
A Case Study on Building COTS-Based System Using
Aspect-Oriented Programming

Axel Anders Kvale
Department of Computer and

Information Science
Norwegian University of Science and

Technology
Sem Sælands vei 7-9

NO-7034 Trondheim, Norway
+47, 93034377

axelkv@stud.ntnu.no

Jingyue Li
Department of Computer and

Information Science
Norwegian University of Science and

Technology
Sem Sælands vei 7-9

NO-7034 Trondheim, Norway
+47, 73598716

Jingyue@idi.ntnu.no

 Reidar Conradi
Department of Computer and

Information Science
Norwegian University of Science and

Technology
Sem Sælands vei 7-9

NO-7034 Trondheim, Norway
Simula Research Laboratory

P.O.BOX 134, NO-1325 Lysaker,
Norway

+47, 73593444

conradi@idi.ntnu.no

ABSTRACT
More and more software projects are using COTS (Commercial-
off-the-shelf) components. Using COTS components brings both
advantages and risks. To manage some risks in using COTS
components, it is necessary to increase the reusability of the
glue-code so that the problematic COTS components can easily
be replaced by other components. Aspect-oriented programming
(AOP) claims to make it easier to reason about, develop, and
maintain certain kinds of application code. To investigate
whether AOP can help to build an easy-to-change COTS-based
system, a case study was performed by comparing changeability
between an object-oriented application and its aspect-oriented
version. Results from this study show that integrating COTS
component using AOP may help to increase the changeability of
the COTS component-based system, if the cross-cutting
concerns in the glue-code are homogenous (i.e., consistent
application of the same or very similar policy in multiple
places). Extracting heterogeneous or partial homogenous cross-
cutting concerns in glue-code as aspects does not provide
benefits. Results also show that some limitations in AOP tools
may make it impossible to use AOP in COTS-based
development.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software– reuse
models

General Terms

Experimentation, Languages.

Keywords
Object-Oriented Programming (OOP), Aspect-Oriented
Programming (AOP), Commercial-Off-The-Shelf (COTS) based
development, component-based software development (CBSE).

1. INTRODUCTION
COTS-based development has become increasingly important in
software and system development, as COTS usage promises
faster time-to-market and increased productivity [13]. At the
same time, COTS-based development introduces many risks.
Unknown quality properties of the chosen COTS components
can be harmful for the final product. Business instability of the
COTS vendor may terminate the maintenance support of its
COTS components [14].

To manage these risks, it is necessary to prepare for replacing
current COTS components. In the process of replacing the
integrated COTS components, some components relevant code
(i.e., glue-code) may need to be rewritten. It is therefore
important to increase the reusability of glue-code so that little
effort is needed to change from one COTS component to
another.

Aspect-oriented programming (AOP) is claimed to be able to
increase the maintainability of a system compared to Object-
oriented programming (OOP) [5]. In COTS-based development,
the invocation of COTS component functionalities or methods
are scattered all over the system. If cross-cutting concerns in
glue-code can be separated into aspects, it will be easier to
understand and change the system. To empirically investigate
how to build an easy-to-change COTS-based system using AOP,
a case study was performed by comparing the changeability in
an object-oriented system and its aspect-oriented version.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00. Results from our study show that proper use of aspect-oriented

programming in COTS component integration can help to

increase the changeability of the system. Result also show that
detailed plan and design should be performed before the
decision of using AOP in COTS-based development.

The rest of this paper is organized as follows: Section 2
introduces some related concepts and background of this study.
Section 3 describes our research design. Section 4 presents the
results and Section 5 discusses them. Conclusion and future
work are presented in section 6.

2. BACKGROUND
2.1 COTS Component Definition
The essential question for COTS component-based development
is “What do you mean by a COTS component?” We have used
the definition by Torchiano and Morisio [16], where a COTS
component:

- Is either provided by some other organizations in the same
company, or provided by external companies as a
commercial product.

- Is integrated into the final delivered system.

- Is not a commodity, i.e. not shipped with an operating
system, not provided with the development environment,
not generally included in any pre-existing platforms.

- Is not controllable by the user, in terms of provided
features and their evolution. Our addition: This normally
means “black box”, i.e. no source code available.

The granularity of the COTS software can be different. In this
study, we focus on COTS “components”. A component is a unit
of composition, and must be specified so that it can be
composed with other components and integrated into a system
(product) in a predictable way [8]. That is, a component is an
“executable unit of independent production, acquisition, and
deployment that can be composed into a functioning system.”
This definition means that we include not only components
following COM, CORBA, and EJB standards, but also C++ or
JavaTM libraries. This definition is consistent with the scope in
the component marketplace [4].

2.2 Risks in COTS Component-Based
Development
A COTS component-based process consists of four phases,
comprising [3]:

- COTS component assessment and selection

- COTS component tailoring

- COTS component integration

- Maintenance of COTS and non-COTS parts of the system

COTS-usage promises advantages, but also brings many
possible risks [13, 14]. Proper risk management is needed in
each phase:

• In the COTS component selection and evaluation phase

One risk in this phase is that wrong components may be
selected. Several formal selection processes and decision
making methods have been proposed to support the selection

and evaluation of COTS components [21]. In some of these
proposed selection processes, hands-on trial is regarded as a
necessary step [12, 17]. Hands-on trial means to build glue-code
and integrate the COTS components into possible future
environment, in order to test their quality and compatibility with
other components in the system. Selecting a proper COTS
component from several possible candidates by integrating and
testing them is time-consuming, especially if cross-cutting
concerns in glue-code spread throughout the system. To change
the testing from one COTS component to another, a lot of glue-
code needs to be modified and rewritten

• In the COTS component tailoring and integration phase

One risk in this phase is that too much effort needs to be spent
on solving the mismatch between COTS components. As COTS
components may be bought from different vendors, the internal
implement may cause the mismatch between those components.
A lot of glue-code may be needed to integrate these COTS
components and make them work together.

• In the maintenance phase

One risk in this phase is that vendor may go bankrupt and fail to
give support to the current COTS component running in the
system. Some vendors may withdraw support on the old version
component when they publish the new version. The new version
component may have no backward compatibility with the old
version one.

One solution to the above risks is to try to build an easy-to-
change COTS component-based system. It means that the COTS
component users are not bound to specific COTS components
and a specific COTS vendor. If the selected COTS components
bring unexpected problems, they can easily be substituted by
other components.

2.3 Aspect-Oriented Programming
Aspect-oriented programming (AOP) is a new programming
paradigm that takes another step towards increasing the design
concerns that can be captured clearly within source code [5]. An
aspect is a modular unit of crosscutting implementation. It
encapsulates behaviours that affect multiple classes into
reusable modules. Aspectual requirements are concerns that
introduce crosscutting in the implementation. With AOP, each
aspect can be expressed in a separate and natural form, and can
then be automatically combined into a final executable form by
an aspect weaver. As a result, a single aspect can contribute to
the implementation of a number of procedures, modules, or
objects. It is therefore help to increase reusability of the source
code [5]. Several different AOP tools have been built, such as
AspectJ [6], AspectWerkz [2], and JBoss AOP [11].

3. RESEARCH DESIGN
3.1 Motivation and Research Questions
Most current glue-code is built using OOP. The advantage of
using AOP over OOP is that it is possible to modularize glue-
code that cross-cut the whole application. In COTS-based
development, the invocation of COTS component functionalities
or methods are scattered throughout the system. If cross-cutting
concerns in glue-code can be separated into aspects, it will
probably be easier to change the system. Most previous

empirical studies on AOP focused on components that can be
modified completely [15, 20]. There were, however, few studies
on integrating COTS component (where the source code is
either not available or hard to modify) using AOP [19]. The
motivation of this study is to empirically investigate whether
AOP can help to build an easier-to-built and easier-to-change
COTS component-based system than OOP.

Thus, our first research question RQ1 is to compare how much
effort is needed to integrate a COTS component by AOP vs.
OOP.

• RQ1: Is it easier to build a COTS-based system using
AOP than using OOP?

The second research question RQ2 is to compare how much
effort is needed to change from one COTS component to
another.

• RQ2: Is it easier to change a COTS-based system built by
AOP than a system built by OOP?

3.2 System and Programming Language
Selection
There are two possible strategies to implement this study:

- Re-engineer an existing object-oriented system using AOP.

- Build two systems from scratch, one using OOP and
another using AOP.

Although some previous studies chose to build two systems
from scratch [20], we selected to re-engineer an existing system
because:

- It will be easier to compare the results since the systems are
identical except that some parts were extracted into aspects
in the AOP version

- The disadvantages of building a system from scratch by
both OOP and AOP is that the measurements might be
influenced by choices made by the developer, and not by
the difference in AOP vs. OOP (i.e. a specific problem is
solved elegantly in the OOP model and poorly in the AOP
model). This might occur on both the modelling level and
the implementation level.

The system chosen for the study is an open source Java Email
Server, the JES server [9]. It is built by OOP principles. Some
objects in this application are encapsulated as components, such
as logging, spam-checking, etc.

Although the source code of components in JES server is
available, we treated these components as COTS components
in this study, i.e. we did not change source code inside
components. Code relevant to these components is regarded as
glue-code.

Because the aspect code is combined with the primary
programming code by an aspect weaver, it is important that the
AOP tool can do byte code weaving because most COTS
components are delivered in byte code format. The aspect-
oriented tool we selected is AspectJ version 1.1 [6]. AspectJ
extends JavaTM and supports byte code weaving. It is therefore

possible for us to weave an existing byte code COTS component
without source code.

3.3 Research Steps
There are four steps in this study.

3.3.1 Re-engineering the glue-code of the logging
component using AOP
The first step was to re-engineer the JES server using AspectJ.
We first selected an existing component in the JES server and
re-engineered the glue-code using AOP. In the JES server,
almost all classes utilize the log4j component for logging, and
make it a cross-cut concern. By moving the glue-code relevant
to the log4j into a separate aspect, all classes become
independent of this component.

3.3.2 Add glue-code to integrate an additional
spam-checking COTS component
The second step was to investigate research question RQ1. To
investigate the efficiency of adding a component, a spam-
checking COTS component (i.e., SpamAssassin [22]) was added
to both the OOP and the AOP system. SpamAssassin is a
popular spam-checker for most email servers. The JES server
uses the class SMTPMessage to keep the email and functions
related to an email message.

- In the OOP version, the spam-checking routine is created
inside the SMTPMessage class. When the SMTPProcessor
class has received a new e-mail and stored it inside a
SMTPMessage, the spam-checking is called in the
SMTPMessage, and the original message with altered
headers will be returned as the result.

- In the AOP version, the SpamAssassin extension is
implemented inside an aspect. The routine for checking a
SMTPMessage is the same as in the OOP version, but the
spam-checking routine is called inside the aspect. A
pointcut picks out all the places where a SMTPMessage
should be checked for spam. The aspect calls
SpamAssassin and alters the SMTPMessage. The result is
that every SMTPMessage that created by SMTPProcessor
is checked with SpamAssassin without the knowledge of
SMTPProcessor and SMTPMessage. It is all done inside an
aspect.

3.3.3 Replace logging component with another
logging COTS component
The third step was to investigate research question RQ2. We
used another logging component to replace the current logging
component in both the OOP and AOP version of the system. In
the JavaTM Development Kit (SDK) version 1.4, there is a new
logging-system available (i.e., util.logging [10]). It is for
logging and is built up in the same way as log4j. We therefore
decided to replace the log4j component with the util.logging
package from JDK 1.4. There are three steps in both the AOP
version and the OOP version:

- The first change to do was the initialization of the logging
system. In the original version with log4j, this was done
inside the system before the first log-object can be created.

With the util.logging, this is done through an xml-file that
it passed to the system by the JavaTM command that starts
the system.

- The second change to do was the declaration and
initialization of the log-objects. To implement these
changes, all declarations must be changed to use the new
log-object, and all initializations of the objects must use the
new syntax.

- The third change was the way a message is written to the
log. Log4j and util.logging uses slightly different syntax
when appending a log-message. The log4j uses syntaxes
like log.warn and log.info. The util.logging requires a level
to be supplied to every message on the form log.log
(Level.LEVEL, String).

3.3.4 Replace SpamAssassin component with
another COTS component
The fourth step was to investigate research question RQ2
further. We used another spam-checking component
(SpamProbe [23]) to replace the SpamAssassin component in
both the OOP version and AOP version of the system.
SpamProbe is a spam detection application using Bayesian
analysis of terms contained in the email. It works in a way
similar to SpamAssassin. The email server needs to call
SpamProbe and ask it to scan the email. The difference between
SpamAssassin and SpamProbe is their output. The output
received from SpamProbe is the result of the conducted scan
(the additional headers). The output received from
SpamAssassin is the original message with altered headers. The
changes in the OOP version and AOP version of the system are
as follows:

- In the OOP version, each class that scans the message has
to be changed. The result from the SpamProbe needs to be
read and appended to the message-header.

- In the AOP version, the change is the same as in the OOP
version. However, only the aspect is changed, none of the
classes in the system needs to be changed, regardless of
where the spam-checking is required.

4. RESULTS AND LESSONS LEARNED
To compare the changeability between the AOP version and
OOP version of the system, our metrics records how many LOC
and classes needed to be modified.

4.1 Results of Research Question RQ1
To add the spam-checking component SpamAssissin, the total
lines-of-code (LOC) and number of classes were changed
(added, modified or deleted) in the OOP version and AOP
version are showed in the following Table 1.

Table 1. Changes performed to add SpamAssassin

Changes OOP Version AOP version

LOC changed 36 44 (In aspect)

Number of
classes changed

2 0 (1 aspect
changed)

Since there are only two classes were changed in order to add
the SpamAssissin in the OOP version, the AOP version needed
to add more LOCs. It is because AOP version needed extra
LOCs to define pointcuts. If several classes need to be changed
to add SpamAssissin, AOP version would have a benefit since
only a new pointcut definition is needed for each additional
class. In the OOP version, the same functionality needs to be
implemented in each class.

4.2 Results of Research Question RQ2

In the process of replacing the log4j component with
util.logging, the total lines-of-code (LOC) and number of
classes were changed (added, modified or deleted) in the OOP
version and AOP version are showed in the following Table 2.

Table 2. Changes performed to replace log4j with
util.logging

Changes OOP Version AOP version

LOC changed 184 162 (In aspect)

Number of classes
changed

12 0 (1 aspect
changed)

We can see that the LOC changed in OOP system and AOP
system are almost the same. The reason is that glue-code
spreading in the system is not homogenous (consistent
application of the same or very similar policy in multiple
places). In this study, the heterogeneity comes from the static
strings to be printed out in the OOP version as showed in Figure
1.

B
r

W
a
p
e
b
r
l

T
p
c
v

T
l
(

// print out logging information after the change of X and Y
 li.log.info(“Changed X and Y to”, ...)
// pring out logging information after the change of string

li.log.info(“Changed String”, …)

Figure 1. Code for logging in the OOP version.
y printing out these static strings, the system gives a

easonable clue of what it did (or failed to do).

ith the general logging in the AOP example, this cannot be
ccomplished. The logging will be limited to the information
rovided by the joinpoint (name of the function, name of the
nclosing function, arguments, class name etc). It is possible to
e as accurate with logging in AOP as with OOP, but this
equire us to define each and every pointcut where we want to
og and treat these joinpoints individually as Figure 2.

he result was that we had to build several quite complex
ointcuts to define where we want to log. If the cross-cutting
oncern is homogenous, there would be a benefit in the AOP
ersion when measuring LOC changed.

he value of the AOP version in this case is that only the
ogger-aspect was changed. In the OOP version all the classes
12 classes) using the log4j system had to be changed.

- The returning value of the method

If other variables than the ones mentioned above are needed,
several pointcuts are needed to get references to these variables.

If we want to access the input string s when the user is created
in the sample code in Figure 3, we need to combine several
pointcuts as showed in Figure 4.

public void DoSomething(String s){

EmailAddress address = new EmailAddress(s);

User user = new User(address); //The joinpoint we

 want to trap

}

Figure 3. Sample code to create a user with email address

//Pointcut picking out the extra variable String s

private pointcut DoSomething(String s) :
//defining joinpoint #1

private pointcut PC1(LogInterface li, int x, int y)
:this(li) && args(x,y) && execution(public void
Function1(int x, int y));

//logging in joinpoint #1

after(LogInterface li, int x, int y) returning: PC1(li,
x, y){ li.log.info(“Changed X and Y to (“ + x +
“,” + y + “)”); }

//defining joinpoint #2

private pointcut PC2(LogInterface li, String s) :
this(li) && args(s) && execution(public void
Function1(String s));

//logging in joinpoint #2

after(LogInterface li, String s) returning: PC1(li, s){

 li.log.info(“Changed name to ” + s); }

Figure 2. Code for logging in the AOP version.
In the process of changing the SpamAssisin component with
SpamProbe, the total lines-of-code (LOC) and classes that need
to be changed (added, modified or deleted) in the OOP version
and AOP version are showed in the following Table 3.

Table 3. Changes performed to replace SpamAssisin with
SpamProbe

Changes OOP Version AOP version

LOC changed 15 15

Number of classes
changed

1 0 (1 aspect
changed)

In the OOP version, SMTPMessage was changed. The routine
that scan the message was changed to use SpamProbe instead of
SpamAssassin. In the AOP version, only advices were changed
when changing from SpamAssisin to SpamProbe, regardless of
where the spam-checking functionality is called. The system
doesn’t even need to know which spam-checking component is
used. In the OOP version, all classes calling the spam-checking
functionality were modified.

4.3 Lessons Learned in Re-engineering
When we implemented the aspect-oriented system using
AspectJ, some unexpected limitations of AspectJ version 1.1
made it difficult to use AOP in the COTS-based development.
The reason is that all COTS components are supposed to be not
changeable. The details are as follows:

A pointcut can create a reference to all variables used in a
joinpoint. Possible variables are:

- The object making the call (this)

- The object receiving the call (target)

- Variables passed as parameters to the method

execution (void DoSomething(String)) && args(s);

//Pointcut picking out the joinpoint and the variables user and
address

private pointcut NewUser(User user, EmailAddress
address) :

target(user) && call(User.new(EmailAddress)) &&
args(address);

//Pointcut picking out the joinpoint and all the variables

private pointcut MyPointcut(String s, User user,
EmailAddress address) : cflow(DoSomething(s)) &&
NewUser(user, address);

Figure 4. AOP code to access the input string s when the
user is created

AspectJ version 1.1 does not support to get a reference of the
variable if there is no joinpoint in the cflow that has accessed
the according variables before.

For example, if we use AOP to build the glue-code as showed in
Figure 5, it is not possible to get a reference to s, address and
user together, because no joinpoint (or cflow) used all these
three variables at the same time. We therefore cannot access
both s, address, and user together.

public void DoSomething(Sting s){

EmailAddress address = new EmailAddress(s);

User user = new User(); //The joinpoint we want to

 trap

}

Figure 5. Sample code to create a user without email address
The solution in this case is to rewrite the source code from the
“User ()” to “User (String)”. It might not be desirable or even
possible in COTS-based development if we regard the class
“User ()” as one part of a COTS component.

5. DISCUSSION

5.1 Comparison AOP with OOP in COTS-
Based Development
Comparing with OOP, our results show that there are both
benefits and limitations of using AOP in COTS-based system.
The main benefit is that fewer classes need to be changed when
adding and replacing COTS components (see Table 1, 2 and 3).
It is because most changes needed are centralized in aspects
instead of being scattered throughout the system. However,
using AOP does not ensure that fewer LOC need to be modified
than using OOP when adding or replacing COTS components.

• If the possible glue-code includes homogenous cross-
cutting concern in several classes, the LOC to be changed
when adding or replacing the component may be fewer in
the AOP system. The reason is that AOP removes the
dependencies between the classes and the COTS
component. It makes the system oblivious about the
existence of the COTS component.

• If the cross-cutting concerns in the glue-code are (partly)
heterogeneous as showed in section 4.1 and section 4.2,
more LOC may be needed in the AOP version if we want
to add COTS components in the system. It is because every
occurrence of the concern must be defined using a
joinpoint and advice. In case of changing the COTS
component, almost equal amount of LOC need to be
changed in the AOP and OOP version.

Most COTS-based systems were built using OOP principles.
Languages and tools support to build a COTS-based system are
advanced and completed. However, AOP tools are still
immature and limited. Because most COTS components are
delivered as byte code instead of source code, AOP tool should
be able to weave the byte code. However, current tools support
byte code weaving, such as AspectJ and AspectWerkz, are
based only on JavaTM.

Other limitations of AOP tools (see section 4.3) prohibit using
AOP in COTS-based development, because they require
modifications inside the COTS component.

5.2 Comparison with Related Works
Some previous studies have empirically investigated how to use
AOP in different kind of applications:

• Walker et al. have empirically investigated the claims that
AOP is easier to reason about, develop and maintain
certain kinds of application code [20]. They compared the
efficiency of debugging and changing in two systems (one
is built with AOP and another is built by OOP) with same
functionality. They discovered that the separation provided
by AOP seems most helpful when the interface is narrow
(i.e., the separation is more complete); while partial
separation does not necessarily provide partial benefit. In
our study, we re-engineered an OOP system into an AOP
system and compared them. This avoids the possible bias
caused by differences in system design (i.e., good design in
OOP and bad design in AOP). Our results give further
support to their conclusion. If the COTS-based system we

developed using AOP, it is easier to reason about and
change if the interface between a COTS component and
other part of the system is completely separated. Other
parts of the system are even oblivious about the existence
of the COTS component.

• Lippert et al. investigated the benefits of AOP by re-
engineering an OOP system and extracting exception
detection and handling as aspects [15]. They concluded that
AOP provides better support for reuse. While they worked
with a system that can be changed completely, our study
focuses on a system where the code in the COTS
components cannot be changed.

• Colyer et al. investigated AOP by re-engineering a large
middleware system [1]. They proposed the challenges and
lessons learned in re-factoring both homogeneous and
heterogeneous crosscutting concerns in the middleware.
Our results in changing a logging component give further
support to their conclusion (i.e., it is more challenging to
re-engineer heterogeneous cross-cutting concerns than
homogeneous ones). They proposed processes and methods
that can help to change the heterogeneous crosscutting
concerns into ideal aspects. In their system, all source code
can be changed. In the COTS-based system, we may not be
able to extract some heterogeneous crosscutting concerns
into good aspects, because the COTS component is not
changeable.

• Other studies tried to integrate the AOP into a component
model, such as CORBA, and .NET [18, 24]. Here, the
COTS components must follow these new component
models. However, there are still few COTS components in
the market that follow these new component models. Our
study is therefore limited to the COTS component in the
form of JavaTM libraries.

5.3 Possible Threats to Validity
The threat to internal validity of this study is that the OOP
version has been re-factored several times to improve the design
and implementation while the AOP version has not. It is most
likely that the OOP version has a very good design compared to
the AOP version.

The threat to construct validity is that we used LOC and
number of classes changed (added, deleted, or modified) to
measure the changeability of the system. There are several
metrics proposed to measure the changeability of the OOP
system. However, few studies have proposed well-defined and
tested metrics to measure changeability in AOP. Walker et al.
used the time needed to debug and change a system as the
metrics [20]. However, the value of this metrics depends on
respondents’ experience on AOP and OOP. We therefore
selected more objective metrics (i.e., LOC and number of
classes changed).

The possible threat to external validity of this study is that the
size of our system is not very huge. However, the results of this
study discovered some important issues in using AOP in COTS-
based development.

Concerning the conclusion validity, this study is pre-study for
our further investigations. The intention of this study is to draw
out ideas that may be transferred to other cases.

6. CONCLUSION AND FUTURE WORK
We have studied how AOP ease the adding and replacement of
components in COTS-based development. We re-engineered an
existing OOP application using AOP and compared the LOC
and number of classes needed to be changed in order to add and
replace COTS components. From this study, we found that:

• When adding or replacing a COTS component, the main
benefit of using AOP in COTS-based is that fewer classes
need to be changed than using OOP. However, using AOP
does not ensure that fewer LOCs need to be modified than
using AOP when add or replace COTS components. It
depends on whether glue-code is homogenous or not.
Using AOP when glue-code is (partly) heterogeneous may
not bring benefits. A careful analysis on cross-cutting
concerns in the glue-code is therefore needed before the
decision of using a certain COTS component.

• To integrate COTS components using AOP, the aspect
tools need to be investigated in detail because limitations in
these tools may restrict using AOP in COTS-based
development.

The small size of our test system, however, limits the extension
of conclusions of this study. In our future work, we plan to use a
larger system with more COTS components, in order to
investigate research questions more satisfactorily.

7. ACKNOWLEDGEMENTS
This study was associated to the INCO (INcremental
COmponent based development) [7] project. Comments from
our colleague Tor Stålhane gave valuable inputs to this study.

8. REFERENCES

[1] Adrian Colyer, Andrew Clement, Large-scale AOSD for

Middleware. In Proceedings of the 3rd International
Conference on Aspect-oriented Software Development,
(Lancaster, UK, March, 2004), ACM Press, New York,
NY, 2004, 56-65.

[2] Aspectwerkz: http:// aspectwerkz.codehaus.org/index.html
[3] Chris Abts, Barry W. Boehm, and Elizabeth Bailey Clark:

COCOTS, A COTS Software Integration Cost Model -
Model Overview and Preliminary Data Findings. In
Proceedings of the 11th European Software Control and
Metrics Conference (ESCOM 2000) (Munich, Germany,
April, 2000), 325-33.

[4] ComponentSource: http://www.componentsource.com/.
[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, and J. Irwin, Aspect Oriented
programming. In Proceedings of 11th European
Conference on Object-Oriented Programming (Jyväskylä,
Finnland, June, 1997), Springer Lecture Notes in Computer
Science, Vol. 1241, 220-242.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mil Kersten,
Jeffrey Palm, and Willian G. Griswold, An Overview of
AspectJ. In Proceedings of the 15th European Conference
on Object-Oriented Programming (Budapest, Hungary,
June 18-22), Springer Lecture Notes in Computer Science,
Vol. 2072, 327 – 353.

[7] INCO project: http://www.ifi.uio.no/~isu/INCO/
[8] Ivica Crnkovic, Brahim Hnich, Torsten Jonsson, and

Zeynep Kiziltan, Specification, Implementation, and
Deployment of Components. Communication of the ACM,
45, 10 (October, 2002), 35-40.

[9] Java Email Server: Getting started:
http://www.ericdaugherty.com/java/mailserver/gettingstart
ed.html

[10] Java.util.logging:
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/pa
ckage-summary.html

[11] Jboss: http://www.jboss.org/developers/projects/jboss/aop
[12] Jingyue Li, Finn Olav Bjørnson, Reidar Conradi, and

Vigdis By Kampenes, An Empirical Study of COTS
Component Selection Processes in Norwegian IT
companies. In Proceedings of the International workshop
on models and processes for the evaluation of COTS
components, (Edinburgh, Scotland, May, 2004), IEE ISBN
0-86341-422-2, 27-30.

[13] J. Voas, COTS Software – the Economical Choice?. IEEE
Software, 15, 2 (March/April, 1998), 16-19.

[14] J. Voas, The Challenges of Using COTS Software in
Component-Based Development. IEEE Computer, 31, 6
(June, 1998), 44-45.

[15] Martin Lippert and Cristina Videira Lopes, A Study on
Exception Detection and Handling Using Aspect-Oriented
Programming. In Proceedings of the 22nd International
Conference on Software engineering (Limerick, Ireland,
June, 2000), IEEE Computer Society Press, 2000, 418 –
427.

[16] M. Torchiano and M. Morisio, Overlooked Facts on
COTS-based Development. IEEE Software, 21, 2
(March/April, 2004), 88-93.

[17] Patricia K. Lawlis, Kathryn E. Mark, Deborah A. Thomas,
and Terry Courtheyn, A Formal Process for Evaluating
COTS Software Products. IEEE Computer, 34, 5 (May,
2001), 58-63.

[18] Pedro J. Clemente, Juan Hernández, Juan M. Murillo,
Miguel A. Pérez, Fernando Sánchez, AspectCCM: An
Aspect-Oriented Extension of the Corba Component
Model. In Proceedings of the 28th Euromicro Conference,
(Dortmund, Germany, September 2002), IEEE Computer
Society Press, 2002, 10-16.

[19] Proposals for the architecture of COTS component
intensive software systems:
http://www.vtt.fi/ele/research/soh/ark/proposalsforarchitect
ing_ihme.pdf

[20] Robert J. Walker, Elisa L.A. Baniassad, and Gail C.
Murphy, An Initial Assessment of Aspect-Oriented
Programming. In Proceedings of the 21st International

Conference on Software Engineering (Los Angeles,
California, United States, May, 1999), IEEE Computer
Society Press, 1999, 120 – 130.

[21] Santiago Comella-Dorda, John C. Dean, Edwin Morris, and
Patricia Oberndorf, A Process for COTS Software Product
Evaluation. In Proceedings of the First International
Conference on COTS Based Software Systems (Orlando,
FL, USA, February 4-6, 2002), Springer Lecture Notes in
Computer Science, Vol. 2255, 176-187.

[22] SpamAssassin: http://eu.spamassassin.org/index.html
[23] SpamProbe: http://spamprobe.sourceforge.net/
[24] Wolfgang Schult and Andreas Polze, Aspect-Oriented

Programming with C# and .NET. In Proceedings of the 5th
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (Washington D.C, United
States, April, 2002), IEEE Computer Society Press, 2002,
241-248.

