by the design of such type parameterization mechanisms: (1) a
parameterized class is not a class, it is a function from types to classes, and it is
only possible to create objects as instances of classes, such as a parameterized
class applied to some type arguments ; (2) a type parameterized method may be
called from another type parameterized method, but the call stack has finite
depth and it does not start with a type parameterized method, so at some point

Family Polymorphism 317

the type parameters to the method are received from some other source than
the caller-method, i.e., as ground types or depending on type parameters of
an enclosing parameterized class – which brings us back to the first case. Note
that if the types are type variables, they must be the type parameters of the
same enclosing generic entity for all members of the class family; otherwise they
cannot be mutually recursive.

This strict discipline is necessary for the soundness of the static analysis;
if it were possible to have a mutable entity (an object) at run-time which is
parametrically polymorphic (i.e., an instance of a type parameterized class which
has not received all of its type arguments as ground types), then it would be
possible to interpret the “free type variable” differently at different times and
thereby destroy the overall type correctness of the program. This is well-known
from functional languages with mutable references, such as Standard ML [20]
and Caml [30].

This means that every run-time call-chain of methods passing instances of
members of a class family as arguments or looking them up in their receiver
object includes a call-site which is monomorphic in the class family, and any
method which is type parameterized by the family is eventually called from such
a monomorphic site. In other words, a call chain can only access a class family
polymorphically after a certain point where the access is monomorphic.

Now compare this to the well-known case of traditional dynamic polymor-
phism used with single objects (not families). Consider for example the case
where we have an inheritance hierarchy rooted in GraphicalObject, containing
subclasses such as Circle and Rectangle, and supporting a (virtual) method
draw. With this design it is possible to create a number of instances of various
subclasses of GraphicalObject, and to store them all in a List whose ele-
ments are typed as GraphicalObject. Now we may traverse the list and execute
draw on each element. Note that the call-stack in this case does not include a
monomorphic access before the polymorphic access. In fact, there may not exist
any pointers typed by the actual class to each object in the list in the entire pro-
gram execution state (a this pointer typed by the actual class may be created
later, in the execution of the draw method).

This makes a big difference.
The big difference is not unlike the effects of manual memory management –

it is a global phenomemon. In systems without garbage collection, it is necessary
to design intricate, global management schemes such that the following question
can be answered correctly at certain points: “Is it possible that there exists
another live pointer to this object?” If the answer is incorrectly “No!” there
will be dangling pointers, and if the answer is incorrectly “Yes!” there may be
memory leaks. In a similar fashion, to be able to perform an operation on a group
of objects which are instances of some members of a class family, it is necessary
to design management schemes to ensure that there is at least one monomorphic
pointer to each of those objects somewhere in the system, and we must be able
to find that pointer in order to initiate a (possibly parametrically polymorphic)
call-chain that will perform the operation.

318 Erik Ernst

In the single-object case, we can collect GraphicalObjects in a polymorphic
data structure and then forget about their precise classes, and the definition and
usage of the data structure is strictly isolated from static dependencies on the
individual subclasses such as Circle etc.

But in the multi-object case, we cannot create a similar polymorphic col-
lection of nodes and edges and perform operations on them without creating
dependencies on their actual classes. This means that we will have to change our
collection every time we want to put objects from a new sub-family into it.

One possible approach would be to use wrapper classes like NodesAndEdges
– the difference is that, with parametric polymorphism, creation of these ob-
jects and insertion of nodes and edges would have to happen monomorphically.
We could then have lists of these wrapper objects etc. However, it would be
necessary to rediscover the exact actual subclass of NodesAndEdges for each
wrapper in such a list we intend to use, because the contained nodes and edges
can only be made accessible with monomorphic access. The rediscovery could
be achieved with instanceof or similar means, but the rediscovery site would
depend specifically on each class family that it is capable of rediscovering. Add
a new subfamily, and this piece of source code must be changed.

Hence, even though there seems to be only a subtle difference between the
approach based on parametric polymorphism and the approach based on family
polymorphism, we claim that the difference has far-reaching consequences, espe-
cially for large scale systems where the propagation of static dependencies have
the most devastating effects.

As mentioned, in the approach based on family polymorphism we exploit the
features of virtual patterns in gbeta, which are a generalization of virtual patterns
in Beta [18,19]. The next section discusses some properties of the underlying
type system.

4.3 Aspects of the gbeta Static Analysis

It has been claimed that virtual types are inherently not type safe [7]. The
reason why this opinion has emerged is probably that the community behind
virtual patterns has not expressed with sufficient clarity that virtual patterns
are attributes of objects, not attributes of classes. Consequently, virtual types
are not attributes of types. In particular, this point was not emphasized in [27],
where a design of virtual types in Java is proposed, inspired by the notion of
virtual patterns in Beta. Also, virtual patterns may have been confused with
unchecked covariance. However, virtual patterns have a kind of existential type,
so potential covariance – in the type of a method argument, say – is always
known statically, at all call-sites.

Let us briefly outline why it would be unsound to let virtual types be at-
tributes of types. Assume that a type system for a language with virtual at-
tributes (be it virtual classes or virtual patterns) would have the following prop-
erty: If an object x is known to have type T and V is a virtual attribute associated
with T and declared to have type TV , then x.V has the type T.V ; T.V would be
an existential type such as ∃T ′

V ≤TV . T ′
V , i.e., a type T ′

V that is a characteristic

Family Polymorphism 319

of T , but only known by its upper bound TV . If this type T ′
V is assumed to be

a property of the type of the enclosing object, T , then two different objects x
and y both having type T would have the same virtual type, i.e., x.V and y.V
would have the same type. That would obviously be unsound in a type system
with subsumption, since x could be an instance of a class having most specific
type T , and y could be an instance of a subclass whose virtual V could be fur-
therbound to a strict subtype T y

V of TV . An assignment from a reference x.r to a
reference y.r referring to the same declaration of r, having the type of V , would
then be an assignment from a reference of type TV to a reference of type T y

V (a
strict subtype of TV), i.e., the assignment would be type incorrect – but such
a type system would consider it to be an assignment between references having
the same type.

Conversely, if a virtual V declared in a class having type T should be an
existential type ∃T ′

V ≤TV . T ′
V that is treated is such a way in the type analysis

that no assignments between references of type T.V were allowed – thus avoiding
the abovementioned type hole – then it would be impossible to write useful
implementations involving virtual types. For instance, a method accepting an
argument of type V would not be able to invoke another method accepting an
argument of type V as an invocation on the current receiver object (a “self-
send”).

Of course, neither of these approaches is used in gbeta. In fact, as it was al-
ready stated very clearly for Beta in [19, p. 133], a pattern declaration Q inside
another pattern declaration P declares a distinct Q pattern for each instance of
P . This means that the static analysis of Beta and gbeta must consider pat-
tern attributes, including virtual pattern attributes, as having composite types,
consisting of two kinds of information. The space constraints do not permit a
detailed description of the gbeta type system here; please refer to Chap. 13 and
App. E of [13] for more details. We will however extract some salient features of
this type system, in order to support the claims made about its properties.

The first kind of information in a gbeta type is the usual kind of static
representation of object types: maps from names to types, indicating that any
instance having the given type will have attributes with some specified names
having specified types. The second kind of information is a relative representation
of an enclosing object of a pattern, represented as a path leading from the current
object to that enclosing object of the pattern. Moreover, every gbeta type is
characterized as being exact, or known by upper bound only, or known by upper
and lower bound. Types which are known by upper bound could be characterized
as existential types, but it should be noted that they are also dependent types,
depending on their enclosing objects.

We should mention that if Q is a pattern attribute of two objects a and b, it
is often the case that a.Q and b.Q are indeed statically known to be the same
pattern – gbeta and Beta would hardly be practically useful otherwise. But a.Q
and b.Q generally cannot be assumed to be the same pattern if any of them are
only known by upper bound, not even if a and b are known to be instances of
the same pattern.

320 Erik Ernst

Both patterns and objects have types in gbeta. Two pieces of syntax denoting
patterns have different types if they are not known to be associated with the
exact same maps from names to types and the same enclosing objects, and two
pieces of syntax denoting objects have different types unless they are guaranteed
to denote the exact same object at run-time. It is not sufficient to know that
two objects are exactly an instance of the same pattern, they would still have
different types if they might be different objects.

To put this into context of the examples given above, the virtuals x.V and
y.V discussed above would be known to have certain attributes (declared in the
statically known maps from names to types), and they would moreover be known
to be the V virtual of exactly the object denoted by x and the object denoted
by y, respectively. In the (typical) case where x and y are not guaranteed to be
the exact same object, x.V and y.V will generally have assignment incompat-
ible types – no subtyping relation exists between them, they are just possibly
different.

Note that this means that a virtual pattern known only by upper bound which
is reached via a mutable reference is “not even equal to itself”; for instance, if z is
a mutable reference then two different occurrences of z may refer to two different
objects – not even flow analysis could have guaranteed that no assignments to
z will happen between two usages of z, because there could be other threads
having access to the current object.

In practical Beta and gbeta programming it is very often the case that
a virtual pattern occurs as an attribute of an object that is accessed via an
immutable reference. As described in [28], virtual types can be changed into
ordinary types (whose structure is known completely at compile-time) by means
of so-called final bindings. This is possible in Beta and gbeta, but an immutable
reference to the enclosing object is an equally valid and more common way to
make references with virtual types assignable. Note that the approach based
on an immutable reference works both when the virtual in question is known
exactly and when it is known only by upper bound. Actually, an example of the
latter is the element types of the lists in NodesAndEdges.

A special case is the source code in a pattern declaration P containing a
virtual pattern declaration V , i.e., the code executed in a context where V is
an attribute of an enclosing object (think: V is an attribute of ‘this’). An
enclosing object is accessed via an immutable reference, usually implicit at the
source code level, but available as this(X) for an appropriate identifier X. This
means that the name V used on its own has a type that is the same everywhere
in the declaration of P .4 This in turn means that it is both dynamically safe
and recognized as type safe by the static analysis to assign between different
references having the type of V .

Hence, a virtual attribute V of a pattern P can inside P be treated in much
the same way as a constrained type argument inside a type parameterized class:
The statically known upper bound of the virtual yields a certain available inter-
face and allows for assignment to all non-existentially typed references having

4 For those who know that this isn’t quite true: In the enclosing MainPart.

Family Polymorphism 321

supertypes of the upper bound of the virtual, and the virtual is known to be
“equal to itself” such that assignments between references with the type of V are
also allowed. This makes it safe and convenient to program patterns containing
virtuals.

Finally, we can apply this knowledge about the typing of gbeta in general
and gbeta virtuals in particular to the example shown in Fig. 3 and the method
listBuild shown near the end of Sect. 4.1. Whenever an immutable reference
to an object is established (e.g., with a constant argument like g:< @Graph), all
references to virtual attributes in that object are then known to be the virtuals of
exactly that object. This means that references declared to have the same virtual
type, i.e., the type of the same virtual pattern, are assignment compatible. For
instance, the elements of ne.nodes in the method listBuild are known to have
the type of ne.g.Node, exactly like the local attribute n of listBuild. Hence, it
is safe to assign an element from ne.nodes to n, even though we have no static
knowledge about the exact pattern of which ne is an instance. Similarly, n may
safely be given to build as an argument, because that argument is declared to
have type g.Node – and g is known to be the same object as ne.g, because of
the binding g::@ne.g in the invocation of build.

In this description we have used the term ‘type’ to denote the knowledge
established by static analysis about each of the entities – patterns and objects
– accessible in the run-time environment (patterns are, at least conceptually,
available at run-time).

In particular, the type of a virtual pattern is a compile-time description that
restricts the possible actual patterns denoted by a given virtual attribute to
a well-defined (but generally unbounded) set of patterns. This description is
parameterized by a run-time context; in other words, it is a function that maps
a run-time context into a run-time entity, in this case a pattern.

From this notion of the type of a virtual pattern it might be possible to
derive a notion of virtual types, defined without referring to virtual patterns or
similar concepts. There is an ongoing debate as to whether ‘virtual X’ should be
‘virtual types’ or ‘virtual classes’, also touched upon in [7]. The approach taken
in gbeta is a kind of ‘virtual classes’ approach, because patterns may (also) be
considered as classes.

The main difference between virtual patterns and (pattern-less) virtual types,
considered from a practical point of view, would be that virtual types can not be
used to create new instances, whereas virtual classes/patterns can be used just
like other classes/patterns to create objects. As a result it is, e.g., possible to
create nodes and edges in a given subfamily of Graph, and to compose them into
a graph, again without having any static dependency links between the graph
creation code and the exact Graph subfamily being used. It is our experience
that the constructive use of virtual patterns is extremely useful. It is also yet
another example of a situation where it is possible to use (in this case enlarge or
create) a Graph without creating monomorphic dependencies; with an approach
based on type parameterization or even virtual types, it would be necessary to

322 Erik Ernst

refer to the exact classes of one particular class family in order to create new
nodes and edges.

5 Related Work

The language gbeta has been developed as a generalized version of Beta, so
the design of Beta is an immensely important starting point for gbeta, and the
community around Beta has provided lots of valuable feed-back. Moreover, as
mentioned in Sect. 4, the informal understanding of types in Beta as described
in [19] matches the actual type system of gbeta quite well, apart from the fact
that the basic concepts are more general in gbeta. However, the implementation
of gbeta is very different from the implementation of Beta. In particular, the
static analysis of virtual patterns in Beta – as described in [17] – does actually
not suffice to handle family polymorphism correctly. The problem is that this
static analysis in too many cases considers a virtual pattern in two different
objects to be the same pattern. Even though the author had used Beta for
years at this point, this problem with the static analysis of Beta only became
apparent after a close inspection of [17]. This underscores the importance of
formalizing the semantics and static analysis – a task which has unfortunately
not yet been completed. However, the gbeta static analysis is the first one to
solve this problem in the static analysis of Beta, and moreover it handles the
added generality of gbeta.

In Sect. 3.3 and 4.2 it has already been discussed in what ways and to what
extent parametric genericity can provide both type safety and reuse opportu-
nities with class families. Our general conclusion is that either safety or reuse
opportunities must be compromised, and in particular the almost-solution based
on type parameterized methods will cause widespread static dependencies on the
exact class families being managed. We should mention that the proposal in [7]
is based on having type exact references to the members of a class family, thus
making family polymorphism impossible at the outset.

In [22] it is described how families of mutually recursive classes may be
expressed in OCaml, and how subfamilies may be created by inheritance. The
structural type equivalence and the sophisticated support for type inference in
this language makes it possible to decouple the classes in families, and in some
cases to avoid the heavy notation for type arguments associated with some other
approaches based on parametric polymorphism. However, this is only possible
when the types of the members of the family are known in one type checking
context, such as a single let statement. If we were to create one member of a
family and store it in a variable and later create another member of that family,
the types would have to be expressed explicitly. Moreover, this approach has the
same problem as all the other approaches based on parametric polymorphism,
namely that there must be a monomorphic call site on the call stack whenever
a polymorphic piece of code is working with members of any class family.

In the area of functional languages there is a large body of work concerned
with dependent types (see, e.g. [31]). A dependent type is a type that is allowed

Family Polymorphism 323

to depend on run-time values in program executions, and it is typically used to
express and prove detailed properties of the outcome of computations, such as
“reverse is a function that accepts an argument of type ’a list(n) and returns
a result of type ’a list(n)”, meaning that it returns a list of the same type and
length (n) as the argument. Often, dependent types are made less useful because
support for general usage of program values in types makes type checking unde-
cidable (as in Cayenne [3]), and often it is required that programmers provide
proofs manually, using some kind of theorem prover.

The gbeta type system has not yet been proved correct, but the implementa-
tion certainly does not require manual intervention. This type system employs
dependent types in that it is part of each pattern type that this pattern is defined
in one particular run-time context, and the type system only accepts two pattern
types as being equivalent if they are associated with the same run-time context,
in addition to having the same attributes with the same types, of course. No flow
analysis is made to discover what expressions will denote the same object – we
do not consider flow analysis to be an acceptable tool as part of type checking
– so object ‘sameness’ is only detected in the case where the object is accessed
via equivalent paths of immutable references. This approach seems to work very
well in practice, so there are no immediate plans to extend the analysis in order
to discover further occurrences of object sameness.

Finally, it is instructive to compare the usage of objects in gbeta as class
repositories with the usage of structures, signatures, and functors in SML [16]
to provide packages of types and values. A structure in SML is a package of
types and values which may be created at top-level and referred to by means
of structure names (they are not first class values). A signature is a structure
specification, listing required names and kinds of types, and names and types
of values. By applying a signature to a structure, it may be ensured that the
structure conforms to the given specification, and all parts of the structure not
specified in the signature will thereafter be invisible outside the structure. Fi-
nally, a functor is a function from structures to structures (again: not a first class
function). It may take a structure constrained by a signature as an argument,
and it will itself have a signature. An application of the functor to a structure
which matches the required signature will then produce a structure with the
promised resulting signature.

Tentatively, the following concepts are related: A gbeta object is similar to
an SML structure; subtype polymorphism performs a similar role in gbeta as
signatures in SML; and a gbeta mixin may play a role similar to the one played
by a functor in SML.

The first difference between gbeta objects and the SML module system is that
gbeta objects are (partially) mutable, first-class entities, whereas SML structures
are immutable entities that may only be used at top-level, in their own, separate
name space. Moreover, it causes differences at many levels that the SML type
system is oriented toward structural equivalence, whereas the gbeta type system
distinguishes between two different declarations of the same name, except where
these two declarations are explicitly declared to be related.

324 Erik Ernst

On the other hand, subsumption (subtype polymorphism) makes it possible
for a gbeta object to present a subset of the actually implemented interface, sim-
ilar to a structure with a declared signature. A mixin may be used to enhance a
pattern which may then be instantiated, yielding an object which is an enhanced
version of the object that the original pattern would have produced; when the
object is used as a class repository, this is similar to the effect of applying a
functor to a structure. Note that this may happen at run-time in gbeta.

In summary, the basic concepts in the SML module system may be useful
as a starting point for the understanding of the usage of gbeta objects in the
management of class families. However, there are so many and so deep differences
that the analogy should not be taken too far.

6 Conclusion

This paper has presented the notion of family polymorphism. It has been demon-
strated that traditional notions of polymorphism – dynamic, single-object sub-
sumption and parametric polymorphism, with or without F-bounds – do not
allow us to treat groups of objects belonging to mutually recursive families of
classes in a safe manner without causing widespread dependencies on the exact
classes involved, thereby prohibiting reuse with other families of classes.

The virtual pattern mechanism in gbeta supports polymorphic access to such
groups of objects based on a notion of types depending on the identity of objects
used as class repositories. This solves the abovementioned problems with safety
and loss of reuse opportunities, and it only requires the explicit passing of the
class family repository object together with the instances of members of that
class family.

We believe that the correct but polymorphic management of multiple related
objects is a natural and inevitable development in the area of object-orientation,
on top of the well-established polymorphic usage of single objects. In particular,
we expect various approaches to systematic production of variants of more than
one class, including systems for advanced separation of concerns, to become more
and more pervasive. Consequently, variants of groups of mutually dependent
classes will also become more and more important. Family polymorphism is
needed to ensure the traditional benefits of object-orientation, also when using
these class families.

Acknowledgments. Thanks to the anonymous referees for their valuable and
detailed comments, and to participants in various workshops on separation of
concerns, aspect orientation, and related topics for the inspiration to focus on
these ideas.

References

1. M. Aksit, K. Wakita, J. Bosch, and L. Bergmans. Abstracting object interactions
using composition filters. Lecture Notes in Computer Science, 791:152++, 1994.

Family Polymorphism 325

2. Ken Arnold and James Gosling. The JavaTM Programming Language. The JavaTM

Series. Addison-Wesley, Reading, MA, USA, 1998.
3. L. Augustsson. Cayenne – a language with dependent types. In Proceedings of the

3rd ACM SIGPLAN International Conference on Functional Programming, pages
239–250, 1998.

4. Don Batory, Rich Cardone, and Yannis Smaragdakis. Object-oriented frameworks
and product lines. In P. Donohoe, editor, Proceedings of the First Software Product
Line Conference, pages 227–247, August 2000.

5. B. Bobrow, D. DeMichiel, R. Gabriel, S. Keene, G. Kiczales, and D. Moon. Com-
mon Lisp Object System Specification. Document 88-002R. X3J13, June 1988.

6. Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making
the future safe for the past: Adding genericity to the Java programming language.
In Craig Chambers, editor, Proceedings OOPSLA’98, ACM SIGPLAN Notices,
volume 33, 10, pages 183–200, Vancouver, BC, October 1998.

7. K. Bruce, M. Odersky, and P. Wadler. A statically safe alternative to virtual types.
Lecture Notes in Computer Science, 1445:523–549, 1998.

8. Peter Canning, William Cook, Walter Hill, John Mitchell, and Walter Olthoff.
F-bounded polymorphism for object-oriented programming. In Fourth Interna-
tional Conference on Functional Programming and Computer Architecture. ACM,
September 1989. Also technical report STL-89-5, from Software Technology Lab-
oratory, Hewlett-Packard Laboratories.

9. Robert Cartwright. Compatible genericity with run-time types for the Javatm pro-
gramming language. In Craig Chambers, editor, Proceedings OOPSLA’98, ACM
SIGPLAN Notices, volume 33, 10, Vancouver, October 1998. ACM Press.

10. Craig Chambers. Object-oriented multi-methods in Cecil. In O. Lehrmann Madsen,
editor, Proceedings ECOOP’92, LNCS 615, pages 33–56, Utrecht, The Netherlands,
June 1992. Springer-Verlag.

11. Craig Chambers. The Cecil Language, Specification and Rationale. Dept. of
Comp.Sci. and Eng., Univ. of Washington, Seattle, Washington, 1997.

12. Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 1st edition, 2000.

13. Erik Ernst. gbeta – A Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Devise, Department of Computer
Science, University of Aarhus, Aarhus, Denmark, June 1999.

14. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, Proceedings ECOOP’97, LNCS 1241, pages
220–242, Jyväskylä, Finland, 9–13 June 1997. Springer.

15. Vassily Litvinov. Constraint-based polymorphism in Cecil: Towards a practical
and static type system. In Craig Chambers, editor, Proceedings OOPSLA’98, ACM
SIGPLAN Notices, volume 33, 10, Vancouver, October 1998. ACM Press.

16. D. MacQueen. Modules for standard ML. In Proceedings of the 1984 ACM Sym-
posium on Lisp and Functional Programming, pages 198–207, New York, August
1984. ACM Press.

17. Ole Lehrmann Madsen. Semantic analysis of virtual classes and nested classes.
In Linda M. Northrop, editor, Proceedings OOPSLA’99, ACM SIGPLAN Notices,
volume 34, 10, Denver, October 1999. ACM Press.

18. Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Proceedings OOPSLA’89, ACM
SIGPLAN Notices, volume 24, 10, pages 397–406, October 1989.

326 Erik Ernst

19. Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
Reading, MA, USA, 1993.

20. R. Milner, M. Tofte, R. W. Harper, and D. MacQueen. The Definition of Standard
ML. MIT Press, 1997.

21. Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into prac-
tice. In Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 146–159, Paris, France,
15–17 January 1997.

22. Didier Rémy and Jérôme Vouillon. On the (un)reality of virtual types. Work in
progress, available from http://pauillac.inria.fr/~remy/, 2001.

23. Andrew Shalit. The Dylan Reference Manual: The Definitive Guide to the New
Object-Oriented Dynamic Language. Addison-Wesley, Reading, Mass., 1997.

24. Jose H. Solorzano and Suad Alagić. Parametric polymorphism for Javatm: A.
In Craig Chambers, editor, Proceedings OOPSLA’98, ACM SIGPLAN Notices,
volume 33, 10, Vancouver, October 1998. ACM Press.

25. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edi-
tion, 1997.

26. Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. In Proceedings of the 1999
International Conference on Software Engineering (ICSE’99), pages 107–119, Los
Angeles, May 1999. Association for Computing Machinery.

27. Kresten Krab Thorup. Genericity in Java with virtual types. In Proceedings
ECOOP’97, LNCS 1241, pages 444–471, Jyväskylä, June 1997. Springer-Verlag.

28. Mads Torgersen. Virtual types are statically safe. In 5th Workshop on Foundations
of Object-Oriented Languages (FOOL), at
http://pauillac.inria.fr/~remy/fool/program.html , January 1998.

29. Mjølner Informatics, Århus, Denmark: http://www.mjolner.dk/.
30. Pierre Weis, Maŕıa-Virginia Aponte, Alain Laville, Michel Mauny, and Ascánder

Suárez. The CAML reference manual, Version 2.6. Technical report, Projet Formel,
INRIA-ENS, 1989.

31. Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Depart-
ment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213,
September 1998.

http://pauillac.inria.fr/~remy/
http://pauillac.inria.fr/~remy/fool/program.html
http://www.mjolner.dk/

	Introduction
	We Need Class Families
	Handling Graphs with Traditional Polymorphism
	The Na{"i }ve Approach
	Working Out Safety
	The Scope of This Problem

	Handling Graphs with Family Polymorphism
	Revisiting the Problems
	Revisiting the Alternative
	Aspects of the textsf {gbeta}{} Static Analysis

	Related Work
	Conclusion

