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Abstract. Writing performance-critical programs can be frustrating be-
cause optimizing compilers for imperative languages tend to be unpre-
dictable. For a subset of optimizations – those that simplify rather than
reorder code – it would be useful to prove that a compiler reliably per-
forms optimizations. We show that adopting a “superanalysis” approach
to optimization enables such a proof. By analogy with linear algebra,
we define the nullspace of an optimizer as those programs it reduces to
the empty program. To span the nullspace, we define rewrite rules that
de-optimize programs by introducing abstraction. For a model compiler
we prove that any sequence of de-optimizing rewrite rule applications
is undone by the optimizer. Thus, we are able to give programmers a
clear mental model of what simplifications the compiler is guaranteed to
perform, and make progress on the problem of “abstraction penalty” in
imperative languages.

1 Introduction

In our experience developing high-performance numerical libraries for object-
oriented languages [22, 18] we have found that industrial compilers fail to elim-
inate abstraction reliably. In fact, the best optimizing compilers, while achiev-
ing remarkably good performance, are capricious, achieving that performance
only when some unpredictable phrasing of the program is presented. This paper
reports on progress in devising a compiler structure that achieves guaranteed
optimization for imperative languages.

Optimizing compilers map programs to programs. It is interesting to ask
as one does in linear algebra: what is the nullspace (or kernel) of the mapping?
Clearly optimizing compilers are not linear transforms, but the analogy is useful.
The nullspace of a linear transform A is the set of vectors transformed to the zero
vector: null(A) = {x | Ax = 0}. For compilers, a sensible choice of nullspace is the
set of programs reduced by the optimizer to the empty program ∅. By ∅, we mean
the syntactically minimal program generating the value 0; in C, it is the program
int main() { return 0; }. We use the notationO[[·]] : Program → Program for
an optimizer, and define its nullspace to be null(O) = {p ∈ Program | O[[p]] = ∅}.

Program code may be loosely divided in two: “useful” code that implements
desired semantics of the program, and “abstraction” code that does not change
observable properties but is introduced to further software engineering goals such



as encapsulation and modularity. For example, we might want our program to
compute:

1 + 2

but for software engineering reasons we write:

x = new Integer(1);
y = new Integer(2);
plus(x, y)

The resulting performance hit is often called the abstraction penalty [19, 15,
14] and is a pressing concern for those attempting to meld good software en-
gineering practice with high performance. Ideally, optimizing compilers would
eliminate abstraction while preserving semantics. In other words, we would like
the nullspace of compilers to encompass typical patterns of software engineering
abstraction.

Carrying the analogy further, in linear algebra we have the property that if
A is a linear transform, then z ∈ null(A) implies A(x + z) = Ax; that is, adding
something from the nullspace has no effect. How does one account for “adding”
abstraction to a program? Here the analogy to linear algebra is weak, and we
turn to rewrite systems.

Term rewriting systems have a long history of use in program optimization
(e.g. [23, 6, 24]). We consider an application opposite to their usual use: as rules
that de-optimize a program, introducing abstraction, rather than optimizing it.
Here are two such rules, stated informally:

1. Replace any expression e with x, where x is a fresh variable, and insert x := e
immediately before e.

2. Select a subset of local variables, allocate a record of sufficient size at an ap-
propriate program point,1 replace variable definitions with writes and vari-
able uses with reads to appropriate slots of the record.

The above rules span rudimentary OOP-style encapsulation: applying them
to “1” and “2”, we can produce code resembling x = new Integer(1); y =
new Integer(2).

We regard such de-optimizing rules as a basis for the desired nullspace; if
p is a program, O[[·]] the optimizer, and {gi} are de-optimizing rules, we want
O[[gkgk−1 · · · g1p]] = O[[p]] for any sequence of rule applications gkgk−1 · · · g1.
This is our analogy to “additivity” in linear algebra.

To build an optimizer capable of undoing any application of such rules, it is
necessary to avoid phase ordering problems – problems that arise when optimiz-
ers are constructed from discrete optimizing passes. We do this by adopting a

1 To be exact: a program point that dominates all definitions and uses of the variables.



superanalysis approach in which all analyses are performed simultaneously, fol-
lowed by a single transformation step. This approach is known to be more pow-
erful than applying individual optimizations in sequence (even iteratively), since
optimizations are synergistic ([26, 3]). It also enables a proof of the nullspace
property: any sequence of rule applications is undone by a single application of
the optimizer. The nullspace proof is an induction over rule applications: for each
rule we consider the changes made to the analysis equations, show the resulting
system of equations has a “consistent” solution, and that the transformation
step erases the code added by the rule. We demonstrate the proof technique by
proving the nullspace property for a small arithmetic language. In an accompa-
nying technical report, we prove the nullspace property for a model optimizer of
an imperative language; we summarize the results here.

This paper is not about a proof for proof’s sake. Rather, the proof guides
the design of the optimizer. To enable the nullspace proof one is obliged to make
many changes to the structure of the optimizer; and once the proof is complete,
one has an optimizer design with the desired property.

1.1 Related work and contributions

The notion of guaranteed optimization is well-known in the functional world.
Compilers for functional languages often guarantee tail-call optimization; staged
languages such as MetaML [20] guarantee that expressions annotated as static
will be evaluated fully at compile time; deforestation [25] can reliably eliminate
intermediate representations for certain expressions [9]. Sands [17] in his work
on improvement theory shows that certain optimization algorithms offer strong
guarantees. The use of rewrite rules for optimization can guarantee (in restricted
cases) the existence of normal forms [7].

In the imperative world, the vagaries of effects, unruly control flow, and
absence of the algebraic properties of pure functional languages make guaranteed
optimization difficult. The contribution of our work is to propose the idea of
a nullspace as a guiding principle for guaranteed optimization of imperative
languages, and to introduce a proof technique for proving nullspace properties
of compilers. We believe this to be a first step toward a practical theory of
minimal normal forms for imperative programs.

2 Definitions

We adopt abstract interpretation-style lattices [4] in which ⊥ is associated with
“absent” and > with “conflicting information.” This is opposite from the con-
vention in data flow analysis. We use v for a partial order relation, t for
lattice join, and × for lattice direct product. A tuple of lattices (D1, . . . , Dn)
is understood to be the lattice D1 × . . . × Dn. We reserve ∧ to mean logical
conjunction.

Program analyses are often presented as special-purpose solvers that simul-
taneously build and solve lattice equations. To reason about analyses, we take
the view that a program analysis builds a system of equations such as:



x1 = e1(x1, x2, . . . , xn)
x2 = e2(x1, x2, . . . , xn)
...

...
xn = en(x1, x2, . . . , xn)

where the xi are analysis variables and the ei are monotone functions. We write
X = E(X) for the above system, where X = (x1, . . . , xn) and E = (e1, . . . , en).
We use the notation lfp E to mean the least fixpoint of the function E.

Definition 1. A system of lattice equations S is a pair S = (D,E) where D =
(D1, . . . , Dn) is a tuple of complete lattices and E = (e1, . . . , en) is a tuple of
monotone functions ei : D1 × . . . × Dn → Di. For variables X = (x1, . . . , xn)
with xi : Di, we define X?(S) = (x?

1(S), . . . , x?
n(S)) = lfp E to be the solution

(least fixpoint) of the system of equations X = E(X).

We will write X? to mean X?(S), and similarly for other parameters when they
are apparent from context.

Definition 2. An optimizer O is a pair (A, T ) where:

– A is an analysis taking a program p and producing a system of lattice equa-
tions S = (D,E) and a mapping M between program points and elements of
E;

– T is a transformation taking a solution X?(S), program p, mapping M , and
producing a new program p′.

and we write O[[p]] = p′.

We informally state the main theorem of this paper to establish our goal; the
proper version is stated and proved in Section 6.2. We make forward reference to
the de-optimizing rules, analysis and transform of our model compiler, defined
in later sections.
Informal statement of Theorem 1. Let G = {g1, . . . , gm} be the set of rewrite
rules of Section 4.2, A be the analysis of Section 4.3, T be the transformation
of Section 5, and O = (A, T ). Let p be a program, and p′ be a program derived
from p by a finite number of applications of rules in G. Then O[[p]] = O[[p′]].

2.1 Structure of the paper

The remainder of this paper is devoted to proving Theorem 2 and is organized
as follows. We give a simple example of optimizing arithmetic expressions (Sec-
tion 3), which serves to introduce the proof technique. We then introduce an
intermediate representation suitable for imperative languages (Section 4.1), and
sketch a sample set of “de-optimizing” rules (Section 4.2). We present a model
optimizer consisting of four simultaneous analyses: congruence, reachability, a
backward escape analysis, and a transform analysis (Section 4.3). After the anal-
ysis equations are solved, a single transformation step produces the optimized
program (Section 5). In Section 6 we introduce the proof technique and apply it
to prove Theorem 2 for our model compiler and sample de-optimizing rules.



3 Example: optimization of arithmetic expressions

To introduce the proof technique we consider optimizing arithmetic expressions
comprised of integers (n), variables (x) and addition:

e ::= n | x | + (e, e)

We study two “de-optimizing” rewrite rules:

g1 : n 7→ +(n1, n2) where n1 + n2 = n
g2 : e 7→ +(e, 0)

For example: a
g27→ +(a, 0)

g17→ +(a,+(4,−4))
g17→ +(a,+(+(1, 3),−4)). We will

define an optimizer, then prove that it undoes any sequence of applications of g1

and g2 in a single step. This is not an impressive result, but serves to introduce
the proof technique. For this simple example, a single analysis suffices – constant
propagation. We use the lattice:

>

· · ·

oooooooooooooo
0

�������
1 2

???????
· · ·

OOOOOOOOOOOOOO

⊥

OOOOOOOOOOOOOO

???????

�������

oooooooooooooo

The analysis A takes an expression and constructs (1) a system of analysis
equations; and (2) a mapping between analysis variables and program points.
We represent the mapping by annotating an expression with analysis variables,
such as c0 + (c11, c22). The analysis rules are:

Expression Equation
c0n c0 = n
c0x c0 = >
c0 + (c1e1,

c2e2) c0 = +̂(c1, c2)

where the abstract version of +̂ is:

+̂(x, y) ≡

⊥ if x = ⊥ or y = ⊥; else
x + y if x ∈ Z and y ∈ Z; else
>

(1)

A key requirement of our proof technique is that the analysis be compositional :
the system of analysis equations for an expression is obtained by composing
analyses of subexpressions. This implies that a rewrite on an expression induces



a rewrite on the analysis equations in a straightforward way. Consider the single
rewrite:

+(a, 0)
g17→ +(a,+(4,−4))

It is convenient to think of the rewrite in terms of its context and redex: in the
above example we have the context C = +(a, [ ]) and the redex 0, where [ ]
denotes a hole. The analysis of the two expressions is:

Mapping c0 + (c1a, c20) c0 + (c1a, c2 + (c34, c4−4))

Equations c0 = +̂(c1, c2)
c1 = >
c2 = 0

c0 = +̂(c1, c2)
c1 = >
c2 = +̂(c3, c4)
c3 = 4
c4 = −4

In the above table one can see how the term rewrite induces a rewrite on the
analysis equations: the equations c0, c1 associated with the context +(a, [ ]) are
unchanged; the equation c2 for the redex 0 has been altered, and new equations
have been added for the subexpression +(4,−4).

For each rewrite rule, the proof technique has two parts: (1) showing that the
rewrite induced on the analysis equation has no effect on the solution to analysis
variables associated with the context; and (2) showing that the transformation
step eliminates the code added by the term rewrite.

For the arithmetic example, the transformation step T [[·]] is given by these
rules:

T [[c0n]] = n (2)
T [[c0x]] = x (3)

T [[c0 + (c1e1,
c2e2)]] =


c0 if c0 @ >; else
T [[e1]] if c2 = 0; else
T [[e2]] if c1 = 0; else
+(T [[e1]], T [[e2]])

(4)

The rule Eqn. (4) says: if an addition expression always has a constant value,
replace it by that constant; otherwise, if one of the arguments is always zero,
replace the addition by the other argument.

To prove that the optimizer undoes any sequence of rewrites in a single step,
we use induction over the number of rewrites. Before we begin the proof, we
define some terms.



3.1 Consistency of equations

We define a notion of consistency between systems of analysis equations. In-
tuitively, a system Sa is consistent with Sb if the system Xb = Eb(Xb) has
some extra variables compared to Xa = Ea(Xa), but the variables they have in
common map to the same program points and have the same lfp solution.

Definition 3. Let Sa = (Da, Ea) and Sb = (Db, Eb) be two systems and Da =
(D1, . . . , Dn). We say Sa and Sb are consistent and write Sa � Sb if for some per-
mutation of applied to the elements of both Db and Eb, Db = (D1, . . . , Dn, Dn+1,
. . . , Dm), m ≥ n and x?

i (Sa) = x?
i (Sb) for 1 ≤ i ≤ n and the first n components

of Ea and Eb map to the same program points.

The consistency relation � is transitive and reflexive.
To guarantee the lfp is the same for common variables, we often need to

reason about the fixpoint construction itself, i.e. the Kleene sequence ⊥, E(⊥),
E(E(⊥)), . . . , lfp E. We define ascending solution chains, which generalize the
Kleene sequence to arbitrary subterms of a system X = E(X).

Definition 4. Let S = (D,E) be a system. The ascending solution chain of E
is the set {Xi ∈ D | i = 0, 1, . . .} with X0 = ⊥, Xi+1 = E(Xi). The solution
X? = lfp E is the greatest element of the ascending solution chain. For a function
f : D → D′ where D′ is a complete lattice, we define asc f = {f(Xi) | i =
0, 1, . . .}.

We have found two techniques useful for proving consistency. The first is to make
use of results that show certain transformations on systems of equations preserve
the fixpoint; such transformations have been studied systematically in [27]. We
state three useful results here:

Lemma 1. Let S = (D,E) be a system of equations. The following rewrites on
X = E(X) result in a system S′ = (D′, E′) satisfying S � S′:

1. Adding an equation y = ey(X), where y is a new variable and ey is any
monotone function;

2. For an equation xi = ei(x1, . . . , xn), choosing some subterm e′ of ei, adding
an equation y = e′ and replacing the occurrence of e′ in ei with y, where y
is a new variable;

3. For an equation xi = ei(x1, . . . , xn), replacing a subterm e′ of ei with h(e′),
where h is an identity over the lattice of e′ for the ascending solution chain
of E.

For brevity, when we say “h is an identity”, we mean in the sense of the con-
ditions of Case 3 of Lemma 1. The second technique for proving consistency
is reason directly about the fixpoint of S′. In doing so, chaotic iteration [5, 11]
– the principle that fixpoints can be constructed by updating variables in any
order until convergence – is useful.



3.2 Proof for the arithmetic example

The nullspace proof is structured as follows: (1) a lemma for each rewrite rule;
(2) a theorem that any number of rewrites is undone in a single step by the
optimizer. The proof structure is highly modular: one can add rewrite rules by
adding a new lemma, and the rest of the proof is unaffected.

For the arithmetic example, we consider rule g1 first. From now on, when we
write T [[·]], we imply that T is using the lfp solution to the analysis equations.

Lemma 2. Let e be an expression, (S, M) = A[[e]] and (S′,M ′) = A[[g1e]]. Then
S � S′ and T [[e]] = T [[g1e]].

Proof. We consider the rewrites induced on the analysis equations by application
of g1:

c0n 7→ c0 + (c1n1,
c2n2) where n1 + n2 = n

This rewrite is applied to a subexpression inside some larger context; we write
X = E(X) for the unknown analysis equations associated with the rewrite con-
text. The systems S and S′ are:

S S′

X = E(X)
c0 = n

X = E(X)
c0 = +̂(c1, c2)
c1 = n1

c2 = n2

Consistency. In the system S, we have the equation c0 = n, so clearly
c?
0 = n. In the system S′, we have c?

1 = n1 and c?
2 = n2 and hence c?

0 =
+̂(n1, n2) = n1 + n2 = n. Therefore S � S′.

Transformation. To show T [[e]] = T [[g1e]], we consider the context and
redex of the rewrite separately. Since S � S′, the analysis variables guiding
transformation of the rewrite context will have the same solution in S and S′;
therefore T [[e]] = T [[g1e]] for the rewrite context. Next we consider the redex.
In the original expression e we have T [[c

?
0n]] = n by Eqn. (2). In the rewritten

expression g1e, we have T [[c
?
0 +(n1, n2)]] = c?

0 = n by Eqn. (4). Therefore T [[e]] =
T [[g1e]]. ut

Lemma 3. Let e be an expression, (S, M) = A[[e]] and (S′,M ′) = A[[g2e]]. Then
S � S′ and T [[e]] = T [[g2e]].

Proof. We consider the rewrites induced on the analysis equations by application
of g2:

cae 7→ c0 + (cae, c10)



Equations in the original system S which refer to ca will refer to c0 after rewrit-
ing. We use the notation [c0/ca] to indicate this substitution:

S S′

X = E(X) X = E(X)[c0/ca]
c0 = +̂(ca, c1)
c1 = 0

Consistency. In S′ we have the equation c1 = 0. Therefore c?
1 = 0. From

the definition of +̂ (Eqn. (1)), we have +̂(ca, 0) = ca. Using chaotic iteration,
the fixpoint could be constructed by evaluating c1 first; in subsequent iterations
we could always follow an evaluation of ca by an evaluation of c0 to maintain
the invariant c0 = ca. Therefore c?

0 = c?
a, and S � S′.

Transformation. Since S � S′, T [[e]] = T [[g2e]] for the rewrite context. For
the redex, we consider cases over c?

a:

– Case c?
a = >: then c?

0 = > by Eqn. (1), and T [[c
?
0 + (c?

ae, c?
10)]] = T [[c

?
ae]] by

Eqn. (4).
– Case c?

a @ >: then T [[c
?
0 +(c?

ae, c?
10)]] = c?

a by Eqn. (4). Next we show T [[c
?
ae]] =

c?
a by cases over e:
• Case e = can: then c?

a = n and T [[c
?
an]] = n = c?

a by Eqn. (2).
• Case e = cax: then c?

a = > which contradicts the assumption c?
a @ >, so

this case does not apply;
• Case e = ca + (e1, e2): then T [[c

?
a + (e1, e2)]] = c?

a by Eqn. (4).

Since S � S′, the rewrite context will be transformed identically in both e and
g2e; therefore T [[e]] = T [[g2e]]. ut

We now prove that any sequence of rewrites is undone in a single step by the
optimizer.

Theorem 1. Let e be an expression, G = {g1, g2} be the rewrite rules, A be
the analysis, and T be the transformation. Let S be the analysis system for e.
Let gn · · · g2g1 be a sequence of rewrites, gi ∈ G. Let Sn be the analysis system
produced by A[[gn · · · g1e]]. Then S � Sn and T [[gn · · · g1e]] = T [[e]].

Proof. By induction over the number of rule applications. The base case of zero
rule applications is trivial since � is reflexive and T [[e]] = T [[e]]. For the induction
step, let e′ be an expression and let S′ be the analysis system for e′. Assume
S � S′ and T [[e′]] = T [[e]]. We consider applying a single rewrite g ∈ G to e′. Let
S′′ be the analysis system for ge′. By Lemma 2 or 3, S′ � S′′ and T [[ge′]] = T [[e′]].

ut

Corollary 1. For any sequence of rewrites gn · · · g2g1, gi ∈ G and any program
p, O[[gn · · · g2g1p]] = O[[p]].



4 Nullspace proofs for imperative languages

4.1 An intermediate language

We now turn to a more substantial example: proving nullspace properties for an
imperative language with exceptions and loops.

Top-level definitions d ::= function v0(v1, . . ., vn) b function definition

Block b ::= s ; · · · ; s; f

Statement s ::= e
| v := e variable definition

Final statement f ::= e
| return t function return
| break break from loop
| throw t raise an exception

Expression e ::= t trivial
| p ( t, . . ., t ) primitive
| t ( t, . . ., t ) function call
| if t then b else b if expression
| try b catch(v) b exception handling
| loop b loops

Trivial expression t ::= n integer literal
| v variable use

Fig. 1: Grammar for the intermediate language.

Optimizing compilers typically lower the source form to a highly constrained
intermediate language (IL) over which optimizations are performed. Figure 1
shows the intermediate language we consider. This IL retains high-level con-
trol structures to simplify the analyses and proof. Expressions are syntactically
constrained to be in quadruple (e.g. [13]) or A-normal [16] form; this disallows
nested expressions such as f(3+4) in favour of a := 3+4; f(a). Control structures
are those typical of structured imperative languages: loops, exceptions, and if
expressions.

We distinguish two notions of dominance. By static dominance, we mean the
dominance relation apparent in a pre-analysis control flow graph. By analysis
dominance, we mean an “online” dominance relation determined by reachability
analysis in which dead edges are considered removed from a control flow graph.

Some notes about the IL:



– Variables may only be defined once (statically), and the scope of a variable
extends throughout the analysis dominance region of its definition. We as-
sume that variables have been renamed by a global α-conversion pass to
ensure uniqueness. To avoid dealing with assignments – a necessity for a real
optimizer but beyond the scope of this paper – we assume they are handled
by boxing.

– Primitive operations do not generate exceptions.
– if expressions use branch-if-zero tests.
– blocks, if, and try/catch may all generate values. This block produces the

value 5:

a := if 0 then
3

else
4

+(a,1)

4.2 De-optimizing rules

We consider the following set of simple de-optimizing rules. These rules are some-
what weak, deliberately so to make the proof of reasonable size. Each rule applies
only if the resulting program would pass syntactic and semantic checks; when
we say “b is any block”, this is shorthand for “b is any syntactically valid block
containing no variables unbound in the context in which it is to be placed.” We
define a subblock of a block e1; e2; . . . ; en to be a non-empty sequence ei; . . . ; ej

with 1 ≤ i ≤ j ≤ n. We write p 7→ p′ to indicate a single rewrite, and p
∗7→ p′′ to

indicate a sequence of rewrites.

– Rule g1: e 7→ if 0 then e′ else e where e is any subblock, and e′ is a new
block free of abruptions.2

– Rule g2: C[e] 7→ x := e;
C[x]

, where C[e] is a statement decomposed into a

context C and a subexpression e, the subexpression e is a trivial expression,3

and x is a new globally unique identifier.
– Rule g3: Insert at any statement position: x := ref(e) where x is a new

globally unique identifier and e is a trivial expression; and insert at n ≥ 0
statement positions in the static dominance region of the definition of x:
setref(x, ei) where the ei are trivial expressions, i = 1 . . . n. The primitive

ref(e) allocates a box on the heap and stores in it the value of expression e;
deref(e) dereferences a box, and setref(e1, e2) overwrites the value in a box.4

2 This assumption is not necessary, but makes the proof more manageable.
3 A trivial expression is either a variable use or a literal (Figure 1).
4 This is a weak form of a “box any variable” rule, weakened to avoid dealing with

propagation through boxes. Propagation through boxes is a complex analysis be-



– Rule g4: e 7→ try e catch(x) e′ where e is any subblock free of function calls
and throw statements, x is a new globally unique identifier, and e′ is a new
block free of abruptions.

By applying these rules to a program that computes +(1, 2) we can obtain an
elaborate version that has a debugging mode, boxes the integers, and handles
exceptions:56

function main()
r := +(1, 2)
return r

∗7→ function main()
debugMode := 0
a := 1
b := 2
x := ref(a)
y := ref(b)
if debugMode then

print(a)
print(b)

else
try

r := +(a, b)
return r

catch(err)
g := deref(x)
h := deref(y)
print(g)
print(h)
exit(1)

Our optimizer is guaranteed to undo all the rule applications, effectively reversing
the direction of the arrow ∗7→.

An obvious question is: why pose the rewrites as de-optimizing rules? Why
not reverse the direction of the rewrites and apply the inverse rules directly to
programs? The problem is this: deciding whether some of the inverse rules apply
requires a supporting analysis. For example, deciding whether Rule g−1

3 applies
to a given box requires knowing that any reads from the box are unreachable and
that the box does not escape. Doing such analyses for every rewriting step would

yond the scope of this paper. Instead we allow any value to escape into a box, and
guarantee that if the box is never read, then the boxing will be undone in the trans-
formation step, and other optimizations will be performed as if the value did not
escape.

5 Throughout this paper we omit the statement separator “;” when it is apparent from
indentation.

6 To avoid propagation through boxes, we have manually applied this optimization,
replacing uses of c and d with a and b, respectively. Also, in this example we assume
print and exit are primitives.



be inefficient; and devising a rewriting strategy that would allow a convergence
proof for a general compiler – with interprocedural analysis and heap analysis
– appears difficult. Instead, we prove that our optimizer effectively subsumes
a rewrite system implementing the inverse rules. If the the optimizer runs in
O(|p| log |p|) time, then the rewrites are undone in O(|p| log |p|) time.

4.3 Analysis equations

We limit our attention to “simplifying” optimizations that reduce or eliminate
code. Optimizations that reorder code – for example, loop nest optimizations –
are interesting but we regard them as an orthogonal issue.

We formulate the analyses as an optimistic superanalysis [26, 3]. An opti-
mistic analysis is one that starts with the optimistic assumption of ⊥ and iter-
ates to a least fixpoint. In an optimistic analysis, intermediate results during a
fixpoint iteration are not conservative and may not be used for transformation.
We adopt the terminology of [12] in calling simultaneous, interacting analyses a
“superanalysis.” We consider four simultaneous analyses:

– Reachability decides whether expressions may be reached during execution.
Unreachable expressions are dead code and may be eliminated.

– Congruence partitions program points into equivalence classes based on
whether the values reaching them are always the same.

– Escape, a backward analysis that determines how a value produced at a
program point may be used.

– Transform, a simple analysis deciding whether subexpressions are to be pro-
cessed for value or effect in the transformation step.

Our analyses are for the most part conventional and well-understood analyses
drawn from the literature; we have made some adjustments to enable the proof.
For the purposes of this paper, we regard soundness of the stated analyses as an
important but tangential issue.

By analogy with logical implication, we adopt the notation ⇒ in the usual
way:

p(x) ⇒ y ≡
{
⊥ if p(x) = false
y if p(x) = true

(5)

where p(x) is a predicate on an analysis variable x, and p is monotone on the

lattice
true
|

false
. We use ⇒ to encode interactions between analyses.

Throughout this paper we identify analysis variables corresponding to pro-
gram points using superscripts: the notation c0 if c1e1 then c2e2 else c3e3 asserts
that c1 is the congruence analysis variable corresponding to subexpression e1,
and similarly for c2, c3 and c0.



4.4 Reachability analysis

We associate with every program point a reachability (flow) analysis variable f
whose value is an element of the lattice:

Df =
live
|

dead

We define the predicate

live(f) ≡ (f wf live) (6)

Reachability equations are built using control flow graphs, of which one is con-
structed for each function in a program. Each vertex in a flow graph represents
a basic block – a sequence of statements in which control is guaranteed to flow
sequentially from top to bottom. Edges represent control flow: if branches, re-
turn statements, exception throws, loops, and try/catch. For each function we
have pads that are vertices containing no code but serve to collect return and
throw edges.

A block is reachable if any of its incoming edges are live:

f4 = f1 t f2 t f3

To resolve control flow of if expressions, we use the results of congruence analy-
sis (defined later), in the manner of conditional propagation [26]. Consider the
expression if c1e1 then e2 else e3 where c1 is the congruence analysis variable for
the test. The control flow subgraph is:

f1
��

if c1e1

f2

||xxxxxxxx
f3

##F
FFFFFFF

e2 e3

We resolve control flow by writing the equations:



f2 = nonzero(c1) ⇒ f1

f3 = zero(c1) ⇒ f1

where:

zero(x) ≡ x wc 0 (7)

nonzero(x) ≡
{

true if x wc z for some z ∈ (Z− {0})
false otherwise (8)

The predicates zero and nonzero determine whether their arguments could be
zero or nonzero, respectively; if the branch cannot be determined either way
then both predicates are true.
Straight-line code is split into multiple blocks at function calls. Consider this
code:

a2 := −(n, 1)
a3 := fibonacci(a2)
a4 := −(n, 2)
a5 := fibonacci(a4)
a6 := +(a3, a5)
return a6

Prior to analysis we do not know whether fibonacci() might throw an exception,
so we split the sequence into three blocks and add edges to account for possible
exception throws:



For this paper, we limit ourselves to intra-procedural analysis (rather than inter-
procedural analysis) and assume that any reachable function call may complete
normally or throw an exception. For the above code we generate the equations
f1 = f0, f4 = f0, f2 = f1, f5 = f1, f3 = f2, f6 = f4 t f5. We assume any
function may be called, and hence for a function body with initial edge f0 we
add the equation f0 = live.

4.5 Congruence analysis

Congruence analysis partitions program points into equivalence classes based on
whether the values reaching them are always the same. For simplicity, we present
only the constant and copy propagation component of congruence analysis; we
omit value-numbering and other techniques for finding congruences. The efficient
way to do this analysis is via partitioning [1, 8]; to facilitate the proof we instead
propagate equivalence class representatives. Our congruence lattice has as its
domain Dc = {>,⊥} ∪ Z ∪ Vars where Z is the set of integers, and Vars the
set of all program variables. We associate with every value-producing program
point i an analysis variable ci ∈ Dc. An inference ci = j where j ∈ Z asserts
that program point i always has the integer value j. An inference ci = x where
x ∈ Vars asserts that program point i always has a value equal to the value
of variable x; such an inference is only valid in the analysis dominance region
of the definition of x. Our analysis ensures that such inferences do not escape
their respective dominance regions. The partial order vc is the least reflexive,
transitive closure of:

⊥ vc y for all y ∈ Dc

y vc > for all y ∈ Dc

i vc x for all x ∈ Vars and i ∈ Z
x1 vc x2 if x1, x2 ∈ Vars and the definition of x1 statically

dominates the definition of x2

If two program points i and j satisfy ci = cj and ci 6= >, then i and j are in
the same congruence equivalence class. Initially, all variables are assumed to be
⊥, and hence all program points are in the same equivalence class; as analysis
progresses, equivalence classes are effectively split until a fixpoint is reached.

This table summarizes analysis equations for straight-line code. We write fa for
the reachability analysis variable of the enclosing basic block:



Expression Analysis variables Equation
Function defn function c0 f(c1x1, . . . ,

ckxk) e c0 = >, c1 = >, . . . , ck = >

Integer literal fa,c0n c0 = live(fa) ⇒ n

Variable
- Definition fa,c0x := cxe c0 = live(fa) ⇒ >
- Use fa,c1x c1 = live(fa) ⇒ putname(x, cx)

Ref fa,u0,c0ref(c1e1) c0 = live(fa) ⇒ (read(u0) ⇒ >)
Primitive fa,c0p(c1e1, . . . ,

ckek) c0 = live(fa) ⇒ p̂(c1, . . . , ck)

Function call fa,c0 c1e1(c2e2, . . . ,
ckek) c0 = live(fa) ⇒ >

Return fa,c0return e c0 = live(fa) ⇒ >
Throw fa,c0throw e c0 = live(fa) ⇒ >
Break fa,c0break c0 = live(fa) ⇒ >
Loop fa,c0 loop e c0 = live(fa) ⇒ >

A function p̂ is an abstract lattice approximation of a primitive operation p. The
function putname(x, y) introduces a name x as an equivalence class representative
if y = >:

putname(x, y) =
{

y if y 6= >
x if y = > (9)

The predicate read(·) tests whether a value might be a box that is read from at
some future program point, and is described in Section 4.6. We use it here to
support compile-time garbage collection: until the analysis discovers that a box
created by ref could be read from, the ref propagates >.

At control-flow joins due to if, return, throw, or try/catch incoming values are
combined using a merge function (distinguished from the lattice operator t):

merge(a, b) =


a if b = >
b if a = >
a if a = b
> otherwise

(10)

The expression c0 if c1e1 then c2e2 else c3e3 would have the equation c0 = merge(c2,
c3), where f2 and f3 are the reachability analysis variables of the control flow
edges from the branches of the if. Similarly for an expression c0try c1e1 catch(cxx)
c2e2: the congruence equations would be c0 = merge(c1, c2) and the equation for
cx would combine the congruence variables from all throw points of e1 using the
merge function.



4.6 Escape analysis

Escape analysis decides how a value may be used at future program points.
In this paper we use it to support two simple transformations: eliminating dead
variables and rudimentary compile-time garbage collection [10]. To support these
transforms we need to know for every value (1) whether it is used; (2) whether
it is read from as a box; (3) whether it is written to as a box. We associate with
every value-producing program point an analysis variable u, and use as a lattice:

Du =
used
|
⊥

×
read
|
⊥

×
written
|
⊥

where × denotes lattice direct product. As shorthand we will write used to mean
(used,⊥,⊥) and similarly for read and written. We will write> for (used, read,written)
and ⊥ for (⊥,⊥,⊥). We define predicates:

used(u) ≡ u wu used (11)
read(u) ≡ u wu read (12)

written(u) ≡ u wu written (13)

This table summarizes analysis equations for straight-line code:



Expression Analysis variables Equation
Function function x0(x1, . . . , xk) u0e0 u0 = ⊥

Block ua


u1e1

...
uk−1ek−1

ukek


u1 = ⊥

...
uk−1 = ⊥
uk = ua

Variable
- Definition uax := u0e u0 = u1 t . . . t uk

- Uses u1x
...

ukx

Ref fa,uaref(u1e1) u1 = live(fa) ⇒ (read(ua) ⇒ >)
Deref fa,uaderef(u1e1) u1 = live(fa) ⇒ read
Setref fa,uasetref(u1,c1e1,

u2e2) u1 = live(fa) ⇒ written
u2 = live(fa) ⇒ ((c1 Ac >) ⇒ >)

Other primitives fa,uap(u1e1, . . . ,
ukek) u1 = ua

...
uk = ua

Function call fa,ua u1e1(u2e2, . . . ,
ukek) u1 = live(fa) ⇒ used

u2 = live(fa) ⇒ >
...

uk = live(fa) ⇒ >

If fa,ua if u1e1 then u2e2 else u3e3 u1 = live(fa) ⇒ >
Loop fa,ua loop u1e1 u1 = >

At a control-flow join, we add equations:

u1

f1 !!C
CC

CC
CC

C u2

f2

��

· · · un

fn
vvmmmmmmmmmmmmmmm

u0

u1 = live(f1) ⇒ u0

u2 = live(f2) ⇒ u0

...
un = live(fn) ⇒ u0

At the return and throw pad for a function, we add equations:

u0 = live(fa) ⇒ >

where fa is the reachability of the return or escape pad.



4.7 Transform analysis

This is a helper analysis to make the transformation step simpler; it decides for
every expression whether to process for value or effect. It associates with most
program points an analysis variable t, and uses the simple lattice:

Dt =
value
|

effect

4.8 Transform analysis (details)

This table summarizes the analysis equations:

Expression Analysis variables Equation
Function function x0(x1, . . . , xk)

t0e0 t0 = effect

Block ta


t1e1

...
tk−1ek−1

tkek


t1 = effect

...
tk−1 = effect
tk = ta

Var Def x := c0,u0,t0e t0 = (c0 wc >) ∧ used(u0) ⇒ value
Return return t0e0 t0 = value
Throw throw t0e0 t0 = value
If ta if e1 then t2e2 else t3e3 t2 = ta, t3 = ta
Try/catch tatry t1e1 catch(x) c2e2 t1 = ta, t2 = ta
Loop ta loop t1e1 t1 = effect

4.9 Solution step

After the analysis equations are built, they are solved by constructing the least
fixpoint solution. Our implementation does this in the usual way by constructing
a dependence graph in which each analysis variable is a vertex and there is an
edge (xi, xj) if xj appears in the equation for xi, building the acyclic condensa-
tion graph, and doing fixpoint iteration over sets of mutually dependent analysis
variables using the worklist algorithm. This yields the solution X? of the system
X = E(X).

5 Transformation step

These are the minimal transformations that allow the proof; a reasonable opti-
mizer would do much more. We use � to represent an empty expression. The



transformation step implicitly takes as a parameter the solution X? to the anal-
ysis equations; we omit it to reduce syntactic noise.

T [[c0,t0n]] =
{

c0 if t0 wt value
� otherwise (14)

T [[c0,t0x]] =
{

c0 if t0 wt value
� otherwise (15)

T [[x := t0e]] =
{

x := T [[e]] if t0 wt value
T [[e]] otherwise (16)

T [[if e1 then f2e2 else f3e3]] =
{
T [[e3]] if live(f3) ∧ ¬live(f2)
if T [[e1]] then T [[e2]] else T [[e3]] otherwise(17)

T [[try e1
f2catch(x) e2]] =

{
T [[e1]] if ¬live(f2)
try T [[e1]] catch(x) T [[e2]] otherwise (18)

T [[c0ref(e)]] =
{

� if c0 = ⊥
ref(T [[e]]) otherwise (19)

T [[setref(c1e1, e2)]] =
{

� if c1 = ⊥
setref(T [[e1]], T [[e2]]) otherwise (20)

For other expressions e not covered by the above cases, T [[e]] is constructed by
applying T [[·]] over subexpressions and reconstructing e in the natural way; for
example, T [[loop e]] = loop T [[e]]. Two of the transforms require explanation:

– If the value of a trivial expression is needed, we do T [[c0e]] = c0 (Eqns.
(14,15)). This is possible since the congruence analysis variables at reachable
trivial expressions are always either an integer value or a variable name
(Lemma 5).

– For compile-time garbage collection, at a box creation point c0ref(e) we prop-
agate c0 = ⊥ until escape analysis determines that the box may be read
from. If the box is never read, then c?

0 = ⊥ and the ref(e) expression and all
setref(. . .) to the box are dead code, and are eliminated by Eqn. (19) and
Eqn. (20).

6 Proof of the main theorem

Proofs of lemmas not given in the main text are found in Appendix A.2.

6.1 Structure of the proof

To prove Theorem 2, we consider each rule gi ∈ G in turn. Let (S, M) = A[[p]]
be the analysis equations for p, and (S′,M ′) = A[[gip]]. We study the rewrites
induced on S by gi, and show that S � S′. Therefore the gfp solution of S and
S′ are equal for their shared variables. We then consider the transformation T
and prove sufficient bounds on analysis variables to show that T [[p]] = T [[gip]].

We prove the lemma for Rule g2 in this section; proofs for the remaining
rules are found in Appendix A.2.



Lemma 4. (Rule g1) Let p be a program, (S, M) = A[[p]] and (S′,M ′) =
A[[g1p]]. Then S � S′ and T [[p]] = T [[g1p]].

The following lemma is required in the proof for Rule g2.

Lemma 5. For a trivial subexpression c0e, > /∈ asc c0.

Lemma 6. (Rule g2) Let p be a program, (S, M) = A[[p]] and (S′,M ′) =
A[[g2p]]. Then S � S′ and T [[p]] = T [[g2p]].

Proof. We consider the changes induced by g2 on the analysis equations:

p g2p

C[fa,ca,ua,tae] fa,c2,u2,t2x := ca,u1,t1e
C[fa,c1,ua,tax]

The system S′ is:

X = E(X)[c1/ca, u1/ua]
c1 = putname(x, ca)
c2 = live(fa) ⇒ >
u1 = ua

u2 = ⊥
t1 = (ca wc >) ∧ used(u1) ⇒ value

t2 = effect

We now show that each of the substitutions [c1/ca, u1/ua] and added equations
are consistent with S.

– For [c1/ca]: By application of Lemma 5, > /∈ asc ca. We have the equation
c1 = putname(x, ca); from the definition of putname (Eqn. (9), Appendix 4.5)
and> /∈ asc ca, putname(x, ca) is an identity on ca and Lemma 1(2,3) applies.

– For [u1/ua]: We have the equation u1 = ua. Lemma 1(2) applies.
– For the remaining equations, Lemma 1(1) applies.

Therefore S � S′. Next we consider the transformations T [[p]] and T [[g2p]]:

– For T [[p]]: we have T [[c
?
a,t?

ae]] = c?
a if t?a wt value and � otherwise (by either

Eqn. (14) or Eqn. (15)).
– For T [[g2p]]: we have from previous arguments that c?

1 = c?
a, since putname(x,

ca) is an identity. We have t1 = (ca wc >) ∧ used(u1) ⇒ value; since c?
a 6= >

by Lemma 5, t?1 @t value. Therefore T [[x := t?
1e]] = T [[t

?
1e]] by Eqn. (16),

and T [[t
?
1e]] = � by either Eqn. (14) or Eqn. (15). For the use of x, we have

T [[c
?
1 ,t?

ax]] = c?
1 = c?

a if t?a wt value and � otherwise, by Eqn. (15).



Therefore T [[p]] = T [[g2p]]. ut

Lemma 7. (Rule g3) Let p be a program, (S, M) = A[[p]] and (S′,M ′) =
A[[g3p]]. Then S � S′ and T [[p]] = T [[g3p]].

Lemma 8. (Rule g4) Let p be a program, (S, M) = A[[p]] and (S′,M ′) =
A[[g4p]]. Then S � S′ and T [[p]] = T [[g4p]].

6.2 Proof of the main theorem

Theorem 2. Let p be a program, G = {g1, g2, g3, g4} be the set of rewrite rules
of Section 4.2, A be the analysis of Section 4.3, T be the transformation of
Section 5, and O = (A, T ). Let S be the analysis system for p. Let gn · · · g2g1

be a sequence of rewrites, gi ∈ G. Let Sn be the analysis system produced by
A(gn · · · g1p). Then S � Sn and T [[gn · · · g1p]] = T [[p]].

Proof. By induction over the number of rule applications. The base case of zero
rule applications is trivial since � is reflexive and T [[p]] = T [[p]]. For the induction
step, let p′ be a program and let S′ be the analysis system for p′. Assume S � S′

and T [[p′]] = T [[p]]. We consider applying a single rewrite g ∈ G to p′. Let S′′

be the analysis system for gp′. By one of Lemmas 4, 6, 7 or 8, S′ � S′′ and
T [[gp′]] = T [[p′]]. ut

7 Nullspace compilers are true optimizers

In this section, we show a consequence of a nullspace proof: that under some
weak assumptions, optimized programs are “minimal” in some metric.

We review some necessary rewrite terminology [6, 7]. We write x 7→ y to mean
that x rewrites to y in a single step, and ∗7→ (“derives”) for the reflexive, transitive
closure of 7→. We write x ↔ y (“convertible”) to mean x 7→ y or y 7→ x, and ∗↔
for the reflexive, transitive closure of ↔. Then ∗↔ is an equivalence relation and
partitions the set of programs into equivalence classes. We use the notation [p]
for the equivalence class of a program p under ∗↔.

Remark. The nullspace theorem guarantees O[[p]] = O[[p′]] for all p′ ∈ [p].

We write |p| for the textual size of a program. We make three assumptions:

1. Rewrites strictly increase size: |p| < |gp| for a rewrite g and program p.
2. O is nonincreasing in program size: |O[[p]]| ≤ |p|.
3. For any p, O[[p]] is a fixpoint: O[[O[[p]]]] = O[[p]].

The third assumption is reasonable for a transformation T [[·]] that makes the
minimal changes to support the nullspace proof. However, we allow the pos-
sibility that more improvements are performed by T [[·]] than required by the
nullspace proof.



Lemma 9. Let p be a program. There is a nonempty set of “least programs”
P0 ⊆ [p] such that (1) for every least program p0 ∈ P0 there is no z ∈ [p] such
that z 7→ p0; (2) p is derivable from some p0 ∈ P0.

Proof. Since |p| < |gp| for any rewrite g and program p, the relation ∗7→ is anti-
symmetric (i.e. there are no cycles p1 7→ p2 7→ . . . 7→ pn 7→ p1). Furthermore,
∗7→ is reflexive and transitive by definition. Therefore ([p], ∗7→) is a poset, and the
least programs P0 ⊆ [p] are simply the least elements of the poset. ut

Definition 5. The abstraction level of a program p, written AL(p), is the min-
imum over all least programs p0 ∈ [p] of the number of rewrite steps in the
shortest derivation p0 7→ . . . 7→ p.

Theorem 3. For all programs p, AL(O[[p]]) = 0.

Proof. (By contradiction). Choose p, and assume AL(O[[p]]) > 0. Then there is
a program p′ and rewrite g such that gp′ = O[[p]]. Apply the optimizer again:
O[[gp′]] = O[[p′]] = O[[O[[p]]]] = O[[p]] by the nullspace theorem and the fixpoint
assumption. But then |O[[p]]| = |O[[p′]]| ≤ |p′| < |gp′| = |O[[p]]|, which is a
contradiction. ut

Thus, an optimizing compiler with the nullspace property and satisfying the
above assumptions is a true optimizer : it produces a program which is minimal
in the metric AL.

8 Conclusion

We have demonstrated a technique for proving guaranteed optimization for im-
perative compilers. The “de-optimizing” rules used by our proof technique give
programmers an intuitive feel for what abstractions they may introduce with-
out performance loss. The proof shows that any sequence of de-optimizing rule
applications is undone by a single application of the optimizer; hence, the opti-
mizer effectively subsumes a rewrite system implementing the inverse (optimiz-
ing) rules. The proof relies on adopting a superanalysis approach to optimization
– that is, simultaneous analyses followed by a single transformation step.

A key unanswered question is: will the approach extend to more complex
analyses and transformations? We believe so, within limits. We identify four re-
quirements for adding to the framework: (1) the analysis must be posable as
equations in a lattice framework; (2) the analysis equations must be composable
– that is, if one assembles an expression from subexpressions, there is a corre-
sponding way to assemble the analyses of subexpressions; (3) one must be able
to describe suitable de-optimizing rewrite rules; and (4) the rewrite rules must
admit a proof along the lines of Lemmas (2,3). We have explored – although
not yet in a rigorous way – adding function pointers, interprocedural analysis
and propagation of values through nonmutable heap objects, and these appear
to meet the requirements. In future work we plan to incorporate them formally
into our proof framework.
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A Lemmas

A.1 Statement of additional lemmas

Lemma 10. Let D1 and D2 be complete lattices, f : D1 × D2 → D1 and g :
D1×D2 → D2 be monotone functions, J(x, y) = (f(x, y), g(x, y)), and (x?, y?) =
lfp J . Let K(x, y, z) = (f(x, y), g(z, y), x). Then lfp K = (x?, y?, x?).

Lemma 11. Let X = E(X) be a system S and u0e be an expression whose
normal completion edge has reachability f1. Then the system S′ given by

X = E(X)[u2/u0]
u2 = live(f1) ⇒ u0

satisfies S � S′.



Lemma 12. Let e be an expression whose reachability fe satisfies asc fe =
{dead}. If e′ is an expression in the static dominance region of e with reachability,
congruence and escape variables fe′ , ce′ and ue′ , respectively, then asc fe′ =
{dead}, asc ce′ = {⊥} and asc ue′ = {⊥}.

Lemma 13. If a system X = E(X) contains a subterm xty, then asc (xty) ⊆
{α t β | α ∈ asc x ∧ β ∈ asc y}.

Lemma 14. If a system X = E(X) contains an equation y = f(x) then asc y =
({⊥} ∪ f(asc x)).

Lemma 15. If a system X = E(X) contains an equation y = f(x), then asc y ⊆
({⊥} ∪ range(f)).

Lemma 16. If a system X = E(X) contains a subterm f(x, y), then asc f(x, y) ⊆
{f(α, β) | α ∈ asc x, β ∈ asc y}.

A.2 Proofs of Lemmas

Proof. (Lemma 1) (1) The added variable y does not occur in E′, so the least
fixpointis unchanged for variables in X. (2) By application of Lemma 10. (3) If
h(α) = α for α ∈ asc e′ then E′(X) = E(X) during least fixpointconstruction,
and the least fixpointis unchanged. ut

Proof. (Lemma 4) We consider the changes induced by g1 on the analysis equa-
tions S = (X, E). For easier reading, we give newly introduced analysis variables
numeric subscripts, and pre-existing analysis variables alphabetic subscripts. The
table below shows the flow graph and analysis variables for the subexpression e
before and after application of g1.
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ca,ua,tae c3,ua,ta if c1,u10 then c2,u2,t2e′ else ca,u3,t3e



In the block e′ we may have uses of variables not local to e′. This causes addi-
tional terms to be inserted in the escape equations. For each variable used in e′

but not defined in e′, we have additions of the form:

Definition of x prior to e′ x := uxex ux = Ux(X) t ui

Use of x in e′ uix ui = Ui(X ′)

where Ux(X) is the previous escape function for x, and Ui(X ′) is some unknown
function that analyzes the use of x in e′. Let C,F,U, T be the congruence, flow,
escape and transform functions for the analysis of p. Uses of variables in e′ cause
U to be rewritten to U ′ as described above.

Let X ′ be a set of analysis variables for g1p. The system S′ is:

X = (C(X), F (X), U ′(X ′), T (X))[c3/ca, f2/fa, f4/fb, u3/ua, t3/ta]
c1 = live(fa) ⇒ 0
c2 = C2(X ′)
c3 = merge(c2, ca)
f1 = nonzero(c1) ⇒ fa

f2 = zero(c1) ⇒ fa

f3 = F3(X ′)
f4 = f3 t fb

u1 = live(fa) ⇒ >
u2 = live(f3) ⇒ ua

u3 = live(fb) ⇒ ua

t3 = ta

t2 = ta

where C2 and F3 are some congruence and flow functions.
We consider the C,F ,U and T equations in turn. We show for the revised

equations U ′ and for each of the substitutions [c3/ca, f2/fa, f4/fb, u3/ua, t3/ta]
that the resulting system is consistent, generally by showing that one of the cases
of Lemma 2 applies.

– For the additions in U ′: We have the equation c1 = live(fa) ⇒ 0; by
Lemma 15, asc c1 ⊆ {⊥, 0}. We have the equation f1 = nonzero(c1) ⇒ fa;
by the definition of nonzero (Eqn. (8)), asc f1 = {dead}. By application of
Lemma 12, each of the added equations ui = Ui(X ′) satisfy asc ui = {⊥};
therefore the escape terms of the form · t ui added to U ′ are identities, and
Lemma 1(3) applies.

– For [u3/ua]: we have u3 = live(fb) ⇒ ua. This is consistent by Lemma 11.



– For [f4/fb]: From previous arguments asc f1 = {dead}; by Lemma 12,
asc f3 = {dead}. We have f4 = f3 t fb; since asc f3 = {dead}, f3 t · is
an identity. Lemma 1(2,3) applies.

– For [f2/fa]: Since we have assumed that e completes normally, the equation
for fb is an identity on f2. We have f2 = zero(c1) ⇒ fa and c1 = live(fa) ⇒ 0;
by Lemma 10, a system containing the equation f2 = zero(c1) ⇒ fa has the
same solution when the equation for f2 is replaced with f2 = zero(live(fa) ⇒
0) ⇒ fa, which is an identity on fa (Eqns. (5,6,7)). Lemma 1(2,3) applies.

– For [c3/ca]: We have c3 = merge(c2, ca). From previous arguments asc f1 =
{dead} and by application of Lemma 12, asc c2 = {⊥}; therefore merge(c2, ·)
is an identity (Eqn. (10)). Lemma 1(2,3) applies.

– For [t3/ta]: We have t3 = ta. Lemma 1(2) applies.
– For the remaining equations, Lemma 1(1) applies.

Therefore S � S′.
We now consider the transformation step. From previous arguments asc f1 =

{dead}; therefore f?
1 = dead, and T [[if 0 then f1e′ else f2e]] = T [[e]] by Eqn. (17).

Therefore T [[p]] = T [[g1p]]. ut

Proof. (Lemma 5) Trivial expressions are constrained to be either integers or
variable uses (Figure 1). Case e is an integer literal n: Then the analysis equation
is c0 = n, so asc c0 = {⊥, n}. Case e is a variable use x: Then the analysis
equation is c0 = putname(x, ci) where ci is some analysis variable. By Lemma 15,
asc c0 ⊆ {⊥} ∪ range(putname). Since ⊥ /∈ range(putname) (Eqn. (9)), ⊥ /∈
asc c0. ut

Lemma 6. See Section 6.1.

Proof. (Lemma 7) We consider the changes induced by g3 on the analysis
equations S = (X, E).

We label analysis variables for the ith setref(. . .) statement with a superscript
i.

fa,c3,u3,t3x := u0,c0,fa,t0ref(c1,u1e)
...
f1t1setref(c1

1u1
1x, c1

2u1
2e1)

...
fntn

setref(cn
1 un

1 x, cn
2 un

2 en)

For each expression ei a term of the form · t ui
2 is added to the escape equation

corresponding to ei. For the expression e a term · t u1 is added to its escape
equation. Let U ′ be the revised escape equations.

The system S′ is:



X = (C(X), F (X), U ′(X ′), T (X))
c0 = live(fa) ⇒ (read(u0) ⇒ >)
c1
1 = live(fa) ⇒ putname(x, c0)

...
cn
1 = live(fa) ⇒ putname(x, c0)

c3 = live(fa) ⇒ >
u0 = u1

1 t . . . t un
1

u1 = live(fa) ⇒ (read(u0) ⇒ >)
u1

1 = live(f1) ⇒ written

...
un

1 = live(fn) ⇒ written

u1
2 = live(f1) ⇒ ((c1

1 Ac ⊥) ⇒ >)
...

un
2 = live(fn) ⇒ ((cn

1 Ac ⊥) ⇒ >)
u3 = ⊥
t0 = (c0 wc >) ∧ used(u0) ⇒ value

t1 = T1(X ′)
...

tk = Tk(X ′)
t3 = effect

f1 = F1(X ′)
...

fk = Fk(X ′)

where the Ti(X ′) and Fi(X ′) are some functions.
We have ui

1 = live(f i) ⇒ written, so asc ui
1 ⊆ {⊥,written} by Lemma 15.

We have u0 = u1
1 t . . . t un

1 , so asc u0 ⊆ {⊥,written} by repeated applica-
tion of Lemma 13. We have c0 = live(fa) ⇒ (read(u0) ⇒ >); by Lemma 14,
asc (read(u0) ⇒ >) = {⊥}. We know fa ∈ {dead, live}:

– Case fa = live: then asc c0 ⊆ {⊥} by Lemma 14.
– Case fa = dead: then asc c0 ⊆ {⊥} by Lemma 15.

Therefore asc c0 ⊆ {⊥}.
We have ci

1 = live(fa) ⇒ putname(x, c0). By cases on fa we have asc ci
1 ⊆

{⊥}. We have ui
2 = live(f i) ⇒ ((ci

1 Ac ⊥) ⇒ >); by cases on f i we have
asc ui

2 ⊆ {⊥}. Therefore the terms ·tui
2 are identities, and Lemma 1(3) applies.



We have u1 = live(fa) ⇒ read(u0) ⇒ >; by cases on fa, asc u1 ⊆ {⊥}.
Therefore the term · t u1 is an identity, and Lemma 1(3) applies.

Therefore S � S′.
Next we consider the transformation step. We have from previous arguments

that asc c0 = {⊥}; therefore c?
0 = ⊥ and t?0 = effect. Then T [[x := c?

0t?
0 ref(e)]] =

T [[c
?
0t?

0 ref(e)]] = � by Eqn. (16) and Eqn. (19). For each setref(c1
1x, e1) statement

we have asc ci
1 = {⊥} from previous arguments, and therefore ci

1
? = ⊥. Therefore

T [[setref(c1
1

?

x, e1)]] = � by Eqn. (20).
Therefore T [[p]] = T [[g3p]]. ut

Proof. (Lemma 8) We consider the changes induced by g4 on the analysis
equations S = (X, E).

p g2p

fa

��
ca,ua,tae

fb

��

fa

��
try

f2

��
f3

��
e

fb

��

catch(x)

f4

��
e′

f5
yysssssssssss

f6

��

ca,ua,tae c1,ua,tatry ca,u2,t2e catch(c3,u3x) c4,u4,t4e′

In the block e′ we may have uses of variables not local to e′. This causes addi-
tional terms to be inserted in the escape equations. For each variable used in e′

but not defined in e′, we have additions of the form:

Definition of x prior to e′ x := uxex ux = Ux(X) t ui

Use of x in e′ uix ui = Ui(X ′)

where Ux(X) is the previous escape function for x, and Ui(X ′) is some unknown
function that analyzes the use of x in e′. Let C,F,U, T be the congruence, flow,
escape and transform functions for the analysis of p. Uses of variables in e′ cause
U to be rewritten to U ′ as described above.

Since e was assumed to be free of function calls and throw statements, there
are no throw points in e. The system S′ is:



X = (C(X), F (X), U ′(X ′), T (X))[c1/ca, f2/fa, f6/fb, u2/ua, t2/ta]
c1 = ca t c4

c3 = ⊥
c4 = C4(X ′)
f2 = fa

f3 = dead

f4 = f3

f5 = F5(X ′)
f6 = fb t f5

u2 = live(fb) ⇒ ua

u3 = U3(X ′)
u4 = U4(X ′)
t2 = ta

t4 = ta

where C4, F5, U3 and U4 are some functions. We show for the revised equations
U ′ and for each of the substitutions [c1/ca, f2/fa, f6/fb, u2/ua, t2/ta] that the
result is consistent, generally by showing that one of the cases of Lemma 1
applies.

– For [f6/fb]: We have f3 = dead; therefore asc f3 = {dead} and asc f4 =
{dead}. By Lemma 12, asc f5 = {dead}. Therefore in the equation f6 =
fb t f5, · t f5 is an identity. Lemma 1(2,3) applies.

– For [f2/fa]: we have f2 = fa. Lemma 1(2) applies.
– For [c1/ca]: From previous arguments asc f3 = {dead} and by Lemma 12,

asc c4 = {⊥}. Therefore in the equation c1 = ca t c4, · t c4 is an identity
and Lemma 1(2,3) applies.

– For [u2/ua]: We have the equation u2 = live(fb) ⇒ ua. This is consistent by
Lemma 11.

– For the additions in U ′: from previous arguments we have asc f4 = {dead}.
By Lemma 12, each of the variables ui corresponding to uses of variables
in e′ satisfy asc ui = {⊥}. Therefore each of the added terms · t ui are
identities, and Lemma 1(3) applies.

– For [t2/ta]: We have the equation t2 = ta. Lemma 1(2) applies.
– For the other equations, Lemma 1(1) applies.

Therefore S � S′.
We now consider the transformation step. From previous arguments asc f3 =

{dead}; therefore f?
3 = dead, and T [[try e f?

3 catch(x) e′]] = T [[e]] by Eqn. (18).
Therefore T [[p]] = T [[g3p]]. ut



Proof. (Lemma 10) By construction of the least fixpoint: let (x0, y0) = (⊥,⊥),
(xi+1, yi+1) = J(xi, yi), (x′0, y

′
0, z

′
0) = (⊥,⊥,⊥) and (x′i+1, y

′
i+1, z

′
i+1) = K(x′i, y

′
i, z

′
i).

Then:

xi v z′i+1 v xi+1

xi v x′i v xi+1

yi v y′i v yi+1

by induction over i and monotonicity of f, g, and therefore limi→∞(x′i, y
′
i, z

′
i) =

(x?, y?, x?). ut

Proof. (Lemma 14) By construction of the least fixpoint. Consider the iteration
X0 = ⊥, Xi+1 = E(Xi) and let (xi, yi) be the value of (x, y) in Xi. Then
y0 = ⊥ and yi+1 = f(xi); therefore α ∈ asc x ⇔ f(α) ∈ asc y, and asc y =
({⊥} ∪ f(asc x)). ut

Proof. (Lemma 15) By Lemma 14, since f(asc x) ⊆ range(f). ut

Proof. (Lemma 11) We invoke soundness of the analysis. The value generated
by e may be used if and only if the normal completion edge of e is live; therefore
asc (live(f1) ⇒ u0) = asc u0. ut

Proof. (Lemma 12) Since e′ is in the dominance region of e, we invoke sound-
ness of the analysis to assert that asc fe′ ⊆ asc fe.

For the congruence analysis variables, the proof is by bottom-up induction
over expression trees. The base case is given by leaf expressions (literals, variables
uses, and break). For an expression e0 in the dominance region:

– Case e0 = c0n. Then we have c0 = live(f0) ⇒ n. Since asc f0 ⊆ {dead},
asc c0 = {⊥} by Lemma 14.

– Case e0 = f0,u0,c0x. Then we have c0 = live(f0) ⇒ putname(x, c1). Since
asc f0 ⊆ {dead}, asc c0 = {⊥} by Lemma 14.

– Case e0 = f0,c0x := e0. Then we have c0 = live(f0) ⇒ >. Since asc f0 ⊆
{dead}, asc c0 = {⊥} by Lemma 14.

– Case e0 = c0return e1. Then we have c0 = live(f0) ⇒ >. Since asc f0 ⊆
{dead}, asc c0 = {⊥} by Lemma 14.

– Case e0 = c0break. Then we have c0 = live(f0) ⇒ >. Since asc f0 ⊆ {dead},
asc c0 = {⊥} by Lemma 14.

– Case e0 = c0throw e1. Then we have c0 = live(f0) ⇒ >. Since asc f0 ⊆
{dead}, asc c0 = {⊥} by Lemma 14.

– Case e0 = c0p(c1e1, . . . ,
ckek). Then we have c0 = live(f0) ⇒ p̂(c1, . . . , ck).

Since asc f0 ⊆ {dead}, asc c0 = {⊥} by Lemma 14.
– Case e0 = c0 c1e1(c2e2, . . . ,

ckek). Then we have c0 = live(f0) ⇒ >. Since
asc f0 ⊆ {dead}, asc c0 = {⊥} by Lemma 14.

– Case e0 = c0 if e1 then c2e2 else c3e3. Then we have c0 = merge(c2, c3). Since
e2 and e3 are dominated by e0, the induction hypothesis applies, so asc c2 =
{⊥} and asc c3 = {⊥}. By Lemma 14, asc c0 = {⊥}.



– Case e0 = c0try c1e1 catch(x) c2e2. Then we have c0 = merge(c1, c2). Since e1

and e2 are dominated by e0, the induction hypothesis applies and asc c1 =
{⊥} and asc c2 = {⊥}. By Lemma 14, asc c0 = {⊥}.

– Case e0 = c0 loop e1. Then we have c0 = live(f0) ⇒ >. Since asc f0 ⊆ {dead},
asc c0 = {⊥} by Lemma 14.

Therefore asc ce′ = {dead}.
For the escape analysis variables, the proof is by top-down induction over

expression trees. For a block u1e1; . . . ; uk−1ek−1; ukek we have the equations:

u1 = ⊥
...

uk−1 = ⊥
uk = ua

where ua is the escape variable from the expression receiving the value of ek.
Clearly asc ui = {⊥} for i = 1 . . . k−1, and ua = ⊥ by the induction hypothesis.

For an expression e0 in the dominance region:

– Case e0 = x := u0e0. We have u0 = u1t . . .tuk where the variables u1 . . . uk

are associated with the uses of x.
– Case e0 = f0return u1e1. The value of e1 will go to a control-flow join at the

return pad, and so we have the equation u1 = live(f0) ⇒ ua where ua is the
use at the return pad. Since asc f0 ⊆ {dead}, asc u1 = {⊥} by Lemma 14.

– Case e0 = f0throw u1e1. The value of e1 will go to a control-flow join at either
the throw pad or a catch block, and so we have the equation u1 = live(f0) ⇒
ua where ua is the use at the control-flow join. Since asc f0 ⊆ {dead},
asc u1 = {⊥} by Lemma 14.

– Case e0 = f0,u0p(u1e1, . . . ,
ukek). For each ui, 1 ≤ i ≤ k, we have an equation

ui = u0. Since asc u0 = {⊥} by the induction hypothesis, asc ui = {⊥} for
1 ≤ i ≤ k.

– Case e0 = f0,u0 u1e1(u2e2, . . . ,
ukek). We have u1 = live(fa) ⇒ used. Since

asc f0 ⊆ {dead}, asc u1 = {⊥} by Lemma 14. For the ui, 2 ≤ i ≤ k we
have equations ui = live(fa) ⇒ >. Since asc f0 ⊆ {dead}, asc ui = {⊥} by
Lemma 14.

– Case e0 = f0 if u1e1 then u2e2 else u3e3. We have u1 = live(f0) ⇒ >. Since
asc f0 ⊆ {dead}, asc u1 = {⊥} by Lemma 14. Assuming (conservatively)
that e2 and e3 may complete normally, let f2 and f3 be the liveness of their
normal completion edges. we will have an equation ui = live(fi) ⇒ u1 for
i = 2, 3. Since e2 and e3 are clearly dominated by e0, asc f2 ⊆ asc f0 and
asc f3 ⊆ asc f0. Therefore asc u2 = {⊥} and asc u3 = {⊥} by Lemma 14.

– Case e0 = f0,u0try u1e1 catch(x) u2e2. Assuming (conservatively) that e1 and
e2 may complete normally, let f1 and f2 be the liveness of their normal
completion edges. We will have an equation ui = live(fi) ⇒ u0 for i = 1, 2.
Since e1 and e2 are clearly dominated by e0, asc f1 ⊆ asc f0 and asc f2 ⊆
asc f0. Therefore asc u1 = {⊥} and asc u2 = {⊥} by Lemma 14.



– Case e0 = f0,u0 loop u1e1. Then we will have an equation u1 = ⊥, so asc u1 =
{⊥}.

Therefore asc ue′ = {dead}.
ut

Proof. (Lemma 13) By construction of the least fixpoint; let X0 = ⊥, Xi+1 =
E(Xi), and let (xi, yi) be the value of (x, y) in Xi. Then {xityi | i = 0, 1, . . .} ⊆
{xi t yj | i, j ∈ {0, 1, . . .}}. ut


