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Abstract. One of the current trends in refactoring is when and where
we should refactor. Until now, most of the proposals establish that the
refactoring process starts from the programmer intuition and experience.
From the bad smell concept, and using metrics, it is possible to discover
refactoring opportunities, not only from a subjective point of view but
also from an objective point of view.
The following work presents an exploratory case study on the use of met-
rics in the detection of bad smells.This leads to related refactorings in
order to improve underlying design. The process is achieved in a language
independent manner. In this sense, it is briefly described a framework
support for collecting metrics that allows to reuse the effort on a wide
family of object-oriented languages. Framework solution is based on the
use of metamodels describing family of languages. In addition to this, it
is also described how to use the approach and its support, with other
metamodels.
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1 Initial Context

One of the key subject in code refactoring process is: when and where do we
perform refactorings? In [6] Fowler proposes a list of clues or symptoms that
suggest refactoring opportunities. These symptoms or stinks are named “Bad
Smells” and their detection should be achieved from “the programmer intuition

and experience”.
Currently, there are a big number of integrated development environments

(Eclipse, NetBeans, Visual Studio .NET, Refactoring Browser, etc.) which in-
clude refactoring capabilities. These environments also contain or allow to add
plug-ins for obtaining metrics. The programmer is also able to customize the
warning messages and corrections for every metric over the threshold.

However, there are common points between these concepts not connected
until now. Although we have metrics, they are not used to determine refactorings.



There is not a direct connection among these metrics, the usual flaws that could
be suggested by them, and the required corrective actions to reduce or erase
these flaws. The usual flaws can be described in terms of bad smells and the
corrective actions, in terms of the refactoring operations suggested by each bad
smell. Thus, we can go from metrics to bad smells and from these, to refactoring.

On the other hand, metrics should be implemented for each object-oriented
environment/language that we use. Nevertheless, one of the intrinsic properties
of most of them, specially in object-oriented metrics, is their language indepen-
dence.

One of the current trends in refactoring research is to achieve language inde-
pendence. Therefore, starting from the current state of the question, we can go
forward in two directions:

– Use metrics as clues of bad smells, to hint or suggest the suitable refactorings.
– Define a language independent metric collection support. The main issue

when defining this support should be to fit solution for reuse in most of
integrated development environments or in a multi-language environment.

The remainder of this work continues as follows: Section 2 presents the state
of the art and current problems, from metric and refactoring studies to the
connection of both lines. In section 3, we describe a case study about the re-
lations between metrics and symptoms, suggesting code flaws. In Section 4, it
is introduced tool support based on frameworks to use metrics in a language
independent refactoring process. Finally, in Section 5, we finish with conclusions
and future works.

2 State of the Art and Current Problems

The starting point to this matter is the Fowler’s classical book on refactoring
[6]. There are defined 22 bad smells from a non formal manner, with a simple
description and a set of suggested refactorings to improve the code.

On the basis of this work, in [15] the author collected the opinion of program-
mers about the presence of bad smells in a set of program codes. He compared
these results with metric results on the same codes. He also proposed a tax-
onomy for bad smells: Bloaters, Object-Oriented Abusers, Dispensables,
Encapsulators, Couplers and Others. For each bad smell, he suggested a set
of related metrics. This assignment is partially subjective.

However this work just confronts the collected opinions with correlations be-
tween metrics. In particular, the author only takes three bad smells in Bloaters

category: Large Class, Long Parameter List and Duplicated Code. For the two
former cases, we can use classic metrics related to the code size [14], but in the
case of Duplicated Code, it is necessary to use a duplicated code detection tool.
There are not metrics which collect this flaw. The author used the number of du-
plicated lines which not seems to be the most accurate method to detect clones
in code. Duplicate code detection, although necessary sometimes, goes beyond
the scope of this paper.
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His conclusions hint that there are not correlations between smell detec-
tion based on human intuition (subjective) and metrics (objective). The surveys
confirm that refactoring symptom detection without objective method leads to
different results depending on the programmer (according to their experiences,
their involvement in the project, etc.)

Relations between metrics and refactoring has been studied from other point
of views. In [3], change metrics are used among different versions of a system
to hint which refactorings have been applied at each evolution step. The work
is based on the definition of some heuristics in this sense. Other similar works
are [8] and [20].

By other side, in [4, 11], it is presented the idea of the language indepen-
dence collecting object-oriented metrics. To collect metrics, they relate available
information in a metamodel for a family of languages. The kind of languages
the metamodel describes, have led them to do not have information on complex
characteristics of inheritance or generic classes. On the other hand, although
they name the concept of independent metric engine, they do not explain its
design and the relations between metrics, bad smells and refactorings are not
defined either.

In [19], Tourwé and Mens propose the detection of refactoring opportunities
using queries on a logic meta-programming environment. They define queries to
suggest the corrective actions to do. This solution, in its current state, is not
directly reusable due to the use of the base language as repository. This means
that their “Prolog” is reasoning about the real Smalltalk code base, and not
about an imported logic representation of the code.

From these previous works, this paper describes a case study on the relation
metrics-bad smell-refactoring and presents the definition of a framework to cal-
culate metrics in order to support the detection of refactoring opportunities in
a language independent manner. It is presented an object-oriented design of the
framework and its instantiation to use our own metamodel describing a family of
languages which takes into account complex inheritance and genericity issues.

3 Bad Smell and Metric Relations

From the work [15], where relation between metrics and bad smells is not closed,
we define a case study to show the usefulness of the detection of bad smells based
on metrics.

Refactoring a big scale project, over which we have source codes but not
experience about the project domain, brings us a problem: where do we begin
to refactor? We choose to define a case study with an open source project. We
do not know anything about this project however using metrics we are able to
propose refactorings.

We select the open source project JFreeChart (www.jfree.org). It is a Java
library for graphics drawing. The metrics are calculated on the last version
(1.0.0-pre2). The study is constrained to bad smells that can be found with
widely accepted metrics and language independence.
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We take four bad smells: Data Class and Lazy Class in the Dispensable cat-
egory with a strong correlation [15], Switch Statements in the Object Oriented

Abusers category and finally, Parallel Inheritance Hierarchy in the Change

Preventers category . The goal is to determine which classes in this library
present these symptoms.

The case study focuses on class and method metrics. We have selected size
metrics as NOA, NOM, etc. [14] and other object-oriented metrics as [2]: WMC,
NOC, DIT, LCOM, CBO and RFC. Also we use method metrics as V(G) [16],
LOC (Lines Of Code) and NBD (Nested Block Depth) [14].

3.1 Bad Smell: Data Class

“These are classes that have fields, getting and setting methods for fields, and

nothing else” [6]. Thus, we select the metrics Number Of Attributes (NOA) and
Methods (NOM). Complexity and cohesion of the selected classes should be low.

Using this filter and taking the five classes with higher values using clusters3,
we are able to detect: AbstractRenderer, ChartPanel, PiePlot, XYPlot and
CategoryPlot. If we observe their codes, all of them are classes with a big
number of accessor (get) and mutator (set) methods.

Refactoring to be applied [6]: Move Method to add more functionality to
these classes.

3.2 Bad Smell: Lazy Class

“A class that isn’t doing enough to pay for itself should be eliminated” [6]. These
classes have a low number of attributes (NOA) and methods (NOM). Their
complexities are low. Their DIT values are also low, so they do not add any
functionality directly or indirectly by inheritance. Cohesion among methods is
usually low.

Using this filter we obtain:

– if we set a DIT value of 1: we find classes merely functional, without state,
which do not accomplish any tasks (i.e. CountourPlotUtilities, Data-

SetReader). Some of the selected classes by this filter also implement the
Factory Method design pattern [7] (i.e. ChartFactory).

– DIT higher values are in classes with low functionality. The class names
begin with Default which it suggests a default behavior (i.e. DefaultKeyed-
Values2DDataSet, DefaultKeyedValuesDataSet)

All these classes, although have been discovered with different filters, are
grouped into the same set (cluster). Their role in the system is to provide low
functionality so they should be refactored.

Refactorings to be applied [6]: Move Method, Remove Class, Collapse

Hierarchy and Inline Class to increase or decrease the class complexity.

3 Using Weka tool, available at http://www.cs.waikato.ac.nz/ml/weka/
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3.3 Bad Smell: Switch Statements

“Most times you see a switch statement you should consider polymorphism”

[6]. Applying the McCabe Ciclomatic Complexity metric (V(G)) [16], we find
the executeQuery method in JDBCXYDataset class with a value of V(G) = 54.
Usually, this value should not be greater than 10. The other two values over
threshold are LOC = 153 and NBD = 7. Inspecting the source code of this
method, we observe three switch control statements, with 12, 3 and 13 case

clauses. The remainder of the methods in these classes maintain the metrics in
the recommended thresholds.

Refactorings to be applied: Replace Conditionals with Polymorphism

and Replace Type Code with Subclass or Replace Type Code with

State/Strategy. Besides, we should apply Extract Method refactoring to
reduce the complexity of long methods and high density of statements.

3.4 Bad Smell: Parallel Inheritance Hierarchy

“Every time you make a subclass of one class, you also have to make a subclass

of another” [6]. We establish the use of the metrics (DIT and NOC) to detect
this bad smell. Depending on the depth of inheritance tree and the number of
children, we use these values as indicators of parallel inheritance hierarchies exis-
tence. More concretely, we choose classes with a number of children greater than
1, so the inheritance hierarchies are obviously complex. Collecting the metric
values and clustering, we found four clusters (see Table 1). Studying the dif-
ferent mean values and standard deviations for each cluster, we only focus on
classes taking into account the mean values of DIT and NOC. We are looking
for classes at the top of the inheritance hierarchy (DIT between 1 to 3) with a
medium number of children (NOC greater than 4 in this case).

Table 1. JFreeChart-1.0.0 pre2 - Clusters

Cluster Num.Classes % Mean DIT St.Dev Mean NOC St.Dev

0 410 65% 2.8592 0.5164 0 1.4839

1 64 10% 5.1989 0.7940 0.1642 0.3704

2 128 20% 1.0478 0.2198 0.0921 0.3133

3 27 4% 1.9991 0.9162 4.0688 3.4295

The rest of the clusters contain classes with high depth and without children
(Cluster 0), very deep with few children (Cluster 1) or low depth with few
children (Cluster 2). These three last clusters do not seem suitable in order to
find parallel hierarchies. Therefore, we take Cluster 3 with its 27 classes. To find
parallel inheritance hierarchies we establish that classes must have values of DIT
and NOC very similar. Also we added the criteria that class names must have
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similar prefixes as [6] suggests. By means of this process, we have detected three
parallel hierarchies. We show the root classes and their metric values:

– Hierarchy 1
• Tick (DIT=1, NOC=2)
• TickUnit (DIT=1, NOC=2)

– Hierarchy 2
• AbstractCategoryItemLabelGenerator (DIT=1, NOC=4)
• AbstractPieItemLabelGenerator (DIT=1, NOC=2)
• AbstractXYItemLabelGenerator (DIT=1, NOC=2)

– Hierarchy 3
• RenderederState (DIT=1, NOC=3)
• Plot (DIT=1, NOC=12)

Hierarchy 1 does not need any explanation about the metric values. In
Hierarchy 2, the NOC value includes two inner classes that must not be con-
sidered to find the bad smell. In Hierarchy 3, similarity has been obtained by
similar prefixes. Besides, the other nine child classes of Plot have not descen-
dants, the other three classes have an association one to one with descendants
of the RendererState class.

Through this process, we point out a set of parallel inheritance hierarchies
that follow a similar pattern. They must be observed manually by the program-
mer to decide the suitable refactoring set to apply.

Refactorings to be applied: Move Method and Move Field.

4 Metric Calculation Support Based On Frameworks

In this section we present a language independent solution to the metric calcu-
lation support in the aim of obtaining an assisted refactoring process. Current
solutions to metric calculation are proposed to work on particular languages.

Although they are correct solutions, there is an outstanding issue to be taken
into account. Most of metrics, specially object-oriented metrics, are language
independent. Even if it seems to be worth the trouble, in practice, it is not taken
advantage of this opportunity. The same definition and implementation effort is
achieved from the scratch to obtain metrics, for each development environment
and programming language.

The solution to this problem is based on a metamodel. This metamodel must
collect the basic elements of any object-oriented language: classes, attributes,
methods, client-provider relations between classes, inheritance and genericity.
In particular, it would be necessary to include information about flow-control
instructions, assignment instructions, expressions, etc. All these instructions are
needed to calculate metrics as V(G) [16], WMC [2], etc.

The UML metamodel [17] does not contain information about instructions. In
our case, the used metamodel contains this information. Taking this metamodel,
defined in previous works [12, 13], or other similar metamodels like FAMIX [4],
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the proposed solution defines a framework to run metrics with language inde-
pendence. A framework is a set of abstract and concrete classes which defines
an easily extensible behavior [5].

The main goal is to propose a framework that can be reused and extended
with classic and new metrics on a wide set of metamodels to infer refactorings. Al-
though in particular, we have validated this framework on a defined metamodel,
there is an open line of work about incorporating it to other metamodels with
small adaptations, following the advice given in next section. The framework
design is proposed as an open guide to be implemented on any object-oriented
language. We have implemented it on Java.

4.1 Metamodel Elements Traversal

To avoid modifications on every class representing metamodel instances which
contain information to be collected when measuring, we apply the Visitor [7]
design pattern. The aim of this design pattern is to avoid including a new method
each time we need to make a new operation with all of them. In this particular
case, the necessity emerges from measuring different element properties. This is
also important in a metamodel solution based in order to preserve the metamodel
definition.

The pattern indicates that accept methods must be introduced in each ele-
ment to visit. In a metamodel with unique hierarchy, this is reduced to introduce
an accept method in the root of hierarchy. By other side, we define a Visitor

interface which must include visit methods for each one of the measurable
elements (see Fig. 1).

MetricStrategy

traverseModel()

MetricVisitor

setProfile()

Strategy

traverseModel()

Visitor

visitClassDef()

visitMethodDec()

visitAttDec()

...()

0..* 110..*

S
 t r a

 t e
 g

 y
 

V
 i s

 i t o
 r 

Fig. 1. Metric Engine Core
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The traversal algorithm is defined independently of the visitor, allowing the
use of the Strategy [7] design pattern. We choose dynamically the concrete
algorithm to access to the metamodel instances.

4.2 Runnable Metric Hierarchy

Metrics have been classified in several ways. In [10] we find different taxonomies
more or less complex. Particularly, we only focus on the granularity level: sys-
tem, class and method. Metrics related on attributes are linked to classes as
containers. For example, metric NOA (Number Of Attributes) 4 [14] measures
the number of encapsulated attributes in the class context.

Depending on the information the metamodel describes, some metrics could
have problems to be defined. Metamodels, as abstractions in general, lose some
information from the elements they describe. In our metamodel, the loss is
reduced to branching instructions (conditional and loop sentences). They are
stored without semantic content.

This does not allow to define metrics related with McCabe ciclomatic com-
plexity [16] in a language independent way. Nevertheless, the framework still
supports their calculations. We calculate them using key words stored in con-
crete extensions (with language dependence).

The inheritance hierarchy of metrics is presented in Fig. 2, where Metric

abstract class is playing the Template Method [7] role. Before running it,
it is checked (check method) to verify that the metric is related with the type
element to measure. If it is possible, the metric is calculated through run method.
While checks are defined in the framework core, concrete executions are defined
in the framework extension, following the Command [7] design pattern. Both
methods, check and run build the template of calculate method.

To collect the measures, we use the Collecting Parameters design pattern
defined in [1]. A MetricResult (see Fig. 3) implements the pattern. The object
collects the measures each time the calculate method is called on a object which
implements the IMetric interface. This solution is similar to a blackboard where
everyone writes their results.

4.3 Profiles: Metric Customization

Metrics suggest certain problems for their application and interpretation. We
observe that depending on the context applied, thresholds can change. Therefore,
the framework must support the customization of these values.

Initially, metrics are instantiated with recommended default values. These
values are subjective, and should be fitted by means of empiric observations,
tuning and adjusting the values.

With this aim, we define a wrapper class MetricConfiguration (see Fig. 3),
that allows to change the initial metric definition, rewriting the default values
and adjusting the metric threshold to a particular context or domain.

4 Also known as NOF (Number of Fields)
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ClassMetric

check()

run()

MethodMetric

check()

run()

Metric

author

year

valueMinDefault

valueMaxDefault

calculate()

check()

run()

IMetric

calculate()

SystemMetric

check()

run()

Template

Method

Commad

Fig. 2. Metric Framework Core

By means of a configuration profile in MetricProfile class (see Fig. 3),
programmers can define different profiles. They can tune the values, on the base
of previous observations or depending on the domain. We do not focus, for the
moment, on aspects related to profile persistence and recovery.

4.4 Measure Calculation

Bringing together all the pieces, the concrete process begins visiting the elements,
and obtaining the metrics, following a concrete strategy. It uses a visit method
for each of the metamodel elements to be visited. A metric profile is linked to
the visitor (setProfile method in Fig. 1).

On each element, we apply metric pre-configurated in the current profile.
Results for each metamodel object are collected as a measure that allows nav-
igability to the metric using MetricConfiguration class, on one side, and to
the object where the metric has been calculated, on the other side. Measures are
grouped in a “metric result” (MetricResult class) to allow the result analysis
and later presentation.

4.5 Framework Validation: An Example

The framework has been implemented on an existent metamodel. This meta-
model supports concepts as class and inheritance. We have implemented some
metrics as DIT (Depth Inheritance Tree), NOC (Number Of Children) [9] among
others.

Both metrics are defined as class metrics, so we can define them as exten-
sions of ClassMetric class (see Fig. 4). Body of run method is redefined using
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Fig. 3. Customization using Profiles

the information extracted from the metamodel and represented as instances of
Measure. The entry point to calculate the metric value is in this case a class of
the analyzed code. From this class, we navigate through its inheritance relations
to achieve its depth and number of children.

To run on a particular example, all the effort falls on the framework. To
achieve the metric collection, programmer must simply include these metrics in
a profile. The implementation of the metamodel and the metric framework has
been performed on Java, but the open design allows to be implemented on any
other object-oriented language.

4.6 Strengths and Weaknesses

The main benefit of this approach is the reuse of the framework. We have a tool
to obtain metrics for a wide set of objet-oriented languages such as implemented
parsers from language to metamodel. In our work, we have implemented a meta-
model (MOON [12]) and have also implemented parsers for Java and Eiffel.

The future improvements of the framework are:

– include the Observer [7] to update and recalculate metrics only associated
to modified elements.
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ClassMetric

check()

run()

DITWMCNOCRFCLCOM CBO

Fig. 4. Example of Framework Extension

– include additional filters to appoint that certain metrics must be customized.
By example, in those languages that define constructors, NOP (Number Of
Parameter) [18] metric could be relaxed in its maximum values.

– add a graphic representation tier to help to the interpretation of the metrics.

5 Conclusions and Future Works

Assisted calculation of metrics avoids a manual inspection of code, locating with
a low effort those classes to be refactored.

The main goal is to provide a support to metric calculation in order to infer
refactorings, with a certain language independence. We want to reuse the relation
between bad smells and metrics with the refactorings to be applied. The final
aim is to integrate the metamodel and framework in several environments, or
multi-language environments.

There are still many open lines, but we claim benefits from a reuse approach
in the metric and refactoring support.

Other lines of work are:

– Continue with the empirical validation of the metric framework to detect
bad smells and to infer refactorings.

– Face the implementation problems of metrics which need particular features
of each language.
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11. Michele Lanza and Stéphane Ducasse. Beyond language independent object-
oriented metrics: Model independent metrics. In QAOOSE 2002, pages 77–84,
2002.
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