
On Multiparadigm Software Complexity
Metrics

Ádám Sipos, Norbert Pataki, Zoltán Porkoláb
Dept. of Programming Languages and Compilers,

Faculty of Informatics, Eötvös Loránd University
{shp,patakino,gsd}@elte.hu

Abstract

Structural complexity metrics play important role in modern soft-
ware engineering. Based on software metrics we can identify critical
parts of software, give recommendations, and define coding conven-
tions for the development of sound and manageable code. With the
emerging of the object-oriented paradigm, research efforts focused on
metrics based on special object-oriented features. However, in modern
software construction a multiparadigm design is frequently used. Since
metrics might report false results when applied to different paradigms
than the one they were designed for, there is an urgent need for
paradigm-neutral metrics. In this article a rigorous definition is given
for a multiparadigm metric. We discuss the metric on procedural and
object-oriented paradigms, and evaluate it in more details applied on
aspect-oriented programming.

1 Introduction

Metrics play an important role in modern software engineering. Testing,
bugfixing cover an increasing percentage of the software lifecycle. In soft-
ware design the most significant part of the cost is spent on the maintenance
of the product. The cost of software maintenance highly correlates with the
structural complexity of the code. The critical parts of the software can
be identified in the early stages of the developement process with the aid
of a good complexity-measurement tool. Based on software metrics we can
give recommendations and define coding conventions on the development

1

of sound, manageable and hygienic code. Even though general recommen-
dations for specifying sensible metrics exist [23], the concrete measurement
tools are typically paradigm-, and language-dependent.

In the software development process abstractions play a central role. An
abstraction focuses on the essence of a problem and excludes the special
details [3]. Abstractions depend on many factors: user requirements, tech-
nical environment, and the key design decisions. In software technology a
paradigm represents the directives in creating abstractions. The paradigm
is the principle by which a problem can be comprehended and decomposed
into manageable components [1]. In practice, a paradigm directs us in iden-
tifying the elements in which a problem will be decomposed and projected.
The paradigm sets up the rules and properties, but also offers tools for de-
veloping applications. These methods and tools are not independent of their
environment in which they occur.

The last 50 years of software design has seen several programming para-
digms from automated programming and the FORTRAN language in the mid-
fifties, to procedural programming with structured imperative languages (AL-
GOL, Pascal), to the object-oriented paradigm with languages like Smalltalk,
C++ and Java. However, it is important to understand that new paradigms
cannot entirely replace the previous ones, but rather form a new structural
layer on the top of them. Object-orientation is a new form of expressing rela-
tions between data and functions, however, these relations implicitly existed
in the procedural paradigm.

The need for new programming paradigms is a result of the ever-growing
complexity of software. Object-oriented programming (OOP) is widely used
in the software industry for managing large projects, but recently some of the
weaknesses emerged. Problems like cross-cutting concerns, multi-dimensional
separation of concerns, symmetric extension of a class hierarchy [22] are hard
to handle. Modern programming languages have made possible the birth of
new programming paradigms like (C++) template metaprogramming (TMP)
[4], generic programming (GP), and aspect-oriented programming (AOP) [13].

Software metrics have always been strongly related to the paradigm used
in the respective period. The McCabe Cyclomatic complexity number [15]
was designed for measuring the testing efforts of non-structural FORTRAN
programs. Piwowarksi [16], Howatt and Baker [10] extended the cyclomatic
complexity with the notion of nesting level in order to describe structured
programs better. After the object-oriented paradigm became widely accepted
and used, both the academic world, and the IT industry focused on metrics
based on special object-oriented features, like number of classes, depth of
inheritance tree, number of children classes, etc. [2]. Several implementations
of such metrics are available for the most popular languages (like Java, C#,

2

C++) and platforms (like Eclipse).
Most modern programs are written by using more paradigms. Object-

oriented programs have large procedural components in implementations of
methods. AOP implementations (among which the most widely-used is As-
pectJ), highly rely on OOP principles. AspectJ essentially integrates tools for
modularizing crosscutting concerns into object-oriented programs. Moreover
multiparadigm programs [3] appear in C++, Java, on the .NET platform,
and others.

Metrics applied to different paradigms than the one they were designed
for, might report false results [21]. Therefore an adequate measure ap-
plied to multiparadigm programs should not be based on special features
of only one programming paradigm. A multiparadigm metric has to be
based on basic language elements and constuction rules applied to differ-
ent paradigms. A paradigm-independent software metric is applicable to
programs using different paradigms or in a multiparadigm environment. The
paradigm-independent metric should be based on general programming lan-
guage features which are paradigm- and language independent.

The rest of this paper is organized as follows: In Section 2 we give a
rigorous definition of our multiparadigm metric called AV-graph. A detailed
analysis of the metric is given in Section 3. Aspect-oriented programming, a
new emerging paradigm is discussed in Section 4. We show the application
of our metric in details on aspect-oriented paradigm in Section 5. Empirical
results presented in Section 6.

2 A multiparadigm metric

Since McCabe’s Cyclomatic complexity number it is a common idea for soft-
ware metrics to map the programs to directed graphs (G). Unfortunately,
most metrics are paradigm-dependent (i.e. realize a SPi → Gmapping, where
Pi is a currently used paradigm and S is the space of programs written in
the current paradigm(Pi)). Contrarily, our metrics does not depend on the
used paradigm (i.e. our metric realizes a SP1∪̃P2∪̃...∪̃Pn → G mapping. Here
the ∪̃ means the operation of combinations of the paradigms.) At the case of
these graph-based metrics the graphs must be evaluated to maps the graphs
to numbers (these functions realize a G→ N mapping).

We define our metrics on the basis of the complexity of nested control
structures. The definitions follow the ,,rigorous” description of J. Howatt
and A. Baker [10], but extend their formalism to the data components of the
program.

Definition 2.1. An AV graph G = (N,E) is an ordered pair of nodes N

3

and edges E. Nodes N = N∪D consist of the union of control nodes (N) and
data nodes (D). Edges E = E ∪ R consist of the union of control edges (E)
and data reference edges (R), where E ⊆ (N×N) and R ⊆ (N×D)∪(D×N).

An edge is an ordered pair of nodes (x, y). If (x, y) is an edge then node
x is an immediate predecessor of node y and y is an immediate successor of
node x. The set of all immediate predecessors of a node y is denoted IP(y)
and the set of all immediate successors of a node x is denoted IS(x). A node
has indegree n if E contains exactly n edges of the form (w, z), similarly a
node has outdegree m if E contains exactly m edges of the form (z, w).

A control path P in an AV graph G = (N,E) is a sequence of control
edges (x1, x2), (x2, x3), . . . (xk−2, xk−1), (xk−1, xk), where ∀i[1 ≤ i < k] ⇒
(xi, xi+1) ∈ E ⊆ E. In this case P is a control path from x1 to xk.

Definition 2.2. A flowgraph G = (N,E, s, t) in G = (N,E) is a directed
graph with a finite, nonempty set of nodes N ⊆ N , a finite, nonempty set of
edges E ⊆ E, s ∈ N is the start node, t ∈ N is the terminal node. For any
flowgraph G, the s start node is the unique node with indegree zero; the t
terminal node is the unique node with outdegree zero, and each node x ∈ N
lies on some path in G from s to t. Let N ′ denote the set N \ {s, t}.

A flowgraph reflects the control structure of a program. A program may
contain zero or more flowgraphs. The former happens in the case of pure
data structures, like a record which is a set of data nodes without control
structures. In object-oriented languages, a class denotes a set of data nodes
(i.e. the attributes) and a number of flowgraphs (i.e. the methods).

A basic block is a sequential block of code with maximal length, where
a sequential block of code in a G flowgraph is a sequence of tokens in G
that is executed starting only with the first token in the sequence, all the
tokens in the sequence are always executed sequentially, and the sequence is
always exited at the end. Hence, basic blocks do not contain any loops or if
statements.

In the following definitions we determine the nesting level of the control
and data nodes. The rather complex indirect definitions are required because
of non-structured programs.

Definition 2.3. Every node n ∈ N of a flowgraph G = (N,E, s, t) which
has outdegree greater than one is a predicate node (|IS(n)| > 1). Let Q
denote the set of predicate nodes in G (Q = {n ∈ N | |IS(n)| > 1}).

Given a flowgraph G = (N,E, s, t), and p, q ∈ N, node p dominates node
q ∈ G if p lies on every path from s to q. Node p properly dominates node q ∈
G if p dominates q and p 6= q. Let r ∈ N , node p is the immediate dominator
of node q if (i) p properly dominates q and (ii) if r properly dominates q then
r dominates p.

Given a flowgraph G = (N,E, s, t), and p, q ∈ N , the set of first occurence

4

paths from p to q, FOP (p, q) is the set of all paths from p to q such that
node q occurs exactly once on each path.

Definition 2.4. Given a flowgraph G = (N,E, s, t), and nodes p, q ∈ N ,
the set of nodes that are on any path in FOP (p, q) is denoted by MP (p, q):
MP (p, q) = {v | ∃P [P ∈ FOP (p, q) ∧ v ∈ P] }

The set of lower bounds of a predicate node p ∈ N is LB(p) = {v |
∀r∀P [r ∈ IS(p)∧P ∈ FOP (r, t) ⇒ v ∈ P]}, and the greatest lower bound
of p in G is GLB(p) = {q | q ∈ LB(p)∧∀r [r ∈ (LB(p)\{q})⇒ r ∈ LB(q)]}

Definition 2.5. Given a flowgraph G = (N,E, s, t), and a predicate node
p ∈ N , the set of nodes predicated by node p is Scope(p) = {n | ∃q [q ∈
IS(p) ∧ n ∈ MP (q, GLB(p))] } \ { GLB(p) } and the set of nodes that
predicate a node x ∈ N , is Pred(x) = {p | x ∈ Scope(p)}.

To extend the notion of Scope and Pred to the data nodes we extend Scope
with the data nodes connected directly to the flowgraph via control nodes in
Scope(p): Scope(p) = Scope(p)∪{d | ∃n ∈ Scope(p)(∃(d, e) ∈ R ∨ ∃(e, d) ∈
R)} and Pred(x) = {p | x ∈ Scope(p)}.

Definition 2.6. The nesting depth of a node x ∈ N , in a G = (N,E) is

nd(x) = | Pred(x) |

Thus, the total nesting depth of an AV graph G is counted as

ND(G) =
∑

n∈N

nd(n)

The measure of program complexity given by Harrison and Magel is the
sum of the adjusted complexity values of the control nodes. This value can
be given (as proved by Howatt) as the scope number of a flowgraph. We
extended this notion to the data structure of the program reflecting the
behaviour of non-procedural paradigms too.

Definition 2.7. The scope number, SN(G) of an AV graph G = (N,E)
is

SN(G) = | N | +ND(G)

3 Evaluation of the metric

The main concept behind the definition of AV graph is that the complexity
of a certain code element – either data or control – is heavily depends it’s
environment. The execution of a control node and the possible value of a
data node depends on the predicates dominating it. Thus understanding a
node depends on its nesting depth.

5

There is an other possible way to get these results. We can map our AV
graph model with control and data nodes to the Howatt’s model without
data nodes and data edges. Hence we replace data edges with special control
nodes: ,,reader” and/or ,,writer”. These control nodes only send and receive
information. They will be inserted just before and after the real control nodes
which read and/or write data. The nesting depth and complexity value we
get with this model is the same as of the AV graph complexity.

This definition reflects our experience properly. For example, if we take a
component out of the graph which does not contain a predicate node to form
a procedure, (ie. a basic block, or a part of it – this means a single node),
then we increase the complexity of the whole program according to our def-
inition. This is a direct consequence of the fact that in our measures so far
we contracted the statement-sequences that are reasonable according to this
view of complexity. If we create procedures from sequences, the program be-
comes slightly difficult to follow. Since we can not read the program linearly,
we have to ”jump” from the procedures back and forth. The reason for this
is that a sequence of statements can always be viewed as a single transforma-
tion. This could of course be refined by counting the different transformations
as being of different weight, but this approach would transgress the compe-
tence of the model used. The model mirrors these considerations since if
we form a procedure from a subgraph containing no predicate nodes, then
the complexity increases according to the complexity of the new procedure
subgraph, (i.e. by 1).

On the other hand, if the procedure does contain predicate node(s), then
by modularization we decrease the complexity of the whole program depend-
ing on the nesting level of the outlifted procedure. If we take a procedure
out of the flowgraph, creating a new subgraph out of it, the measure of its
complexity becomes independent of its nesting level. On the place of the call
we may consider it as an elementary statement (as a basic block, or part of
it).

As a matter of fact, we can decrease the complexity of a program in con-
nection with data if we build abstract data types hiding the representation.
In this case the references to data elements will be replaced by control nodes
since data can only be handled through its operations. While computing the
complexity of the whole program, we have to take into account not only the
decreasing of the complexity, but also its increase by the added complexity
determined by the implementation of the abstract data type. Nevertheless,
this will only be an additive factor instead of the previous multiplicative
factor.

That is the most important complexity-decreasing consequence of the
object-oriented view of programming: the class hides its representation (both

6

data structure and algorithm) from the predicates (decisions) supervising
the use of the object of class. We can naturally apply our model to object-
oriented programs [17]. The central notion of the object-oriented paradigm
is the class. Therefore we describe how we measure the complexity of a class
first. On the base of the previous sections we can see the class definition as
a set of (local) data and a set of methods accessing them.

A data member of a class is marked with a single data node regardless
of its internal complexity. If it represents a complex data type, its definition
should be included in the program and its complexity is counted there. Up
to the point, where we handle this data as an atomic entity, its effect to the
complexity of the handler code does not differ from the effect of the most
simple (built-in) types. same as the one calculated with AV graphs.

1d

set_next_day

ca

1P

set_next_month

b

t
t

P

P P

2

3 4

e

f

g

2

1

S S

d

d2

3

Figure 1: AV graph of a class with two methods and three attributes

The complexity of a class is the sum of the complexity of the methods
and the data members (attributes). As the control nodes (nodes belonging
to the control structure of one of the member graphs) were unique, there
is no path from one member graph to another one. However, there could
be attributes (data nodes) which are used by more than one member graph.
These attributes have data reference edges to different member graphs.

This is a natural model of the class. It reflects the fact that a class is a
coherent set of attributes (data) and the methods working on the attributes.

7

Here the methods (member functions) are procedures represented by individ-
ual AV graphs (the member graphs). Every member graph has its own start
node and terminal node, as they are individually callable functions. What
makes this set of procedures more than an ordinary library is the common
set of attributes used by the member procedures. Here the attributes are not
local to one procedure but local to the object, and can be accessed by several
procedures.

Let us consider that the definition of the AV graph permits the empty set
of control nodes. In that case we get a classical data structure. The complex-
ity of a classical data structure is the sum of the data nodes. The opposite
situation is also possible. When a ,,class” contains disjunct methods – there
is no common data shared between them –, we compute the complexity of
the class as the sum of the complexities of the disjunct functions. We can
identify this construct as an ordinay function library.

These examples also point to the fact that we use paradigm-independent
notions, so we can apply our measure to procedural, object-oriented, aspect-
oriented or even mixed-style programs.

4 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is one of the most promising new soft-
ware development techniques. AOP aids a better handling of crosscutting
concerns [13], as compared to object-orientation. Thus AOP is a genera-
tive programming paradigm that aims to help in writing more modularized,
and more maintainable code. Today’s AOP implementations (among which
the most widely-used is AspectJ), mostly rely on OOP. AspectJ essentially
integrates tools for modularizing crosscutting concerns into object-oriented
programs [11]. AOP defines the following important constructs, aside the
OOP notions:

1. Pointcut definitions are made up of Pointcut type, and Pointcut signa-
ture. The pointcut type describes what happens, e.g. call stands for
function call, execution stands for the execution of a function. The
signature describes which kind of functions are monitored by the point-
cut definition. (void || int f(*)) means all the functions with the
name f, that have either a void or an int return type, and receive one
parameter of any type.

2. Pointcuts are sets of pointcut definitions bound by Pointcut operators
(||, &&). A named pointcut is a pointcut that can be referred to by a

8

name, therefore it is not necessary to be defined repeatedly.
pointcut p() : call(void || int f(*)) || execution(* g());

3. Advice constructs specify the action to be taken at a certain pointcut
(bound to the advice). The before, after and around keywords de-
fine when the body part of the advice is executed with respect to the
pointcut. Otherwise the body of an advice is very similar to the body
of a Java method.

4. Inter-type declarations allow among others declaring aspect precedences,
custom compilation errors or warnings.

5. Aspects contain pointcuts, advices, and inter-type declarations. On the
other hand, they also have a class-like behavior, as they can have their
own attributes and methods.

Nowadays AOP is widely used in both academic, and industrial world. Prac-
tice shows that AOP programs are in many cases shorter, have more modular
structure and are easier to understand. Numerous publications discuss the
advantages of AOP design and implementation. However, we still have not
found appropriate metric tools to present quantitative results on the struc-
tural complexity of AOP programs.

One possible reason might be the lack of multiparadigm metrics that are
valid on both object-oriented and generative paradigm. There are proposals
to measure specific features of AOP programs [5, 8], but our approach is
that in practice a more suitable metric has to be able to measure soundly in
more paradigms at once. The complexity of an AOP program depends on the
OOP components and the AOP-specific constructs. Therefore the complexity
could be scattered between the AOP-specific parts (in pointcut-definitions,
advices, etc.), the object-oriented constructs (classes, inheritance, etc.), and
even in the procedural-style implementation of the methods. Hence in our
opinion we need to apply a metric that measures well more paradigms at the
same time.

Experiences show that AOP provides a better solution for a certain set of
problems (e.g. logging, debugging, etc.). In this paper we investigate what is
common in these problem groups that renders the AOP solution intuitively
easier. Can we find problem sets in which AOP provides a better solution?
Why do we see one solution easier understandable than the other if they are
implemented using different paradigms? How can we prove that for those
aforementioned AOP problems the solutions are not only intuitively but also
objectively better? In order to answer these questions, we aim to analyze the
Gang-of-Four (GoF) Design patterns [6] and their implementations in pure
Java and an AOP version in AspectJ [12].

9

5 Extending the metric

Extending the metric requires the identification of AOP-specific program ele-
ments, and their mapping to an AV-graph. In Section 4 we have enumerated
the most important AspectJ constructions, now we examine how our mul-
tiparadigm metric applies to them. In order to measure programs, we also
needed to extend the measurement tool.

1. Pointcut definitions, and pointcuts. Aspect-oriented programming is a
kind of metaprogramming. With the help of pointcut definitions we
describe notions to control the compilation and weaving process. A
pointcut defines a condition which triggers the possible execution of
a code defined in the appropriate advice. In that sense a pointcut
definition is a metaprogram conditional statement. Therefore we map
pointcut definitions to the AV-graph as predicate nodes, and its consti-
tutes (the pointcut type and the signature as input nodes). As in the
case of run-time programs, where a predicate node might use complex
expressions, a pointcut definition can use pointcut operators to express
complex conditions.

We measure pointcut definitions by summing up the value (1 by de-
fault) assigned to the definition’s type (call, execution, etc) and the
complexity of the signature. The complexity of pointcuts is the sum
of the definitions’ complexities. The signature can be expressed as a
regular expression, for which metrics already exist [19]. We have de-
cided to add a constant 1 complexity to each token occuring in the
expression. A token is a string literal (like: foo), a keyword (like:
int), or a regular expression metacharacter (like: *). The rationale
behind the definition is the following. It takes the same effort to un-
derstand that a signature applies to all functions (in the form: * *(*))
or to exactly one (void foo(int) throws IOException). However,
more complex patterns cause decisions harder to understand, like in
void f*oo(int,*) throws *.

2. Named pointcuts. The complexity of named pointcuts is the sum of the
complexity of their names (1 by default) and the pointcut itself. Thus
if the programmer defines a certain pointcut, names it, and instead
of repeatedly defining it again refers to the pointcut by its name, the
complexity of the code can be reduced. In Section 2 we have seen, that
the usage of functions decreases the complexity, because by making a
function call, the added complexity is only the function’s name, and
its parameters. The usage of named pointcuts is analogous to that
procedure.

10

3. Advices, from our metric’s point of view are built up from two parts:
the function part, and the pointcut part.

• The method for measuring the pointcut part has already been
described in the item 1.

• The purely function part is as follows. An advice’s header is like
that of a special function’s, with the keywords before, after,
or around as the name, followed by the regular parameter list.
The ”name” might be preceeded by a return type. The body of
an advice does not seem different for the programmer than the
body of a function would. Even in an around advice, the keyword
proceed does not seem different from an ordinary function call.
Therefore the function part’s complexity is measured the same
way as Java methods.

The pointcut decides when a certain advice’s body part is executed.
This is as if the body part of the advice would be in the scope of
the predicates defined by the pointcut. Complex pointcut definitions
behave like nested predicates. Thus the complexity of an advice is
the complexity of advice’s body multiplied by the complexity of its
pointcut.

4. Aspects and classes have a lot in common from the complexity point
of view. Both may include data, and member functions. Thus these
members of aspects can be measured the same way as if they were
in classes, for this the method is described in 2. Aspects may also
have members of AOP-specific constructs. We have classified these
constructs into two groups.

• The complexity of advices, and named pointcuts is taken into con-
sideration when measuring the aspect. These constructs directly
affect the way the programmer sees the code. She needs to un-
derstand these members to be able to comprehend the complex
construct described by the program.

• As of now inter-type declarations like declare parents, declare er-
rors, declare warning, and others are not taken into account when
measuring complexity. We consider these auxiliary constructs in
AspectJ which do not directly affect the complexity seen by the
programmer, but rather as tools to easier express certain notions.

These complexity values are summed up with the complexities of the
data, and the member functions of the aspects.

11

We have seen in section 2 that the visibility of classes, and its members does
not influence their complexity. For the same reasons we do not take this
attribute into consideration in the case of aspects, and its members either.

6 Results

To validate our metric we have chosen the GoF Design Patterns’ ([6]) imple-
mentations ([12]) for measuring. One of the reasons was that in [12] we find
a functionally equivalent implementation of each pattern in AOP and OOP.
At the same time, the renowned authors behind the implementations let us
assume that the aspect oriented techniques were handled correctly. We also
supposed that DPs are neutral to crosscutting concerns. We did not choose
examples that are well-known crosscutting problems (e.g. logging, tracing,
etc), but more general ones, that might be in this problem set.

Many people think AOP reduces the complexity of the design patterns’
implementations because of the patterns’ crosscutting approaches. Obvi-
ously, the design patterns have been created as solutions for the non-trivial
problems in OOP. The approach of AOP can describe these solutions easier
by AOP’s new language constructions.

The structure of these implementations is as follows. Each pattern has
a Java and an AspectJ implementation. The AspectJ implementations also
utilize a common library, otherwise independent of the patterns. As of now
our measurement tool is able to parse and measure 14 out of 23 design pattern
implementations. The table shows the test results encountering the AV-
metric and the effective lines of code (ELOC) per patterns.

A comparison between the implementation of the design patterns in the
OOP and AOP way can be found in [12, 14]. These papers explain that
17 out of 23 patterns had exhibited some degree of crosscutting. They also
declare that implementing the patterns in AOP has many benefits, among
them the most important being the ability to localize the code for a given
pattern. Many patterns can be implemented as a single aspect, or as 2 closely
related aspects. Our metric especially rewards code localization. The OOP
versions can not be as well-structured as the AOP versions. the code is more
maintainable, and comprehensible. Another important benefit is the code’s
obliviousness. This benefit results directly from localization: as the pattern
is localized in an aspect, it does not invade its participants. Henneman
and Kiczales stated that the AOP versions are more modular by 74%, and
more reuseable by 52%. As a result of these benefits allow the code-level
reuse of some patterns. According to [12] some patterns’ implementation
may disappear into the code because of the AOP’s constructions (e.g. the

12

decorator pattern). This can also lead to complexity decrease.

Design Pattern Implementation AV Complexity Effective LOC

adapter java 77 27
AOP 51 22

bridge java 235 75
AOP 237 79

builder java 219 55
AOP 201 66

decorator java 91 34
AOP 93 25

factoryMethod java 113 54
AOP 129 67

flyweight java 299 66
AOP 286 71

interpreter java 567 115
AOP 567 113

memento java 99 33
AOP 186 47

observer java 374 93
AOP 305 87

prototype java 187 53
AOP 204 56

state java 259 97
AOP 179 103

strategy java 265 56
AOP 732 68

templateMethod java 158 43
AOP 158 45

visitor java 300 83
AOP 362 85

In some cases we can see that the AOP implementation was less complex by
our metric even if the ELOC number was greater. These are the cases when
using AOP was adequate. Here we can encounter the adapter, builder,
observer, and state patterns. However, we can see a number of patterns
where the AOP implementations were at least as complex as their Java coun-
terparts. Patterns like memento, visitor and most typically strategy are

13

belong here. This shows that inadequate use of AOP can even be disadvan-
tegous.

7 Conclusion and future work

In this paper a rigorous definition of a multiparadigm metric was given.
The metric is equally able to measure the complexity of procedural, object-
oriented, and aspect-related parts of multiparadigm programs. We imple-
mented and tested our metric on two functionally equal implementations of
GoF Design patterns: one of them is a pure Java, the other is based on
AspectJ. The metric proved to be usefull in such multiparadigm language
environment. Empirical results also revealed that aspect orientation is not
necessarry reduces the complexity of its own – the gain highly depends on
the actual problem. Future investigations are neccessarry to clarify how com-
plexity of aspect-oriented programs depends on the internal structure of the
code.

References

[1] Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction,
and Polymorphism, ACM Computing Surveys 17(4), pp. 471-522, 1985

[2] Chidamber S.R., Kemerer, C.F., A metrics suit for object oriented de-
sign, IEEE Trans. Software Engeneering, vol.20, pp.476-498, (1994).

[3] Coplien, J.O.: Multi-Paradigm Design for C++, Addison-Wesley, 1998

[4] Czarnezki K., Eisenecker, U.W.: Generative Programming, Addison-
Wesley, 2000

[5] Figueiredo, E., Garcia, A., Sant’ Anna, C., Kulesza, U., Lucena, C.: As-
sessing Aspect-Oriented Artifactsd: Towards a Tool-Supported Quanti-
tative Method, QAOOSE Workshop, ECOOP, Glasgow, pp. 58-69, 2005

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns –
Elements of Reusable Object Oriented Software, Addison-Wesley, 1995

[7] Gradecki, J.D., Lesiecki, N.: Mastering AspectJ, Wiley, 2003

[8] Guyomarc’h, J-Y., Guéhéneuc, Y-G.: On the Impact of Aspect-
Oriented Programming on Object-Oriented Metrics, QAOOSE Work-
shop, ECOOP, Glasgow, pp. 42-47, 2005

14

[9] Harrison, W.A., Magel, K.I., A Complexity Measure Based on Nesting
Level, ACM Sigplan Notices,16(3), pp.6

[10] Howatt, J.W., Baker, A.L.: Rigorous Definition and Analysis of Pro-
gram Complexity Measures: An Example Using Nesting, The Journal
of Systems and Software 10, pp.139-150, 1989

[11] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.G.: An Overview of AspectJ, LNCS vol. 2072, pp. 327-355, 2001

[12] Kiczales G., Henneman, J.: Design Pattern Implementation in Java and
AspectJ, OOPSLA, pp. 161-173, 2002

[13] Kiczales, G.: Aspect-Oriented Programming, AOP Computing surveys
28(es), 154-p, 1996

[14] Lesiecki, N.: Enhance design patterns with AspectJ, IBM
http://www.developers.net/external/730

[15] McCabe, T.J., A Complexity Measure, IEEE Trans. Software Engineer-
ing, SE-2(4), pp. 308-320, 1976

[16] Piwowarski, R.E.: A Nesting Level Complexity Measure, ACM Sigplan
Notices, 17(9), pp.44-50, 1982

[17] Porkoláb, Z., Sillye, Á.: Comparison of Object-Oriented and Paradigm
Independent Software Complexity Metrics, ICAI’04, Eger, 2004

[18] Porkoláb, Z., Sillye, Á.: Towards a multiparadigm complexity measure,
QAOOSE Workshop, ECOOP, Glasgow, pp.134-142, 2005

[19] Power, J. F., Malloy, B. A.: A metrics suite for grammar-based software.
Journal of Software Maintenance 16(6): 405-426 (2004)

[20] Schmidmeier, A., Hanenberg S., Unland, R.: Implementing Known Con-
cepts in AspectJ, 2003

[21] Seront, G., Lopez, M., Paulus, V., Habra, N.: On the Relationship
between Cyclomatic Complexity and the Degree of Object Orientation,
QAOOSE Workshop, ECOOP, Glasgow, pp. 109-117

[22] Wadler, P.: The expression problem, Posted on the Java Genericity
mailing list, 1998

[23] Weyuker, E.J.: Evaluating software complexity measures, IEEE Trans.
Software Engineering, vol.14, pp.1357-1365, 1988

15

