
www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 1341–1358
A formal representation of functional size measurement methods

Marjan Heričko *, Ivan Rozman, Aleš Živkovič

Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

Received 11 April 2005; accepted 5 November 2005
Available online 10 January 2006
Abstract

Estimating software size is a difficult task that requires a methodological approach. Many different methods that exist today use dis-
tinct abstractions to depict a software system. The gap between abstractions becomes even greater with object-oriented artifacts devel-
oped in unified modeling language (UML). In this paper, a formal foundation for the representation of functional size measurement
(FSM) methods is presented. The generalized abstraction of the software system (GASS) is then used to formalize different functional
measurement methods, namely the FPA, MK II FPA and COSMIC-FFP. The same model is also used for object-oriented projects where
UML artifacts are mapped into the GASS form. The algorithms in symbolic code for those UML diagrams that are crucial for size esti-
mation are also given. The mappings defined in this paper enable diverse FSM methods to be supported in estimation tools, the auto-
mation of counting steps and a higher-level of independence from the FSM method, since the software abstraction is written in a
generalized form. Both improvements are crucial for the practical use of FSM methods.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Function points; Software size; Formal model; Object-oriented projects
1. Introduction

The FPA method (Albrecht, 1979; IFPUG, 2004) defines a software-size estimation procedure in a descriptive way that
lacks a formal foundation (Fetcke, 1999a). Different methods that have updated the original version seem to ignore this
very important issue. Consequently, the comparison of different methods (Jeffery et al., 1993) in an analytical way is impos-
sible, as is determining the level of improvement introduced with any new method. The automation of the measurement
procedure is likewise impossible. A formal mathematical model could help us overcome these problems. To define a uni-
versal mathematical model two abstractions are needed:

1. A universal data model that describes a software system in a form appropriate for size estimation.
2. A function that maps universal data elements into a numerical value.

Fetcke (1999a) defined a universal data model that enables the formal representation of any FSM method. Using this
mathematical model, we have introduced a new model, supplemented with a formalized functions that calculate system
size. The model is expressed with mathematical formulas and also written in UML (OMG, 2001) with developed data mod-
els for the FPA (IFPUG, 2004), MK II FPA (UKSMA, 1998) and COSMIC-FPP (COSMIC, 2003) methods. Further on, a
uniform transformation of the universal data model into models of these methods will also be defined. The universal data
model will then be supplemented with a function that maps elements of the data abstraction into a software size.
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2005.11.568

* Corresponding author. Tel.: +386 2 235 5112; fax: +386 2 235 5134.
E-mail address: marjan.hericko@uni-mb.si (M. Heričko).

mailto:marjan.hericko@uni-mb.si

Identification of
FSM elements

SRS :
Documentation

FSM method:
Rule

FSM :
Element

Weight:
Number

Size:
Number

Map FSM elements
to size

Data abstraction
of the system

Step 1

Step 2

Fig. 1. The FSM abstraction steps.

STRUCTURED
DEVELOPMENT

OBJECT-ORIENTED
DEVELOPMENT GASS

FPA

MK II FPA

COSMIC FFP

FSM METHOD
UNIVERSAL
FORM

SOFTWARE
ABSTRACTION MODEL

SOFTWARE
SIZE

F
U

N
C

T
IO

N

M
A

P
P

IN
G

ASPECT-ORIENTED
DEVELOPMENT

T
R

A
N

S
F

O
R

M
A

T
IO

N
Fig. 2. The role of the GASS model in the size estimation process.

1342 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
According to measurement theory, every measurement can be represented as a function that maps an empirical object
into a numerical one (Lorenz and Kidd, 1994). The FSM method defines a function that maps the characteristics of a
software system into a number (ISO, 1998, 2002a,b, 2003). That number represents the functional size of the software
system in question. Since the FSM method tends to be independent of technology and its corresponding documentation,
each FSM method introduces its own abstraction of the software system (Živkovič et al., 2003). Abstraction is usually
data-oriented and takes two steps to transform elements of the software system into its size. The procedure is presented in
Fig. 1.

The FSM elements are extracted from the documentation (for example, SRS: software requirements specification) using
a set of rules. The rules, defined by most FSM methods, are given in a textual form. The result of the first step is the data-
oriented abstraction of the software system to be built, which then serves as input for the second step in the estimation
procedure, where element weights defined in a specific FSM method are also used in order to calculate software size.
The element weight is a number defined by the FSM method that converts an FSM element into a software size. One
FSM method may use several weights and transformation rules.

Fig. 2 shows the main idea of this paper. The formalization of the estimation procedures and the universal form for
software abstraction (GASS) play a central role in the estimation process. A model of the software system to be built is
first transformed into the GASS form, which is then mapped to the FSM method of one’s choice in order to calculate soft-
ware size.

This paper is divided into six sections. In the next section, a detailed review of the literature is given. In Section 3, the
generalized abstraction of the software system (GASS) is introduced and then applied on several FSM methods in the
fourth section. The mapping of the UML diagrams (OMG, 2001) into the GASS form is presented in Section 4 as well.
Section 5 gives some instructions for the practical application of the GASS form, as defined in this research. The advan-
tages are also discussed. The last section summarizes the results and improvements that were introduced in the field of size
estimation and also discusses some directions for future work.

2. Related work

All FSM methods for estimating software size lack adequate formal foundations in their original descriptions. There
were some attempts (Fetcke, 1999a; Diab et al., 2002) to add formalism to functional size measurement. Fetcke (1999a)
realized that each FSM method measures software size using two steps. In the first step, software documentation is trans-

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1343
formed to some abstract form defined by the FSM method, and in the second step this abstract form is used to calculate the
software size using a function. Fetcke introduced data-oriented abstraction that is based on two main concepts—transac-
tional types and data group types. Formalization is called generalized function point structure, where an application is rep-
resented as a vector that contains elements of both of the main concepts. Our research is based on the generalized function
point structure; however, it introduces several improvements and novelties. The function that calculates software size from
the abstract form used to represent a software system is formalized. The representation of different FSM methods with the
generalized structure is mathematically expressed. The UML class diagrams are used to graphically show the differences
between the FSM methods. Finally, a transformation between the UML diagrams and the FSM methods is given in a
mathematical form together with algorithms in symbolic code.

The approach proposed by Diab et al. (2002) was expressly designed for COSMIC-FFP (COSMIC, 2003) using a formal
modeling language named ROOM to formalize the COSMIC-FFP method. Although the ROOM language could be used
in our approach, we decided to use a more universal, mathematical form and symbolic code that could be easily trans-
formed to programming languages like Java, C++ and C#. In their future work section, Diab et al. (2002) expressed their
intention of using UML diagrams as a source of information to identify COSMIC-FFP components. In our research, this
idea was realized, with the additional feature of being applicable to any FSM method.

3. GASS model

3.1. Data-oriented abstraction

Different software-size estimation methods enumerated in the introduction use different names for data abstraction ele-
ments; the rules for element identification are different, and mapping functions also differ significantly. However, similar-
ities exist that can be described by the following core concepts:

• The user concept covers the interaction between a user and the system. The user can be human or mechanical e.g. other
systems.

• The application concept represents the whole system as an object of the measurement.
• The transaction concept is a logical representation of the system’s functionality. Transaction is the smallest independent

unit of interest.
• The data concept deals with the subject of change within the system. The data element is the smallest unit observed by a

user.
• The type concept simplifies data handling via the abstraction of individual data elements.

On a higher-level of abstraction, an application is represented with data and transactional types. A data type is a set of
data elements handled within the system. A transactional type is a sequence of logical activities. Fetcke defined seven clas-
ses of logical activities (Fetcke, 1999a):

• Entry activity. The user enters data into the application.
• Exit activity. Data is outputted to the user.
• Control activity. The user enters control information data.
• Confirm activity. Confirmation data is outputted to the user.
• Read activity. Data is read from a stored data group type.
• Write activity. Data is written to a stored data group type.
• Calculate activity. New data is calculated from existing data.

Fig. 3 shows a UML class diagram for data-oriented abstraction, which is later referred to as a GASS model. Based on
the abstract presentation, the mapping for a specific method can be defined.

3.2. Abstraction of the software system

In this subsection, we summarize the formal representation of the concepts described in the previous section. The appli-
cation closure H is defined as a vector of s transactional types T and r data group types F.
H ¼ ðT 1; . . . ; T s; F 1; . . . ; F rÞ ðE1Þ

The transactional type Ti is a vector of activities P:
T i ¼ ðP i1; . . . ; P iniÞ ðE2Þ

Confirm Entry Read Write Exit Calculate

Activity

Transaction

**
Data element

**

calculates

**

handled

Application

**

Data group

**

**

**

<<uses>>

{type, complete, disjoint}

Fig. 3. Graphical representation of the GASS model.

1344 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
An activity is further described by four attributes:

• its class hik 2 {Entry, Exit, Control, Confirm, Read, Write, Calculate},
• for read and write activities, the data group type referenced rik,
• the set of data elements Dik handled and
• for calculating activities, the set of data elements calculated Cik.

In Eq. (E3), i can have a value from 1 to s and represents the transaction activity it conforms to, while k runs from 1 to n,
identifying activity within the transaction.
P ik ¼ ðHik; rik;Dik;CikÞ ðE3Þ

The data group type Fj is a set:
F j ¼ fðdj1; gj1Þ; . . . ; ðdjrj
; gjrj
Þg ðE4Þ
where the djk are data elements and the gjk the designate sub-groups. j can have a value from 1 to r and represents the
number of data types and k distinguishes between data elements and can have a value from 1 to r.

3.3. Representation of the mapping function

In the previous section, a formal representation of transactional and data types was introduced. Every software system is
composed of different data and transactional types. The number of data and transactional types, and their attributes, con-
tribute to the size of the software system. Some FSM methods also define the third component that has an influence on
software size—the technical complexity of the solution. The universal function that maps application attributes into size
is therefore:
FPCðaÞ ¼
X

i

FPC1ðtiÞ þ
X

j

FPC2ðfjÞ
 !

� FPC3ðTCÞ ðE5Þ
where

FPC(a) is a function that maps attributes of the application a into the software size.
FPC1(ti) is a function that maps transactional type ti into size.
FPC2(fj) is a function that maps data type fj into size.
FPC3(TC) is the function that maps technical complexity of the anticipated solution for application a into a factor.

The total value for an application size is the sum of both parts multiplied by the factor of the solution’s complexity. The
factor can reduce or increase the overall size. However, it is not clear if the factor actually measures raw application size or
is a characteristic of the implementation and should be a part of the function that maps size to effort (Lokan, 1999, 2000).
For this reason, the function of FPC3 is not examined in this research.

GASS can now be used to define different methods. First, we will use it to represent the original FPA method.

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1345
4. GASS model application

4.1. Mapping the FPA method

Fig. 4 shows the data model for the FPA method (Albrecht, 1979; IFPUG, 2004) conducted using the GASS model as
defined in this paper (see Fig. 3). The data model shows that the FPA method introduces two types of data functions,
namely internal logical files (ILF) and external interface files (ILF) and splits data elements into simple (DET) and complex
(RET/FTR), while transactional functions use only a sub-set of activities defined in the GASS model. More than one activ-
ity from the general structure is mapped to a single FPA activity. The mapping is summarized in Table 1. In the table,
activities that are allowed in the transaction type are marked with an sign.

Now the mapping can be used in a mathematical representation of the method. Data functions from the FPA method
are equivalent to the data element type (F) while DET is equivalent to d and RET to g, as defined in the generalized rep-
resentation. The FPA method distinguishes between internal and external data requirements; generalized representation,
however, defines more activity types than the FPA method. Therefore, we define external interface files (EIFs) as a data
type that cannot be used in write type activities.
Table
Mappi

FPA

EI
EQ
EQ
H ¼ ðT 1; . . . ; T s; F 1; . . . ; F rÞ
T i ¼ ðP i1; . . . ; P inÞ
P ik ¼ ðHik; rik;Dik;CikÞ
H 2 fEI;EO;EQg; rik 2 fFTRg; Dik 2 fDETg; Cik 2 fUg
F 2 fILF;EIFg
F j ¼ fðdj1; gj1Þ; . . . ; ðdjr; gjrÞg ¼ fðDETj1;RETj1Þ; . . . ; ðDETjr;RETjrÞg
The FPC functions for the FPA method would look like this:
FPC1FPA ¼
X

i

W T ðDi; riÞ ¼
X

a

W EIðNDET;NFTRÞ þ
X

b

W EOðNDET;NFTRÞ þ
X

c

W EQðNDET;NFTRÞ

FPC2FPA ¼
X

j
W F ðdj; gjÞ ¼

X
l

W EIFðNDET;NRETÞ þ
X

m

W EIFðN DET;N RETÞ
ðE6Þ
ILF EIF

DETEI EO EQ

Transaction*

Application

Activity
*

Data group

**

**

<<uses>>

Data element

**

handled
**

RET/FTR

**

Fig. 4. The FPA data model.

1
ng of transactions into activities

GASS model

Entry Exit Write Read Confirm Calculate

1346 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
The WT function prescribes the number of function points for a transactional function using the number of data elements
and referenced elements. There are three types of function: WEI, WEO, WEQ.

The WT function prescribes the number of function points for the data function using the number of data elements and
data groups.

The WILF, WEIF, WEI, WEO, WEQ functions define the weight in function points for each element identified in the mea-
surement process. Function W has two parameters. For transactional functions, the parameters are the number of data
element types (Nd) and number of file types referenced (Nr). For data functions, the parameter Ng is used instead of Nr,
representing the number of record element types. Wx functions are the step functions represented by discrete values with
the following range:
W ILF ¼ f7; 10; 15g
W EIF ¼ f5; 7; 10g
W EI ¼ W EQ ¼ f3; 4; 6g
W EO ¼ f4; 5; 7g
NDET, NRET, NFTR are the number of elements according to the element type.
Given as an example, the function WILF is originally (IFPUG, 2004) defined as
W ILFðNd ;NgÞ ¼

ðð1 6 N d 6 19Þ ^ ð1 6 Ng 6 5ÞÞ_
7; ðð20 6 Nd 6 50Þ ^ ðN g ¼ 1ÞÞ

ðð1 6 N d 6 19Þ ^ ð6 6 NgÞÞ_
10; ðð20 6 Nd 6 50Þ ^ ð2 6 Ng 6 5ÞÞ_

ðð51 6 NdÞ ^ ðN g ¼ 1ÞÞ
ðð1 6 N d 6 19Þ ^ ð6 6 NgÞÞ_

15; ðð51 6 NdÞ ^ ðN g P 2ÞÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðE7Þ
The mapping of the GASS form into the FPA elements and the algorithm that calculates software size according to the
FPA method can be written in symbolic code. The symbolic code can then be easily transformed into a specific program-
ming language that implements a software-size estimation tool.

Symbolic code for the FPA method (transactional types):
size := 0;

transactional_types := h.getTransactionalTypes(); //h is an instance of H - //aplication

for i = 1 to transactional_types.size() do
t := transactional_types.getType(i);
activities := t.getActivities();

for ii = 1 to activities.size() do

p := activities.getActivity(ii);

numOfDET := p.getDataElements() .size (); //Dik

numOfFTR := p.getReferencedTypes().size(); //rik

case p.getClass() of
ENTRY, WRITE, READ: size := size + evaluate(numOfDET, numOffTR,EI);

CALCULATE: size := size + evaluate(numOfDET, numOfFTR, EO);

EXIT, CONFIRM: size := size + evaluate(numOfDET, numOfFTR, EQ);

endcase;

enddo

enddo
Symbolic code for the FPA method (data types):
size := 0;

data_types := h.getDataTypes(); //h is an instance of H - application

for i = 1 to data_types.size() do
data_type := data_types.getDataType(i);
if (data_type = SIMPLE_TYPE)
numOfDET++;

else

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1347
numOfRET++;

endif;

if(data_type = ILF)
size := size + evaluate (numOfDET, numOfRET, ILF);

else

size := size + evaluate (numOfDET, numOfRET, EIF);

endif;

enddo

4.2. Mapping for MKII FPA

Fig. 5 contains an instance of the GASS model showing the MK II FPA (UKSMA, 1998) data model. In the Mark II
FPA method, data groups are called entity types and do not directly contribute to the functional size. Therefore, FPC2 = 0
in all cases. Logical transactions are broken down into activities. There are only three types of activities in MK II FPA,
namely input, processing and output. Table 2 shows mapping for activities defined in a generalized form. Notice that MK
II FPA does not have an equivalent to the calculate activity, which is due to the fact that processing activity deals with
existing entities.

As in the case of the FPA method, the mapping is formalized with the formula E8.
Table
Mappi

MK II

Input
Outpu
Proces
H ¼ ðT 1; . . . ; T sÞ
T i ¼ ðP i1; . . . ; P inÞ
P ik ¼ ðHik; rik;Dik;CikÞ
H 2 fInput; Processing; Outputg; Cik 2 fUg
F 2 fUg
FPCMKII ¼

X
i

X
k

KðHikÞ � NðDik;Hik; rikÞ ¼
X

i

kinput � NðDi1Þ þ koutput � NðDi2Þ þ kprocessing � NðriÞ

ðE8Þ
Transaction

Application

**

Activity
**

Data group

**

**

<<uses>>

Data element

**

handled
**

Input Processing Output

Fig. 5. The MK II FPA data model.

2
ng for MK II FPA

GASS model

Entry Exit Write Read Confirm Calculate

FPA

t
sing

1348 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
K, function that defines the numerical weight according to the element type H,

N, function that returns the number of data elements d or the number of referenced elements r used in an activity of
type H,
kinput, weight for the input elements (the statistically set value is 0.58),
Koutput, weight for the output elements (the statistically set value is 0.26),
Kprocessing, weight for the processing elements (the statistically set value is 1.66),
Di1, set of data elements used in the input activity of transaction Ti,
Di2, set of data elements used in the output activity of transaction Ti.

Symbolic code for the MKII FPA method:
size := 0;

transactional_types := h.getTransactionalTypes(); //h is an instance of H

for i = 1 to transactional_types.size() do
t := transactional_types.getType(i);
activities := t.getActivities();

for ii = 1 to activities.size() do

p := activities.getActivity(ii);

case p.getClass() of
ENTRY: size := size + p.getDataElements().size() * 0.58;
EXIT, CONFIRM: size := size + p.getDataElements().size() * 0.26;
WRITE, READ, CALCULATE: size := size + p.getDataElements().size() * 1.66;

endcase;

enddo;

enddo;

4.3. Mapping for COSMIC-FFP

The COSMIC-FFP (COSMIC, 2003) method defines cfsu as a unit of measure and introduces a different approach to
software sizing. The method counts data movements that can be either one of four types: entry, exit, read, and write. The
method does not distinguish between data elements and data groups, thus it introduces the term ‘‘object of interest’’ that
can represent both types. Fig. 6 shows these changes graphically. Please note that the data group always has only one data
element; in other words the data element is equivalent to the data group.
H ¼ ðT 1; . . . ; T s; F 1; . . . ; F rÞ
T i ¼ ðP i1; . . . ; P inÞ
P ik ¼ ðHik; rik;Dik;CikÞ
H 2 fEntry; Exit; Read; Writeg; Cik 2 fUg
F j ¼ gj ¼ dj) rik ¼ Dik

FPCCOSMIC ¼
Xn

i¼1

T i ¼
Xn

i¼1

X4

k¼1

P ikðF Þ

ðE9Þ
Eq. (E9) shows the formal representation of the method. Since the data groups (g) are equal to the data elements (d) also
the referenced data groups (r) are equal to handled data elements (D). The sum across all identified transactions (Ti) is
made in the first part of the calculation. In the second part, transactions are broken down into activities (Pik), where k runs
from 1 to 4, since the method has only four types of activities. With the F in brackets, we have revealed that activity de-
pends on data types, since data is the object of movement. Again FPC2 = 0 and only FPC1 contributes to the application
size. Table 3 shows the mapping of elements.

An algorithm is quite simple since every data movement/activity counts as 1 cfsu. The difficult part is the identification
of all data movements.

Symbolic code for the COSMIC-FFP method:
size := 0;

transactional_types := h.getTransactionalTypes(); //h is an instance of H

for i = 1 to transactional_types.size() do

Entry Exit Read

Transaction

Application

Data Movement

Data group

Data element

**

**

**

<<uses>>

**

handled
11

Write

Fig. 6. The COSMIC-FFP data model.

Table 3
Mapping for COSMIC-FFP

GASS model

Entry Exit Write Read Confirm Calculate

COSMIC FFP

Entry
Exit
Read
Write

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1349
t := transactional_types.getType(i);
activities := t.getActivities(); //data movements

for ii = 1 to activities.size() do

size := size + 1;

enddo;

enddo;

5. Transformation of object-oriented concepts to GASS

Since the FPA method’s family does not define an appropriate abstraction for object-oriented systems (Antoniol et al.,
1999, 2003; Uemura et al., 1999, 2001; Živkovič et al., 2005a,b), our approach takes two steps:

1. A software system represented with UML models is transformed to generalized abstraction of the software system
(GASS).

2. The GASS form is transformed to software size using the most suitable method (for example FPA, MK II FPA,
COSMIC).

To be able to transform UML models into the GASS form it is important to analyze UML diagrams and define sources
of valuable information for the size estimation process. In Table 4, a summary of this analysis for the FPA method can be
found. The findings helped us formulate the transformation to the GASS form.

Fig. 7 shows a data model for estimating software size in object-oriented projects. The model is based on the GASS
model discussed in more detail in Section 3. Transactions defined in the GASS model are use cases in object-oriented pro-
jects. Use cases can be described in more detail with activity diagrams and/or sequence diagrams. The transformation of
activities is obvious. The type of an activity is defined by a stereotype. We defined six new stereotypes with the same names
and purposes as defined in the GASS model. The realization of an activity during the design time is a method. Methods can
be of five types that correspond to the classifications in the GASS model. Constructors represent entry activities, get meth-
ods are read activities, set methods are write activities and for the exit activities we defined a new type of method. These
methods are labeled with view at the beginning of the method’s name, as is the case with the get and set methods. All other
methods fall into a business methods group and are classified as calculate activities. The data groups in the GASS model are
classes in an object-oriented paradigm and data elements are attributes.

Table 4
UML diagrams as a source of information relevant to the size estimation process

UML diagram Data functions Transactional functions Complexity

DET RET FTR

Use cases x x
Class diagram x x x x x
Sequence diagram x x x
Collaboration diagram x x x
Activity diagram x x x x
Statechart diagram x x x

**

Constructor Get Set View Business

Activity Attribute

**

calculates

handled

Use Case

**

Class

**

**
Method

OO Application

* *

*

{design only}

* *

*

**

Fig. 7. Data model for estimating OO projects.

Table 5
Transformation of activities for OO

GASS model

Entry Exit Write Read Confirm Calculate

OO elements

Constructor
Get method
Set method
View method
Business method

1350 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
Table 5 summarizes the transformation of activities from the GASS model and different types of methods in object-ori-
ented systems.

5.1. Use case diagram

A use case diagram describes the functionality of the software system at a high level of abstraction. Nevertheless, the
diagram can be used in size estimation. For each use case in the diagram its complexity is evaluated using use case descrip-
tion or experience. The description in a textual or more formal form contains the number of transactional functions. With
the number of transactional functions and historical data, the use case size can be calculated (Živkovič et al., 2005b). Usu-
ally data from our own completed projects give the best results; however we can also use industrial repositories and average
values instead. Fig. 8 shows an example of the transformation. The application H has five transactional types denoted as
TUC1 � TUC5. Referring only to the use case diagram in Fig. 8 the transactional types can not be further broken down into
activities (elements P of the GASS form).

UC4

UC5

UC1

<<include>>

UC2

<<extend>>

Actor

UC3

H=(TUC1, TUC2, TUC3, TUC4, TUC5)

Fig. 8. Transformation of a use case diagram into universal representation.

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1351
The algorithm in the symbolic code is:
uc := UC_diagram.getAllUC ();

for i=1 to uc.size() do
create new T;

enddo

5.2. Class diagram

The completed class diagrams contain all the information needed to calculate software size. A class is mapped to a data
group (F) while its methods are mapped into transactional types (T). Attributes of a primitive type (whole numbers, dec-
imal fractions, characters, character sequences and logical types) are transformed into data elements (d) while references to
composite types (classes) are mapped into data sub-groups (g). Fig. 9 shows an example of a class and its mathematical
representation. The class has three operations and two attributes.

The algorithm in the symbolic code is:
classes := class_diagram.getAllClasses ();

for i = 1 to classes.size() do
create new F;

class := classes.getClass(i);

class_attributes := class.getAttributes();
for ii = 1 to class_attributes.size() do

attribute := class_attributes.getAttribute(ii);
if (attribute.getType() = basic_type) then
create new d;

else

create new g;

endif

enddo

class_methods := class.getMethods();
for iii = 1 to class_methods.size() do

method := class_methods.getMethod(iii);
Fig. 9. Transformation of a class into the universal representation.

1352 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
if (method.getMethodType() = TYPES.CONSTRUCTOR) then

create new P(Activity.ENTRY);

endif

if (method.getMethodType() = TYPES.GET) then

create new P (Activity.READ);

endif

if (method.getMethodType() = TYPES.SET) then

create new P (Activity.WRITE);

endif

if (method.getMethodType() = TYPES.VIEW) then

create new P (Activity.EXIT);

endif

if (method.getMethodType() = TYPES.BUSINESS) then

create new P (Activity.CALCULATE);

endif

method_parameters := method.getParameters();
for a = 1 to method_parameters.size() do

parameter = method_parameters.getParameter(a);
if(parameter.getType = basic_type) then
P.add(d);

else

P.add(r);

endif

enddo;

if (method.getReturnType () <> void) then

P.add(c);

end if

enddo;

enddo;

5.3. Sequence diagram

From the approaches found in the literature, only Uemura’s (Uemura et al., 1999, 2001) approach uses sequence dia-
grams as a source of information for size estimation. According to our tests, his approach using five interaction patterns
does not give appropriate results compared to Antoniol et al.’s (1999, 2003) approach, which uses information from class
diagrams. The advantage of Uemura’s approach is that the type of the transactional function is determined without relying
on additional information using the five interaction patterns. However there are also several disadvantages: (1) messages
without any arguments are not counted, (2) it is not clear what happens when the same message is used in different
sequence diagrams, (3) pattern 2 may be confusing since return messages are commonly used in the sequence diagrams
to report the result back to the actor, (4) the number of arguments is mapped to DETs although the argument may be
of a complex type and should be regarded as FTR and (5) the argument problem described under 4 also has consequences
for patterns 2 and 3, which also influences patterns 4 and 5 since the return may be the data function (DF) itself and there-
fore it may be treated as returning all the attributes of the DF. Consequently Uemura’s approach was abandoned and new
rules were formulated that help us determine transactional functions from a sequence diagram.

The algorithm in the symbolic code is:
objects := sequence_diagram.getAllObjects();
for i = 1 to objects.size() do
create new F;

object := objects.getObject(i);

class := object.getClass();

class_methods := class.getMethods();
for iii = 1 to class_methods.size() do

method := class_methods.getMethod(iii);
if (method.getMethodType() = TYPES.CONSTRUCTOR) then

create new P (Activity.ENTRY);

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1353
endif

if (method.getMethodType() = TYPES.GET) then

create new P (Activity.READ);
endif

if (method.getMethodType() = TYPES.SET) then

create new P (Activity.WRITE);

endif

if (method.getMethodType() = TYPES.VIEW) then

create new P (Activity.EXIT);

endif

if (method.getMethodType() = TYPES.BUSINESS) then

create new P (Activity.CALCULATE);

endif

method_parameters := method.getParameters();
for a = 1 to method_parameters.size() do
parameter = method_parameters.getParameter(a);
if (parameter.getType = basic_type) then

P.add(d);

else

P.add(r);

endif

enddo;

if (method.getReturnType () <>void) then
P.add(c);

end if

enddo;

enddo;

Fig. 10 shows an example of a transformation for a given sequence diagram. Since a message in the object-oriented sys-
tem manifests itself as an operation call, the operations can be found in the example above. In the universal representation,
it is assumed that a sequence diagram describes a use case UC1. UC1 is an example of the transactional type that is further
described by the activities P. The operation operation1 from the example is mapped to PopC1 and operationC2(String) into
PopC2. Activity type (H) is determined from the operation name or from its stereotype, if one is set. Since PopC1 does not
have parameters but returns the value of an attribute, it is classified as a read activity. Other values are empty sets denoted
as U. Activity PopC2 is of the type calculate. In its set of used data elements (D) only one data element (darg1) can be found.
This activity also creates new data elements cobject that are of a complex type. Please note that Class1 and Class2 corre-
spond to data groups Fc1 and FC2. From the sequence diagram, data groups cannot be described in more detail, therefore
the values for FC1 and FC2 are labeled with g—a special symbol that in the universal form represents undefined value.

5.4. Activity diagram

In object development, the activity diagram is used to define procedures and algorithms. In the past, activity diagrams
were not used as a source of information for software-size estimation. However, from Table 4 it can be concluded that the
 :Actor Object :
Class1

: Class2

1: operation1()
2: operationC2(String)

3: OK

H=(TUC1, FC1, FC2)
TUC1=(Pop1, Pop2)
PopC1= (Θread, , ,)
PopC2= (Θcalculate, D1, Φ , cobject)
D1=(darg1)
FC1=FC2= η

Φ Φ Φ

Fig. 10. Transformation of a sequence diagram into a universal representation.

1354 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
quality of information is right behind that of the class diagram. The main purpose of activity diagrams is to document
some procedure; therefore we used them to describe use cases in a semi-formal way.

The use of activity diagrams to describe use cases enables us to determine the number of transactional and data func-
tions following these rules:

P1. All activities in the swimlane named ‘‘system’’ are treated as transactional functions.
P2. All objects that have a user-defined type are allocated to data groups (F).

The complexity of a transactional function (T) is determined according to the number of input and output object flows.
If object flows are not shown at the diagram, all transactional functions are given an average complexity.

Fig. 11 shows the transformation of an activity diagram into universal representation. As in the case of sequence dia-
gram, the activity diagram is made for UC1. The steps for UC1 are defined with activities Activity1 to Activity5. For math-
ematical representation, only activities within the swimlane named System (Activity 1, Activity3 and Activity4) are
significant. In the universal representation, they are labeled as PA1, PA3 and PA4. If the object flow is defined on the activity
diagram, activities in the universal representation can be further described. In our simplified example, only activity PA3 has
detailed information on data groups (D1). Since the type is ‘‘object reference’’ it is marked as g1. Data group FC1, shown in
the activity diagram, cannot be further broken down. Therefore, its value is denoted as g.

The algorithm in the symbolic code is:
activities := activity_diagram.getAllActivities ();

for i = 1 to activities.size() do
activity = activities.getActivity(i);

if (activity.getSwimlane() = system) then

create new T (activity.getStereotype());

input_object_flows := activity.getInputObjectFlows();
for ii = 1 to input_object_flows.size() do
input_object_flow := input_object_flows.getObjectFlow(ii);
if(input_object_flow.getType = new_type) then

create new F;

if (input_object_flow.getType = basic_type) then
create new d;
Activity 1
<<write>>

Activity 3
<<read>>

Activity 4
<<confirm>>

Activity 2

Activity 5

: Class1

message

System

H=(TUC1, FC1)
TUC1=(PA1, PA3, PA4)
PA1= (Θwrite, Φ, Φ , Φ)
PA2= (Θread, D1, Φ , Φ)
PA3= (Θconfirm, Φ , Φ , Φ)
D1=(g1)
FC1= η

Fig. 11. Transformation of an activity diagram into universal representation.

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1355
F.add(d);

else

create new g;

F.add(g);

endif

endif

enddo

endif;

enddo;

With activity diagrams, it is possible to document a method’s body. In that case, the complexity of the method can be
evaluated; this turns out to be the complexity of a transactional function. However, this information is usually available
late in the design.

5.5. Statechart diagram

The Statechart diagram defines all the states of one class. In the universal form, a class is represented as a data group. To
determine the complexity of a data group the attributes of a class are used. The Statechart diagram does not deal with
attributes and, from that perspective, are not valuable for estimation purposes. One could argue that complexity can be
determined using the number of states in the diagram and the complexity of transitions. The rules can be defined according
to an analysis of empirical data. However, statecharts are rarely used in business domains and have moderate value for
evaluating the complexity of data groups. The complexity of transactional functions can be directly evaluated using meth-
ods defined on transitions and the rules for sequence diagrams. In practice, statecharts are not expected to be used in the
size estimation process if the information for the evaluation of an element’s complexity is available in other diagrams.

6. The application of the GASS model

In previous sections, a formal view of the FSM methods was given. First, the GASS model was defined and supported
with a formal representation of abstract elements that help us depict any software system in a way that is convenient for
software-size estimation. Then the GASS model was used to instantiate several predominant FSM methods in use today.
Finally, the transformation between two abstractions used to define a software system was defined and equipped with algo-
rithms expressed in symbolic code. The input abstraction used the UML diagrams and the output abstraction was an
instance of the GASS model ready for use in the second step of the estimation process: software-size calculation. Now
the question is: why do we need all this and how can a size estimator benefit from the defined GASS model? There are
several application areas where the GASS model could be used.

1. Definition of a new FSM method—if the new FSM method is defined in a generalized form, it can easily be plugged into
an FSM tool. The new method can be compared to existing FSM methods. Recalculation for past projects is easier as
well.

2. Comparison of different FSM methods—with the formal model defined, a two-level comparison can be performed,
namely a data model comparison and a comparison of the function that maps data elements into software size.

3. The automation of the measurement steps—if software models are prepared, the size can be calculated automatically
using an FSM tool, since the estimation process is formally defined. An FSM expert’s mediation is not needed. The soft-
ware size is automatically calculated using built-in transformation rules.

4. For FSM tool implementation—the algorithms and functions are well defined; therefore the implementation of the tool
should be straightforward.

5. To keep data about the software system in the repository such as ISBSG (2001)—if the data in the FSM repository are
kept in a universal form, similar to the form presented in this research, the size estimation becomes method independent
since the value for size can be easily recalculated.

6. To minimize the measurement error—the formal model enables the identification of data elements that have the biggest
influence on error. In one of our previous studies, the error rate was determined for the FPA elements mismatch (Živk-
ovič et al., 2005a).

7. In the FSM method selection process—some methods perform better in specific domains than others. To be able to select
the method that suits one’s needs the best, the estimation process needs to be transparent. This is achieved with formal-
ization. For example, when comparing the FPA and MK II FPA methods, it becomes clear that the MK II FPA does
not use data elements to calculate size and will consequently produce different results on models having only attributes
and no methods.

1356 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
To evaluate both the GASS model and the transformation algorithms for OO development, the application portfolio
defined by Fetcke (1999b) was used. The application portfolio that contains five applications was converted into class dia-
grams. The class diagram for the application W, which represents the complete application portfolio, is presented in
Fig. 12.

The class diagram was then converted to XMI format and imported to our tool that supports conversion to the GASS
model and three size estimation algorithms, namely FPA, MK II FPA and COSMIC-FFP. The tool was developed in Java
and supports size estimation, repository management and project comparison. The results for the reference application
portfolio are in Table 6.

Table 6 summarizes size in function points for the applications W, M, C, LC and LS that are part of the application
portfolio defined by Fetcke (1999b). For each application the size was calculated using three methods. The results are
grouped in columns by each method and labeled with the method name. In each method group four sub-columns can
be found. In the first sub-column, labeled Fetcke, the original human expert size estimates calculated by Thomas Fetcke
in (Fetcke, 1999b) can be found. These values are used as reference values for our research since Fetcke previously con-
ducted a controlled experiment and published a detailed analysis of the application portfolio size estimation procedure.
In sub-columns S1, S2 and S3 the sizes for three variations of the UML abstraction model are given. The S1 is the so-called
‘‘normal’’ abstraction model. An instance of such a model for application W can be found in Fig. 12. The S1 abstraction
model has only methods and attributes needed to solve the given business problem. In practice it is called an analysis class
diagram. Since tha MK II FPA and COSMIC-FFP do not evaluate data functions directly, the abstraction model was
changed twice. In the first change (Scenario 2—S2), for each attribute the two methods were added—gethattributeNamei
and sethattributeNamei. In the second change (Scenario 3—S3) only one method per attribute was added. The goal of S2
and S3 was to find the most appropriate UML abstraction model for MK II FPA and COSMIC-FFP since both methods
underestimated the application size in comparison to Fetcke’s reference estimates for all five applications. The last two
rows in Table 6 show the mean value and standard deviation of scenarios S1–S3 from the reference value (Fetcke) for
all three methods. For the FPA method it is obvious that in S2 and S3 it measures data functions’ contribution more than
Fig. 12. Class diagram for application portolio (W).

Table 6
Measurement results for different methods and test cases

FPA MKII FPA COSMIC-FFP

Fetcke S1 S2 S3 Fetcke S1 S2 S3 Fetcke S1 S2 S3

W 77 98 164 131 72.96 46.15 89.64 66.06 81 27.80 54.00 39.80
M 40 56 164 131 32.40 25.45 91.30 69.05 38 15.33 55.00 41.60
C 49 75 129 102 46.72 37.35 75.11 56.44 51 22.50 45.25 34.00
LC 56 83 143 113 48.96 38.84 78.02 55.78 52 23.40 47.00 33.60
LS 31 44 80 62 24.00 21.58 44.82 31.54 29 13.00 27.00 19.00

Mean 20.6 85.40 57.20 11.13 30.77 13.52 29.79 11.35 18.04
Standard deviation 6.11 26.69 21.54 9.26 16.56 12.98 14.07 10.44 14.24

M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358 1357
once and therefore overestimates size in both S2 and S3. For Mk II FPA the scenarios S1 and S3 are quite close, therefore it
is difficult to decide which approach to take. The COSMIC-FFP gives the best result with S2, followed by S3.

7. Conclusion and future work

In this research, an important topic for size estimation was addressed. Each FSM method should have a formal defini-
tion that is easy to use and implement without the need for expert intervention during the measurement process. Only
methods that have such a formal definition can be automated and integrated with analysis models already in use. In this
case, it is not important which models the development team uses, the only question that arises is: Are the transformation
rules already defined? In this research, a GASS model was introduced that adds a formal definition to existing FSM meth-
ods. The transformation rules for several FSM methods were also defined. The dominance of UML in object-oriented anal-
ysis demanded the definition of transformation rules for UML diagrams. The rules were defined for diagrams that are
crucial in the size estimation process. The role of other diagrams was also briefly described. To promote the GASS model’s
practical application, algorithms in symbolic code were added and some ideas for the GASS model’s use were also outlined.
In the practical part of this paper, the suitability of the sample UML abstraction models for different FSM methods were
tested using the GASS data model. The analysis showed that the FPA method is the most suitable FSM method for the
tested abstraction models. The MK II FPA also performed well without changes. However the estimated size was always
underestimated. Further analysis may prove that adding a method for each attribute in the analysis class diagram is a bet-
ter solution. In our test sample the COSMIC-FFP performed with significant underestimates. The statistical analysis
showed that the abstraction model should address the presence of attributes in the model with additional methods. The
added methods balance the difference and make an adequate substitution for the data functions in the model.

In the future, the characteristics of the FSM method will be written in XML to enable the dynamic implementation of
new FSM methods in FSM tools.

References

Albrecht, A., 1979. Measuring application development productivity. In: IBM Applications Development Symposium, pp. 83–92.
Antoniol, G., Lokan, C., Caldiera, G., Fiutem, R., 1999. A function point-like measure for object-oriented software. Empirical Software Engineering 4,

263–287.
Antoniol, G., Fiutem, R., Lokan, C., 2003. Object-oriented function points: an empirical validation. Empirical Software Engineering 8, 225–254.
COSMIC, 2003. COSMIC-FFP Measurement Manual—The COSMIC Implementation Guide for ISO/IEC 19761:2003, version 2.2, Common Software

Measurement International Consortium (COSMIC).
Diab, H., Frappier, M., St Denis, R., 2002. A formal definition of function points for automated measurement of B specifications. In: Formal Methods

and Software Engineering, Proceedings, pp. 483–494.
Fetcke, T., 1999a. A generalized structure for function point analysis. In: Proceedings of International Workshop on Software Measurement (IWSM’99),

Mont-Tremblant, Canada, pp. 1–11.
Fetcke, T., 1999b. The warehouse software portfolio: a case study in functional size measurement. Technical Report Number 99-20, ISSN 1436-9915, TU

Berlin.
IFPUG, 2004. Function Point Counting Practices Manual, Release 4.2, International Function Point Users Group, Princeton Junction, USA, January

2004.
ISBSG, 2001. Practical Project Estimation, A toolkit for estimating software development effort and duration. International Software Benchmarking

Standards Group.
ISO, 1998. ISO/IEC TR 14143-1. Information technology—Software measurement-Functional size measurement, Part 1: Definition of concepts, first

edition, ISO/IEC.
ISO, 2002a. ISO/IEC TR 14143-2. Information technology—Software measurement—Functional size measurement, Part 2: Conformity evaluation of

software size measurement methods to ISO/IEC, first edition, ISO/IEC, 14143-1: 1998.
ISO, 2002b. ISO/IEC TR 14143-4. Information technology—Software measurement—Functional size measurement, Part 4: Reference model, first edition.

ISO/IEC.
ISO, 2003. ISO/IEC TR 14143-3. Information technology—Software measurement—Functional size measurement, Part 3: Verification of functional size

measurement methods, first edition. ISO/IEC.
Jeffery, D.R., Low, G.C., Barnes, M., 1993. A comparison of function point counting techniques. IEEE Transactions on Software Engineering 19, 529–

532.
Lokan, C., 1999. An empirical study of the correlations between function point elements. In: Proceedings of METRICS’99: Sixth International

Symposium on Software Metrics, pp. 200–206.
Lokan, C.J., 2000. An empirical analysis of function point adjustment factors. Information and Software Technology 9, 649–659.
Lorenz, M., Kidd, J., 1994. Object Oriented Software Metrics. Prentice Hall.
OMG, 2001. Unified Modeling Language Specification, version 1.4., Object Management Group.
Uemura, T., Kusumoto, S., Inoue, K., 1999. Function point measurement tool for UML design specification. In: Proceedings of the Sixth International

Symposium on Software Metrics, pp. 62–69.
Uemura, T., Kusumoto, S., Inoue, K., 2001. Function-point analysis using design specifications based on the unified modelling language. Journal of

Software Maintenance and Evolution-Research and Practice 13, 223–243.
UKSMA, 1998. UKSMA. Mk II Function Point Analysis, Counting Practices Manual, version 1.31, United Kingdom Software Metrics Association

(UKSMA).

1358 M. Heri�cko et al. / The Journal of Systems and Software 79 (2006) 1341–1358
Živkovič, A., Hericko, M., Kralj, T., 2003. Empirical assessment of methods for software size estimation. Informatica (Ljubljana) 4, 425–432.
Živkovič, A., Hericko, M., Brumen, B., Beloglavec, S., Rozman, I., 2005a. The impact of details in the class diagram on software size estimation.

Informatica (Lithuania) 2, 195–311.
Živkovič, A., Rozman, I., Heričko, M., 2005b. Automated software size estimation based on function points using UML models. Information & Software

Technology 47, 881–890.

Marjan Heričko is an Associate Professor at the University of Maribor, Faculty of EE&CS, Institute of Informatics. He received his M.Sc. (1993) and
Ph.D. (1998) in computer science from the University of Maribor. His research interests include all aspects of IS development with emphasis on metrics,
software patterns, process models and modeling.

Ivan Rozman received the Ph.D. degree from University of Maribor in 1983. He is a full professor of software engineering at the Faculty of EE and CS.
Prof. Rozman is author and co-author of numerous articles published in different scientific journals and a member of several program committees at
domestic and international conferences. He is currently Rector of the University of Maribor.

Aleš Živkovič is a teaching assistant at the University of Maribor. His research work covers different aspect of object technology with the emphasis on
UML, software processes, Java platform and metrics. He gained his practical experiences in cooperation with industry on several projects. Aleš received
his master degree in 2000 and Ph.D. degree in 2005 both from University of Maribor.

	A formal representation of functional size measurement methods
	Introduction
	Related work
	GASS model
	Data-oriented abstraction
	Abstraction of the software system
	Representation of the mapping function

	GASS model application
	Mapping the FPA method
	Mapping for MKII FPA
	Mapping for COSMIC-FFP

	Transformation of object-oriented concepts to GASS
	Use case diagram
	Class diagram
	Sequence diagram
	Activity diagram
	Statechart diagram

	The application of the GASS model
	Conclusion and future work
	References

