
Simple and Safe SQL Queries with C++ Templates ∗

Joseph (Yossi) Gil † Keren Lenz
Technion—Israel Institute of Technology

yogi, lkeren@cs.technion.ac.il

Abstract
Most software applications use a relational database for data man-
agement and storage. Interaction with such a database is often done
by letting the program construct strings with valid SQL statements,
which are then sent for execution to the database engine. The fact
that these statements are only checked for correctness at runtime is
a source for many potential problems such as type and syntax errors
and vulnerability to injection attacks.

The ARARAT system presented here offers a method for dealing
with these predicaments, by coercing the host C++ compiler to do
the necessary checks of the generated strings. A library of templates
(and preprocessor directives) effectively extends C++ with a little
language representing an augmented relational algebra formalism.
Type checking of this language extension, as done by the template
library, assures, at compile-time, the correctness of the generated
SQL strings. All SQL statements constructed by the system are
immune to injection attacks.

Standard techniques (e.g., “expression templates”) for compile
time representation of symbolic structures, are enhanced by our
system to support a type system and a symbol table lookup of the
symbolic structure. Our work may also open the way for embed-
ding other domain specific languages in C++.

1. Introduction
ARARAT is a system that employs C++ templates mechanism to
address the common problem of integrating a database language
into a programming language. A library of templates extends C++
with a little language [7] representing an augmented relational
algebra formalism. The proposed mechanism is general and can
be used to embed other little languages in C++. Some readers may
appreciate the degree of elegance in overloading C++ operators.

Much research effort was invested in the search for the holy grail
of seamless integration of database processing with high-level ap-
plication languages (see, e.g., surveys in [3,4]). Fruits of this quest
include e.g., the work on Pascal-R [38], a persistent (extended) ver-
sion of C [2], integration of databases into SMALLTALK- [12], the
XJ [26] system integrating XML with JAVA, and many more. In this
paper, we concentrate on integration of C++ with the Structured
Query Language, better known as SQL, which is (still) the lingua

∗ The support work of Marina Rahmatulin, even on the eve of her wedding
day, is gratefully acknowledged.
†Research supported in part by the IBM faculty award

[copyright notice will appear here]

franca of database processing, with adoptions of the standard [23],
in all major database engines including Oracle [28], Microsoft SQL
Server [31], MySQL [47], DB2 [34], and many more.

To use these databases, the application program must recognize
that SQL engines (just as XML- and other database engines) ex-
pose a string based interface. Humans find many advantages in
such an interface, including readability, well-defined- expressive
syntax, declarative semantics, flexibility, etc. Application programs
however are faced with the difficulty of producing at runtime SQL
statements, feeding these to the SQL engine, and standing ready to
process the results. Thus, those parts in the application which in-
teract with the database can be thought of as programs that do the
non-meager task of composing other programs, but with no aid of
supportive, type-safe language environments and CASE tools.

The difficulties in producing SQL at runtime are discussed in
detail in the literature (see, e.g., [8,15], or in brief below in Sec. 2).
In a nutshell, these difficulties are rooted at the fact that the logic to
produce correct SQL strings is complex, that correctness is relative
to the scheme of the database (e.g., arithmetical operations are
allowed only on fields which the scheme declares as numeric) and
that errors in the process are not detected until runtime; further,
certain errors may even invite injection attacks which compromise
the safety and integrity of the entire database.

The ARARAT system presented here, designed for safe produc-
tion of SQL queries from C++, has two components: a little lan-
guage, henceforth called ARA, representing augmented relational
algebra (RA) and a C++ templates and pre-processor directives li-
brary, nicknamed RAT, which realizes this language as a C++ ex-
tension. Thus, in a sense, RAT is the ARA compiler. Unique features
of ARARAT include: (i) reliance on a RA metaphor, rather than di-
rectly on SQL. (ii) tight integration with the host language using
template programming, with minimal reliance on external tools.

The main contributions of this paper are in techniques for ex-
tending C++ language, using the templates mechanism and with-
out modifications to the compiler, to enable embedding of little
languages within the language. Specifically, we describe the in-
tegration of the ARA little language that allows the generation of
type safe SQL queries using existing C++ operators. On a broader
perspective, our work may be used as a case study by designers
of genericity mechanisms in future languages. Hopefully, from our
experience may language designers gain intuition of the different
features that genericity should offer. For example, we believe our
work makes part of the case for including a typeof like operator.
Also, language designers may consider favorably making generics
powerful enough for doing operations such as symbol table lookup,
yet being careful not to achieve full Turing completeness, which
will bring the question of whether the compiler halts on a given
input, to the verge of undecidability.
Relational Algebra. Historically, SQL emerged from the seminal
work of Codd [10] on relational algebra. In a sense, SQL makes it
possible to code RA expressions in a syntax which is more readable
to humans, and closer to natural language. These advantages are

1 2007/4/22

not as important when the queries are written by an application
program; moreover, we believe that the less verbose RA syntax is
more natural and integrates better with imperative languages such
as C++ which make extensive use of a rich set of operators. The
concise and regular syntax of RA allows modular composition of
queries, which is not always possible in SQL.

To appreciate the level of integration of ARARAT with C++,
consider the following statement,
dbcon << (EMPLOYEE[SALARY] / (DEPTNUM == 3));

which sends to the stream dbcon an SQL statement that computes
the salaries of all employees in the third department, i.e.,
select SALARY from EMPLOYEE where DEPTNUM = 3;

Moreover, if q is a C++ variable storing a query to a database, then
TUPLE_T(q) is a C++ type which can be used for storing a tuple of
the result of this query.
Comparison with Related Work. There are a number of ap-
proaches to the problem of integrating SQL with an application lan-
guage. First, it is possible to process the embedded SQL statements
by a dedicated external preprocessor as done in e.g., SQLJ [16],
SchemeQL [46] and Embedded SQL for C1. Advantages are in
preserving flexibility and power of both languages. In contrast,
this approach does not support very well dynamic generation of
statements— all possible SQL statements must be available to the
preprocessor for inspection.

Second, it is possible to use a software library, as done in the SQL
DOM system [30] whose structure reflects the constraints which the
database scheme imposes, and allows production of only correct
SQL statements. However, such systems trade expressive power for
usability and require the user to learn a non-trivial library; further,
an external tool must be used to generate this library.

Third, in systems such as LINQ [33], the host language compiler
is modified to support SQL like syntax. The advantage is the qual-
ity of integration, and the minimal learning curve. An important
variation of this approach is offered by Cook and Rai’s Safe Query
Objects [11] which rely on the reflective features of OpenJava [43]
to achieve such syntactical changes and to encode constraints im-
posed by the scheme. Concerns with this approach include porta-
bility, expressive power, and quality of integration of the foreign
syntax with other language features.

Finally, there is the approach of using an external static ana-
lyzer that checks that the program only produces correct SQL state-
ments [9, 21, 25]. Again, usability is limited by the necessity of
invoking an external tool. Also, unlike the other approaches, this
approach does not simplify the engineering work of coding the pro-
duction of SQL queries. Since the analysis is only partial, it does
produce false alarms.

In comparison to these, and thanks to the template-based im-
plementation, ARARAT achieves a high-level of integration with
the host language without using a software library tailored to
the database. In this respect, ARARAT is somewhat similar to
the HaskellDB [29] system, a database oriented extension of
HASKELL. However, unlike HaskellDB, ARARAT supports dy-
namic queries, and by relying on C++ is more accessible to appli-
cation programmers.

Another issue common to all approaches is the integration of
the SQL type system with that of the host language. ARARAT
automatically defines a class for each possible fields combination,
with a fixed mapping of SQL types to C++ types. Such a class can
be used for data retrieval and manipulation.

Admittedly, just like many other systems mentioned above,
ARARAT is language specific. Also, just like other research sys-
tems it is not a full blown database solution. The current imple-

1 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/esqlforc/ec 6 epr 01 3m03.asp,2004.

mentation demonstrates the ideas with a safe generation of queries.
ARARAT extensions for integration of query execution are left for
future research, or for a commercialized implementation.
Environment Requirements of ARARAT . Portability and sim-
plicity were primary among our design objectives: ARARAT mini-
mizes the use of external tools, and can be used (at its core) with any
standard [41] C++ compliant compiler. For a more advanced fea-
tures, we rely, as described in Sec. 5.4, on two small extensions: the
typeof pseudo operator and the __COUNTER__ preprocessor macro.
There is also a pre-processor, DB2ARA, which translates a database
schema into ARA declarations. This process, which can be thought
of as writing type definitions in a header file, is not difficult and can
be carried out by hand.
Template Programming. C++ templates were initially designed
for generic data structures and algorithms, as done in STL [37].
However, their expressive power was employed by the community
in serving other diverse tasks, from dimensional analysis [44],
through a solution of the co-variance problem [42], to a framework
for aspect oriented programming [49]. Czarnecki and Eisenecker,
in their work on application of template programming [13], marked
the emergence of a research trend on generative programming.

Template specialization offering conditionals and template re-
cursive invocation make this mechanism Turing complete [24].
Also, typedef definitions inside a class are used in letting one type
store what can be thought of as “pointer” to another type. With this
mechanism, lists of types, trees of types, and other data structures
have become tools of the trade, and there is even a library of data
structures and algorithms, Boost Mpl2 which manipulates types at
compile-time much like STL manipulates data at runtime.

Most of the ARARAT’s work is carried out by the C++ compiler
itself, which is mercilessly exploited, using template programming
to ensure that the compiled program will generate at runtime only
correct and safe SQL. Our implementation started from the estab-
lished techniques of template programming [1, 13], and extended
these to meet the challenges of realizing a little language. For ex-
ample, the seduction of the C++ compiler to produce (relatively)
meaningful and short compilation errors in response for errors in
use of the template library is borrowed from [32, 39].

Thus, this paper shows that the C++ templates mechanism is
rich enough to support the complex algorithms required for this
task, including e.g., symbol table management, and that SQL type
system can be encoded by the hosting type system, and delegated
to the compiler to process. The template programming techniques
developed here should also be usable (Sec. 6 discusses some the
issues involved in embedding SQL rather than RA in C++.)

Outline. Sec. 2 motivates this work by explaining some of the many
difficulties raised by the manual process of writing programs that produce
SQL statements. The running example presented in Sec. 2 is revisited in
Sec. 3, which shows how the same query finds its expression in ARA.
Sec. 4 then gives a high level description of the entire ARA language.
Sec. 5 describes in greater detail the RAT architecture and the template
programming techniques used there. The discussion in Sec. 6 highlights
the advantages and limitations of our solution and draws some directions
for further research.

2. Preliminaries: Problem Definition
This section motivates our work by demonstrating the intricacies of
the existing string based database access from C++.

Tab. 2.1 introduces a database schema that will be used as a
running example throughout the paper.

There are three relations in this database, representing employ-
ees, departments and divisions. Fields DEPTNUM and DIVNUM define

2 http://www.boost.org/libs/mpl/doc/index.html, July 2002.

2 2007/4/22

Tab. 2.1: A database schema, to be used as running example.
Relation Fields
EMPLOYEE EMPNUM(int), DEPTNUM(smallint),

FIRST N(varchar), LAST N(varchar),
SALARY(double), LOCATION(varchar)

DEPARTMENT DEPTNUM(smallint), MANAGER(int),
DESC(varchar), DIVNUM(smallint)

DIVISION DIVNUM(smallint), MANAGER(int),
DESC(varchar)

(respectively) the ties between the first relation and second, and be-
tween the second and the third. Also, field MANAGER in DEPARTMENT

and in DIVISION denotes the employee number of the manager of
this organizational unit.

Fig. 2.1 shows a simple C++ function that might be used in an
application that uses the database described in Tab. 2.1.

1 char* get_employees(int dept, char* first) {
2 bool first_cond = true;
3 string s("SELECT * FROM EMPLOYES ");
4 if (dept > 0){ //valid dept number
5 s.append("WHERE DEPTNUM = ’ ");
6 s.append(itoa(dept));
7 s.append("’");
8 first_cond = false;
9 }

10 if (first == null)
11 return s;

13 if (first_cond)
14 s.append("WHERE ");
15 else
16 s.append("AND");
17 s.append("FIRST_N= ’ ");
18 s.append(first);
19 s.append("’");

21 return s;
22 }

Fig. 2.1: Function returning an erroneous SQL query string.

Function get_employees receives an integer dept and a string
first, and returns an SQL statement in string format which evalu-
ates to the set of all employees who work in department dept bear-
ing the first name first.

The function presented in the figure also takes care of the special
cases that first is null or dept is not a valid department number.

Note that this is only a small example. In a typical database appli-
cation, there are many similar functions that are often much more
complex. Furthermore, every change to the application functional-
ity will necessarily result in change to those functions logic.

Further scrutiny of the body of get_employees reveals more
errors and problems:

1. Misspelled name. A typo lurks in line 3, by which EMPLOYES is
used (instead of EMPLOYEE) for the table name. This typo will go
undetected by the compiler.

2. Syntax error. If both parameters are non-nulls, there is no space
after the AND keyword in line 16, and thus the produced state-
ment is syntactically incorrect.

3. Type mismatch. The SQL data type of DEPTNUM column is
smallint, while the corresponding input parameter is of type
int. Such errors might result in unexpected behavior. The
sources of this kind of problems, what is sometimes called in
the literature impedance mismatch, an inherent problem of in-
tegrating database engines and programming languages. There
is no single type system including the programming language
and the database language, and thus very little checking can be
done on the junction of the two languages.

4. Security vulnerability. The code is vulnerable to SQL script
injection attacks. A malicious user can construct a value of the

first parameter that executes unexpected statement that harms
the database.

5. Code coverage. Every SQL statement in the code should be
executed during testing to validate its correctness. Providing a
full code coverage of all execution paths is a demanding task.

6. Maintenance cost. The database structure must be kept in sync
with the source code. Changes to the database schema might
require changes to the SQL queries in the application, which
makes the maintenance of the code base harder.

Which of these problems are solved by ARARAT? First, name
misspelling will result in compile-time error (we do assume that the
database scheme was fed correctly into the system). Other syntax
errors will be caught even without this assumption. Also, RAT takes
care of the correct conversion of C++ literals and values to SQL.

Strings generated by ARARAT are immune to injection attacks.
RAT defense against injection attack is twofold: (i) For non-string
types, RAT and C++ type system prevent such attacks. Consider
e.g., the query
select * from users where name=’$name’ and pin=$pin

that is vulnerable to the attack of injecting the string “1 or 1=1”
(without the quotes) into variable pin. The injected value becomes
part of the generated SQL statement,
select * from users where name=’$name’ and pin=1 or 1=1

i.e., the filter becomes a tautology. These kinds of attacks are not
possible with ARARAT, since pin must be an integer. (ii) RAT’s
protection against injections into string variables, e.g., into variable
$name in the above example, is carried out at runtime. As we shall
see below (Fig. 4.2), ARA allows user string variables only as part
of scalar expressions, used for either making a selection condition,
or for defining new field values. Therefore, RAT’s runtime can,
and indeed does, validate the contents of string variables taking,
escaping as necessary all characters that might interfere with the
correct structure of the generated SQL statement.

The maintenance cost is minimized by ARARAT. A change to
the scheme requires a re-run of the DB2ARA tool (or a manual
production of its output), but after this is done, mismatches of the
generated SQL to the scheme are flagged with compilation errors.

3. Relational Algebra Queries
An ARA programmer wishing to execute a database query must
create first a query object, which encodes both the specification of
the query and the scheme of its result. This query object can then
be used for executing the query, defining variables for storing its
result, and for other purposes.

Just like all C++ objects, query objects have two main properties:

1. Type. The type of a query object that represents a certain query
encodes in it the scheme of the result of this query. The RAT
library computes at compile-time the data type of each tuple
in the result. If two distinct queries return the same set of
fields, then the two query objects representing these queries will
encode in them the same result type.

2. Content. The content of a query object, which is computed
at runtime by the RAT library, is an abstract encoding of the
procedure by which the query might be executed. All query
objects have an asSQL() method which translates this abstract
encoding into a string with the SQL statement which can be
used to execute the query. Also, query objects have a conversion
into string operator that invokes asSQL(), so query objects can
be used anywhere a const char * can be used.

The DB2ARA pre-processor tool generates a primitive query ob-
ject for each of the relations in the input database. The content

3 2007/4/22

of each primitive query object is an encoding of the pseudo-
code instruction: “return all fields of the relation”. In the running
example, header file employees.h defines three such primitives:
EMPLOYEE, DEPARTMENT and DIVISION. Thus, the C++ expression
EMPLOYEE.asSQL() (for example) will return the following SQL
statement select * from EMPLOYEE;

A programmer may compose more interesting query objects out
of the primitives. For this composition, the RAT library provides
a number of functions and overloaded operators. Each of the RA
operators has a C++ counterpart. It is thus possible to write RA
expressions, almost verbatim, in C++.

3.1 Composing Query Objects
Fig. 3.1 shows a C++ program demonstrating how a compound
query object is put together in ARA. This query object is then
converted to an SQL statement ready for execution.

1 #include "rat" // Global RAT declarations and macros
2 #include "employees.h"
3 // Primitive query objects and scheme of the EMPLOYEE database

5 DEF_F(FULL_N); DEF_F(ID);
6 // Define field names which were not defined in the input scheme

8 int main(int argc, char* argv[]) {
9 const string s = (

10 (EMPLOYEE / (DEPTNUM > 3 && SALARY < 3.14))
11 // Selection of a tuple subset
12 [
13 FIRST_N, LAST_N,
14 FULL_N(cat(LAST_N,", ", FIRST_N)),
15 ID(EMPNUM)
16]
17).asSQL();
18 // ... execute the SQL query in s using e.g., ADO.
19 return 0;
20 }

Fig. 3.1: Writing a simple RA expression in ARA.

In lines 10–16 of this figure, a compound query object is gener-
ated in two steps:

• First (line 10), expression
EMPLOYEE / (DEPTNUM > 3 && SALARY <= 3.14))

evaluates to the query object representing a selection of these
tuples of relation EMPLOYEE in which DEPTNUM is greater than 3
and SALARY is no greater than 3.14.
The syntax is straightforward: the selection criterion is written
as a C++ Boolean expression, and operator / is used for ap-
plying this criterion to EMPLOYEE.

• Then, (lines 12–16), an array access operation, i.e., operator [],
is employed to project these tuples into a relation schema con-
sisting of four fields: FIRST_N, LAST_N, FULL_N (computed from
FIRST_N and LAST_N), and ID (which is just field EMPNUM re-
named).
Note that expression cat(LAST_N,", ", FIRST_N) produces a
new (anonymous) field whose content is computed by concate-
nating three strings. The function call operator is then used to
associate field name FULL_N with the result of this computation.
Similarly, expression ID(EMPNUM) uses this operator for field re-
naming.

After this query object is created, its function member asSQL() is
invoked (in line 17) to convert it into an equivalent SQL statement
ready for execution:

select
FIRST_N,
LAST_N,
concat(LAST_N,", ", FIRST_N) as FULL_N,
EMPNUM as ID

from EMPLOYEE

((EMPLOYEE * DEPARTMENT)
/

(DIVNUM == 2))[LOCATION]
(a) Operator overloading version

project(
select(

join(EMPLOYEE,DEPARTMENT),
(DIVNUM == 2)

),LOCATION)
(b) global functions version

EMPLOYEE
.join(DEPARTMENT)

.select(DIVNUM == 2)
.project(LOCATION)

(c) member functions version
Fig. 3.2: Three alternatives C++ expressions to compute a query object
that, when evaluated, finds the locations of employees in division 2:
using (a) overloaded operators (b) global functions, and (c) member
functions.

where DEPTNUM > 3 and SALARY <= 3.14;

This statement is assigned, as a string, to variable s.
Comment. The exact content of string smay be implementation-dependent,
yet it is guaranteed to be a syntactically SQL correct statement, whose con-
tent accurately reflects the query encoded in the query object.

As we saw, the usual C++ operators including comparisons and
logical operators may be used in selection condition and in making
the new fields. Tab. 3.1 summarizes the ARA equivalents of the
main operators of RA.

Tab. 3.1: ARA equivalents of relational algebra operators.

Relational Algebra Op-
erator

ARA
Operator

ARA Function SQL equivalent

selection σcR R/c select(R,c)
R.select(c)

select *
from R
where c

projection πf1,f2R R[f1,f2] project(R,(f1,f2))
R.project((f1,f2))

select f1,f2
from R

union R1∪R2 R1+R2 union(R1,R2)
R1.union(R2)

R1
union R2

difference R1\R2 R1-R2 subtract(R1,R2)
R1.subtract(R2)

R1 - R2

(natural) join R1 ./ R2 R1*R2 join(R1,R2)
R1.join(R2)

R1 join R2

left join R1 =× R2 R1<<R2 left join(R1,R2)
R1.left join(R2)

R1 left
join R2

right join R1×= R2 R1>>R2 right join(R1,R2)
R1.right join(R2)

R1 right
join R2

rename ρa/bR b(a) rename(a,b)
a.rename(b)

a as b

As can be seen in the table, the operators of relational algebra
can be written in C++, using either a global function, a member
function, or (if the user so chooses) with an intrinsic C++ (over-
loaded) operator: selection in relational algebra is represented by
operator /, projection by operator [], union by operator +, dif-
ference by operator -, natural join by operator *, left join by
operator <<, right join by operator >>, and renaming by the func-
tion call operator operator ().

ARA does not directly support Cartesian product. Since the join
of two relations with no common fields is their cross product,
this operation can be emulated (if necessary) by appropriate field
renaming followed by a join.

The translation of any RA expression into C++ is quite straight-
forward. Fig. 3.2 shows how a query object for finding the locations
of employees in division 2 can be generated using overloaded op-
erators, global functions and member functions.

The composition of query objects with RAT is “type safe”, in
the sense that an attempt to generate illegal queries results in a
compile-time error. Thus, expressions q1+q2 and q1-q2 will fail
to compile unless q1 and q2 are query objects with the same set

4 2007/4/22

of fields. Similarly, it is illegal to project onto fields which do not
exist in the relation, or select upon conditions which include such
fields.

3.2 Storing Query Objects in Variables
A single C++ statement was used in Fig. 3.1 to generate the desired
query object. But, as can be seen in this example, as well as in
Fig. 3.2, a single C++ expression for generating a complex query
objects might be a bit cumbersome. Moreover, there are cases in
which a query object must be created incrementally.

For the purpose of creating a query object in several steps, RAT
makes it possible to record intermediate objects in variables. In this
recording, it is important to remember the significance of type: A
query object can be assigned to a variable only if the type of this
variable represents the same type of results as the query object.

Fig. 3.3 makes use of query variables assignment to recode our
motivating example, Fig. 2.1, in RAT.

1 char* get_employees(short dept, char* first) {
2 DEF_V(e,EMPLOYEE);

4 if (first != null)
5 e /= (FIRST_N == first);
6 if (dept > 0)
7 e /= (DEPTNUM == dept);
8 return e[FIRST_N,LAST_N].asSQL();
9 }

Fig. 3.3: A rewrite of function get_employees (Fig. 2.1).

In line 2 we define variable e which is initialized to the EMPLOYEE

primitive query object. This line makes use of the macro DEF_V,
defined as
#define DEF_V(var_name, exp) typeof(exp) var_name = exp

to record both type and content of EMPLOYEE into variable e. Note
that the second parameter to the macro is used twice: once for
setting the type of the new variable by means of Gnu C++ [17]
operator typeof, and again, to initialize this variable.

Hence, variable e can represent queries which return a relation
with the same fields as EMPLOYEE. Initially, the evaluation proce-
dure stored in this variable is nothing but an abstract encoding
of the instruction to take all tuples of EMPLOYEE, but lines 4–7
modify it to specify a refined selection condition as dictated by
get_employees’s parameters.

To complete the generation of the query object, we should evalu-
ate e[FIRST_N,LAST_N] in representation of the step of eliminating
all fields but FIRST_N and LAST_N. Obviously, the type of this ex-
pression is not the same as the type of e. Line 8 records both the
type and value of this expression in a temporary variable.

Note that the example used abbreviated assignment operator
(operator /=) to modify the query variable e. This what may be
thought of as an extension of RA, is legal, since selection does not
change the type of the result. Similarly, RAT offers abbreviated as-
signment operators for union and substraction, so that expressions
such as e1+=e2 or e2-=e1 are legal whenever the type of result of e1
and e2 is the same.

The example uses method asSQL() of the query object to get an
SQL statement representing the query. Another piece of informa-
tion that can be obtained from a query object is the tuple type, a
class that can store one tuple of the result relation. Given a query
object e, the following defines an array of pointers to object of e

tuple type class, ready for storing the result of the query.
TUPLE_T(e) **result = new TUPLE_T(e)*[db.result_size()];

3.3 An Elaborate Example
Finally, we show a simple program to compute the names of em-
ployees which earn more than their managers. (This example was
used e.g., in the work on Safe Query Objects [11].) The code could
have been written as a single expression of RA. Instead, Fig. 3.4
shows the computation in three stages.

1 DEF_F(M_SALARY);

3 char *anomalous() {
4 DEF_V(e, (EMPLOYEE*DEPARTMENT));
5 DEF_V(m,
6 EMPLOYEE[MANAGER(EMPNUM),M_SALARY(SALARY)];
7 return (
8 (e * m)[FIRST_N,LAST_N] / (SALARY > M_SALARY)
9).asSQL();

10 }
Fig. 3.4: Using ARARAT to find the names of employees who earn more
than their managers.

Line 4 first uses relational algebra join to compute the manager
number of each employee. Many non-useful fields remain in the
result, but this does not pose an efficiency problem, since we only
compute an SQL query that is later submitted to optimized execu-
tion by the database engine. Then, in line 6 we rename the fields
in relation EMPLOYEE so that they can be used as descriptives of
managers. Finally, line 8 does another join, to determine manager’s
salary, projection of the desired fields, and then a selection based
on the anomalous salary condition.

4. The ARA Little Language
Having seen a number of examples, it is time for a more system-
atic description. Instead of a software manual, we use a language
metaphor to explain how the ARARAT system works: we ask the
user to think of the system as an extension of the C++ program-
ming language with a new little language, ARA, designed for com-
posing SQL queries. ARA augments the mathematical formalism of
RA with features designed to enhance usability, and for integration
with the host programming language. This section first describes
the grammar and then highlights some of the semantics of this little
language.

The next section describes the techniques we used for realizing
the grammar and the semantics within the framework of C++ tem-
plates, and hints on how these techniques might be used for realiz-
ing other little languages.

4.1 Syntax
ARA extension of C++ is in allowing a C++ programmer to include
any number of ARA definitions and statements within the code. The
BNF grammar of definitions is given in Fig. 4.1.

Definition ::=DEF F(Field)
�� DEF V(Var,Exp)

�� DEF R(Relation,(Scheme))

Scheme ::=Field/Type
�
,Scheme

�
Type ::=INT

�� SMALLINT �� BOOL �� STRING �� . . .

Fig. 4.1: The grammar of ARA. Part I: Schema Definition.

The first line of the figure indicates that there are three kinds of
definitions:

1. Field definitions are used to define the field labels space of RA.
Each field name must be defined precisely once. For example,
the following defines the three fields names used in the last
relation of our running example (Tab. 2.1).
DEF_F(DIVNUM); DEF_F(MANAGER); DEF_F(DESC);

Field names are untyped until bound to a relation.

2. Relation definitions, which are similar to the Data Definition
Language (DDL) statements of SQL, are used for specifying
a database schema, by declaring relation names and the list
of field-type pairs included in each. For example, the scheme
of the last relation of our running example, is specified by the
following definition
DEF_R(DIVISION, (DIVNUM/SMALLINT,MANAGER/INT,DESC/STRING))

(Such definitions are normally generated by the DB2ARA tool
but evidently can be easily produced by hand.)

5 2007/4/22

3. Variable definitions, made with the help of a DEF_V call, create a
new C++ variable initialized to a relational algebra expression
Exp. The full syntax of such expressions is given below in
Fig. 4.2, but any relation defined by DEF_R is also an expression.
The statement

DEF_V(e,EMPLOYEE)

in Fig. 3.3 thus defines e to the (trivial) relational algebra ex-
pression EMPLOYEE. Variable definition encodes in the type of
variable the set of accessible fields in the expression.

Fig. 4.2 gives a (partial) syntax of ARA statements.

Statement ::=Exp;
�� Var+=Exp;

�� Var-=Exp;
�� Var/=Cond;

Exp ::=Var
�� Relation

�� Exp+Exp
�� Exp-Exp

�� Exp*Exp�� Exp<<Exp
�� Exp>>Exp

�� Exp/Cond
�� Exp[Vocabulary]

Cond ::=Scalar
Scalar ::=C++ variable

�� C++ literal
�� Field�� Scalar && Scalar

�� Scalar || Scalar
�� !Scalar�� Scalar + Scalar

�� Scalar * Scalar
�� -Scalar�� Scalar > Scalar

�� sin(Scalar)
�� cat(Scalar,Scalar)

Vocabulary ::=FieldOptInit
�
,Vocabulary

�
FieldOptInit ::=Field

�� Field(Scalar)

Terminals include Relation, Field and Var which are C++ identifiers, respectively
representing a name of a relation in the data base, a field name, and a variable storing
a query object.

Fig. 4.2: The grammar of ARA. Part II: statements.

The most important non-terminal in the grammar is Exp, which
denotes an expression of RA obtained by applying any of the RA
operators to atomic relations. An Exp can be used from C++ in
two main ways: first, such an expression responds to an asSQL()

method; second, any such expression can be passed to the TUPLE_T

macro, which returns a PODS3 type with all accessible fields in this
relation.

An Exp may involve (i) relations of the database, (ii) C++ vari-
ables storing other Exps, or (iii) field names. All three must be pre-
viously defined.

An ARA statement can be used anywhere a C++ statement is
legal. It can be an Exp, or it may modify a C++ variable (defined
earlier by a DEF_V) by applying to it the union or substraction
operators of RA. Similarly, a statement may apply a selection
operator to a variable based on a condition Cond. It is not possible
to use the join and projection operators to change a variable in this
fashion, since these operators change the list of accessible fields,
and hence require also a change to the variable type.

An Exp is composed by applying relational algebra operators,
union, substraction, selection, projection and the three varieties of
join to atomic expressions. Atomic expressions are either a C++
variable defined by DEF_V or a relation defined by DEF_R. An Exp
may appear anywhere a C++ expression may appear, but it is used
typically as receiver of an asSQL() message, which translates the
expression to SQL.

Cond is a Scalar expression which evaluates to an SQL truth value.
The type system of ARA is similar to that of SQL, i.e., a host of
primitive scalar types, including Booleans, strings, integers, and no
compound types. Scalar expressions of ARA must take one of these
types. They are composed from C++ literals, C++ variables (which
must be of one of the C++ primitive types or a “char *”), or RAT
fields. Many logical, arithmetical and builtin functions can be used
to build scalar expressions. Only a handful of these are presented
in Fig. 4.2.

Finally, note that the projection operation (operator []) in-
volves a Vocabulary, which is slightly more general than a simple
list of field names. As in SQL, ARA allows the programmer to

3 Plain Old Data Structure, i.e., a C like struct, with public data members
only.

define and compute new field names in the course of a projection.
Accordingly, a Vocabulary is a list of both uninitialized and initial-
ized fields. An uninitialized field is simply a field name while an
initialized field is a renamed field or more generally, a field initial-
ized by a scalar expression.

4.2 Semantics
RAT defines numerous semantical checks on the ARA little lan-
guage. Failure in these triggers an appropriate C++ compilation er-
ror. In particular, RAT applies symbol table lookups and type check-
ing on every scalar expression.

For example, in a selection e/c expression, RAT makes sure that
every field name used in the scalar expression c exists in the symbol
table of e; RAT then fetches the type of these fields, and applies full
type checking of c, i.e., that the type signature of each operator
matches the type of its operands; finally, if c’s type is not boolean,
then the selection is invalid.

Other checks are shown in Fig. 4.3.

1. In union e1+e2, and in e1-e2, the sets of fields of e1 and e2 must be the same.

2. In e1+e2, e1-e2, e1*e2, e1<<e2 and e1>>e2, if a field is defined in e1
with type τ , then either this field is not defined in e2, or it is defined there with
the same type τ .

3. In a selection, e/c, expression c is a properly valid expression of boolean type.

4. There exists an evaluation sequence for a vocabulary, i.e., the initializing expres-
sion of any initialized field does not depend, directly or indirectly on the field
itself.

5. In using a Vocabulary in a projection it is required that

(a) all initialized fields are not found in the symbol table of the projected relation;

(b) all uninitialized fields exist in this symbol table;

(c) If an initializing expression uses a field which does not occur in the vocabu-
lary, then this field exists in the projected relation.

Fig. 4.3: Some semantical checks applied by RAT.

5. A Look Into RAT Internals
In contrast with other embedded languages, the ARA little language
is implemented solely with C++ template mechanism, and without
modifications to the compiler of the host language, nor with addi-
tional pre- or post-processing stages. This section explains how this
is done.

In Sec. 5.1, we explain the general technique of representing the
executional aspects of a RA expression as a C++ runtime value,
without compromising type safety. Sec. 5.2 then discusses some
of the main components of the RAT architecture. Sec. 5.3 demon-
strates the technique, showing how these components cooperate to
achieve compile-time assurance that only boolean expressions are
used for selection. Finally, Sec. 5.4 discusses the two compiler ex-
tensions which RAT uses.

5.1 Combining Compile-time and Run-time Representations
There is a rather standard encoding of symbolic expressions as
types e.g., for symbolic derivation (SEMT [18]) or for emitting
efficient code after gathering all operation applicable to a large
vector [45]. The implementation of RAT resisted the temptation
of employing this encoding as is for representing RA expressions,
or boolean and arithmetical expressions used in selection and in
defining new fields. Tab. 5.1 compares the compiler architecture
(so to speak) of RAT with that of the expression templates library
and SEMT.

It is an inherent property of template-based language implemen-
tation that the lexical analysis is carried out by host compiler. Sim-
ilarly, since no changes to the host compiler are allowed, the syn-
tax of the little language is essentially also that of C++, although

6 2007/4/22

Tab. 5.1: Realizing compiler stages with template libraries.

Compiler Stage Expression Templates / SEMT RAT
Lexical Analysis C++ Compiler C++ Compiler
Parsing C++ Compiler C++ Compiler
Type Checking Degenerate Template Engine
Code Generation Template Engine Program runtime

1 char* get_employees(short dept, char* first) {
2 DEF_V(e,EMPLOYEE[FIRST_N,LAST_N]);
3 if (first != null) e /= (FIRST_N == first);
4 if (dept > 0) e /= (DEPTNUM == dept);
5 return e.asSQL();
6 }

Fig. 5.1: A re-implementation of function get_employees (Fig. 3.3) in
which selection is applied after projection.

both expression templates and ARA make extensive use of opera-
tor overloading to give a different semantics to the host syntax to
match the application needs.

The main objective of expression templates and SEMT is runtime
efficiency. Accordingly, the type system in these is degenerate, and
code is generated at compile-time by the templates engine. Con-
versely, ARA is designed to maximize compile-time safety, and in-
cludes it own type- and semantic-rules. ARA has a non-degenerate
type system, and non-trivial semantical rules, which are all applied
at the time the host C++ language is compiled. This design leads
to the delay of code generation (production of the desired SQL
statement) to runtime. An advantage of this delay is that the same
code fragment may generate many different statements, depending
on runtime circumstances, e.g., use C++ parameters. To make this
possible, the structure of a scalar expression is stored as a runtime
value. Types (which can be thought of as compile-time values) are
used for recording auxiliary essential information, such as the list
of symbols which this expression uses. These symbols are bound
later (but still at compile-time) to the data types dictionary of the
input scheme.

This technique (together with the delayed execution of semantics
of query objects) makes it possible to use the same field name,
possibly with distinct types, in different tables. But, the main reason
we chose this strategy is to allow assignments such as

e /= (DEPTNUM == dept);

(line 7 of Fig. 3.3), which would have been impossible if the type
of e represented its evaluation procedure.

Curiously, this technique supports what may seem paradoxical
at first sight: a selection based on fields which were projected out,
making it possible to rewrite Fig. 3.3 as Fig. 5.1.

Observe that in line 4 we apply a selection criterion which de-
pends on field DEPTNUM, which was projected out in line 2. This is
possible since the type of each query entity encodes two lists:

1. Active Fields. this is a list with names and types of all fields in
the tuples computed by evaluating the query; and

2. Symbol Table. This includes the list of all fields against which
a selection criterion may be applied. In particular, this list in-
cludes, in addition to the active fields, fields which were pro-
jected out.

Comment. This crisp distinction between runtime and compile-time
representation does not apply (in our current implementation of RAT) to
scalar expressions. Consequently, it is not possible to define a C++ variable
storing a selection condition, and then modify this expression at runtime.
Each boolean expression in ARA has its own type.

5.2 Concepts in RAT

A type concept [5] (or for short just a concept) is defined by a
set of requirements on a C++ type. We say that a type models the
concept, if the type satisfies these concepts’ requirements. Thus, a
concept defines a subset of the universe of all possible C++ types.

The notation C1 ¹ C2 (concept C2 refines concept C1) means that
every type that models C1 also models C2.

Concepts are useful in the description of the set of types that are
legible parameters to a template, or may be returned by it. However,
since the C++ template mechanism is untyped (in the sense that the
suitability of a template to a parameter type is checked at applica-
tion time), concepts are primarily a documentation aid. (Still, there
are advanced techniques [32, 39, 48] for realizing concepts in the
language in such a way that they are checked at compile-time.) A
language extension to support concepts [22] is a candidate for in-
clusion in the upcoming revision of the ISO C++ standard.

The RAT architecture uses a variety of concepts for representing
the different components of a query, including field names, field
lists, conditions etc. Tab. 5.2 summarizes the main such concepts.
Comparing this table with the language grammar (Figs 4.1 and 4.2),
we see that concepts (roughly) correspond to non-terminals of the
grammar.

Tab. 5.2: The main concepts in the RAT architecture.

Concept
Name

Purpose Sample
Operations a

F Field Symbolic field name. F,F : V

I Initialization A symbolic field name, along with an
initialization expression, F ¹ I .

I,I : V
F(S) : I

V Vocabulary A set of (possibly initialized) symbolic
field names.

V ,I : V
I,V : V

S Scalar An expression evaluating to a scalar, e.g.,
string, boolean, integer, obtained by
applying arithmetical, comparison and
SQL-like functions to fields, literals and
variables, F ¹ S.

S+S : S
S*S : S
cat(S,S) : S
S>=S : S
S || S : S

R Relation An expression in enriched RA evaluating
to a relation.

R*R : R
R+R : R
R-R : R
R[V] : R
R/S : R

a The notation A ¦ B : C where A, B and C are concepts and ¦ is a C++ operator
means that the library defines a function template overloading the operator ¦, such
that the application of ¦ to values in kindsA and B returns a value of concept C. This
notation is naturally extended to unary operators and to the function call operator.

The most fundamental concept is F , which represents symbolic
field names. The vocabulary concept V represents a set of fields
(such sets are useful for RA projection). The last cell in the first row
of the table means that a C++ expression of the form v1,v2 (apply-
ing operator , to values v1 and v2) where v1 and v2 belong in F ,
return a value in V . The type of this returned value represents the
set of types of v1 and v2. For example, expression FIRST_N,LAST_N

belongs in V , and it records the set of these two symbols.
Types that model F are singletons. In our running example, the

value FIRST_N is the unique instance of the type representing the
symbol FIRST N. The macro invocation DEF_F(FULL_N) (line 6
Fig. 3.1) defines a new type that models F along with its single
value. Henceforth, for brevity sake we shall sacrifice accuracy
in saying that a value belongs in a certain concept meaning that
this value’s type models this concept. This convention will prove
particulary useful when talking about singleton types. Thus, we say
that this macro invocation defines the value FULL_N in concept F .

The concept I represents initialized fields, necessary for repre-
senting expressions such as

FULL_N(cat(LAST_N, ", ", FIRST_N)) (5.1)

(line 14 in Fig. 3.1). A type modeling I has two components: a field
name and an abstract representation of the initializing expression.

Concept S represents scalar expressions used in an initialization
expression and in selection, e.g., cat(LAST_N, ", ", FIRST_N) is

7 2007/4/22

in S. In writing F(S) : I in the table we indicate that expression
(5.1) which applies the overloaded function call operator of field
FULL_N to cat(LAST_N,", ", FIRST_N) is in I .

Since F ¹ S we have that the function call operator can be used
in particular to do RA-renaming, writing, e.g., ID(EMPNUM) (line 15
in this figure).

Another instance of S is the expression, showing in line 10,
(DEPTNUM > 3 && SALARY < 3.14). Note again that scalar expres-
sions may involve literals.

Concept R is used for representing RA expressions. The right-
most cell in the last row of the table specifies the semantics of
union, substraction, cross product, selection, and projection. We
can see that RAT enriches the semantics of RA. For example,
vocabularies may include initialized fields. The initialization se-
quence of such fields specifies the process by which this field is
computed from other fields during projection.

5.3 Type Safety of Selection and Projection Expressions
Now that the main concepts of the RAT architecture were enu-
merated, we turn to describing how these concepts are used both
in compile-time and in run-time to realize the integration of RA
into C++. The description is as high-level as possible, although
some of the technical details do pop out.

5.3.1 Managing Scalar Expressions
At runtime, a scalar expression is represented as a value of type
S_TREE. Type S_TREE is the root of a type hierarchy that does
a rather standard text book [40, pages 279–290] implementation
of an expression tree, with classes such as S_BINARY (for binary
operators), and S_UNARY (for unary operators), to represent internal
nodes. Leaves of the tree belong to one of two classes: (i) S_LIT,
which store the value of C++ values participating in the expression,
and (ii) S_FIELD representing a name of one of the fields in the
underlying RA.

The representation is untyped in the sense that the actual eval-
uation of each node in the tree may return any of the supported
types of scalar expressions, including booleans, strings and inte-
gers. In difference with standard representation of expression tree,
the nodes of this tree do not have an evaluation function. Instead,
class S_TREE has a pure virtual function char *asSQL(). This func-
tion is implemented in the inheriting classes, to return the SQL rep-
resentation of the expression by a recursive traversal of the subtree.

Thus, the evaluation of an S_TREE is carried out by translating
it to SQL. This translation is always performed in the context of
translating a RA expression, which contains the scalar expression,
to SQL. At the time of the translation, S_LIT leaves are printed as
SQL literals, while S_FIELD are printed as SQL field names.

Fig. 5.2 shows what a class S modeling concept S looks like.

1 class S {public:
2 const S_TREE *t; // Expression tree of S
3 typedef ... TYPS; // Compile−time representation of t
4 typedef ... FLDS; // List of fields used in t
5 ... }

Fig. 5.2: The main ingredients of a type modeling concept S.

As seen in the figure, each such type has a data member named t

which stores the actual expression to be evaluated at runtime.
For the purpose of compile-time type checking of the scalar

expression, when using it for projection or selection, each such type
has two compile-time properties, realized by a typedef:

1. property TYPS is a compile-time representation of the content
of t, i.e., TYPS is tree-structured type, with the same topology
as t. However, instead of literal values and addresses of vari-
ables, which are difficult to represent in the type system, this
compile-time representation stores just their types.

2. property FLDS is a type which represents the list of field names
that take part in this scalar expression. Each node in this list is
a type modeling concept F .

A number of function templates (including many that overload
the standard operators) are defined in RAT. All these functions gen-
erate types modeling S. Each concrete template function obtained
by instantiating these templates computes the value of data mem-
ber t in the return value, and generates the typedefs TYPS and FLDS

of the type of the result.
More specifically, if S1 and S2 are types that model S, then

the return type of operator +(const &S1, const &S2) is a type S

modeling S such that (i) S::FLDS is the merge of S1::FLDS and
S2::FLDS, and (ii) S::TYPS is a type tree, rooted a node representing
and addition with two type subtrees S1::TYPS and S2::TYPS.

The actual value returned by a call operator +(x, y) (where the
class of x is S1 and that of y is S2), is such that its t field is of class
S_PLUS and has two subtrees x.t and y.t.

Note that types that model concept S have compile-time proper-
ties that describe the expression. Therefore, these types cannot be
reassigned with a different expression.

5.3.2 Managing Relational Algebra Expressions
As already mentioned, types that model concept R have a runtime
encoding of the procedure for evaluating the query and two main
compile-time properties: an encoding of the scheme of the result
of a query, and a list of fields which can be used in a selection
criterion.

When a selection operation on relation r of type R with scalar
expression s of type S is encountered, S is bound to R. Steps in this
binding include:

1. A check that all fields in S::FLDS are present in R.

2. Binding each field of S to its type in R to analyze the types
of S::TYPS.

3. If there is a type mismatch between an operator and its operands
or if the result type is non boolean, a compilation error is issued.

4. Integration of the content of s.t with r. This integration affects
only the runtime value of r and therefore reassigning the new
value into the same variable r is possible.

A projection operation is defined on relation r of type R and
field list v of type V modeling concept V . There are two kinds
of elements in v: uninitialized fields, each modeling concept F ,
and initialized fields, each modeling concept I . RAT verifies that
all the uninitialized fields are present in R and all initialized fields
are absent of R. RAT also verifies that the initialized fields can be
calculated when bound to R using the same algorithm used in the
selection operation. In addition, the compile-time encoding of the
result scheme and the symbol table of R are updated, which means
that the result of a projection operation is an object of a new type
which cannot be assigned to r.

5.4 Compiler Extensions and the TUPLE_T macro

Extracting a variable’s type. An incremental generation of query
object requires that intermediate objects are stored in variables. It is
necessary to record both the type and the content of these objects.
ARARAT extracts the type of a query object with the non-standard
typeof pseudo operator. Thus, macro DEF_V in Sec. 3 creates a new
variable var_name, which has the type of exp, and initializes this
variable with the content of exp.

The typeof operator is a pseudo operator, since instead of return-
ing a value, it returns the type of the argument, which can be used
anywhere a type is used. Like sizeof, this operator is evaluated at
compile-time. This operator is found in e.g., all Gnu implementa-

8 2007/4/22

tions [17] of the language; its significance was also recognized by
the C++ committee, which is considering a similar mechanism for
querying the type of an expression, namely decltype operator, as a
standard language extension 4.

Without typeof, ARARAT can still produce query objects, but in
order to store these in variables the user must manually define ap-
propriate types. The compiler still checks that these type definitions
are correct and consistent with the query objects.
Type ordering. In RA, the order of fields in a relation has no
meaning, i.e., two schemes represent the same relation if they
consist of the same set of fields. The Boost Mpl library makes it
possible to test the equality of two such sets without resorting to
sorting. However, we still require a method to sort such sets, for
the purpose of the implementation of the TUPLE_T macro. Consider
for example the statement

TUPLE_T(EMPLOYEE * DEPARTMENT) emp1;
TUPLE_T(DEPARTMENT * EMPLOYEE) emp2;

which defines variables emp1 and emp2 to be of a PODS whose field
names and types are the union of the field lists of EMPLOYEE and
DEPARTMENT. To generate such a field, RAT uses a recursive template
call to create an inheritance chain, where each class in this chain
defines a field name. We need this chain to be of a predetermined
order, so that types of emp1 and emp2 are the same.

To this end, an ordering relation must be placed on types. In our
implementation, this order is realized by a unique integral value
associated with every field name. The identifier is generated us-
ing another C++ language extension, the __COUNTER__ macro. This
macro is a compile-time counter, evaluates to an integer which is in-
crementing in each use. It is supported by Microsoft compiler [35],
and is scheduled to be included in version 4.3 of g++ (pending ap-
proval on the GCC steering committee 5). Using this macro ensures
that each field has a constant identifier and thus every relation has
a unique representation.

Without __COUNTER__, ARARAT must resort to the standard
__LINE__ macro. The limitation placed on the user is that all fields
are defined in different lines in the same source file.

6. Discussion and Further Research
The ARARAT system demonstrates a seamless integration of RA
language with C++, which can be used to generate safe SQL
queries (using method asSQL()). Also, ARARAT makes it possible
to generate a PODS type for storing query results. The challenges
in the implementation were in the restriction on use of external
tools, without introducing cumbersome or long syntax.

Admittedly, the compilation time of the program in Fig. 2.1 is
shorter than that of Fig. 5.1. The compilation of the program in
Fig. 2.1 took 1.04 seconds while the program in Fig. 5.1, which
uses the RAT library that consists of about 3000 lines of C++ code,
compiled in 1.26 seconds 6. We believe that the compilation time is
not a main consideration in this sort of applications. A comprehen-
sive benchmark is required for comparing the runtime performance
of the two alternatives over a wide range of queries. The bench-
mark should measure both the construction and execution time of
queries. We estimate that the construction time is negligible, and
therefore generating queries using ARARAT does not impose a sig-
nificant performance penalty.

The current implementation support of dynamic queries is lim-
ited to modifications of a query object by applying selection, union
and substraction to it. It is mundane to add support to dynamically

4 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/
5 Ian Lance Taylor, private communication, March 2007
6 On a 2.13GHz Intel(R), Pentium(R) M processor with 2 GB of RAM.

created conditions, allowing thus to define a selection condition
with code such as

DEF_DYNAMIC_COND(c, EMPLOYEE, TRUE);
if (dept > 0);

c &= (DEPTNUM == dept);
if (first != null)

c &= (FIRST_N == first)
...

where DEF_DYNAMIC_COND(c, EMPLOYEE, TRUE); encodes EMPLOYEE’s
symbol table into c. Also easy in principle is the definition of “pre-
pared SQL statements”, by storing memory addresses of C++ vari-
ables instead of actual content. The actual value of these variables
is retrieved whenever the query is translated to SQL. Moreover, as
hinted in brief in Sec. 5.4, RAT can easily generate function mem-
bers for these queries which would allow dynamic changes of the
parameters of a prepared statement.

In Sec. 5 we described non-trivial implementation techniques,
by which both compile-time and runtime values are used for re-
alization of the language extension. These techniques, and the ex-
perience of managing symbol tables, type systems, and semantical
checks with template programming, can be used in principle for in-
troducing many other little languages to C++. Further research will
probably examine the possibility of doing that, and in particular in
the context of a little language for defining XML data. Presumably,
the same ARA representation can be used to generate not only SQL,
but also directives for other database systems.

Another prime candidate for a little language to be added thus in
C++ is the SQL language itself. Indeed, a user preferring explicit
function names, as in Fig. 3.2(b) and Fig. 3.2(c) will find the
resulting code similar to SQL. We contemplate extending this to
support a more SQL-like syntax as done in e.g., LINQ. Still, it
should be remembered that, as evident by the LINQ experience,
support of even the select statement can be only partial, mainly
because the syntax is too foreign to that of the host language. This
is the reason we believe that the advantage of building upon user’s
familiarity with SQL is not as forceful as it may appear.

On the other hand, it should be clear how to extend ARA to
support more features offered by the select statement, without
imposing an SQL syntax. For example, we can easily extend the
ARA syntax to support sorting and limits features of select, by
adding e.g., the following rules to Fig. 4.2.

Exp ::= Exp.asort(Field)
�� Exp.dsort(Field)

�� Exp.limit(Integer)

The addition of support for group by clause is more of a chal-
lenge, since it requires a type system which allows non-scalar
fields, i.e., fields containing relations.

Our work concentrated on selection and queries since these are
the most common database operations. We demonstrated how these
queries can be generated in a safe manner, and showed how RAT
can define a receiver data type. The extension to support the gen-
eration of other statements in the Data Manipulation sub-Language
(DML) of SQL does not pose the same challenges as those of im-
plementing queries.

We note that ARARAT does not take responsibility on the execu-
tion of statements, although it is possible to use it to define the data
types which take part in the actual execution. We leave it to future
research to integrate the execution of queries and other DML state-
ments with C++. This research should strive for a smooth integra-
tion of the execution with STL. For example, an insert statement
should be able to receive an STL container of the items to insert.
Interesting, challenging and important in this context is the issue
of integration of database error handling, transactions, and locking
with the host language.

A fascinating direction is the application of ARA to C++ own
data structures instead of external databases. Perhaps the best in-

9 2007/4/22

tegration of databases with C++ is achieved by mapping STL data
structures to persistent store.

Finally, we note that in a sense, work on integration of SQL with
other languages can be viewed as part of the generative program-
ming line of research [6,19,20,27,36]. It is likely that other lessons
of this subdiscipline can benefit the community in its struggle with
the problem at hand. For example, it may be possible to employ the
work on certifiable program generation [14] to prove the correct-
ness of RAT.

References
[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley, 2004.

[2] T. Andrews and C. Harris. Combining language and database
advances in an object-oriented development environment. In
OOPSLA’87.

[3] M. P. Atkinson and O. P. Buneman. Types and persistence in database
programming languages. ACM Comput. Surv., 19(2):105–170, 1987.

[4] M. P. Atkinson and R. Welland. Fully Integrated Data Env.: Persistent
Prog. Lang., Object Stores, and Prog. Env. Springer, 2000.

[5] M. H. Austern. Generic programming and the STL: using and
extending the C++ Standard Template Library. Addison-Wesley,
1998.

[6] D. S. Batory, C. Consel, and W. Taha, eds. Proc. of the 1st Conf. on
Generative Prog. and Component Eng., vol. 2487 of LNCS. Springer,
2002.

[7] J. Bentley. Programming pearls: little languages. Commun. ACM,
29(8):711–721, 1986.

[8] T. Bloom and S. B. Zdonik. Issues in the design of object-oriented
database programming languages. In OOPSLA’87.

[9] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise
analysis of string expressions. In SAS’03.

[10] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

[11] W. R. Cook and S. Rai. Safe query objects: statically typed objects as
remotely executable queries. In ICSE’05.

[12] G. Copeland and D. Maier. Making Smalltalk a database system.
SIGMOD Rec., 14(2):316–325, 1984.

[13] K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[14] E. Denney and B. Fischer. Certifiable program generation. In
GPCE’05.

[15] J. E. Donahue. Integrating programming languages with database
systems. In Data Types and Persistence (Appin), Scotland, 1985.

[16] A. Eisenberg and J. Melton. SQLJ Part 1: SQL routines using the
Java programming language. SIGMOD Rec., 28(4):58–63, 1999.

[17] R. M. S. et al. Using GCC: The GNU Compiler Collection Reference
Manual for GCC 3.3.1. Gnu Press, 2003.

[18] J. Gil and Z. Gutterman. Compile time symbolic derivation with C++
templates. In USENIX C++’98.

[19] R. Glück and M. R. Lowry, eds. Proc. of the 4th Conf. on Generative
Prog. and Component Eng., vol. 3676 of LNCS. Springer, 2005.

[20] R. Glück and M. R. Lowry, eds. Proc. of the 5th Conf. on Generative
Prog. and Component Eng., vol. 3676 of LNCS. Springer, 2006.

[21] C. Gould, Z. Su, and P. T. Devanbu. Static checking of dynamically
generated queries in database applications. In ICSE’04.

[22] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. D. Reis, and A. Lums-
daine. Concepts: First-class language support for generic program-
ming in C++. In OOPSLA’06.

[23] J. R. Groff and P. N. Weinberg. SQL, the complete reference.

Osborne/McGraw-Hill, 1999.

[24] Z. Gutterman. Symbolic pre-computation for numerical applications.
Master’s thesis, Technion, 2004.

[25] W. G. J. Halfond and A. Orso. AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks. In ASE’05.

[26] M. Harren, B. Raghavachari, O. Shmueli, M. Burke, V. Sarkar, and
R. Bordawekar. XJ: Integration of XML processing into Java, 2003.

[27] G. Karsai and E. Visser, eds. Proc. of the 3rd Conf. on Generative
Prog. and Component Eng., vol. 3286 of LNCS. Springer, 2004.

[28] G. Koch and K. Loney. Oracle: The Complete Reference: Electronic
Edition. Osborne, 1997.

[29] D. Leijen and E. Meijer. Domain specific embedded compilers. In
USENIX’99.

[30] R. A. McClure and I. H. Krüger. SQL DOM: compile time checking
of dynamic SQL statements. In ICSE’05.

[31] B. McGehee. Using Microsoft SQL Server 7.0. Que, 1999.

[32] B. McNamara and Y. Smaragdakis. Static interfaces in C++. In
Workshop on C++ Template Programming (Erfurt, Germany, 2000).

[33] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling objects,
relations and XML in the .NET framework. In ICMD’06.

[34] R. B. Melnyk and P. C. Zikopoulos. DB2: The Complete Reference.
McGraw-Hill Companies, 2001.

[35] C. Pappas and W. H. Murray. Visual C++.Net: The Complete
Reference. McGraw-Hill Companies, 2002.

[36] F. Pfenning and Y. Smaragdakis, eds. Proc. of the 2nd Conf. on
Generative Prog. and Component Eng., vol. 2830 of LNCS. Springer,
2003.

[37] P. J. Plauger. The standard template library. C/C++ Users J.,
13(12):10–20, 1995.

[38] J. W. Schmidt. Some high level language constructs for data of type
relation. ACM Trans. on Database Sys., 2(3):247–261, 1977.

[39] J. Siek and A. Lumsdaine. Concept checking: Binding parametric
polymorphism in C++. In Workshop on C++ Template Programming
(Erfurt, Germany, 2000).

[40] P. Smith. Applied Data Structures with C++. Jones & Bartlett, 2004.

[41] A. Stevens and C. Walnum. Standard C++ Bible. Wiley, 2000.

[42] V. Surazhsky and J. Y. Gil. Type-safe covariance in C++. In SAC’04.

[43] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. OpenJava: A
class-based macro system for Java. In OOPSLA’99 Workshop.

[44] Z. D. Umrigar. Fully static dimensional analysis with C++. SIGPLAN
Not., 29(9):135–139, 1994.

[45] T. L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31,
1995.

[46] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and SchemeQL:
Two little languages. In Workshop on Scheme and Functional
Programming (London, UK, 2002).

[47] M. Widenius and D. Axmark. MySQL Reference Manual. O’Reilly,
2004.

[48] J. Willcock, J. G. Siek, and A. Lumsdaine. Caramel: A concept
representation system for generic programming. In Workshop on
C++ Template Programming (Tampa, Florida, 2001).

[49] Z. Yao, Q. long Zheng, and G.-L. Chen. AOP++: A generic aspect-
oriented programming framework in C++. In GPCE’05.

10 2007/4/22

