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ABSTRACT 
Complexity metrics play an important role in software development; they are reducing the costs during almost the 
whole development process. There is a growing demand for measuring the complexity of large systems with 
keeping the consistency of the results regardless of the diversity of the programming languages. In this article we 
present a general software measurement process on .NET basis that fulfills the above criteria, namely the 
uniformity of calculation and the language independency. We present some popular metrics and their calculation 
from compiled .NET assemblies using Intermediate Language (IL) disassembling. Next, we examine the IL 
encoded data and prove its suitability for measurements. Finally, we show some concrete examples with simple 
Visual Basic and C# sources. 
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1. INTRODUCTION 
Reducing costs of software development and 
maintenance is always a challenge, especially if we 
want to keep or even improve the software quality. 
Complexity metrics play an important role here; they 
help us decrease the cost from the development and 
testing phase and during the maintenance.  

There is a growing demand for measuring the 
complexity of large multilingual systems for two 
reasons: in a large system, there is no way to estimate 
the cost of the test phase manually and having 
different languages in the same program demands a 
consistent measurement method.  

Being able to trigger the critical system parts and give 
constructive advice with using an automatic 
measurement and evaluation system is a great 
advantage, since we save the verify efforts and gain 
the measurement result in the same time. 

Having a generic – language independent – 

measurement tool in a multilingual environment is a 
great opportunity to produce consistent and reliable 
results. Creating dedicated measurement tools for 
each specific language is an excessive task, since we 
have to face all exercise that all compilers have. 
Usually there is no way to extend the compilers with 
measurement facilities, because either their source is 
not available or even if it is, their internal structure is 
highly optimized for the compilation. Therefore, it 
would be necessary to reimplement all programming 
language dependent exercise to have the input for the 
measurements. (Moreover, for every new 
programming language, we would have to repeat this 
task again.) 

The Intermediate Language (IL) of .NET enables us 
to avoid the above language problems, provided that, 
the encoded information in .NET assemblies is 
enough to calculate metrics and the calculated results 
are not distorted. In this article we are going to show 
that these calculations are achievable by careful data 
extraction. 

There are some good metric calculation packages in 
the Java world; unfortunately for .NET we only have 
a few. Our aim was more than to create a software 
measurement tool for a specific language. We created 
a generic multilingual measurement package by 
exploiting the diversity of the available .NET 
compilers. 
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In this paper we examine the IL from the point of 
view of measuring. First, we briefly present some 
currently popular metrics, including a multi paradigm 
metric. In order to calculate these metrics we look 
through the IL metadata and instructions. We will 
show that there is enough information to do the 
calculations and will also show that the encoded 
information is applicable for measurements, namely it 
is distorted and reflects the original source. Finally, 
we present some simple examples and measurement 
result.  

2. SOFTWARE METRICS 
In the following sections we give a brief overview of 
those metrics we used in our tool. 

Size metr ics 
Most primitive metrics are based on the physical 
attributes of the program code. The lines of code 
(LOC) measures the actual size of code by counting 
the source lines, while effective lines of code (ELOC) 
ignores the possibly ineffective lines like comments, 
block commands, some preprocessor directives etc. 
Number of commands (NOC) works similarly, it 
counts the statements. 

Great advantage of these metrics are the cheap 
computation and easy understanding of the results, 
moreover they have surprisingly high correlation with 
some other more sophisticated metrics. The critical 
weakness of physical basis is the semantics; namely 
the size is only one aspect of software complexity. In 
this article we are focusing on other – more advanced 
– metrics to achieve higher precision. 

Structural metr ics 
The first well-known structural measure was 
developed by McCabe [McC76]. His cyclomatic 
complexity is based on the number of predicates 
(branches) in a program graph G: V(G) = p + 1. The 
aim of this metrics was to approximate the testing 
effort of FORTRAN programs; therefore the 
cyclomatic number reflects the independent testing 
passes of the program. The inadequacy of the 
measure becomes clear, if we realize that the 
complexity also depends on the nesting level of the 
predicate nodes. According to the McCabe 
cyclomatic complexity a sequence of ten loops is 
identically complex to ten loops nested into each 
other. 

Harrison and Magel [HM81] proposed a metric 
which also takes into account the nesting depth of the 
predicate statements. Piwowarski [Piw82] got the 
same result independently. The more nested 
statements weighted higher in the complexity. This 
concept was improved by Howatt and Baker [HB89] 
whose definition for nesting level was applicable for 
non structured programs too. 

Object or iented metr ics 
One of the most complete discussions about object 
oriented metrics was given by Chidamber and 
Kemerer [Chi94] and Henderson-Sellers [Hen96]. 
They defined the following important object oriented 
complexity metrics: 

WMC (Weighted Methods per Class): This 
summarizes the structured complexity of methods 
within a class. McCabe metrics is the most common 
here. 

DIT (Depth of Inheritance Tree): The length of the 
longest inheritance path in the inheritance tree. 
Understanding a class requires the understanding of 
all base classes, so deeper structures have higher 
psychological complexity. 

NOC (Number of Child Classes): This measures the 
importance of the class rather than the complexity. 
Their reasoning was the following: by having more 
and more reuses of the same class, there is an 
increasing possibility of bad abstraction. (We think 
more or less the opposite: having more reuses of the 
same code decreases the overall complexity.) 

CBO (Coupling Between Object Classes): The 
number of references pointing into the class (fan-in) 
and the number of references pointing out from the 
class (fan-out). Higher dependency from other classes 
raises the difficulties of reuse and maintenance. 

RFC (Response for Class): Similar to CBO, but RFC 
takes into account the incoming and outgoing method 
calls. Similarly, the higher dependency and the 
increased intelligibility of the control structures raise 
the complexity. 

LCOM (Lack of Cohesion in Methods): This metric 
is based on an empirical result: higher cohesion 
within a class reflects better abstraction and 
encapsulation. 

Multi paradigm metr ics 
While object-orientation has become ubiquitously 
employed for design, implementation and even 
conceptualization, many practitioners recognize the 
simultaneous need for other programming paradigms 
according to problem domain [Mul]. Paradigm-
independent software metrics are applicable for 
programs written in different paradigms or in mixed-
paradigm environment. Such metrics are based on 
general programming language features which are 
paradigm- and language independent and the 
paradigm dependent attributes are derived from the 
above features: 

Control structure of the programs: Most of the 
programs share the same control statements, like 
instructions, branches and loops. 



Complexity of data types: The structure of data types 
are reflecting the complexity of information being 
manipulated. 

Complexity of data access: The connection between 
the control structure and the program data relates to 
the complexity of information manipulations. The 
measurement analysis starts from the recognition of 
the data flow direction of and the nesting depth of 
data handling operations. 

As a paradigm-independent measurement we applied 
the AV-graph that has been described in [PZ1]. In 
this metric, the three paradigm independent features 
are expressed in an extended control flow graph. The 
control structure of the programs is directly 
represented in the control flow with instruction and 
predicate (branch) nodes. Data nodes are added to 
represent the data types; their weighted sum reflects 
the data type complexity. Additionally the graph 
contains directed edges as a representation of data 
handling. Data access complexity is calculated based 
on these edges by taking into account the direction of 
data flow and the nesting depth of the data operation 
in the control flow. (We present an AV graph in 
Figure 1. in relationship with the IL code.) 

Note that we are not calculating metrics for functional 
languages. 

3. NET – A MULTILINGUAL 
ENVIRONMENT 
The .NET Framework is a development and 
execution environment that allows different 
programming languages and libraries seamlessly 
work together [DotNet]. It has two main components: 
the Common Language Runtime and the .NET 
Framework class library. The Common Language 
Runtime is the foundation of the .NET Framework; 
this executes the program code and provides 
additional services for the development.  

The Common Intermediate Language 
Programs written in different languages under the 
.NET development environment most cases are 
translated into Common Intermediate Language (IL). 
IL is the byte-code language of the Common 
Language Runtime and has been standardized by 
ECMA and ISO (ISO/IEC 23271:2003). It has many 
superior features comparing to the pure machine 
code. IL stores the actual program code with a special 
instruction set and high level meta information about 
the program. The latter one is not necessary to run the 
program, but enables reflection and code analysis 
easier. For example, it is possible to recover the class 
hierarchy, class and method names and variable 
declarations. The IL instruction set can be divided to 
the following major parts from the point of 
measuring: 

Base instructions: These are a set of basic 
operations, like loading and storing data on the stack, 
arithmetic operations, branch instructions, method 
calls etc. (Some example mnemonics respectively: 
ldloc, ldarg, starg; add, sub, mul; beq, bge; call) 
These instructions closely correspond to what would 
be found on a real CPU. 

Object model instructions: The object model 
instructions are less built-in than the base instructions 
in the sense that they could be built out of the base 
instructions and calls to the underlying operating 
system. These instructions are object instance 
creation, virtual method call, exception handling, 
memory allocation and type management. (Some 
example mnemonics: newobj; callvirt; throw, 
rethrow; castclass.) 

With an appropriate utility, any .NET executable can 
be disassembled to IL (for example with ildasm) and 
can be decompiled to source level within moderate 
boundaries. Certainly, the decompiled code is only 
similar to the original source but the classes, methods 
and even the program flow structures are still 
recognizable. We utilized this fact for the 
measurements. 

Now we will take a closer look to the IL from the 
point of software measuring. 

4. THE IL  AS THE SOURCE OF 
MEASUREMENTS 
Being rigorous is very important requirement on the 
measurement process: precision enables us to have 
interpretable absolute values that can trigger critical 
parts of an implementation and also enables us to 
have the future chance of comparison different 
program results. 

Now, let us examine the Intermediate Language as an 
input data for the measurement process. Clearly, it is 
key to have enough information encoded in the .NET 
executable to do precise measure offs. IL stands half 
way between the native code and the source code; 
obviously it is more native machine code and less 
than the source code. Now, we will prove that the IL 
is a better choice for measurements than the other two 
formats: 

Native code is specific for measuring. The encoded 
information here is only for execution on a machine 
environment, so all irrelevant data are detached from 
the executables. Furthermore, native code relies on 
particular machine architecture, which leads to the 
similar problem with the different languages. To sum 
up, there is no way to have precise measurements on 
native executables.  

Going along the opposite extreme, source code is too 
complex; it requires a lot of effort to extract the 
relatively simple measurement information. Dealing 



with source code text requires literally a half 
compiler (lexical- and syntactical analysis plus some 
semantic analysis too) for each different 
programming language to build up the program 
structures. This would change provided the primary 
data format of program sources change from pure text 
representation to real structures; but until then we 
have to face with this problem. 

Note that the above problems prevent the software 
industry to widely use metrics, namely it is not easy 
to create a reliable measure tool based on executables 
or source text. 

Now, let us collect the measurement input 
information from a .NET assembly; two major piece 
of information are required: type and flow 
information. 

We gain type information with the .NET reflection 
API can extract all information about the object 
hierarchy, data types, method signatures, class 
members etc.  

Control and data flow information is extracted by 
looking directly into the assembly binary data. This 
was the only point were we need additional effort, 
since the API does not allow to read IL code. (We 
used the .NET 1.1 API) 

In the following sections we match the above 

information with the need of each specific metric. We 
also point out some problems and propose solutions 
for them. 

Size Metr ics 
The LOC and eLOC metrics are counting the lines of 
the source code. Obviously, we cannot deal with 
source lines since the information about the physical 
characteristics of the source is lost during the 
compilation. Nevertheless we can summarize the 
number of IL instructions which naturally correlates 
to LOC and eLOC. 

Structural Metr ics 
We have to build up the flow graph of the programs 
to calculate structural metrics. Having the exact 
control flow graph is essential, but for some metrics, 
we need additional data information too. For precise 
measurements we have to reconstruct these graphs. In 
Figure 1 we present the relationship between the 
reconstructed flow graph and the IL code. The 
example is compiled from the following simple C# 
program: 

for(int i=0; i<rgint.Length; i++) 
  Console.WriteLine(rgint[i]); 
 

The main question about these graphs is whether the 
reconstructed information from IL code faithfully 
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reflects the original structure of the program. Here 
are some pro and cons on this question: 

We examined the generated code of C# and the 
Visual Basic compilers and the results confirmed that 
the reconstructed flow graphs are very close to the 
ideal results. The essential nodes and edges of the 
graph were accurately rebuilt: there were no 
distortions on predicate nodes, control flow, data 
nodes and data accesses. We experienced slight 
differences in the number of simple instructions; in 
general this does not affect the final results radically. 

Our goal is to have a measure tool that works with 
any (future) programming language, but there is no 
guarantee to have the above precise results. 
Obviously, it is possible to create a compiler that 
outputs such IL code that prevents us to extract the 
original flow information. In this case the compiler 
probably does not use exhaustively the IL features, 
generates inefficient or confused code. (Note that 
functional language compilers might generate code 
that is far from the source, but we do not consider 
them.) 

For different programming languages the generated 
IL codes are sometimes not exactly the same, even if 
the language semantics are the same. For example, 
determining the length of an array is slightly different 
in the following two IL code compiled from C# and 
Visual Basic: 

From C#: 
ldlen 
 

From Visual Basic: 
callvirt instance int32 [mscorlib] 
  System.Array::get_Length() 
 

Code coming from Visual Basic has outside 
references to int32, mscorlib, System.Array, 
get_Length. This problem can be resolved by 
recognizing this special case and making them have 
the same weight.  

Visual Basic generates special code for run time type 
checking, that may also distort the results: we will see 
an example on this in the next section. 

Compiler optimizations could also cause slight 
differences in the measuring results. Microsoft has 
stated that they are not optimizing the generated IL 
code; their compilers only do dead code elimination 
and jump optimization. This helps us to create more 
precise flow graphs since optimizations are not 
simplifying the code. (However, small distortions 
may occur that encumber the process: for example, in 
the non optimized code there are superfluous 
instructions such as jump to the next instruction.) 

Object oriented metrics 
These metrics are precisely computable from the IL 
code, but we need some additional data extraction, 
namely the class hierarchy and the ability to 
distinguish between internal and external references 
relative to a class. 

To compute the Weighted Methods per Class (WMC) 
we have to summarize the structural complexity of 
methods. The class hierarchy is fully extractable by 
the .NET API, therefore Number of Classes (NOC) 
and the Depth of Inheritance Tree (DIT) is given. 

Internal and external variable and method references 
are also encoded in method bodies; the IL 
representation directly disambiguates them. Coupling 
Between Object Classes (CBO), Response for Class 
(RFC) and Lack of Cohesion in Methods (LCOM) 
can be calculated straightforwardly. 

5. EXAMPLES AND RESULTS 
The presented example here contains two C# and one 
Visual Basic class. Stack_CS and Stack_VB are two 
stack implementations and IntStack_CS is the client 
code. 

Method #i MC HB AV 

Stack_VB::Push 51 2 2 62 

Stack_VB::Pop 40 3 4 63 

Stack_VB::Peek 19 3 4 27 

Stack_VB::Contains 40 8 30 143 

Stack_VB::Clear 13 1 1 11 

Stack_VB::get_Count 4 1 1 4 

Stack_VB::main 1 1 1 2 

Stack_CS::Push 50 2 2 60 

Stack_CS::Pop 34 3 4 52 

Stack_CS::Peek 18 3 4 26 

Stack_CS::Contains 39 8 30 134 

Stack_CS::Clear 13 1 1 11 

Stack_CS::get_Count 4 1 1 4 

Stack_CS::Main 1 1 1 2 

IntStack_CS::Push 5 1 1 6 

IntStack_CS::Peek 5 1 1 6 

IntStack_CS::Pop 5 1 1 6 

IntStack_CS::Contains 5 1 1 6 

Table 1. 

Stack_CS and Stack_VB classes have the same fields 
and methods. IntStack_CS shows the collaboration 



between classes implemented in two different 
languages: IntStack_CS is a C# stack of integers 
inherited from the Stack_VB class. 

The quantities above are calculated on per-method 
basis. (Legend: #i is the number of IL instructions, 
MC is the McCabe cyclomatic complexity, HB is the 
Howatt-Baker nested complexity and AV is the AV-
graph result.) 

There is a significantly high correlation between the 
Stack implementations. This proves that measuring 
based on IL results consistent data: language 
translation has no disturbing effect. The IntStack 
numbers represent the fact that our measurement tool 
is also able to work in multilingual environment: 
where base class and derived class were implemented 
in different languages. 

Class LCOM FO #f  #m MC HW AV 

Stack_VB 21 5 2 7 19 43 312 

Stack_CS 21 4 2 7 19 43 289 

IntStack 6 1 0 4 4 4 24 

Table 2. 

Object-oriented metrics effected similar result. In the 
columns we can see the results of the Lack of 
Cohesion in Methods (LCOM), the Fan Out value 
(FO), the number of fields (#f) and methods (#m), the 
summarized McCabe, Howatt and finally the AV-
graph results. 

Let us notice the difference between the faFOn-out 
values: as we have seen in our previous example the 
Visual Basic compiler generates a 
System.Array::get_Length() function call instead of 
ldlen which is one more method reference outside the 
stack class. (As we presented the fan out metric is the 
number of references that are pointing out from the 
class.) The AV-graph complexity also reflected this 
difference. 

6. CONCLUSION AND FUTURE 
WORK 
The Microsoft .NET environment is one of the 
leading development platforms. Implementing a 
reliable software measurement tool for .NET can be 
an important step for designers and developers. As 
the .NET platform is a multilingual environment by 
its nature, such tool must measure software written in 
different languages and handle inter-language 
connections too. 

One way to implement such tool is to target the IL 
code as the measurement input. This enables to avoid 
the excessive work dealing with different languages 
and in the same time it increases consistency between 
the measurements. Handling inter-language 
connections are also possible.  

In this article we presented a way to implement such 
tool by evaluating the relationship between the IL 
encoded information and the required information to 
calculate some popular metrics. We also 
demonstrated that these metrics produce reliable 
results, independently from the source languages. 

In the future we continue the empirical evaluation of 
our .NET metrics tool. We plan to examine the 
forthcoming C# generics and its relation to IL. It is 
also promising to develop special metrics for generics 
and aspects. 
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