DEPARTMENT OF INFORMATION TECHNOLOGY
UPPSALA UNIVERSITY

MASTER OF SCIENCE
THESIS 20 P

ASPECT-ORIENTED PROGRAMMING
COMPARED TO OBJECT-
ORIENTED PROGRAMMING WHEN
IMPLEMENTING A DISTRIBUTED, WEB-
BASED APPLICATION

By Magnus Mickelsson

Thesis reviewer: Olle Eriksson, Department of Information Technology, Uppsala University.
Thesis advisors: Patrik Fredriksson and Tobias Hill, Citerus AB.

ABSTRACT

This Master of Science thesis compares the currently dominating programming method, object-
oriented programming (OOP), to aspect-oriented programming (AOP). AOP offers extended
mechanisms to OOP for decomposing problem domains into cleanly encapsulated entities.

By having implemented the same distributed, web-based application as two application versions, one
using pure OOP methods and one using AOP methods, based on the Aspect] AOP enhancement to
Java, an interesting opportunity arises to compare and analyse the approaches, both from a
theoretical viewpoint and from actual programming results.

The AOP implementation had quite similar results as the OOP implementation regarding code
statistics, however the more generic services that are decomposed into aspects, the bigger the
advantage of AODP.

The development tools were better for the OOP implementation. The two major differences are in
refactoring and UML-modelling, which are currently not of production quality for AOP. Tracing and
debugging were however more efficient using AOP, since development aspects can be dynamically
applied to the code to focus on possible problem areas.

The AOP code is more modular and reusable than the OOP version. It is also more flexible in terms
of altering behaviour without changing design or code, and contained less or no code tangling and
code scattering. In spite of the many advantages in writing code, Aspect] code is not necessarily
casier to follow. This may call for new thinking both in terms of IDE development and UML
modelling, to grant developers a more intuitive, visual view of the application being developed or
maintained.

The thesis and its example code can be downloaded at: http://www.darkwolf.ws/aop/thesis

On a side note, MIT technology review listed AOP as one of "ten emerging areas of technology that
will soon have a profound impact on the economy and on how we live and work" [URLS5].

ACKNOWLEDGEMENTS

Thanks to all people who have helped me in the making of this thesis, in any way! The following
deserve some special recognition:

e Sandra Oberg — for love, support and giving me a non-geek perspective on things

e My family; Anna, Agneta and Mats — for bringing me up, and keeping me up — thanks for all
the support!

e Tobias Hill and Patrik Fredriksson— thesis supervisors at Citerus, Java-gurus and friends

e Olle Eriksson — thesis reviewer at the Department of Information Technology, Uppsala
University

e Rickard Oberg — for providing feedback, interesting discussions and for implementing a very
interesting dynamic proxy-based AOP framework

e DPetter Lindborg — for feedback and interesting discussions

e lee Carver — for a good reference thesis and for being an important part of the AOP
community

e Wes Isberg, Jim Hugunin, Mic Kersten and the others at Aspect].org — very helpful and
competent people, who are responsible for a lot of the work being done on AOP in general,
and Aspect] in particular

e Satish Arkala — for testing the example code and for good discussions

e Rajesh Honnawarkar — for interesting input on the AOP development process and how to
create a good environment for developers

e Clemens Lee — for creating JavaNCSS

e Juri Memmert — for useful information about Hypet/]

e Laurent Martelli — dito, but about JAC

e Vincent Massol — for creating the PatternTesting project

e The people at the AOSD and Aspect] mailing lists — thanks for sharing your knowledge and

opinions

CONTENTS

ABSTRACT ..ttt ettt ettt s e te e £t £ bt e e b e e A e b e e b e £ b e e e ke e e b e b e R e e b e b e e ReE £ ebe e ebe b ebenbere b erenteneas 2
ACKNOWLEDGEMENTS ...ttt ettt s e et st s et st e b ettt et ebesbebesbesesbenesaeneas 3
CONTENTS -ttt bt bbbt h e b e bt e h e E e R e H e b e e e b A e bt bbbt b ettt et et e 4
FIGURES AND TABLES. ...ttt bbbttt nne s 5
L. INTRODUCTION ..ottt b e e et b et b et b ettt ne et e nnens 6
1.1 [0 S(c1 0 1N o RS PRR 6
1.2. THE TOPIC: AOP COMPARED TO OOP ...ttt ettt ne e 6
1.3. L N2 1] 1SS 7
14. ASSUMED READER KNOWLEDGEuuviiutieitieasieessteestieastesssbeesteessessssessssesnsessssessssesnsessssesssessnsesssnens 8
1.5. THE AUTHOR ...ttt sttt e r e e ettt e st ese et e b e eme e b e e r e ene e neenenr e 8

2. ASPECT-ORIENTED PROGRAMMING........ccoiitiitrietrentsie sttt see e 9
2.1. BACKGROUND ...ttt et ettt b e e r e bt et n e Rt b nn e b e rennear e reens 9
2.1.1. Object-Oriented ProgramMiNgccccveieiirereereereesie e see e see e sre e e seesresssesseenes 9

2.2. WHAT IS ASPECT-ORIENTED PROGRAMMING?ccuveuriitererineiesee st 10
2.2.1. BaASIC CONCEPLS ...ttt ettt r et nn e en e 11
2.2.2. JANS o=l o] g T=T a1 (=T o [=TS] o o USROS 12
2.2.3. ASPECET ..ttt bt bbbt b e nr et b e br et 13
2.2.4. e 1101 0] 1SS TRRPTOPN 13
2.2.5. [T od 011 o] SR 17
2.2.6. Problems With AOPcceiii et e st re e teenre s 18

3. THE DESIGN AND IMPLEMENTATION PROCESS........ccoositiiiieiieiniecsieeseeseieie e 19
3.1. THE COMPARISON APPLICATION L..uttiitttesieesuteesireestesssseessessssessseeessessssessssssssessssesssessssessssesssesssens 19
3.1.1. 2T Tod (o | oo S 19
3.1.2. THE @SSIONMENT.....eiiiiieie ettt e s be e e st e e et e et e e e e s be e e e sbeesbeaneenrs 19
3.1.3. Enhancements to the asSIgNMENL...........covcviiieiieie i 20

3.2. THE OOP VERSION ...utiiitiiteitintesresiesre s st sre e m s s e e e e e ese e e s as e aneareeneanenrenns 24
3.2.1. [Ty T 10 SRR 24
3.2.2. IMPIEMENTALION NOLESvviieeeiesieeie ettt sttt e st st aeseeesaeneas 29

3.3. THE AOP VERSION ...utetiiitie it estiesteesteeesteesstaesaeeastessstaesseeasseesneeesseessseesseeessesssseessensssessssesnsensssees 30
3.3.1. [Ty Lo T 10 SRR 30
3.3.2. IMPIEMENTALION NOTESvivir it 35

A, RESULTS .ottt bbb bbbt bbb bbb b £ bR e bt b e b e bkt bbb bbbt rene 36
4.1. RESULTS FROM DEVELOPMENTtttiutietttasteessteesteessteesseesssesssseessessnsessssesssessnsessssesnsessssesssessnsessnns 37
4.1.1. DESIGN METNOUS ..ottt b et be b sre b e b sne e 37
4.1.2. Implementation MELhOUSc.cv i 37
4.1.3. Time SPent 0N deVEIOPMENTccvoicicce e e e eneas 39
414, L0000 LIS - L] ot RS 39
4.1.5. Discussion of developmMENt FESUILSeoviviriiirreiieee s 42

4.2. CONCLUSIONS BASED ON DEVELOPMENT RESULTS ...cuveutteriteisteisteietesiesesiesesiesessesissesnesessesesnens 44
42.1. AAPTADTIITY ... 44
4.2.2. MaINEAINADTTILY ... e 44
4.2.3. 1Y FoTo 0] = g | 2SR 45

4.2.4, REUSADITILY ...ttt sttt ettt e st e e et e eneene e 45

4.2.5. Comparison t0 NYPONESIScveieriiieeee e ne 46

4.3. SUMMARY .ottt b bbb bt b e bbb e e bt b e ARt b e bR R R R e R e R bbb e renerene s 47
5. SOURCES OF INFORMATIONcoiiiiiiiiiseieseeseeesee s eese sttt seseesesaesesaesesaesessessnsenens 49
B. APPENDICES. ..ottt ettt et b bbbt 52

FIGURES AND TABLES

The following figures and tables can be found within the document:

Description Page
Figure 1: Two objects communicating via a method call. 9
Figure 2: An aspect intercepts a call between A and C by using a pointcut on the call site 11
join point.

Figure 3: Crosscutting functionality in two classes, which can be extracted and placed into 12
an aspect. The aspect then uses introduction on the classes to define the method.

Figure 4: The OJDB package on a higher level. 21
Figure 5: Basic access control when a client calls a server to invoke a service method. 22
Figure 6: The principle of element locking during an element update in the application. 23
Figure 7: UML model of the main data objects. 25
Figure 10: Analysis model of the OJDB. 27
Figure 8: The library client model. 26
Figure 9: The library server analysis model. 26
Table 1: Time spent on development for the OOP version. 39
Table 2: Time spent on development for the AOP-version. 39
Table 3: This table shows the NCSS Code statistics for the OOP-version. 40
Table 4: NCSS code statistics for the AOP-version. 41
Table 5: Comparing the NCSS statistics of both versions. 42

1. INTRODUCTION

1.1. BACKGROUND

Software developers, designers and architects of today have a very ungrateful job in some respects.
An object-oriented application, no matter how well designed and implemented, will eventually fall
victim for one of the following scenarios, usually as a result of altered demands on the application, or
the sheer complexity of the problem domain:

e Code tangling
e Code scattering

e Re-design — due to major changes to the problem domain. It might not always be needed to
maintain a clean, modular design, but may be called for if the problem domain did not allow
for a clean decomposition process in the first place.

There are of course exceptions to the statement above, as there are to most rules. By running the
business objects in an EJB container that intercepts calls to and from the objects, the desired
functionality may be added during the interception instead of using redesign and complicated
patterns.

Furthermore, many problems can be avoided by using established design patterns, and keeping the
code generally clean from spur-of-the-moment ugly solutions that sometimes seem appealing due to
lack of time, external demands or other bad ideas. In the end, those kind of temporary solutions
usually cause time loss instead of gain.

However, a certain degree of the above scenarios will still be a problem, even in the purest of object-
oriented environments. Null pointers need to be looked out for, exceptions need to be caught, and
special tracing statements within the components might be needed to trace its state, if tracing and
debugging mechanisms are too complex or too weak to extract the information needed.

Also consider; what if the application is not meant to be deployed on an EJB server?

There is a need for a new line of thinking, considering the many problems developers have had to
battle for decades. Applications tend to be more complex than they were a decade ago; they are often
distributed client-server applications - perhaps even clustered, transactional, and integrated with all
kinds of legacy systems.

1.2. THE TOPIC: AOP COMPARED TO OOP

This Master of Science thesis aims to investigate a concept that is starting to get a lot of attention in
the software development community, because it introduces a whole new way of looking at software
problem domains. The concept is aspect-oriented programming (AOP).

In this document, AOP will be described, analysed, and compared to the currently dominating
concept, object-oriented programming (OOP). Aspect-orientation introduces a new terminology and new
methods to design and implement applications, and by doing so it is supposed to, used propetly,
solve the scenarios with code tangling, code scattering and re-design problems that pure OOP alone
cannot solve.

Two real-world applications are created in Java as a base for comparison, one using strictly typical
OOP methods, one using AOP methods and the AOP enhancement to Java called Aspect].

Aspect] specifics such as maturity, security, performance and stability are not included in the main
analysis, only in occasional comments. The focus is on the effect aspect-oriented analysis, design and
implementation has on real-world enterprise software development; especially concerning distributed
applications.

1.3. HYPOTHESIS

AOP is useful for certain individual enhancements; to prove this is trivial, which is demonstrated
later on in section 2.2. AOP has also been shown to be effective for general software development in
[RWAO2], where an application was divided into encapsulated aspectual modules that were
composed into the finished application using the Hyper/] framework. Read more about Hyper/]J in
appendix A.

To fulfil the purpose of the thesis, a test application will be implemented in two versions, one using
pure OOP methods, one using AOP enhancements to the OOP methods. The two resulting
application versions will be analysed to see what advantages and disadvantages each approach may
have in this particular case. Furthermore, minor independent experiments will be conducted to gain
insights on technical details.

The hypothesis is that the following will hold for the AOP application version compared to the OOP

version of the comparison application:

e There will be less code altogether in the AOP version, since code tangling and code
scattering can be decreased or in some cases eliminated.

e Functionality will be more modular, and hence more reusable. This means that future
development projects will have a greater chance of reusing code from the AOP application
than from the OOP application.

e The actual code will be easier to follow and comprehend in the AOP version, as it is more
modular and less code tangling and code scattering.

e The development tools and processes are more mature and well-established for OOP,
resulting in less spent time for the development of the OOP version.

e The OOP version will have a better overview model of the system, as UML tools can be
used to their full extent. UML tools for AOP are currently in their infancy.

1.4. ASSUMED READER KNOWLEDGE

The reader of this document is assumed to know the following:
e Object-oriented programming
e The essentials of the Java programming language
e The basics of the Unified Modelling Language (UML)
e Java Remote Method Invocation (RMI)

e The basic concepts from appendix D, as they are described there

For information on Java, J2SDK, and RMI, please go to [URL24]. To get to know more about UML
get a book about it, like [UML99], or go to [URL30] for an introduction.

All references in the thesis are given using the [<source>] notation. Internet addresses are noted as
[URL<number>]|, whereas documents, papers and books are noted as [<abbreviation of
title><publishing year with two numbers>]. To find the actual source, please check the list of
references.

1.5. THE AUTHOR

Magnus Mickelsson is a software architect and developer, focusing on the J2EE platform and AOP,
from Uppsala in Sweden. He currently works as a systems architect and developer for H&M, where
he has, among other things, been responsible for creating the system architecture of
http://www.hm.com and assembling the company’s standard J2EE developer environment. Visit the
home page of his consulting company, Darkwolf Development, at http://www.darkwolf.ws/ for
more information.

Contact the author using e-mail: thesis-feedback@darkwolf.ws. Your feedback is welcome.

2. ASPECT-ORIENTED PROGRAMMING

2.1. BACKGROUND

Software development is about implementing a solution in a programming language that satisfies a
problem domain. The solution may be an application, which is a stand-alone program that is executed
for a certain purpose, or a system, which can consist of a set of services or applications working
together, usually continuously executing and responding to some set of actions or events.

Depending on the problem domain type, different methods and programming mechanisms may be
applied to reach the best possible solution. Aspect-oriented programming (AOP) is an interesting
way of looking at problem domains, basically adding a new dimension to object-oriented
programming (OOP).

Its purpose is to provide means for software developers to propetly model a problem domain
containing also crosscutting properties' in a modular way; allowing for better reusability, flexibility
and understandability.

2.1.1. Object-Oriented programming

Object-oriented programming (OOP) deals with implementing an object-oriented design (OOD) in
an object-otiented programming language, for instance C++ or Java. OOD/OOP is about
decomposing a problem domain into a set of objects that interact by passing messages between each
other. These interactions can produce a result that satisfies the problem domain.

A Foo B : Bar

methad oot

methad * retum

Figure 1: Two objects communicating via a method call.

1 Such as generic system services like logging, transaction handling, concurrency and security.

The major concepts of OOP are:

e Abstraction — an abstraction deals with the outer perception of an object. It states the
characteristics of an object without any focus on its actual implementation.

e Encapsulation — ensures that private object data is only accessible internally. Other objects
should only access its information using available methods. The Java language uses the class
construct to achieve this, as do many other languages.

e Inheritance — one class’ features may be inherited by another class. By using inheritance
constructs, like extends in Java, the same code does not need to be duplicated in order for the
child to inherit the parent’s functionality. Inheritance leads to a class hierarchy.

e Polymorphism — the same method may have different behaviour on different type of input
objects. This can be achieved using method overloading, i.e. defining the same method several
times for different situations. The methods may have different implementations.

e Modularity — an application should be built by developing modular, reusable classes.

e Reusability — by making components generic and modular, it is easier to reuse components.
This holds for both individual objects as well as larger software libraries, creating a big
opportunity to save resources.

Object-oriented thinking has been around for quite some time and has become very popular. This
has lead to OOD and OOP having well defined methods, procedures, tools and design patterns. In
short, it has come a long way both in theory and practice.

Even so, there are some basic problems with how OOP tries to model and realise a problem domain
[O0092]. When OO was examined more in detail, it was discovered that there are problem domains
that cannot easily be expressed in OO terms, due to the fact that some of the essential functionality is
crosscutting the class structure.

2.2. WHAT IS ASPECT-ORIENTED
PROGRAMMING?

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Christina Vidiera Lopes, Jean-
Marc Loingtier and John Irwin defined aspect-oriented programming (AOP) in [AOP97]. It was built
on the research on Meta-Object Protocols (MOP) [OIM94], Open Implementation [OID97], and
Reflective Programming [TTR93], but also Adaptive Programming (AP) [AOO96].

10

2.2.1. Basic concepts

AOP enhances OOP?, hence inheriting its basic concepts; but also adds a few, very important ones at
that. The primary concept, the aspect, is a piece of functionality that crosscuts the object hierarchy in a
modular fashion. AOP enables developers keeping crosscutting functionality like access control,
logging etc. cleanly separated through encapsulation mechanisms.

Aspects are, on the implementation level, constructs used to handle given points of execution in OO
code called join points. Access to join points can be defined using pointeuts, which are mechanisms that
allow declarative, reflective access® to join points. So called advice code, which is standard code that
has access to AOP implementation capabilities, can be added to the pointcut, and be executed in
relation to the join point occurrence.

Aspects are composed with other aspects and object-oriented components by an aspect weaver to
generate an application that solves the problem domain. Doing so in a flexible and modular way, the
actual code does not need to be modified to alter the application’s behaviour, merely the weaving
procedure and composition element set. The image below demonstrates typical call interception by
an aspect.

Acplle ©irtercepred method invocation

>

Fepect vokes ints

Bar returms - around advice gets result

{ ______________________

Adwice decides what to retum : retum resul

Figure 2: An aspect intercepts a call between A and C by using a pointent on the call site join
point.

Another interesting feature offered by aspects is introduction, which is the ability to introduce new
properties to a class template. New inheritance behaviour, new methods, new fields etc. can easily be
added, and the aspect can also control what kind of privacy settings the new methods and fields have

(i.e. private, protected or public). Introduction will be demonstrated more in the example section
(2.2.4).

2 AOP can however be added to other programming methods as well, such as procedural programming,.

3 This means it provides language constructs making it possible to declare a join point interception, by stating “the pointcut
with the following label intercepts this join point” and making it possible to refer to the used label in other contexts. The
“reflective” part means the pointcut can view and modify the properties of the join point.

11

2.2.2. Aspect-oriented design

Aspect-oriented design is about modularly decomposing a problem domain, both in terms of
ordinary OO components and crosscutting concerns. Attributes and methods; whatever is used in a
set of classes but should, from a logical point of view be a separate component, most likely belongs
within one or more aspects. If some functionality is not really part of the class’ main responsibility, it
should be extracted to aspect utility classes, which are standard Java classes used by aspects to
provide a specific functionality*.

As an example of aspect-oriented design, consider the following situation; objects should be created
that each should hold a set of data. The objects should be able to store their cutrrent status using
some persistence mechanism.

It this situation, each object’s main task is to hold the data. Persistence is a typical crosscutting
property that can be extracted into an aspect, as in the figure below.

Fepect that handles store methods are
pErsistenoe extractid into the
Persistence aspect

Perzistence User Company
HUSEMAMmE; String e String
spassword: Sting +business: String
scontrol Accessingut: String): boobean Hrewenue: long
sstore); woid stored): woid

Figure 3: Crosscutting functionality in two classes, which can be extracted and placed into an
aspect. The aspect then uses introduction on the classes to define the method.

Now, it is usually good to have some rule of thumb while trying to grasp new concepts, and one was
given in the AOP introduction document from 1997 [AOP97], which has been interpreted as the

following:

With respect to a system and its implementation using an object-oriented language, a property that
must be implemented is:

e A class, if the property can be cleanly encapsulated in an object.
e An aspect, if it cannot be cleanly encapsulated in an object.
This definition, although trivial, says a whole lot about aspects. How often can a software developer

cleanly encapsulate functionality into an object, or a set of objects? Just consider the problem with
application logging once more.

4 If the main aspect logic is built in utility classes, it makes moving from one AOP framework to another easier, and also
helps making the code easier to follow. This at least holds for Aspect], where all the functionality potentially can be added
within the aspect definition itself, as will be demonstrated later on.

12

After the crosscutting concerns have been identified, the designers start to analyse how method calls
will take place between and in different classes. From such call trees, point cuts are identified were
the aspects can inject their advice code functionality.

2.2.3. Aspect]

The framework used for AOP in this thesis is Aspect] [URL1], which is an aspect-oriented extension
to Java. The reason why Aspect] was selected is that it has been developed by the same PARC team
that coined the expression aspect-oriented programming (lead by Gregor Kiczales), and it is currently
the most popular AOP framework, with a considerable amount of active users. Also, since it
provides a new kind of sub-language to Java, it is an interesting framework to investigate, considering
the advantages and drawbacks of such an addition to the Java language.

Aspect] features new language constructs to Java, such as “aspect” and “pointcut”, as the examples
in section 2.2.4 demonstrate. It also adds a set of new tools for AOP development; tools like the ajc
compiler, which is an AOP weaver, ajdoc, which is basically Javadoc for Aspect], AJDE, which is an
IDE add-on to offer AOP capabilities in for instance Forte/Netbeans, and ajdb, which is the Aspect]
debugger.

If more information on Aspect] and AOP is needed, refer to [AOP97], [URL1] and [URL3].

2.2.4. Examples

Here are two basic AOP examples based on the Aspect] framework that aim to demonstrate aspect
interception and introduction in actual code.

The first example implements basic Log4] logging on a class without any logging statements within
the target class source code. The second example is a brief demonstration of introduction. Note that
import statements and other matters are set aside; as the purpose with the examples is just to
demonstrate basic Aspect] syntax and the possibilities of aspects. The examples are given plainly to
be analysed in the following section (2.2.5).

Logging aspect
StdOut.java — a simple class that is executed invokes two methods, and then exits.

public class StdOut

{ public String foo(Q)
{ return “Hello”;
}
public String bar(Q)
; return “World!”;

// Main method that is called on execution
public static void main(String[] args)

StdOut s = new Stdout();

13

System.out._printin(s.foo());
System.out.printin(s.bar());
3
}

Logging.java — the Logging aspect. Note the “aspect” keyword in the definition. Also note that
pointcut definitions can be made using regular expressions to be able to refer to several join points
from the same definition. Read more about pointcuts and pointcut definitions in [AJP02].

public aspect Logging
{

// Pointcut on all method call sites not related to Aspect functionality
// (Why not Aspects? So we avoid endless looping..)

pointcut publicMethodCall(): call(* *.*(..)) &&

Twithin(Logging) && !within(Logger);

/** This is the advice code on the defined set of pointcuts in
* publicMethodCall() — definition.

* Wrap the method call(s) so we can log that it is about to be run,
* the parameters it will run with and the result we get from it.

* “around” is instead of the method call, alternatives are

* “pefore” or “after”.

*/

Object around(): publicMethodCall()

// Log information about the currently intercepted join point
Logger.log(''Log alert for " + thisJoinPoint);

// Print the method parameters by calling the method below
printParameters(thisJoinPoint);

// Execute the wrapped method and catch the result
Object result = proceed();

// Print result, if it is not null
it (result = null)
Logger.log("'Result of " + thisJoinPoint + ": " + result.toString());

return result;

/** Print the method input parameters
* @param jp the join point a pointcut has caught an event on
*/
static private void printParameters(JoinPoint jp)
{
StringBuffer buf = new StringBuffer();
// Reflective access to join point parameters below
Object[] args = jp-getArgs(Q);
String[] names = ((CodeSignature)jp.getSignature()).getParameterNames();
Class[] types = ((CodeSignature)jp.getSignature()).getParameterTypes();

buf._append("*Arguments: \n");

// 1f there are any arguments, print them

if (args.length > 0)
// Go through the arguments and print them out
for (int i = 0; 1 < args.length; i++)

buf.append(" "™ + 1 + "." + names[i] + ": " +
types[i].getName() + " = " + args[i] + "\n");

14

Logger.log(buf.toString());

}
Logger.java — the class that handles the actual logging, by using the Log4] [URLS] framework. It is a

special utility class for the aspect.

public class Logger

{
private static Category cat = Category.getlnstance(Logger.class.getName());
/** Log a message on debug level in Log4J
* @param msg String message to log
*/
public static void log(String msg)
cat.debug(msg);
¥
}

After constructing the source code above, the aspect weaver is used to join the composition
elements, the source code files, into a new set of source code that contains the aspect influenced
code, which is then compiled into Java byte code. Thus, the crosscutting concern logging, which was
encapsulated in the Logging and Logger source files, have been added to the StdOut class, using
interception and the pointcut’s reflective properties. The process is transparent to the user, who
might believe that just a normal compilation took place. The example above, when assembled
together by the aspect weaver and executed, will print something like this:

0 [main] DEBUG Logger - Log alert for call(String StdOut.foo())

0 [main] DEBUG Logger - Result of call(String StdOut.foo()): Hello
0 [main] DEBUG Logger - Log alert for call(void
Java.io.PrintStream.printIn(String))

20 [main] DEBUG Logger - Arguments:

0.__0: java.lang.String = Hello

Hello

20 [main] DEBUG Logger - Log alert for call(String StdOut.bar())
20 [main] DEBUG Logger - Result of call(String StdOut.bar()): World!
20 [main] DEBUG Logger - Log alert for call(void
Java.io.PrintStream.printIn(String))

20 [main] DEBUG Logger - Arguments:

0.__0: java.lang.String = World!

World!

If the example had been run as plain OOP, it would have printed simply:

Hello
World!

15

Aspect introduction on a class

Below is an example of basic introduction on a class, using the Aspect] syntax:

public class TestClass

{
private int one;
public String two;
public void setString(String input)
{
two = input;
}
}
public aspect Introducer
{
protected static String TestClass.message = “Hello World”;
public String TestClass.getString()
{
System.out._printIn(message);
return two;
}
}

This Introducer aspect defines an introduction of a static field called message on TestClass. It also
defines the introduction of a new public method that returns the “two” variable and prints out the
introduced “message” variable. When the files have been woven together by the weaver, the
compiled TestClass class will contain the introduced field and method.

For more information on introduction using Aspect], please refer to the Aspect] programming guide
[AJPO2].

16

2.2.5. Discussion

The examples were meant to demonstrate some of the features of aspect-orientation, although they
only reveal small parts of what makes it an interesting technology. In the first example given
previously, two simple method-calls being printed out caused a lot of activity. Each of the methods
was wrapped - the input and results of the method calls were logged using the Logging aspect,
eliminating the usual scattered logging statements that would have been called for in ordinary OOP.
This can be applied also on a larger scale; one Logging aspect could handle the logging for an entire
application. One thing to notice though is that the logging in this case is not specific to certain
conditions; it will instead gladly log everything the same way, compared to scattered logging
statements, which are more informative of local conditions.

AQOP offers several ways to trace also more local conditions; either using local-aware log interceptors
for specific pointcuts, targeting for instance a single method, or by analysing generic results (such as
in the example) and providing specific error messages based on the analysis. Another method is to
make sure that specially crafted exceptions are thrown in some situations that can be caught by an
aspect, and dealt with it as seems fit, mapping to reflect upon local conditions.

Another interesting notion AOP offers, is a high degree of flexibility when testing developed
applications. Imagine just having to test the actual business code of an application, and then apply
the aspects later one at a time, adding more and more functionality. The aspects have all been tested
separately to concur with an expected behaviour. The flexible addition of aspects on the applications
can provide add-on testing of plug-in functionality when the core has already been approved, and
thus need not be changed as a result of test failures. Only the interaction between aspects and aspect
target objects need to be analysed.

The concept of introduction is also a very promising one; as it offers aspects the possibility to add
encapsulated behaviour to a class, behaviour that is specific for the functionality that the aspect is
adding to the system. This is a very important part of being able to encapsulate crosscutting
concerns, meaning that a system without aspect behaviour in the AOP design wortld is not going to
be able to do very much. But, as soon as some aspects are added, the behaviour will form a more
complete system.

The impact of AOP should be a higher level of reusability since components can be made more

generic and be strictly encapsulated, leaving the addition of crosscutting functionality and behaviour
composition to also encapsulated and generic aspects.

17

2.2.6. Problems with AOP

The general problem with AOP is that is adds a new dimension of possibilities, while at the same
time adding an extra dimension of complexity. Thus, it is essential that AOP is kept simple yet
powerful to focus on its possibilities instead of detailed complexity, so also ordinary developers are
able to take advantage of the advantages of AOP tools and methods. More powerful and complex
features can be made available, but should only need to be used by power-users.

AOP complexity derives from the fact that there are several new mechanisms to work with, and if
not handled correctly, they can wreck more havoc than they do well. There is for instance a risk in
the Aspect] framework of ending up in infinite loops, in the case where an aspect catches events on
itself, or its related utility objects. The new language constructs in Aspect] are not trivial either. Once
they are understood, they are very powerful, but the learning curve is not to be underestimated.

Although unfortunately not being correct in all respects, [CAO02] makes a presentation of a few
important challenges to AOP:

e Emergent properties and fault resolution; hunting bugs in AOP code will mean tracing and
debugging become an even more complex activity, if not the proper tools or able employees
are available to find them.

e Understandability; the complexity referred to above.

e Implicit changes in syntactic structure and semantics; applying aspects on a system should
not wreck the system’s core functionality and contracts.

e Effects of cognitive burden; aspects woven with aspects might cause unexpected behaviour.

The latter point is above all a problem in Aspect], where aspect interactions like precedence
determination are encapsulated into the actual aspect definition, but is valid for other frameworks as
well.

The design of an AOP application is a bit foreign from standard OOD. It involves a new line of
thinking; similar to the paradigm shift that occurred when going from procedural programming to
OOP. It is important to give designers and developers time to adjust to the new paradigm and get a
feel for the philosophy behind it, before throwing people into demanding projects with lack of time
to reflect upon the new concepts.

Another important issue is what to do about application modelling. No mature, finished solutions

exist today, but a lot of work is underway destined to fill the current void [UNA02, DACO02, and
URLG]. Later on, also expect AOP to be added to existing methodologies like Agile and RUP.

18

3. THE DESIGN AND IMPLEMENTATION
PROCESS

This section describes the requirements of the test application, and the design and implementation
processes that lead to two executable versions of the thesis comparison application.

3.1. THE COMPARISON APPLICATION

Here, general information can be found about the application’s requirements, the origin of it, and the
enhancements made to the requirements for the purpose of this thesis.

3.1.1. Background

The comparison application originates from a course at Uppsala University called “Object-oriented
programming with Java” (OOPJ), where it was one of the mandatory assignments students had to
implement in order to pass the course.

The assignment introduction stated the following:

“The idea about this assignment is that you should be given opportunity to practice analysing,
designing and implementing a larger example using object-oriented methods.”

It was selected since it is a good candidate for object-oriented design and implementation, obviously
since it should not have been selected as an assignment for an OOP] university course otherwise.
Furthermore, it has crosscutting functionality that could test the usability of aspects.

There are also a few seemingly harmless additions to the requirements that have been made for this
thesis, in order to make the assignment more like a real-world application.

3.1.2. The assignment

This section sets the basic requirements for the application, based on the assignment text that was
handed out to the OOP] students of the spring semester 2002. It has been translated from Swedish,
and a few things have been added or removed to fit the scope of this thesis better.

The assignment instruction

A smaller library is about to convert their business from being paper managed to a computer
managed solution. They want a system where all lendable objects; books, CD:s and magazines, are
stored in some form of record. Every library object has a unique number, which is used for
identification, and is either lent out or available. For lent out objects, information about the user who
has lent the object must be available.

Books should have information about the author, title and category, magazines about title and
volume (which number and year), CD:s about attist, title and total playtime.

19

The record should be searchable. Searching for substrings should be possible; if a book with the title
“The rise and fall of the Roman Empire” exists, it should be found if for instance the search word is
“Roman”.

Of course, there should be methods for lending and returning library objects. The user should be
able to pick an object from a result list for lending.

It should be possible to add, remove and edit objects in the library. When an object is added, the
unique library ID should be created automatically — this could easily be handled by the base class

knowing the currently highest value and simply increasing that number.

When the program starts, the record should be read from the hard drive. When the program finishes,
the program should save the record to the hard drive.

The assignment is to write a program to solve the requirements above. The program should have an
object-oriented solution. The result should be a well documented and executable program written in

Java.

Furthermore, it is specified what should be present in the report the students have to hand in in
order to complete the assignment, but that is really of no importance here.

The classes that MUST exist are:
e A base class for library objects.
e The classes Book, CD and Magazine, that inherit from the library object.
o A class for the text-based user interface, Menu.
The program should handle exceptions in an acceptable manner, yielding in an error message of

some kind. If so desired, a graphical user interface (GUI) can be developed, but a command prompt
Ul is sufficient.

3.1.3. Enhancements to the assignment

Graphical User Interface

In order to provide more real-world requirements, it was decided that the application should contain
not only a command prompt (text-based) UL, but also a web-based GUI utilizing the Java Server
Pages (JSP) technology. In both interfaces, administrators should have more available functions than
ordinary users.

20

General purpose database

The assignment preceding the library assignment was to create a more general purpose, simple text-
based database. The students of the OOP] course were therefore encouraged to reuse code from the
previous assignment, to make the library assighment implementation a bit easier. The same kind of
reusability thinking is patt of the foundation of object-oriented programming, and should be a part
of this assignment as well.

The assignment is therefore enhanced with the demand to build the library application on top of a
more general purpose, text-based database, that if needed can be reused to implement a different
application. The database is called “Open source (simple) Java Database”, OJDB in short.

0OJDB package

Search facility using
predicates

OJDB

Application core

Element Locking

Persistence handling

Figure 4: The OJDB package on a higher level.

21

Access control

The concept of access control, having several users with different sets of access rights, is added to
the assignment as it is very common among applications of this category. As a consequence, there
must be different user interfaces for administrators and ordinary users, as there are some functions
available that ordinary users should not be able to access (influencing the actual contents), such as
user data, access rights and the information content of the library.

client : Client ecess ; Aocess Controller accessStore ; Access Store
service method ©imrke ’
access | werfy b

Access dma el

R

Access dNA UM

{ ______________

docess [returm

=
T Ep————
miethad rezult @ reTum
Figure 5: Basic access control when a client calls a server to invoke a service method.
Logging

Logging is added as an enhancement. All important components should be able to log their state and
progress. The logging framework LLog4] [URLS] was chosen to provide logging functionality, as it
allows logging on different levels, debug, information, warnings, error etc, and is the de facto
standard component in the Java world for logging. Whatever level is selected (edited in a property
file) is the threshold for what is logged. If the level is WARN, then only error and warn levels are
logged if those are the only higher levels implemented. Information and debug level statements are
ignored in such an event.

22

Element locking

In a real-world library, one cannot assume that there will be only one user at a time. Therefore, the
assignment was enhanced with the concept of element locking, which means that when a user calls an
update method, the element being updated is locked during the update, so no other user can change
it at the same time.

CHent L300 update an 36 elemert., | Dmtabaze
-

Lock and ypdate elament

ementLock Factory

Iz element lockead?:

Report updfre unsuccessful

ate
i
DatabaszaTable
Client
Retym status
- " Database
.
Femowe lock
Fetym status
Client

Figure 6: The principle of element locking during an element update in the application.

23

3.2. THE OOP VERSION

This section describes the actual object-oriented software development process that solved the
problem domain of the thesis application requirements.

3.2.1. Design notes

When designing an OOP application, the following steps should be taken:

A. Analysis: Find the basic business objects needed to get the basic functionality running, in
accordance with the problem domain. Detect any sub-objects that are needed by the basic
business objects, for instance a database object will probably need database tables, primary
keys and some operation objects. One easy way to do it is to write down what the system
must do and turn the nouns into entity classes and the verbs into operations on the entity
classes. It will not make a perfect model, but a good starting point. Objects are added to
class diagrams in UML. Once this has been completed, it’s extremely important to review
the class diagram to see if the existing objects really are cleanly encapsulated. If not, make
the proper changes until there is a modular, clean-cut architecture. For now, focus should
not be on object interaction, rather the types of objects needed and what basic services they
should offer.

B. Reuse analysis: Find out if there are any objects that can be reused from other projects.

C. Design: This is where the idealised model from the OO analysis is made more concrete. The
design phase is divided into the following:

1. System design, which is where decisions are taken about the qualities of the system
as a whole, to a certain level of detail (variable according to taste).

2. Object design, which is about adding details to the objects of the analysis phase.

D. Interaction: Model the calls that will be passed between the business objects. This will lead
to interaction diagrams in UML. Whenever functionality is needed that is not part of the
object’s core functionality, add new objects that implement the add-on functionality and
include calls to them were it is needed. In some cases, non-core functionality may have to be
added to an object.

Now it is time to examine the above steps of the design process more in detail, from the view of the
comparison application.

A. Analysis

The analysis phase started with identifying the basic objects and functionality of the system, based on
the problem domain, which in the design phase were detailed. The basic idea was to make the
application an RMI client-server application, that was built on top on a reusable, generic, text-file
based, and simple database handler, reused according to the assignment.

24

The data to be handled within the system was specified in the assignment, and resulted in the
following UML model:

-static fieldMames: String = [futhor”, "Title”, "Cateqol

+Bookiauthor: String, tithe: String, category: String, library|D: long)
l-}i‘ta'tic getFieldMames(r Stringf]

co

DEBement

-static cat: C ory = Laegor

- e 1f L i
|:J:‘D(arlm: String, tithe: Stang, playtime: $thing, library 10: lon, fields : “otor = new \ector)
atic getFieldMames(x Strin

[~|+DBBement()
. + DB Bamentitype: String)
ufagazine
- +update Fields(fields: \ector), Object
-static fieldMames: String = [Tale”, “blume'} saddFieldiname: Strng, value: Object): vioid
hiagazinedtitle: String, wolume: String, Bbrary 1D: long) 4[>+9&Fields0: “ector
el it 1getType(: Siring
+set Typeftype: Stang): woid
Pocess {>MFieIdblem(ﬁeld Hame: String): DBField
o Sting(r String

-static field Mames: String = ["Usemame”, "Table”, "Oparation”

- | :] I
+Acesslusemame: String, table: Sting, opermtion: Integer) requalsielem: DBBement): boolean

st atic FieldMames(Strin:

Lending Hame'alue Pair
+Lending() +Name\Value Paininame: Sinng, value: Object)
L+get Type(): String DBField +get FieldMamely String
+set Typeltype: Strng): weid +DBFieldinamg: String, value: Object)| _[> [sget Fighdualue(r Object
26t Fieldvaluelo: Object): woid
User stoString(): String

-static fieldNames: String = {'Usemame™, “Name", "Password”, “Administrato

H+Usenfusemame: String. name: String, password: String, admin: boolean)

ic get Stringl]

Figure 7: UML model of the main data objects.

The DBElement is a general purpose data carrier that holds a Vector consisting of DBField objects,
which are basically name-value pairs. DBElement corresponds to the base class for all library objects,
CD:s, Magazines and Books, but also other database objects, like Lending, User and Access, who all
inherit DBElement. This construction satisfies the assignment requirements, and also promotes
reuse. Note that Lending is the object that holds a lent out library object reference, and the user
name of the person that lent the object. Access holds access rights and User holds user information.

The general purpose, simple database foundation was already designed and implemented, and
therefore reused. The actual construction of this part was not included in measurements of
implementation time, as it was already available according to the assignment specification®.
Therefore, analysis of the database itself was not needed; but an analysis was required on how to use
1t.

5 Reusing an already constructed, simple database that uses text files for persistence.

25

The client that connects to the remote library server (IRemoteLibrary is its remote interface) was
analysed as below:

| Std InCommand Parser |

[

<imachicee.

I.ibnnrRMISl:siml :_: StdlnmtommlndFm:yI

TSP Pugy
Ul

Rhindethod Command Proxy | IRemate Library |

Figure 8: The library client model.

Command proxies are objects that interact with the Ul and provide them with what they need, by
invoking methods on other objects, like the StdInCommandParser, which enables reading the user’s
command prompt input, the Menu, which holds the text-based menu and StdOut result printing, or
the actual library server remote interface, which defines the server’s service methods. As specified in
the assignment, there are two Uls.

The recently mentioned library server was analysed as below:

<dinterface >
|Remote Library

+get Table Names(): Strng[]

+get Al Table Names(): String]

+get Library Object By 1D(10: String): DBBement
B Ta Session,

String): Mector
+searchTable(ses: Session, tableName: $ting, search: Strng, field: Strng): Mector
+searchTable(ses: Session, tableName: $tring, search: String): “Mector

Handles element Handles access control Implementation of
locking during remote interface,
updates inherits Library C
T T
Bement Lock Factory | |Pccessﬁo|lmler| Remmel.ibmrylmpll .D
RELEEE R
<soredter? ‘7
Library Libsrary C:
S i
. [. #Fbstraction to library,
Basia database “icredterr AmIChinE?S ot invokes service
functionaliy metheds on it which
(0JDB) originate from the Rhdl
Lending Controller I client side.
Handles Bbrary
lobject lending
and retuming

delete B By Tablefnd|Dises: Session, tableName: String, 10: Sting): boolean

+get Bement By TableAnd|Dises: Session, tableName: Strng, 1D: String): DBBement

+update Bement By Table fnd|Dises: Session, tableMame: String, ID: String, fields: Wector): boolean
+create Bookises: Session, author: String, title: String, category: String): boolean

+create CO(zes: Session, artist: String, title: String, playtime: String): boolean
+createhdagazine(zes: Session, tithe: String, wol: String): boalean

[+createUsenzes: Sassion, usemame: String, name: String, pw: String, admin: boolean): boolean

ion: int): boolean

ion: int): boolean

+grant : Bession,

© String, : String, op

+deny : Session,

: String, : String, op
HzAdmin(zes: Sassion): boolean

HzUzemzes: Session): boolean

Hend Objectizes: Session, |D: long): boolean

+retum Object(zes: Session, 10: long): boolean

+get Lendings(zes: Session): Wector

+get Lender(ID: String): String

+rollbackizes: Sazsion): woid

+commit(ses: Session): woid

HogOut(zes: Seszion): woid

Figure 9: The library server analysis model.

The library server listens to requests and passes them on to the LibraryCommander, which is an
abstraction for the actual Library object. Looking back, the LibraryCommander was not all that
necessary, since no rigorous status handling was implemented. It might however become useful in
such event, or if the problem domain is changed significantly.

26

The Library uses utility classes to add advanced functionality, such as access control, element locking
(during element updates), object lending and returning handling. Furthermore, it extends the
functionality of the Database object. Hence, the assignment requirements about access control,
persistence, element locking, using a general purpose database and lending ate satisfied.

As for logging; Log4] provided the classes to use. The code scattering threat of logging was ignored
for comparison’s sake, to ensure the application was developed as it might have been by other
developers unaware of crosscutting concerns.

B. Reuse analysis

It was assumed that the OJDB classes already existed, so they could be reused, as specified in the
assignment. However, other classes that are somewhat generic, like the classes dealing with
predicates, predicate filtering, object transformations and the StringToHTML converter, ate
candidates that could have been easily reused, had they been available.

Apart from the mentioned areas, there is little chance of reuse unless there has been a very similar
project before. Note that this is only the reuse analysis for what could have been an input to this
project, not what is possible to reuse in future projects. That kind of analysis belongs in the results
section.

C. Design

C1. Object design
The OO design models are available separately, in appendix H. However, since the database was
mentioned before but not specified, here is a basic view of the OJDB design:

4 Of OMIMUnicate »»

* DB Configuration

K.U.."
Segsion | “yi'"i”I DatabazeTable I_H;"If’r'imaf}"l*‘iwl

; <icredtar?
- l,r"u T ddgreglelky
DBTableFile n.” -
DBEBement .. | DBField

Figure 10: Analysis model of the OJDB.

27

Some explanations for figure 10:
e The Session is a user session object. Session instances work against a singleton database.
e A Database holds one or more DatabaseTables and one Configuration object.

e A DatabascTable uses Persistence mechanisms, and holds a PrimaryKey (to give elements
ID’s) and one or more DBElement objects (data carrying objects).

C2. System design

The application was divided into four sub-systems; the generic database, the library server, the library
client (UI) and generic tools. The latter was merely to encourage component reuse by placing
completely generic functionality, such as String to HTML-code conversion, in a completely separate
Java package, later turning into a separate Java archive file (JAR).

The library client and server were distributed, as that is the area of analysis for this thesis; the server
became an RMI-server, registered with the RMI registry (via JNDI), and the client became a RMI-
client accessing the RMI-server using its stub.

Log4] [URL13] was chosen as a logging framework for the application, as mentioned. Its property

file was placed with the rest of the required JAR-files and included in the class path. Needed policy
files and RMI properties were handled the same way.

D. OO interaction

OO interaction diagrams are available in appendix H. However, the focus was not on creating an
exemplary UML model considering all aspects of UML, so the model may seem a bit scarce.

28

3.2.2. Implementation notes

The generic database

The generic OJDB database was reused entirely from an application that had been handed in for the
OOPJ course. It is not a good database, just a simple enough foundation for this thesis.

The RMI library server

As always with RMI-applications, the design decisions taken can become critical. It is essential to
cleanly separate the client and server, otherwise there is a risk of transferring too many or large
objects between the JVM:s, causing tetrible performance.

A clean separation was accomplished in this case, with only elements or sets of elements (within a
Vectot) transmitted. In otder to increase performance, a client-side caching/invalidation mechanism
could have been created, but that was not within the scope of the assignment.

The tremote interface, IRemotelibrary, defines the available service methods. The
LibraryCommander implements the interface, and the remote implementation object,
RemoteLibraryImpl, just extends LibraryCommander. The RMIManager handles the JNDI registry
and registers the server object.

The RMI library client

The client comes in two versions, one text-based and one web-based, using JSP pages (the web-based
Ul is described more in detail further on).

Text client

The text based client that uses the command prompt for input is an instance of the
LibraryRMISession class. It uses the StdInRMICommandProxy to execute commands on the library,
which the proxy parses and handles accordingly by delegating calls to the proper objects, but also to
retrieve user commands utilising a CommandParser instance.

Web client

The web based client is a set of JSP pages, which use the RMIMethodCommandProxy to execute
commands on the library. The proxy retrieves a reference to the RMI server’s remote interface,
which it then allows the JSP pages to get a reference to so they can invoke methods on it.

29

3.3.

THE AOP VERSION

3.3.1. Design notes

The application was divided into the same four major packages the OOP-version had, except that a
new package was introduced; aspects. Therein, all aspects were located. Aspects that are specialised
on the OJDB were placed in a sub-package called “ojdb”, and similarly for the library-specialised

aspects.

When designing the AOP version of the application, the following steps were taken:

A.

B.

Analysis: The same as for the OOP version.

Reuse analysis: The same as for the OOP version.

Design: This phase is quite different from the OO design; however, as in the OO case, basic
system design and object design are included. Its subphases are:

1.

Basic system design: The basic parts of the system should be identified. It takes
place this eatly in the process, because aspect decomposition is easier with the
system as a whole in mind.

OO interaction: Model the calls that will be passed between the business objects
from the analysis phase. This will lead to interaction diagrams in UML. If a situation
occurs where a destination object will be called by more than one kind of source
object, add the destination object to your list of aspectual object candidates (objects that
might be used by aspects to implement the aspect’s core functionality). Then add
the source objects to your list of aspectual target candidates (objects that might be in
need of aspectual, cross-cutting functionality). The reverse situation, one source
object calling several types of destination objects, does not mean the object is an
aspectual candidate. Remember to always keep notes on what methods or fields are
in focus, i.e. will be needed by aspects or influenced by aspects.

Object responsibility analysis: Consider the problem domain for what is missing
between the basic business object interactions and the problem domain to get a
solution that satisfies it entirely. Any object that is in need of completing its core
functionality is added to the list of aspectual target candidates.

Aspect-object decomposition: Decompose the missing pieces, which are the rest of
the aspectual object candidates, into cleanly encapsulated objects, even though they
may need to be applied across several objects in the end. It helps to consider these
candidates as services that will provide the missing functionality in your system. The
decomposed AO objects, like for instance authorisation control, are added to the
class diagram, preferably somewhat separate from the pure OO classes.

Aspect design: Take the list of aspectual object candidates and find the crosscutting
concerns for the aspectual target candidates. Just pose the question “is this object’s
functionality patt of the target object’s core functionality?”, and if the answer is no,
an aspect has been discovered. From there on, it’s just a matter of trying to keep the
aspects cleanly encapsulated, and still be able to provide the missing functionality of

30

the pure OO system. Aspect inheritance hierarchies need to be found, to promote
reuse of generic aspects.

6. Aspect modelling: This step is about completing the draft UML models with the
aspect-related material. There are currently several suggestions available on how to
handle UML modelling of aspects [UNAO02, DACO02, and ADC02]. Since there is no
single standard and no available UML tool mature enough, a simple version of the
approach of Suzuki and Yamamoto can be used if creating models in a tool that
cannot handle aspect-orientation. This basically means that aspects ate noted by
using the “<< realize >>" stereotype. As an extra addition, in order to be able to
tell the difference between a realisation class and an aspect, the name of the object
should indicate whether the object is an aspect or not.

This means that there are more steps to the design process of the AOP version; should it then take
more time to finish? Since the design is more modular, even regarding crosscutting concerns, it
should be easier to express the system behaviour, whereas for the OOP version some functionality
will get tangled and complex due to the application’s nature. Thus, the more complex the system,
from a crosscutting perspective, the more efficiency an aspect-oriented approach will demonstrate.

The result for the software development process in this thesis was that the AOP version had longer
first design iteration, but instead fewer iterations altogether. The first iteration being longer might just
depend on the lack of AOD experience of the designer, so the conclusion must be that the AOP
version had an easier design process, which was not expected.

As in the OO case, the design phases are now analysed more in depth.

A. OO analysis

The basic classes of the OOP and the AOP system were made very similar; there are no obvious
differences on the surface. The general thought was to keep all basic classes modular, to the extreme
in fact, not considering where the base class was to fit in. That was thought better handled using
introduction, and composition of functionality through the weaving process.

s an example, the Database object’s ti couplings to element locking, access control an
A ple, the Datab bject’s tight plings to el t locking trol and
persistence were made loose; they were handled as if developing extremely generic services.

On the lowest component level, i.e. the utility classes performing the actual work, there was hardly
any difference besides some removed code tangling and code scattering; however the binding of
functionality onto higher level classes was quite different.

With AOP, it is quite possible to add the support of generic system services at any join point, making
security checking, logging, tracing, and element locking optional add-ons by including or removing

their class file reference within the weaver’s source code input file. The definitions of which join
points to intercept are defined within the aspects, at least using Aspect].

B. OO reuse analysis

As in the OO case, it was assumed that only the OJDB database existed and could be reused.

31

Since reusing OJDB could not be done in its purest OOP form, the OJDB classes were changed a
bit. The biggest change was cleaning the classes from logging statements, but statements using
generic services not part of an object’s core functionality were extracted, as those were good
candidates for replacement by an aspect providing the removed generic system service behaviour.

C. OO design

C1. Basic system design

The application was divided into five sub-systems; the generic database, the library server, the library
client (UI), generic tools, and aspects and their utility classes, which were on compile woven into the
same four major sub-systems as for the OOP-version.

The client-server RMI setup was quite similar to the OOP-version.

Log4] was used for logging purposes in this version as well, although now made completely modular
and independent of the rest of the application, not reflecting specifically on local conditions.

C2. Object interaction

This part of the design process was handled by drawing basic interaction diagrams, where only basic
objects where considered. Whenever more functionality was needed at a call site or in an object, that
functionality was added either through interception, or through introduction. Intercepted join point’s
advice code may also require call site interception and introduction, in such cases reflecting on the
need of “wormhole” functionality; where aspects may need access to other aspects. Since the
investigation of wormhole effects was not within the scope of this thesis, it is left for others to
investigate. Note that at this stage these changes were only conceptual, for establishing aspect
candidate functionality.

C3. Object responsibility analysis

The object interaction diagrams were analysed to determine what aspect candidate functionality was
in fact part of an object’s main responsibility. If such functionality was found, it was added to the
object itself, and hence removed from the aspect candidate list.

C4. Aspect-object decomposition
This part consisted of locating ordinary objects that could serve as utility objects to crosscutting
aspects. Such typical objects were ElementlockFactory, Elementl.ock, and AccessController.

C5. Aspect design

From what was left of the diagram, encapsulated and modular aspects were decomposed, which use
the aspect utility objects to achieve their intended functionality. Introductions that related to
interception functionality were placed in the same aspects. Also, reusability of the aspects themselves
was kept in mind, sometimes calling for adding abstractions to the aspects.

32

The following aspects were created:
e AspectList — an aspect keeping track on what aspects and aspect utility classes are available,
so there are no unnecessary infinite loops. It defined a pointcut set definition, used by other

aspects.

e Tracing and LibraryTracing — aspects used to trace calls. Tracing is an abstract, more generic
aspect that LibraryTracing inherits and adapts to the library application.

e logging and Librarylogging — logging aspects utilising Log4]. Logging is abstract,
LibraryLogging the application specific aspect.

e PerformanceTiming and LibraryPerformanceTiming — same as above, but the aspects enable
performance timing on any method call.

e ExceptionHunting — an aspect that keeps track of invoked methods, parameters and method
results. As soon as there is an exception, it gives information about the problem join point

and the preceding call.

e Parsing and ElementParsing — aspects that define how and when to parse stored library data
into active objects.

e TablePersistence — defines persistence of library objects.
¢ ElementlLocking — adds element locking during updates.
e Security — makes sute administrator methods are run only by administrators.

e SccurityTableEditing — enables user (administrators only) control of users and access rights.

C6. Aspect modelling

The design could not result in an UML-model in the same way as the OOP-version, as there was no
stable and mature UML tool available that could handle aspects. Thus, in order to view the object
design, the generated Javadoc or the actual source code needs to be examined.

33

As an example of how the design of the AOP version was different from the OOP version, here are
two code snippets of the same method; the first from the AOP version’s Library class:

/** This method removes an element from a table.

* @param table name of table to remove object from

* @param object object to remove from the table

*/

protected synchronized boolean removeElement(Session ses,
String table, Object 0)

{
}

And the second from the OOP version’s Library class (same method):

return super.removekElement(table, 0);

/** This method removes an element from a table.
* @param table name of table to remove object from
* @param object object to remove from the table
*/
public synchronized boolean removeElement(Session ses, String
table, Object 0)

if (access.hasAccess(ses, table, access.DELETE))

{
DatabaseTable tmpTable = super.getTableByName(table);
it (tmpTable I= null)
tmpTable.removeElement(0);
return true;
}
}

return false;

}

From this example, it is quite clear that the OOP code had to be tangled to perform access control,
while the tangled conditions became separated aspect behaviour in the AOP case. The
removeElement method in the Database class (which is extended by Library in both versions) looks
exactly the same in both versions. In the AOP case, checking if the table to delete an element from is
null is also something that can be handled by an aspect.

34

3.3.2. Implementation notes

The generic database

The result of implementing the generic database was the same classes as before, but the
compositional behaviour was changed. The services which had been decomposed into aspects were
applied dynamically at compile-time. Note, that not all services were decomposed. The lending and
returning mechanisms of the library were judged as a core part of the library’s functionality and thus
kept as it was. That is a design decision that can be questioned, as it might as well be decomposed
into an aspect as well. The chosen way was taken for understandability’s sake.

The RMI library server

No special aspect introductions were made on the RMI-components, although the thought of a
generic interface that could be altered into a remote interface using introduction was appealing. It
was tested and was proved to work, but it requires some considerations on how to handle remote
object unavailability and other typical RMI exceptions.

Separate experiments showed that in order to make RMI work; it is a prerequisite that the exact same
classes are available to both client and server; including the Aspect] runtime classes. No such classes
are transmitted across the network however; just the objects intended to be transferred. The only
unexpected thing was the amount of extra byte code that is sent due to Aspect]’s cumbersome
additions to the code. Measurements of up to 500% more network data compared to the OOP case
was not uncommon, if most development aspects were applied. Even if only production aspects
were applied, the difference was still apparent, and should be taken into account.

The RMI library client

The client comes in two versions, one text-based and one web-based, using JSP pages (the web-based
UI described more in detail below).

Text client
The text-based client works the same way as for the OOP version.

Web client

The JSP pages are compiled into Servlet classes at run-time, but are until that moment not real Java-
code; hence they could not be affected by aspects. If so had been desired, the JSP pages could have
been made Servlet classes, or JSP pages could have been pre-compiled into Java code, which would
have allowed for aspect composition. That was not performed here, as the task specified to use a
plain JSP GUI, and other approaches were deemed as not within the scope of the thesis.

The web-based GUI

The JSP pages in the web-based GUI are the same as in the OO-version, except they have minor
changes in them to reflect the Library API changes compared to the OO-version. Due to the fact
that JSP:s could not be affected by aspects in this case, no special considerations were needed.

35

4. RESULTS

The applications and their respective development procedure have been analysed in detail, with
respect to actual implementation results (4.1):

e Design methods.
e Implementation methods.
e Time spent on development.
e Code statistics.
And more theoretical conclusions (4.2):
e Adaptability, how well the implementation adapts to new demands.
e Maintainability, how easily the implementation is administered.
e Modularity, how well functionally separate code can be separated into own components.

e Recusability, how easily components can be reused in other applications.

Based on the results, some advantages and disadvantages of AOP development compared to OOP
development have been noted.

Furthermore, a special section with comments on AOP and Aspect] more in general, supported by
the results of this thesis, independent testing, and discussions with AOP community members, was

written (section 5).

The hypothesis for the thesis was that the following would hold for the AOP application version
compared to the OOP version of the comparison application:

e There will be less code in the AOP version, since code tangling and code scattering can
be eliminated.

e Functionality will be more modular, and hence more reusable.
e The code will be easier to follow in the AOP version.

e The development tools and processes are more mature and well-established for OOP,
resulting in less spent time for the OOP version, and better possibilities to debug and
profile the code.

e The OOP version will have a better overview model of the system, as UML tools can be
used.

36

4.1. RESULTS FROM DEVELOPMENT

This section holds results achieved by performing the design and implementation of each application
version, and compares them to the statements of the hypothesis.

4.1.1. Design methods

Advantages of AOP design methods compared to OOP design methods:

e The analysis process was more intuitive and easy, as it was only the question of finding
basic encapsulated entities and services. They were later on refined and composed into
the final application using the AOP tools.

e Difficult crosscutting design issues could be easily expressed and accounted for.

e The designed objects were modular and more pure in design, as opposed to the OOP
version, allowing for more flexible behavioural changes.

Disadvantages of AOP design methods compared to OOP design methods:

e The actual design process is not mature yet as no standard has been agreed upon. Each
designer currently needs to invent their own process, instead of for instance relying on
RUP.

e There are to this date no mature, good UML tools for modelling introduction,
interception and other AOP traits.

It is worth noting that both design processes had the main purpose of creating a clean design with a
high possibility of reusing functionality from generic classes (and aspects, in the AOP case).

4.1.2. Implementation methods

Advantages of AOP implementation methods compared to OOP implementation methods:

e Debugging and tracing was ecasier, as development aspects were used to focus on
interesting code and extracting all used calls, input parameters and method results from
it. Bugs were found faster using this approach than for the OOP case.

e The class files’ code was as much as possible kept clean from crosscutting issues,
exception handling and null reference checking. This made coding faster and easier.

e Viewing crosscutting issues was made much easier through the AJDE environment,
above all the crosscutting view that was generated upon a compile. The AJDE tool is

easy to use, and easy to understand.

e If the design was to be altered somehow, it was usually sufficient to alter a few pointcut
definitions instead of remaking entire components.

37

e Unit testing code became much simpler with AOP. The basic classes were implemented
and tested separately from aspects; aspects and their utility classes were tested separately
from non-aspect components. Special test classes were used to verify the aspect
behaviour. Thus, when the time came for composition, any bugs could be assumed to be
an effect of pointcut definition rather than actual programming mistakes, assuming the
unit testing was successful.

e The behaviour of the entire application could easily be changed by altering aspect
behaviour, either by adding or removing aspects, or by altering pointcut definitions.

e Code completion, which is a very efficient way to make writing code faster, could be
used, at least on standard Java classes, methods and attributes.

Disadvantages of AOP implementation methods compared to OOP implementation methods:

e Refactoring could not be used, as RefactorIt did not support aspects within a project. It
did not ignore them, as they have the “java” extension, interpreting them as standard
Java classes with inaccurate syntax.

e It is harder to use error messages, reflecting on specific local conditions. It can be
accomplished, and if so serve a better purpose in the long run, but still is harder.

e The used Aspect] version does not support incremental compiling, making the build
process a bit clumsy. In a project with thousands of classes, it would have become a real

problem.

e The Aspect] language and its handling of pointcuts are not entirely intuitive and needs
to be properly understood before undertaking a project like this. Sometimes bugs
occurred that was the result of a join point not being intercepted propetly since the
pointcut definition was a bit off key.

e Automated unit testing of aspects using for instance JUnit is not supported for the
Aspect] framework integrated with any IDE, out of the box. It can be accomplished
with some extra work, but should be provided ready to be used (and easy to use).

e Weaved code that has been packed into JAR files contain the aspects that they were
composed with at compile time. Usually, JAR files are kept static. As long as there is no

run-time or flexible load-time weaving instead of compile-time weaving, that is not
feasible.

e The code completion does not include actual aspect concepts yet.

38

4.1.3. Time spent on development

OOP version

This section sums the activities needed to complete the OOP-version’s implementation. The util
package was not included in the analysis, as it is said to be the same for both versions.

Entity Activity Time (h)
OJDB Design, implementation, testing and packaging. - (reused)
Library Design 8

Library Implementation 49
Library Testing 31

Total - 88

Table 1: Time spent on development for the OOP version.

AOP version
Activity Time (h)
OJDB Design, implementation, testing and packaging. - (reused)
OJDB Removing logging statements 4
OJDB Purging the package so only the core functionality 6
remains. Persistence, security etc extracted.
AOP-Library | Design including aspects 5
Aspects Implementation, testing and debugging 26
AOP-Library | Implementation 32
AOP-Library | Testing, debugging 9
Total - 82

Table 2: Time spent on development for the AOP-version.

4.1.4. Code statistics

Note: The statistics below have been assembled mostly using the open soutce, freeware JavaNCSS
tool [URL29]. Currently, aspects cannot be counted the same way, so aspect related statistics have
been assembled manually, according to the rules defined by JavaNCSS. NCSS stands for None
Commenting Soutce Statement, which means the number of valid, non-comment (using // or /*¥)
source code statements in a Java class. The Javadoc column stands for counted Javadoc statements,
for instance “@param input”.

39

OOP-version

Below are the JavaNCSS-generated results for the OOP-version of the application.

Classes Functions NCSS
4 57 521
2 11 132
6 13 62
1 24 31
4 19 376
4 47 332
5 24 150
2 4 64
2 6 53
3 6 78
2 13 153
1 1 12
1 3 22
6 12 26
1 7 32
1 6 46
2 13 55
1 4 13
3 15 123
1 1 5
52 286 2286

Packages Classes

20 52 286
2,6 14,3
55

Functions NCSS

Javadocs Package

61 com.darkwolf.library

12 com.darkwolf.library.client

19 com.darkwolf.library.elements
25 com.darkwolf.library.interfaces
23 com.darkwolf.library.rmi

a7 com.darkwolf.ojdb

29 com.darkwolf.ojdb.elements

6 com.darkwolf.ojdb.parsers

8 com.darkwolf.ojdb.persistence
9 com.darkwolf.ojdb.predicates
15 com.darkwolf.ojdb.presentation
2 com.darkwolf.util.filtering

4 com.darkwolf.util.html

16 com.darkwolf.util.interfaces

8 com.darkwolf.util.logging

7 com.darkwolf.util.persistence
15 com.darkwolf.util.primitives

5 com.darkwolf.util.rmi

18 com.darkwolf.util.tools

2 com.darkwolf.util.transforming
331 Total

Javadocs Per

2286 331 Project
114,3 16,55 Package
43,96 6,37 Class
7,99 1,16 Function

Table 3: This table shows the NCSS Code statistics for the OOP-version.

40

AOP-version

Below are the NCSS results for the AOP-version of the application.

Classes Functions NCSS Javadocs Package
4 59 348 60 com.darkwolf.library
2 12 115 13 com.darkwolf.library.client
6 13 72 19 com.darkwolf.library.elements
1 24 31 25 com.darkwolf.library.interfaces
4 18 297 22 com.darkwolf.library.rmi
4 43 235 43 com.darkwolf.ojdb
5 24 123 29 com.darkwolf.ojdb.elements
2 4 54 6 com.darkwolf.ojdb.parsers
2 6 41 8 com.darkwolf.ojdb.persistence
3 6 61 9 com.darkwolf.ojdb.predicates
2 13 141 15 com.darkwolf.ojdb.presentation
1 1 12 2 com.darkwolf.util.filtering
1 3 22 4 com.darkwolf.util.html
6 12 26 16 com.darkwolf.util.interfaces
1 7 32 8 com.darkwolf.util.logging
1 6 46 7 com.darkwolf.util.persistence
2 13 55 15 com.darkwolf.util.primitives
1 4 13 5 com.darkwolf.util.rmi
3 15 123 18 com.darkwolf.util.tools
1 1 5 2 com.darkwolf.util.transforming
6 9 140 24 com.darkwolf.aspects
3 2 54 6 com.darkwolf.aspects.ojdb
5 1 85 11 com.darkwolf.aspects.library
66 296 2131 367 Total
Packages Classes Functions NCSS Javadocs Per
23 66 296 2131 367 Project

2,87 12,87 92,65 15,96 Package

4,48 32,29 5,56 Class
7,20 1,24 Function

Table 4: NCSS code statistics for the AOP-version.

41

Comparison of code statistics

Below is a comparison summary of the two versions and the difference between them on a higher
level.

Version Packages Classes Functions NCSS Javadocs
OOP 20 52 286 2286 331
AOP 23 66 296 2131 367
Difference 3 14 10 155 35

Table 5: Comparing the NCSS statistics of both versions.

4.1.5. Discussion of development results

This section discusses the results achieved through the actual development process, such as
development experiences of the two approaches and code statistics.

The AOP implementation took about as long time as the OOP implementation, and the code
statistics values were about the same as well. The immediate reaction was, “well then, what is it good
for?” When digging a bit further, the results made more sense.

Design and implementation methods

The development time was 82 hours for the AOP version and 88 hours for the OOP version, a 7.3
% increase for the OOP version. Because these are rather short development times and there is really
only one measurement, it cannot safely be stated if one method is notably faster than the other. That
is of course depending on the experience of the developer, as well as several other factors. Based on
the results here, what can be said is that AOP at least does not mean a notably /longer development
time, even for inexperienced AOP developers. As a hint to the project managers, some minor test
project should be undertaken prior to the real project, so developers can be productive with AOP
and not just utterly confused, leading to a project melt-down.

Since aspects had to be developed from scratch, a large factor of the total AOP implementation time
consists of aspect development time. In a normal case, many aspects should be able to be reused, if
the project is not the first AOP-project. Thus, a development effort without aspect reusing have to
be prepared for the fact that the project time might be longer than necessary, but it is an effort that,
if done correctly, only needs to be performed one time. Also, in the given measurement (26 hours),
some aspects are included that were used only during development.

The developer had very little experience in AOP before the implementation, but a lot of experience
with OOP. Still the results are, even if only by little, to the advantage of AOP.

Testing and debugging was better for the AOP-implementation, mostly due to more dynamic tracing
and logging capabilities, which meant that it was easier to find bugs. The main reason was that the
aspects are morte flexible, and can dynamically be applied anywhere without altering the ordinary Java
classes. They then filter out useful information, so the important things are in focus.

42

In the end, both approaches did their job quite well, although both had disadvantages compared to
the other.

Code statistics

The amount of NCSS in the OOP-version is a 7.3 % increase over the AOP version®. This mostly
comes from the fact that code tangling is less frequent in the latter, but most importantly, AOP
allows the assembling of generic service usage in one place, such as logging.

As shown previously, the overall source code statistics are quite similar for both versions, at least on
the surface. However, in-depth analysis of the results and the actual code states the following:

e In bigger systems, where more components might need access to more generic services
than in this example application, AOP should excel in code statistics. The tendency is
clear, after examining the code of the application versions.

e The aspect version contains several aspects that are only used during development
(Tracing, PerformanceTiming and ExceptionHunting, for instance). If they had been
removed from the statistics comparison, the gain of AOP would be more obvious. The
result when removing development aspects was 11.8 % compared to the 7.3% above.

e Code tangling exists in the AOP version in some cases as well (a few try/catch blocks
and null pointer checks), although the OOP version code contains more tangling in
general. However, when looking in the code, it is apparent that if optimal stability is to
be achieved, the OOP version in fact needs even more code tangling (i.e. better
exception handling, more null checking and so forth). If that had been the case, the
difference between the two versions would have been bigger also in this case. This holds
even if the AOP version should be changed the same way, as exception checking and
null checking occurs on the crosscutting level through interception.

e Javadoc measurement showed that AOP had more Javadoc statements, which comes
from the fact that the AOP version had more classes and methods; hence also Javadoc
statements. When comparing average values, the results were quite similar.

When considering the statements above, the code statistic results rule in favour of the AOP version.

¢ Neither version is optimised for as little code as possible - this is just the way it turned out.

43

4.2. CONCLUSIONS BASED ON
DEVELOPMENT RESULTS

This section deals with what cannot be bound to specific programming results, but are residing on a
more theoretical level, and originate in experiences drawn from this thesis development project and
parallel studies that have been conducted independently of the project.

4.2.1. Adaptability

Adaptability is an area where AOP should truly excel, given its flexible nature. However, in the case
of this application, the two approaches will not differ much in the amount of work required to
implement a change as long as they are not a complete revolution. As long as an application is
designed properly from the start by rigorous encapsulation and constructing generic components,
with an interface and corresponding implementations, most changes just mean adding a couple of
methods to an interface, a corresponding implementation and to the GUI front-end.

When radically switching the behaviour of an application, AOP will be far more superior as it allows
for more loosely coupled behaviour definitions and implementations. While it is really not that
common during enterprise software development that the problem domain is so profoundly changed
so the entire design must be remade, AOP does add other values specific to enterprise development,
such as the ability to flexibly apply or remove development aspects like Tracing and
ExceptionHunting.

4.2.2. Maintainability

The maintainability when it comes to the amount of code is a clear case; the AOP version will,
because of less code tangling, code scattering, and better handling of service access, have less code,
thereby reducing cost of maintenance.

However, there is more to maintenance than the amount of code. If a company that has only one
developer that knows about the Aspect] syntax, the reduction in cost might just be a mirage. In the
event that the developer resigns, is hospitalised, or whatever, the maintainability may not be all that
cheap in the end. This is not an AOP-specific problem, but rather applies throughout the entire
knowledge reserve of the company.

As AOP currently lacks mature visualisation tools, for instance UML-tools, it is a very important
thing to let knowledge spread within the organisation, as not all will instantly comprehend the design
of an AOP application. Additionally, independent brain cells working together as a neural net is more
efficient than the standard “Newtonian” organisations, which is another reason for why knowledge
exchange is essential. Please refer to [TQS97] for more details.

44

4.2.3. Modularity

The increased modularity when applying AOP correctly is quite obvious by looking at the resulting
source code of the two applications. Not only are the components themselves modular, but also
crosscutting parts of their behaviour and generic service usage.

In the event of producing more generic type of code that is not reliant on the OJDB, for instance
JDBC connection handling, the increased modularity should provide some exciting opportunities.

Imagine a JDBC connection factory that is being used by a set of components. By adding an aspect
that wraps itself around the methods to get a connection and return a connection, a connection pool
can be added in the blink of an eye. A test case of this statement has been implemented, and can be
downloaded from [URL15].

In such an example, the connection pooling is modular. The components accessing the connection
factory are modular, and the factory itself is modular. In the OOP case, applying pooling behaviour
(not the pooling utility classes themselves, of course) would usually be included in the connection
factory’s code.

4.2.4. Reusability

Both applications have many reusable components, above all in the “util” package, which is identical
for the two. Apart from the util package, some components may be reusable in the OOP-version, in
the event that a project will develop a very similar application. The components will in any case most
likely need a bit of tweaking to fit into another application, or cannot be reused at all.

In the AOP case, things are a bit different. Even if the components mentioned above still cannot be
easily reused, the actual composition sites, the aspects, may be reused. That is very useful, in case the
aspects (from section 3.3.1, C5) have been made generic and encapsulated in the same way Java
components should be. The generic, abstract aspects made in this thesis project have actually been
reused in another context, just for testing purposes, and they all work fine in their new environment.
All that takes for reuse is making new aspects inheriting the abstract ones, and in those new aspects
define the application specific pointcuts needed.

As was acknowledged in the previous section, AOP code is more modular. If code is more modular

and more generic, it is more reusable, and AOP offers the mechanisms to let components become
just that.

45

4.2.5. Comparison to hypothesis

What of the issues raised in the hypothesis? The actual results are now weighed against the
hypothesis statements, which are marked with bullets below:

e There will be less code altogether in the AOP version, since code tangling and code
scattering can be eliminated.

The OOP implementation required more code than the AOP version, although less than expected.
That has to do with the fact that the OOP application is not a full-blown enterprise example. The
more generic services, contract enforcements, exception handling etc. there is, the more AOP excels
in this area.

e Functionality will be more modular, and hence more reusable. This means that future
development projects will have a greater chance of reusing code from the AOP
application than from the OOP application.

The AOP-version is more modular than the OOP version, hence making it more reusable, as noted.

e The code will be easier to follow and comprehend in the AOP version, as it is more
modular.

The AOP code is not easier to follow, due to the lack of mature visualisation tools for AOP, both
regarding UML and Javadoc, but also when developers are unfamiliar with AOP techniques. The
OOP-version has a better overview.

e The development tools and processes are more mature and well-established for OOP,
resulting in less spent time for the development of the OOP version.

The development tools were better for the OOP implementation, but the differences were fewer
than expected, as most tools and processes easily could be used with AOP as well. After all, AOP is
basically an enhancement to OOP.

The two major differences regarding tools are in refactoring and UML-modelling, which are almost
non-existing for AOP; even if the UML tool used for OOP visualisation, ArgoUML, is not at this
date a mature one.

The IDE did not recognise aspect-oriented code, and thereby labelled them as having incorrect
syntax (in Forte, a symbol is shown when a class does not follow proper Java syntax). It was a minor
detail, although an annoying one. This phenomenon will also affect other programs, as it did with
Refactorlt and JavaNCSS, which could not work with Aspect] code. The major difference in the
development process concerns design issues, as previously stated.

46

4.3. SUMMARY

This thesis has compared the benefits of AOP to OOP when implementing a distributed, web-based
application.

On the whole, AOP is a very promising technology that intuitively solves some of the problems that
are currently giving architects, designers, and developers many headaches, such as code tangling, code
scattering, handling unexpected demands, and making sure resources can be reused propetly in a
natural way. As a technology, it has become mature enough to use in larger development projects,
also in projects using more advanced J2EE concepts.

Now, there are some points in general that must be considered before adding AOP to the
development toolbox:

e Is the project ready for this technology? If the personnel are already having problems
using and understanding OOP core concepts, then jumping directly to AOP is not a
good idea.

e What AOP implementation suits the project the best? Aspect], Hypet/J, and JAC are
currently the leading alternatives. Which new solutions may come in the future, and will
it be possible to easily reuse invested resources to a new framework? Aspect] is
considered as not easily replaced by a similar framework. The aspect code invested in
might be lost; hence it is of the utmost importance to keep most functionality in generic
standard utility classes, not within the aspects themselves. Currently, there is no standard
for defining and exchanging aspect behaviour and definitions as Meta data.

e What value does AOP add? If an EJB server is already being used for all application
development and works fine, the technology may not be needed at the moment. Other
matters may be more crucial.

Another very important thing to notice is that AOP is not the solution to bad code being written. In
case developers cannot see how encapsulation, modularity, interface and implementation
decomposition, and extracting generic functionality for reuse can be an asset, general AOP just offers
one more level of complexity for things to mess up.

Despite these considerations, AOP should be regarded as a very powerful tool for improving
application development productivity that, if used correctly, will pose a considerable business
advantage to those who incorporate it into their development process. That is a fact already in its
current state when IDE:s and other tools have not yet caught up on the phenomenon, not utilising
its full power. For those companies using a Netbeans-compatible IDE or for those using Eclipse’,
the question is more about how to go ahead with the adaptation process of including AOP as a core
component in development, without adding an extra, although temporary, burden on the staff.

7Two IDE:s that support the Aspect] AJDE tool as an add-on module. Other IDE:s will have to use Aspect]-tools via Ant
or another workaround.

47

The following features of AOP should be kept in mind when deciding on whether to stick to plain
OOP or incorporate AOP into the development process:

e AOP allows better reuse and more modular code, being able to express also crosscutting
concerns that plain OOP has a hard time handling.

e AOP may come to replace the tedious EJB work that has to be made to deploy an
application.

e AOP supports the injection of generic services at every available join point.

e AOP decreases the amount of code that has to be written, enabling developers to focus
on business logic instead of contracts, exception handling etc. Contracts and exception
handling are still very important, but may be handled separately from other components
and applied flexibly where they seem to fit.

e AOP can provide more efficient debugging and error tracing, thereby saving time and
frustration.

Many of the above features are opportunities that have not fully been incorporated into developer
tools, but can be used today with some initial setup work. In the beginning of next year, 2003, there
are sure to be more support for AOP in all sorts of tools, offering an opportunity to software
developers to increase their productivity by making complicated issues, like crosscutting concerns, a
lot easier to express.

On a side note, MIT technology review listed AOP as one of "ten emerging areas of technology that
will soon have a profound impact on the economy and on how we live and work" [URLS5].

After reviewing how AOP affects software development, comparing it to standard OOP, it is not
that hard to imagine, considering the importance of software and software development in today’s
information overtflowing society.

For further thoughts and information on AOP from the author, please refer to
http://www.darkwolf.ws/aop/ and http://www.darkwolf.ws:8080/blog/.

48

5.

SOURCES OF INFORMATION

Note: If there is a star symbol on an item below (*), it is not freely available. Download other soutces
at [URL15].

Designation Author(s)
[AGS89] Assuring good style for Katl Lieberhetr and Ian 1989
object-oriented programs Holland
[O0092] Obstacles in Object- Mehmet Aksit and Lodewijk | 1992
Oriented Software Bergmans, faculty of
Development Computer Science,
University of Twente
[INMA92] Towards a New Model of Gregor Kiczales, Palo Alto 1992
Abstraction in Software Research Center (PARC).
Engineering
[MOP93] Metaobject protocols: Why | Gregor Kiczales, J. Michael | 1993
we want them and what else | Ashley, Luiz Rodriguez,
they can do Amin Vahdat and Daniel G.
Bobrow.
[TTRY3] Towards a Theory of Anurag Mendhekar and 1993
Reflective Programming Dan Friedman, PARC.
Languages
[AOI94] Abstracting object Mehmet Aksit, Ken Wakita, | 1994
interactions using Jan Bosch, Lodewijk
Composition Filters Bergmans and Akinori
Yonezawa.
[OIM94] Open Implementations and | Gregor Kiczales and 1994
Meta-object Protocols Andreas Paepcke.
[DSP94] * Design Patterns: Elements Erich Gamma, Richard 1994
of Reusable Object- Helm, Ralph Johnson and
Oriented Software John Vlissides.
[APPI5] Adaptive parameter passing | Christina Vidiera Lopes 1995
[AOO9Y6] Adaptive Object-Oriented Karl Lieberherr 1996
Software — The Demeter
Method
[OID97] Open implementation Gregor Kiczales, John 1997
design guidelines Lamping, Christina Vidiera
Lopes, Chris Maeda, Anurag
Mendhekar of PARC and
Gail Murphy of the
University of B.C,,
Vancouver
[APPCI7] Adaptive Plug-and-Play Mira Mezini and Karl 1997
Components for Lieberherr, College of
Evolutionary Software Computer Science,
Development NorthEastern University of
Boston
[AOP97] Aspect-Oriented Gregor Kiczales, John 1997
Programming Lamping, Anurag
Mendhekar, Chris Maeda,
Cristina Videira Lopes,
Jean-Marc Loingtier and
John Irwin, PARC.
[TQS97] * The Quantum Society Danah Zohar 1997
[UML99] * The Unified Modeling Grady Booch, James 1999
Language User Guide Rumbaugh, and Ivar
Jacobsen.

49

[ODRO0] On the Need for On- Harold Ossher and Peri 2000
Demand Remodularization | Tarr, IBM Thomas |
Watson Research Center.
[RWAO02] Building a Real-World Lee Carver, M.Sc. thesis at 2002
Application with Aspect- the University of California,
Oriented Modules and San Diego.
Hyper/]
[CAO02] Challenges of Aspect- Roger Alexander and James | 2002
Oriented Technologies Bieman, Dpt. of Computer
Science, Colorado State
University.
[DACO02] Designing Aspect-Oriented | Dominik Stein, Stefan 2002
Cross-Cutting in UML Hanenberg and Rainer
Unland.
[UNAO2] A UML Notation for Renauld Pawlak, Laurence 2002
Aspect-Oriented Design Duchien, Gerard Florin,
Fabrice Legond-Aubry,
Lionel Seinturier and
Laurent Martelli.
[AJPO2] Aspect] programming guide | The Aspect] team. 2002
[ADCO02] An Analysis of Design Ruzanna Chitchyan, Ian 2002
Approaches for Sommetville and Awais
Crosscutting Concerns Rashid.

Designation Title Last visited

[URL1] Aspect] http://www.aspectj.org 2002-07-10

[URL2] WikiWeb http://www.c2.com/cgi/wiki 2002-06-12

[URL3] Aspect-Oriented Software http://www.aosd.net 2002-07-10

Development

[URLA4] JAC http://jac.aopsys.com 2002-06-12

[URLS5] MIT technology review http://www.ccs.neu.edu/research/demeter 2002-06-12
aop/publicity/mit-tech-review.html

[URLG] UMLAUT http://www.irisa.fr/UMLAUT 2002-07-16

[URL7] The Server Side http://www.theserverside.com 2002-07-18

[URLS] Log4] http://jakarta.apache.org/log4 2002-07-18

[URLY] Law of Demeter introduction http://www.enteract.com/~bradapp/docs/d | 2002-07-18

[URL10] Demeter http://www.ccs.neu.edu/research/demeter 2002-07-18

[URL11] JGuru EJB introduction http://developet.java.sun.com/developer/on | 2002-07-19
lineTraining/E]Blntro/E]Blntro.html

[URL12] Dynamic proxies http://java.sun.com/j2se/1.3/docs/guide/re | 2002-07-19
flection/proxy.html

[URL13] JBoss http://www.jboss.org 2002-07-19

[URL14] Link page for all tools in the http://www.darkwolf.ws/java/tools.html 2002-09-10

developer environment
[URL15] The authot’s site about AOP http://www.darkwolf.ws/aop 2002-07-19

50

[URL10] A notation for Aspect-Oriented http://jac.aopsys.com/papers/uml/umlhtml | 2002-07-19
Distributed Software Design

[URL17] Subject-Oriented Programming http://www.research.ibm.com/so 2002-07-22

[URL18] Concern] http://trese.cs.utwente.nl/prototypes/concer | 2002-07-22
nJ/index.htm

[URL19] Hypet/] http://www.research.ibm.com/hyperspace 2002-07-22
Hyper]/Hyper].htm

[URL20] PROSE http://ikplab11.inf.ethz.ch:9000 2002-07-22
jsp?page=AboutProse

[URL21] DJ http://www.ccs.neu.edu/research/demeter 2002-07-22
DI/

[URL22] Demeter] http://www.ccs.neu.edu/research/demeter 2002-07-22
Demeter]ava/

[URIL23] MixJuice http://staff.aist.go.jp /y-ichisugi/mj 2002-07-22

[URL24] Java home page http://java.sun.com 2002-07-22

[URL25] ArgoUML http://argouml.tigris.org 2002-08-26

[URL20] Ant http://jakarta.apache.org/ant 2002-08-27

[URL27] Open Source Initiative http://www.opensource.org 2002-08-28

[URL2S] Sourceforge http://www.sourceforge.net 2002-08-28

[URL29] JavaNCSS http://www.kclee.com/clemens/java/javanc | 2002-09-02
ss/

[URL30] UML introduction http://www.microgold.com/version2/article | 2002-09-16
s/articlel.html

[URL31] Patterntesting project http://patterntesting.sourceforge.net 2002-09-24

51

6. APPENDICES

Appendix Content

A AOP implementations in Java This appendix reviews several AOP Java implementations, such
as JAC and Hyper/J.

B AOP related concepts This appendix describes alternatives to AOP.

C Development environment Lists the tools used to make a developer environment for AOP.

D Basic concepts of the thesis To understand the thesis, understanding the concepts herein
are crucial.

E Code distributions Gives important information about the downloadable code.

F OOP application distribution The ZIP distributions file with the OOP Library application. It
can be downloaded from [URL15].

G AOP application distribution Same as above for the AOP version.

H Object design UML models Contains an ArgoUML file with the result of the object design
phase of the OOP application version development.

Appendices can be downloaded at http:

www.darkwolf/aop/thesis/appendices

52

1. APPENDIX A

1.1. AOP IN JAVA

This section presents some AOP-implementations, some pure AOP, and some delivering AOP-
like functionality.

111, ASPECT]

Aspect] comes with a compiler (AJC), a debugger, a Javadoc generator and an IDE add-on called
AJDE.

The AJC tool is actually a weaving pre-compiler written in Java. It quickly compiles aspects and
classes together and produces Java source code that is described as a “weave.” AJC then invokes
javac to actually compile the weave into byte code. If you prefer, you can tell AJC to produce only
the weave and then invoke javac or the compiler of your choice manually.

An important limitation of AJC is that you must provide it with all of the source code that will
be affected by your aspects. Many times, this is either impossible or impractical and limits what you
can apply aspects to. Hence it is nearly impossible to divide a more advanced Java application into
strict aspectual modules, as was the case in [RWAO2]. Why “nearly”’? Well, there is of course the
possibility to supply the entire Java 2 SDK source code to the AJC, but that was not done.

Aspect] has been around for a while now, and is becoming increasingly popular. It is also the
AOP environment of choice for this thesis. There is a lot of material on AOP and Aspect] on the
Aspect] home page [URL1].

1.1.2. JAC

JAC wraps method calls so that aspect can do things when a method is called without the
method being awate of this. This is done on a JVM byte code level during run-time (Note: actually
load-time, which is when classes are loaded), whereas the Aspect] implementation currently only
handles compile-time.

JAC also includes a set of already finished aspects so a programmer can experience the world of
aspects without actual AOP (actual programming, that is). Aspects are configured using configuration
files, and there is a user interface to help configuring an application so it can use existing aspects for
some purpose.

JAC was not chosen for this thesis because of previous experiences with Aspect]. Due to the
time limit, both versions could not be tested as they have different semantics.

Read more about JAC on their home page [URLA4].

1.1.3. HYPER/]

IBM has developed Hyper/], which supports multi-dimensional separation of concerns
MDSOC), described in appendix B.

Aspect-Oriented Programming and Subject-Oriented Programming, both described further on,
are said to be usable within Hyper/]J. Hypet/] supports dividing components into independent
modules known as hyperslices, which can be dynamically combined to form a ready application. The

hyperslices consist of standard code, but also a set of configuration files that define each slice’s
behaviour. Hyper/] works in compile-time, just like Aspect]. Future versions will probably use run-
time weaving.

Read more at [URL19]. [RWAO02] used Hyper/J as the implementation tool.

1.1.4. DYNAMIC PROXY-BASED SOLUTIONS

There are several ways to use Java’s dynamic proxies to achieve reflective mechanisms that allow

for AOP-like behaviour.

One of the more promising is a framework being developed by Rickard Oberg, who has also
been involved in developing the dynamic proxy-based JMX server core in JBoss. The framework
exists in alpha version on the Sourceforge project “Meinds”, but has evolved a lot since. The evolved
version is currently not available for download, as it is a part of a product.

It’s built on the concepts of interceptors and aspects, where the interceptors are the dynamic
proxy-based mechanisms that intercept calls and, based on their assigned aspect functionality,
perform actions accordingly. The aspects, which are standard Java classes, are configured with XML-
files (meta-data) to tell the interceptors how their functionality is to be handled. Interceptors in this
case, correspond to AOP’s pointcuts, and can be ordered using the mentioned configuration files,
where Aspect] instead defines advice precedence using, for instance, the “dominates” keyword.

However, the framework is not only about interception, but can also handle introduction by
configuring interfaces and implementations on a context, and can add the functionality of the
introduction elements onto any object handled by the framework. This constitutes a similar
behaviour as Aspect], but a quite different line of thinking, since only standard Java mechanisms are
used instead of weaving at compile-time (using a special weaver/compiler) or run-time (using a byte

code weaving JVM).

1.1.5. PROSE

PROSE is a JVM extension that can perform call interceptions at run-time. A non-AOP
application will not see any difference to a standard JVM, according to [URL20]. The PROSE JVM
provides an API for inserting and removing code extensions to already executing applications.

There are two small components in each Java Virtual Machine; one resides in the JVM itself, the
other is a simple Java application. Aspects are written as ordinary Java classes, and can be compiled,
then instantiated and inserted into PROSE. After an insertion into the PROSE JVM, the application
will be extended at all points where it has been specified.

1.1.0. MIXJUICE

MixJuice is an enhancement of the Java language that adopts difference-based modules instead
of Java's original class mechanism. One can decompose classes into sets of modules that can be
independently tested. This means that crosscutting issues can be decomposed as well, tested
separately and joined together as needed. Read more at [URL23].

2

<= GO TO THESIS ORIENTATION

1.1.7. DJ/DEMETER]

Demetet] is a tool for applying Adaptive Programming, which is basically a subset of AOP, to
Java. The people that coined the expression Adaptive Programming have developed it. Among them
are Karl Lieberherr and Mira Mezini.

While Demeter] requires you to use a non-standard environment with class dictionary files and
behavior files, DJ fits seamlessly into Java development environments. All you need to do is to
import the edu.neu.ccs.demeter.dj package into your Java programs and you will be able to program
in a traversal-visitor style. Thus, Demeter] and D] are not the same tools!

DJ is a tool for run-time AOP in a JVM, as are JAC and PROSE, and is thereby tied explicitly to
Java, which Demetet] is not in the same sense.

An interesting feature is the APStudio, which is supposed to allow for creating UML models that
can be used by DJ/Demetet]. Read mote at [URL21] and [URL22).

1.1.8. CONCERN]J

Concern] integrates the concepts of aspects, classes and composition filters, which are described

in the next section. It is currently only a research prototype, but seems promising. Read more at
[URL18].

<= GO TO THESIS ORIENTATION

2. APPENDIX B

2.1. AOP RELATED CONCEPTS

Concepts that are related to AOP techniques are listed in this section. They can on a higher level
be divided into object-oriented reflective architectures, particularly techniques of reification by meta-
object protocols, and open implementation-based systems, including Aspect-Oriented Programming,
Subject-Oriented Programming and Adaptative Programming,.

Furthermore, the IBM technology about on-demand re-modularization and multi-dimensional
separation of concerns should be mentioned on the side of the above main groups, as it strives to
incorporate most of the above mentioned technologies under its umbrella.

2.1.1. META-OBJECT PROTOCOL

This is a technology that encompassed many of the other emerging technologies for abstracting
object-oriented systems. The foundation is that developers write two sets of programs; both the
normal base-language program (in for instance Java or C++) and also code in a meta-language that
describes some additional value to the base-language program, for instance transaction handling,
security settings, logging etc.

This technique is the father of aspect-oriented programming, and many other forms of
programming methods to abstract functionality from the standard base-language programs and make
it easier to maintain and evolve. Mathematically speaking it can be seen as extending the standard
object-oriented class graph with another dimension of the graph.

Read more about the meta-object protocol technology and its development in [NMA92].

One note described in [NMA92] that is very interesting is the suggestion that compilers for a
programming language should have open implementations, so that the programmer can affect the
compiler behaviour directly. This allows for better fitting the high-level Meta code into the compiler,
which can solve the problem of getting good enough performance out of high-level languages.

2.1.2. REFLECTIVE PROGRAMMING

An approach of Mendhekar and Friedman in a more mathematical way using sets, subsets and
operators, derived that there is a possibility to construct a mechanism for base language abstraction.
Using reflection and reification, a base system can be mapped onto a new base, where for instance
crosscut concerns can be abstracted away from the base implementation and into some form of
meta-expression and reflection. This was proven in [TRR93] and some theorems for these kinds of
methods were established.

In plain English it means that provided that there are reflective mechanisms available, like in
Java, it is possible to express crosscutting concerns using meta-data and the reflective mechanisms.
The mechanism can provide information about given points in the application’s execution and also
allow actions to be performed based on that information. An actual implementation of this scenatio
is described in the Appendix E section “Dynamic proxy-based solutions”.

4

<= GO TO THESIS ORIENTATION

2.1.3. ADAPTIVE PROGRAMMING

Adaptive programming (AP) is an extension to ordinaty object-otriented programming that
allows relationships between functions and data to be loosely coupled through navigation
specifications. The adaptive part is from the fact that the adaptive system heuristically changes itself
to handle altered requirements related to changing the object structure.

AP is basically a special case of Aspect-Oriented Programming,.

Please refer to [AOOY6] for more information about adaptive object-oriented programming,
foremost regarding using the Demeter method.

2.1.4. ADAPTIVE PLUG-AND-PLAY COMPONENTS (APPC)

APPC’s are components that encapsulate collaborations between objects, thus they can be used
to capture cross-cutting mechanisms. They were introduced by Mira Mezini and Karl Lieberherr
from the Northeastern University in Boston [APPC97]. APPC’s were suggested as a result of the
work on adaptive programming.

2.1.5. SUBJECT-ORIENTED PROGRAMMING

Subject-Oriented Programming (SOP) is an approach to building OO software systems by
composing several sub-systems, which are known as subjects, according to a composition expression
which describes the rules for what the subjects correspond to, and how they should be merged to
implement required system functionality. This supports the separation of concerns, since each
subject encodes the important aspects of the system as perceived from a particular perspective.

The approach attempts to solve the same problems as AOP, but in a slightly different way. AOP
and SOP are said to be complementary. Read more at [URL11].

2.1.6. COMPOSITION FILTERS

The term composition filters was introduced in [OOO92]. Composition filters have the
following important characteristics:

e Modular extension: Each filter enhances a class abstraction in a modular way. A modular
extension means that a filter can be attached to a class without necessarily modifying the
definition of that class.

e Orthogonal extension: Orthogonal extension means that each filter extension to a class
is independent from other filter extensions. This allows easy composition of multiple
filters.

e Open-ended: New filters may be introduced if necessary.

e Aspect-oriented: Each filter represents an aspect. Filters are predefined and have a well-
defined semantics.

e Declarative: A filter specification describes what it means but not how it is implemented.

<= GO TO THESIS ORIENTATION

The people behind the work with composition filters are now co-operating with among others
the people at PARC, since their work is much related. In 2001, Patricio Salinas integrated the
concepts of aspects, classes and Composition Filters and started working on a tool for this, Concern]
[URL18].

2.1.7. ABSTRACT COMMUNICATION TYPES (ACT)

This technology is based on the fact that object-oriented programs are mainly based on two
things, objects and messages between objects. ACT is a means of intercepting messages between
components and performing actions based on the message. Messages can be forwarded, altered,
cloned or obstructed, if some condition is not met. The research team at the University of Twente in
Belgium, in which the leading persons are Mehmet Aksit and Lodewijk Bergmans, introduced ACT’s.
Aksit and Bergmans are still very active in AOP-related work.

A lot of the work by the Twente team is founded on their own programming language, Sina, but
the ideas and concepts hold for other object-oriented languages as well. Sina has built-in support for
solving some of the design problems that other object-oriented languages have to deal with
programmatically.

Read more on ACT’s in [ACT97].

2.1.8. ON-DEMAND REMODULARIZATION

This technology actually is a more generic form of modular decomposition that can contain
mechanisms like SOP or AOP to achieve a good system structure with high reusability, separation of
concerns and modulatization. Harold Ossher and Peri Tatr of the IBM Thomas | Watson Research
Center first described on-demand re-modularization in a paper for the ADC 2000 conference. They
state that “support for on-demand re-modularization is critical for achieving the benefits of multi-
dimensional separation of concerns”. Multi-dimensional separation of concerns (MDSOC) suggests
that this work provides even more dimensions of separation than AOP, since AOP handles one
dimension on top of OOP, cross-cutting concern separation.

The question is if there is really a need for MDSOC, perhaps technologies like SOP and AOP are
quite enough to solve the problem domains that OOP cannot decompose cleanly.

The IBM team has developed Hypet] as an implementation of their theoretical work.

<= GO TO THESIS ORIENTATION

3. APPENDIX C

3.1. THE DEVELOPMENT ENVIRONMENT

The development environment consisted mostly of free tools from the open source Java wotld,
with a couple of exceptions. The following software was used to create the development
environment:

e Windows NT as operating system.

e Forte 4, a.k.a. Sun ONE Studio, as Java IDE. It is based on the open source software
Netbeans, and is free in its community edition.

e J2SDK 1.3.1 and 1.4.0 as Java environments.

e Windows Commander 5.0 as multi-tool (ZIP archive handling, file manipulation, FTP
transfer etc.).

e Tomcat (3.3 and 4.0.1) and JBoss (3.0 with Jetty) for deploying and testing the
application.

e DJ Java Decompiler 2.9.9.61 (based on Jad as decompilation engine) for occasionally
decompiling and analysing Java classes.

e Acrobat Reader 5.0.5 for reading PDF documents.
e Ant 1.4 for compiling, packaging, deploying etc.

e Aspect] 1.0.6, with AJDE added to Forte and extra Ant tasks to Ant, for AOP

enhancements to Java.
e Log4] 1.0.4 for logging.
e ArgoUML 0.10.1 for UML modelling.

e RefactorIT evaluation version, which is a refactoring plug-in to IDE:s.

<= GO TO THESIS ORIENTATION

4. APPENDIX D

4.1. BASIC CONCEPTS

This section briefly explains some of the concepts in the thesis that might not be completely
obvious. If a concept is not listed here, then it is most likely explained in its logical context, or is
assumed to be known by the reader.

4.1.1. PROBLEM DOMAIN

The problem domain is the set of requirements on a system that need to be satisfied in order for
the system to solve some given assignment. It can be defined through a set of use-cases.

4.1.2. CODE TANGLING

When code becomes unnecessarily complex because it needs to take into account some
circumstances, it is tangled. Source code after adding method access control or exception handling is
a good example of tangled code, as demonstrated below:

try
{

iT (access.hasAccess(Session ses, DatabaseTable dbTable, access.SELECT))
elem = dbTable.getElementByID(id);
else
elem = null;

catch (Exception e)

{
}

elem = null;

4.1.3. CODE SCATTERING

Code scattering is when functionality that logically belongs in an encapsulated class of its own is
spread throughout several classes. Logging statements are good examples of scattered code lines.
Below is a demonstration (logging statements in bold) from one single class. However, as mentioned
above, the real problem is when the same kind of statements are scattered throughout several
different classes.

/** Log4J logging Category object */
private static Category cat = Category.getlnstance(Database.class.getName());

cat.debug("'Retrieving the table with name " + tableName + "...");
DatabaseTable temp = new DatabaseTable(tableName);
cat.debug('Get primary key for table with name ' + tableName + "...");

// Get primary key for this table
PrimaryKey tempKey = tableConfig.getPrimaryKey(tableName);

<= GO TO THESIS ORIENTATION

4.1.4. REFLECTION

A programming language or an operating system is called reflective, if it has mechanisms that
provide programs with some special ability to read and write properties of themselves (or related

programs).

The reflection API in the Java language enables Java code to discover information about the
fields, methods and constructors of loaded classes. It also allows code to use reflected fields,
methods, and constructors, as long as the operations are within security restrictions, which can be

defined by altering the JVM’s security policy.

Please refer to appendix F for some words on reflective programming, which is based on
reflection mechanisms.

4.1.5. INTERCEPTOR

An Interceptor intercepts messages between two classes, and can take action based on various
parameters:

e The source or destination object (their type or publicly accessible information, for instance)
e The input parameter(s)
e The result of the message

4.1.0. DYNAMIC PROXY

A dynamic proxy is a mechanism in the Java programming language that appeared in JDK 1.3.
It’s an example of an interceptor (as defined above).

From [URL12]: “Method invocations on an instance of a dynamic proxy class are dispatched to a
single method in the instance's invocation handler, and they are encoded with a java.lang.reflect. Method
object identifying the method that was invoked and an array of type Object containing the
arguments.”

This basically means that when calls to an object are intercepted, Java code can be included in

the object’s invocation handler. The code will have access to the method parameters, it can affect the
method execution’s result, or even dispatch new method calls elsewhere as a reaction to the call.

<= GO TO THESIS ORIENTATION

4.1.7.

ENTERPRISE JAVABEANS

The EJB definition below originates from [URL11]:

“The Enterprise Javabeans specification defines architecture for the development and
deployment of transactional, distributed, server-side software components. Organizations can build
their own components or purchase components from third-party vendors. These server-side
components, called enterprise beans, are distributed objects that are hosted in Enterprise JavaBean

containers and provide remote services for clients distributed throughout the network.”

In order to understand EJB, which is of course not the within the scope of this thesis, one needs

to understand how EJB containers work.

An EJB container wraps the enterprise beans and handles a set of services that the components
need, such as resource pooling, logging, transactions, security, persistence and concurrency. As there
are several open-source EJB containers around, a good thing is to do a little research on how those
containers work. As long as an EJB container implements the specification, it can be constructed in

any way. Below is an image of how a container might work.

bean

bran method : invoke

<_ ____________

bean methad resutt - fetuny

bean methad e s - el

Figure 1: Simple view of an EJB server and an EJB container, and how a incoming call might

JBoss is one example of an open-source EJB container. It uses dynamic proxies to intercept calls

be handled.

and perform actions based on the call. Read more about JBoss at [URL13].

10

<= GO TO THESIS ORIENTATION

server : EJBServer [container ; EJBCortainer l | log : Logging access : Acvess Controller
ascess © venfy iy
rl J
< 155255 [retum
I fnng Tag =
VJ, J
< logging : retum
ban method : invake I
bean method : inrdke
< bean methad : retum

4.1.8. JOIN POINT

A join point is a given point in object-oriented code. It can be a method call, object initialization,
variable retrieval, to mention a few scenarios. The best way to picture it is to look at the figure below,
where a method call is being performed from one object to another.

d w30

methad | arvoke

r——— | A st of actions i the

s thod.
methad result - retum \

it er pethod exoeotiog

ro———

Figure 2: Join points during object interaction via method calls.

The join points in the picture are (assuming Foo and Bar are already initialised objects):

1. The call site of the method call Foo.methodA

2. Foo.methodA’s execution starting point

3. Any join points within the method code (calling new methods etc.)
4. Foo.methodA returns or throws an Exception

5. Method call returns result to Bar

In case the objects have had to be initialised, the actual object construction would have
contained many more join points.

11

<= GO TO THESIS ORIENTATION

4.1.9. DESIGN PATTERNS

Not only actual code may be reused, but also design solutions on a higher level. Such design
solutions are called design patterns. They describe the design solution of a certain situation, and then it
is up to the developer to make an implementation of the pattern, if one isn’t already available.

Below are a couple of examples of design patterns:

e Seppuku pattern — a distributed object cache, where the idea is that each cached object
removes itself from the cache after a time of inactivity.

e Visitor pattern - the purpose is to encapsulate an operation that you want to perform on
the elements of a data structure. Using a Visitor pattern allows you to decouple the
classes for the data structure and the algorithms used upon them.

Read more at The ServerSide.com, who have got an extensive library of user-contributed design
patterns [URL7] or check out [DSP94].

4.1.10. THE LAW OF DEMETER

The Law of Demeter [AGS89] defines a design and programming style guideline for objects,
which, if applied to them, increases their modularity.

The definition is rettieved from [URL9]:

“A method "M" of an object "O" should invoke ONLY the methods of the following kinds of
objects:

o itself
e its parameters
e any objects it creates/instantiates

e The object’s direct component objects” (i.e. super component parts)!

Research work trying to create mechanisms that made it easy to follow the Law of Demeter in
OOP lead to the concept of Adaptive Programming (please refer to the appendix), which is a close
relative to AOP.

! For instance, a Car object consists of an Engine, a Steering Wheel, four Wheel components, etc.

12

<= GO TO THESIS ORIENTATION

5. APPENDIX E

5.1. SOURCE CODE DISTRIBUTIONS

In order to get the most from the actual implementation and the source code distributions, it is
good to know the following:

e Java Naming and Directory Interface (JNDI) [URL24]

e Java Server Pages (JSP) [URL24|

Jakarta Ant [URL26]

Log4] [URLS]

The distributions have been made for Windows-flavoured operating systems, but can be used on
*NIX-systems with a few changes. It’s a matter of directory-structures, and a matter of using, for
instance, shell-scripts instead of batch scripts. Since Java is platform independent, getting the Java
code itself running is not a problem, assuming there is a Java Virtual Machine (JVM) being able to

run JDK 1.3 code or higher available on the system.

Furthermore, the following “Readme” file describes a bit about the structure of the distributions
in general.

5.1.1. OOP VERSION

This section describes the package structure of the OOP version distribution.

The developed or reused library application packages, not belonging to external components,
were:

com.darkwolf library — the main library classes
.client — the client related classes (text-based client)
.elements — the basic library element classes, like CD and Book.
.Anterfaces — the library service method interface for the RMI server
.rmi — other RMI-related classes

com.darkwolf.ojdb — the main OJDB classes
.elements — DBElement related classes
.parsers — persistence-parsers used to turn file data into elements

.persistence — other persistence-related classes

13

<= GO TO THESIS ORIENTATION

.predicates — predicate classes used for element filtering and searching
.presentation — classes for presenting element data to the JSP GUI
com.darkwolf.util — generic utility classes

filtering — classes used to filter a set into a new set (used for predicate filtering of
element vectors)

.html — HTML presentation classes
.Anterfaces — global generic interfaces
Jogging — logging utility classes
.persistence — generic persistence classes, like a class for accessing a text file
.primitives — generic data types, like the name-value pair class
.rmi — generic RMI utility classes
.tools — generic tools, like a timer
.transforming — classes for applying transformation operation classes on an object

5.1.2. AOP VERSION

This section describes the package structure of the AOP version distribution, which is the same
as for the OOP-version, but with the following additions:

com.darkwolf.aspects — where all aspects are assembled
.0jdb — aspects specific to the OJDB sub-system

Jibrary — aspects specific to the Library application

14

<= GO TO THESIS ORIENTATION

5.1.3. THE JSP WEB-GUI

The following JSP-pages are used in the web-based GUI:

admin.jsp — the main page for administrators. From here, commands can be started, which leads
to the user being dispatched to the page that handles the actual command execution.

clement.jsp — a page only administrators can access. Here, edit and delete commands for an
clement can be executed, which leads to a call to the element_cmd.jsp page, which checks input,
performs the actual command and checks the result of it.

element_add.jsp — this page allows administrators to add elements to tables.

index.jsp — the first page, featuring a login procedure. It then calls login.jsp with the given
parameters to verify that the user is valid. After the verification, administrators are redirected to
admin.jsp and ordinary users to their corresponding main page, uset.jsp.

iteminfo.jsp — is a closer look on a specific element, where also lending status is given. If the
library object is available for lending, a link to lend.jsp appears which enables the user to lend the
object. If the object is already lent out to the current user, a link to return.jsp appears, that, enables
the user to return the object. If the object is lent out to another user, the lendet’s user name is given.

results.jsp — this page gives a result list of the command that was executed on the page, for
instance “List Books”. The latest command is saved in the JSP session, so that when the user returns,
the last command is pre-selected. Also, other pages can use the command to let the user return to the
current result set.

Finally, there is a page called rollback.jsp, which rolls back all changes since the last save.

However, since a save occurs every time a user logs out, it might not work exactly as desired. There is
currently no such thing as a per-user rollback, such an effort was not within the scope of the thesis.

15

<= GO TO THESIS ORIENTATION

