
Language Independent Software Complexity
Measurements

Ádám Sillye
Eötvös Loránd University

Dept. of Programming Languages and
Compilers

Pázmány Péter sétány 1/c
 1117, Budapest, Hungary

madic@elte.hu

Zoltán Porkoláb
Eötvös Loránd University

Dept. of Programming Languages and
Compilers

Pázmány Péter sétány 1/c
 1117, Budapest, Hungary

gsd@elte.hu

ABSTRACT
Complexity metrics play an important role in software development; they are reducing the costs during almost the
whole development process. There is a growing demand for measuring the complexity of large systems with
keeping the consistency of the results regardless of the diversity of the programming languages. In this article we
present a general software measurement process on .NET basis that fulfills the above criteria, namely the
uniformity of calculation and the language independency. We present some popular metrics and their calculation
from compiled .NET assemblies using Intermediate Language (IL) disassembling. Next, we examine the IL
encoded data and prove its suitability for measurements. Finally, we show some concrete examples with simple
Visual Basic and C# sources.

Keywords
.NET, software complexity, metrics, multilingual environment, IL, intermediate language

1. INTRODUCTION
Reducing costs of software development and
maintenance is always a challenge, especially if we
want to keep or even improve the software quality.
Complexity metrics play an important role here; they
help us decrease the cost from the development and
testing phase and during the maintenance.

There is a growing demand for measuring the
complexity of large multilingual systems for two
reasons: in a large system, there is no way to estimate
the cost of the test phase manually and having
different languages in the same program demands a
consistent measurement method.

Being able to trigger the critical system parts and give
constructive advice with using an automatic
measurement and evaluation system is a great
advantage, since we save the verify efforts and gain
the measurement result in the same time.

Having a generic – language independent –

measurement tool in a multilingual environment is a
great opportunity to produce consistent and reliable
results. Creating dedicated measurement tools for
each specific language is an excessive task, since we
have to face all exercise that all compilers have.
Usually there is no way to extend the compilers with
measurement facilities, because either their source is
not available or even if it is, their internal structure is
highly optimized for the compilation. Therefore, it
would be necessary to reimplement all programming
language dependent exercise to have the input for the
measurements. (Moreover, for every new
programming language, we would have to repeat this
task again.)

The Intermediate Language (IL) of .NET enables us
to avoid the above language problems, provided that,
the encoded information in .NET assemblies is
enough to calculate metrics and the calculated results
are not distorted. In this article we are going to show
that these calculations are achievable by careful data
extraction.

There are some good metric calculation packages in
the Java world; unfortunately for .NET we only have
a few. Our aim was more than to create a software
measurement tool for a specific language. We created
a generic multilingual measurement package by
exploiting the diversity of the available .NET
compilers.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

In this paper we examine the IL from the point of
view of measuring. First, we briefly present some
currently popular metrics, including a multi paradigm
metric. In order to calculate these metrics we look
through the IL metadata and instructions. We will
show that there is enough information to do the
calculations and will also show that the encoded
information is applicable for measurements, namely it
is distorted and reflects the original source. Finally,
we present some simple examples and measurement
result.

2. SOFTWARE METRICS
In the following sections we give a brief overview of
those metrics we used in our tool.

Size metr ics
Most primitive metrics are based on the physical
attributes of the program code. The lines of code
(LOC) measures the actual size of code by counting
the source lines, while effective lines of code (ELOC)
ignores the possibly ineffective lines like comments,
block commands, some preprocessor directives etc.
Number of commands (NOC) works similarly, it
counts the statements.

Great advantage of these metrics are the cheap
computation and easy understanding of the results,
moreover they have surprisingly high correlation with
some other more sophisticated metrics. The critical
weakness of physical basis is the semantics; namely
the size is only one aspect of software complexity. In
this article we are focusing on other – more advanced
– metrics to achieve higher precision.

Structural metr ics
The first well-known structural measure was
developed by McCabe [McC76]. His cyclomatic
complexity is based on the number of predicates
(branches) in a program graph G: V(G) = p + 1. The
aim of this metrics was to approximate the testing
effort of FORTRAN programs; therefore the
cyclomatic number reflects the independent testing
passes of the program. The inadequacy of the
measure becomes clear, if we realize that the
complexity also depends on the nesting level of the
predicate nodes. According to the McCabe
cyclomatic complexity a sequence of ten loops is
identically complex to ten loops nested into each
other.

Harrison and Magel [HM81] proposed a metric
which also takes into account the nesting depth of the
predicate statements. Piwowarski [Piw82] got the
same result independently. The more nested
statements weighted higher in the complexity. This
concept was improved by Howatt and Baker [HB89]
whose definition for nesting level was applicable for
non structured programs too.

Object or iented metr ics
One of the most complete discussions about object
oriented metrics was given by Chidamber and
Kemerer [Chi94] and Henderson-Sellers [Hen96].
They defined the following important object oriented
complexity metrics:

WMC (Weighted Methods per Class): This
summarizes the structured complexity of methods
within a class. McCabe metrics is the most common
here.

DIT (Depth of Inheritance Tree): The length of the
longest inheritance path in the inheritance tree.
Understanding a class requires the understanding of
all base classes, so deeper structures have higher
psychological complexity.

NOC (Number of Child Classes): This measures the
importance of the class rather than the complexity.
Their reasoning was the following: by having more
and more reuses of the same class, there is an
increasing possibility of bad abstraction. (We think
more or less the opposite: having more reuses of the
same code decreases the overall complexity.)

CBO (Coupling Between Object Classes): The
number of references pointing into the class (fan-in)
and the number of references pointing out from the
class (fan-out). Higher dependency from other classes
raises the difficulties of reuse and maintenance.

RFC (Response for Class): Similar to CBO, but RFC
takes into account the incoming and outgoing method
calls. Similarly, the higher dependency and the
increased intelligibility of the control structures raise
the complexity.

LCOM (Lack of Cohesion in Methods): This metric
is based on an empirical result: higher cohesion
within a class reflects better abstraction and
encapsulation.

Multi paradigm metr ics
While object-orientation has become ubiquitously
employed for design, implementation and even
conceptualization, many practitioners recognize the
simultaneous need for other programming paradigms
according to problem domain [Mul]. Paradigm-
independent software metrics are applicable for
programs written in different paradigms or in mixed-
paradigm environment. Such metrics are based on
general programming language features which are
paradigm- and language independent and the
paradigm dependent attributes are derived from the
above features:

Control structure of the programs: Most of the
programs share the same control statements, like
instructions, branches and loops.

Complexity of data types: The structure of data types
are reflecting the complexity of information being
manipulated.

Complexity of data access: The connection between
the control structure and the program data relates to
the complexity of information manipulations. The
measurement analysis starts from the recognition of
the data flow direction of and the nesting depth of
data handling operations.

As a paradigm-independent measurement we applied
the AV-graph that has been described in [PZ1]. In
this metric, the three paradigm independent features
are expressed in an extended control flow graph. The
control structure of the programs is directly
represented in the control flow with instruction and
predicate (branch) nodes. Data nodes are added to
represent the data types; their weighted sum reflects
the data type complexity. Additionally the graph
contains directed edges as a representation of data
handling. Data access complexity is calculated based
on these edges by taking into account the direction of
data flow and the nesting depth of the data operation
in the control flow. (We present an AV graph in
Figure 1. in relationship with the IL code.)

Note that we are not calculating metrics for functional
languages.

3. NET – A MULTILINGUAL
ENVIRONMENT
The .NET Framework is a development and
execution environment that allows different
programming languages and libraries seamlessly
work together [DotNet]. It has two main components:
the Common Language Runtime and the .NET
Framework class library. The Common Language
Runtime is the foundation of the .NET Framework;
this executes the program code and provides
additional services for the development.

The Common Intermediate Language
Programs written in different languages under the
.NET development environment most cases are
translated into Common Intermediate Language (IL).
IL is the byte-code language of the Common
Language Runtime and has been standardized by
ECMA and ISO (ISO/IEC 23271:2003). It has many
superior features comparing to the pure machine
code. IL stores the actual program code with a special
instruction set and high level meta information about
the program. The latter one is not necessary to run the
program, but enables reflection and code analysis
easier. For example, it is possible to recover the class
hierarchy, class and method names and variable
declarations. The IL instruction set can be divided to
the following major parts from the point of
measuring:

Base instructions: These are a set of basic
operations, like loading and storing data on the stack,
arithmetic operations, branch instructions, method
calls etc. (Some example mnemonics respectively:
ldloc, ldarg, starg; add, sub, mul; beq, bge; call)
These instructions closely correspond to what would
be found on a real CPU.

Object model instructions: The object model
instructions are less built-in than the base instructions
in the sense that they could be built out of the base
instructions and calls to the underlying operating
system. These instructions are object instance
creation, virtual method call, exception handling,
memory allocation and type management. (Some
example mnemonics: newobj; callvirt; throw,
rethrow; castclass.)

With an appropriate utility, any .NET executable can
be disassembled to IL (for example with ildasm) and
can be decompiled to source level within moderate
boundaries. Certainly, the decompiled code is only
similar to the original source but the classes, methods
and even the program flow structures are still
recognizable. We utilized this fact for the
measurements.

Now we will take a closer look to the IL from the
point of software measuring.

4. THE IL AS THE SOURCE OF
MEASUREMENTS
Being rigorous is very important requirement on the
measurement process: precision enables us to have
interpretable absolute values that can trigger critical
parts of an implementation and also enables us to
have the future chance of comparison different
program results.

Now, let us examine the Intermediate Language as an
input data for the measurement process. Clearly, it is
key to have enough information encoded in the .NET
executable to do precise measure offs. IL stands half
way between the native code and the source code;
obviously it is more native machine code and less
than the source code. Now, we will prove that the IL
is a better choice for measurements than the other two
formats:

Native code is specific for measuring. The encoded
information here is only for execution on a machine
environment, so all irrelevant data are detached from
the executables. Furthermore, native code relies on
particular machine architecture, which leads to the
similar problem with the different languages. To sum
up, there is no way to have precise measurements on
native executables.

Going along the opposite extreme, source code is too
complex; it requires a lot of effort to extract the
relatively simple measurement information. Dealing

with source code text requires literally a half
compiler (lexical- and syntactical analysis plus some
semantic analysis too) for each different
programming language to build up the program
structures. This would change provided the primary
data format of program sources change from pure text
representation to real structures; but until then we
have to face with this problem.

Note that the above problems prevent the software
industry to widely use metrics, namely it is not easy
to create a reliable measure tool based on executables
or source text.

Now, let us collect the measurement input
information from a .NET assembly; two major piece
of information are required: type and flow
information.

We gain type information with the .NET reflection
API can extract all information about the object
hierarchy, data types, method signatures, class
members etc.

Control and data flow information is extracted by
looking directly into the assembly binary data. This
was the only point were we need additional effort,
since the API does not allow to read IL code. (We
used the .NET 1.1 API)

In the following sections we match the above

information with the need of each specific metric. We
also point out some problems and propose solutions
for them.

Size Metr ics
The LOC and eLOC metrics are counting the lines of
the source code. Obviously, we cannot deal with
source lines since the information about the physical
characteristics of the source is lost during the
compilation. Nevertheless we can summarize the
number of IL instructions which naturally correlates
to LOC and eLOC.

Structural Metr ics
We have to build up the flow graph of the programs
to calculate structural metrics. Having the exact
control flow graph is essential, but for some metrics,
we need additional data information too. For precise
measurements we have to reconstruct these graphs. In
Figure 1 we present the relationship between the
reconstructed flow graph and the IL code. The
example is compiled from the following simple C#
program:

for(int i=0; i<rgint.Length; i++)
 Console.WriteLine(rgint[i]);

The main question about these graphs is whether the
reconstructed information from IL code faithfully

� �������	�	
 �
��� ������� �
�
��
������� � ��������� � �����
��� �"!$#&%'���)(+*�, � -���.+/ 0�12�3�4� -�� 56�7� 8	�9�
-����
��

:

� ����;��������7<�/
� 8 �	�=�
8 � , � -���.+/ � 5
>@?BA
A
A�ABC 8
�� � � D � A
>@?BA
A
ABE�C ���F8 �	� � A
>@?BA
A
A / C ��� � � >@?BA
A$E�A
>@?BA
A
A D C 8
��
�3� � A>@?BA
A
A+G$C 8
48 �	� � A
>@?BA
A
A�HBC 8
��
8 �
� � � D
>@?BA
A
A�IBC �=�
8 8������
 0����J������8 � � 1K �����L�
� � M ��-��J��8 � C�C N ��� �L� > � -�� , � -���.+/ 5
>@?BA
A
A � C 8
+8 �
� � A
>@?BA
A
A
 C 8
�� � � D � E
>@?BA
A
A � C ��

>@?BA
A
A	O&C ����8 �
� � A
>@?BA
A$E�ABC 8
48 �	� � A
>@?BA
A$E�E�C 8
��
�3� � A
>@?BA
A$E / C 8
48 �
-
>@?BA
A$E . C �=�+-�� � � D>@?BA
A$E D C ��8 � � � >)?$A�A
A D
>@?BA
A$E�HBC �L���

P

K

� Q A

�

i<rgint.Length

�L�+� -��@0�� 1

� R2RTS

U

N ��� �L� > � -��

V �L��
4� �=���L�W-	�	

�
X �����W-��

�

Y -	������Z��J�F� ��-

�L�+� -��

Figure 1.

reflects the original structure of the program. Here
are some pro and cons on this question:

We examined the generated code of C# and the
Visual Basic compilers and the results confirmed that
the reconstructed flow graphs are very close to the
ideal results. The essential nodes and edges of the
graph were accurately rebuilt: there were no
distortions on predicate nodes, control flow, data
nodes and data accesses. We experienced slight
differences in the number of simple instructions; in
general this does not affect the final results radically.

Our goal is to have a measure tool that works with
any (future) programming language, but there is no
guarantee to have the above precise results.
Obviously, it is possible to create a compiler that
outputs such IL code that prevents us to extract the
original flow information. In this case the compiler
probably does not use exhaustively the IL features,
generates inefficient or confused code. (Note that
functional language compilers might generate code
that is far from the source, but we do not consider
them.)

For different programming languages the generated
IL codes are sometimes not exactly the same, even if
the language semantics are the same. For example,
determining the length of an array is slightly different
in the following two IL code compiled from C# and
Visual Basic:

From C#:
ldlen

From Visual Basic:
callvirt instance int32 [mscorlib]
 System.Array::get_Length()

Code coming from Visual Basic has outside
references to int32, mscorlib, System.Array,
get_Length. This problem can be resolved by
recognizing this special case and making them have
the same weight.

Visual Basic generates special code for run time type
checking, that may also distort the results: we will see
an example on this in the next section.

Compiler optimizations could also cause slight
differences in the measuring results. Microsoft has
stated that they are not optimizing the generated IL
code; their compilers only do dead code elimination
and jump optimization. This helps us to create more
precise flow graphs since optimizations are not
simplifying the code. (However, small distortions
may occur that encumber the process: for example, in
the non optimized code there are superfluous
instructions such as jump to the next instruction.)

Object oriented metrics
These metrics are precisely computable from the IL
code, but we need some additional data extraction,
namely the class hierarchy and the ability to
distinguish between internal and external references
relative to a class.

To compute the Weighted Methods per Class (WMC)
we have to summarize the structural complexity of
methods. The class hierarchy is fully extractable by
the .NET API, therefore Number of Classes (NOC)
and the Depth of Inheritance Tree (DIT) is given.

Internal and external variable and method references
are also encoded in method bodies; the IL
representation directly disambiguates them. Coupling
Between Object Classes (CBO), Response for Class
(RFC) and Lack of Cohesion in Methods (LCOM)
can be calculated straightforwardly.

5. EXAMPLES AND RESULTS
The presented example here contains two C# and one
Visual Basic class. Stack_CS and Stack_VB are two
stack implementations and IntStack_CS is the client
code.

Method #i MC HB AV

Stack_VB::Push 51 2 2 62

Stack_VB::Pop 40 3 4 63

Stack_VB::Peek 19 3 4 27

Stack_VB::Contains 40 8 30 143

Stack_VB::Clear 13 1 1 11

Stack_VB::get_Count 4 1 1 4

Stack_VB::main 1 1 1 2

Stack_CS::Push 50 2 2 60

Stack_CS::Pop 34 3 4 52

Stack_CS::Peek 18 3 4 26

Stack_CS::Contains 39 8 30 134

Stack_CS::Clear 13 1 1 11

Stack_CS::get_Count 4 1 1 4

Stack_CS::Main 1 1 1 2

IntStack_CS::Push 5 1 1 6

IntStack_CS::Peek 5 1 1 6

IntStack_CS::Pop 5 1 1 6

IntStack_CS::Contains 5 1 1 6

Table 1.

Stack_CS and Stack_VB classes have the same fields
and methods. IntStack_CS shows the collaboration

between classes implemented in two different
languages: IntStack_CS is a C# stack of integers
inherited from the Stack_VB class.

The quantities above are calculated on per-method
basis. (Legend: #i is the number of IL instructions,
MC is the McCabe cyclomatic complexity, HB is the
Howatt-Baker nested complexity and AV is the AV-
graph result.)

There is a significantly high correlation between the
Stack implementations. This proves that measuring
based on IL results consistent data: language
translation has no disturbing effect. The IntStack
numbers represent the fact that our measurement tool
is also able to work in multilingual environment:
where base class and derived class were implemented
in different languages.

Class LCOM FO #f #m MC HW AV

Stack_VB 21 5 2 7 19 43 312

Stack_CS 21 4 2 7 19 43 289

IntStack 6 1 0 4 4 4 24

Table 2.

Object-oriented metrics effected similar result. In the
columns we can see the results of the Lack of
Cohesion in Methods (LCOM), the Fan Out value
(FO), the number of fields (#f) and methods (#m), the
summarized McCabe, Howatt and finally the AV-
graph results.

Let us notice the difference between the faFOn-out
values: as we have seen in our previous example the
Visual Basic compiler generates a
System.Array::get_Length() function call instead of
ldlen which is one more method reference outside the
stack class. (As we presented the fan out metric is the
number of references that are pointing out from the
class.) The AV-graph complexity also reflected this
difference.

6. CONCLUSION AND FUTURE
WORK
The Microsoft .NET environment is one of the
leading development platforms. Implementing a
reliable software measurement tool for .NET can be
an important step for designers and developers. As
the .NET platform is a multilingual environment by
its nature, such tool must measure software written in
different languages and handle inter-language
connections too.

One way to implement such tool is to target the IL
code as the measurement input. This enables to avoid
the excessive work dealing with different languages
and in the same time it increases consistency between
the measurements. Handling inter-language
connections are also possible.

In this article we presented a way to implement such
tool by evaluating the relationship between the IL
encoded information and the required information to
calculate some popular metrics. We also
demonstrated that these metrics produce reliable
results, independently from the source languages.

In the future we continue the empirical evaluation of
our .NET metrics tool. We plan to examine the
forthcoming C# generics and its relation to IL. It is
also promising to develop special metrics for generics
and aspects.

7. REFERENCES
[CE00] Czarnecki K., Eisenecker U.W.: Generative
Programming Addison-Wesley, (2000).
[Chi94] Chidamber S.R., Kemerer, C.F.: A metrics
suite for object oriented design. IEEE Trans.
Software Engineering, vol.20. pp.476-498, (1994).
[Cop98] Coplien J.O.: Multi-Paradigm Design for
C++ Addison-Wesley, (1998).
[DotNet] Microsoft .NET platform:
http://www.microsoft.com/net
[Ecl] Eclipse Metrics Plugin:
http://www.teaminabox.co.uk/downloads/metrics
[FNP99] Fóthi, Á., Nyéky-Gaizler, J., Porkoláb, Z.:
On the Complexity of Class Proc. of the FUSST'99,
Tallin, Estonia, pp.221-231 (1999).
[FenNeil] Fenton, N.E., Neil, M. Software Metrics:
Roadmap, The Future of Software Engineering. ACM
Press, New York, (2000).
[HB89] Howatt,J.W. and Baker,A.L.: Rigorous
Definition and Analysis of Program Complexity
Measures: An Example Using Nesting The Journal of
Systems and Sofware 10, pp.139-150 (1989).
[HK81] Henry S., Kafura D.: Software Sructure
Metrics Based of Information Flow IEEE Trans.
Software Engineering, vol.7, pp.510-518 (1981).
[HM81] Harrison,W.A. and Magel,K.I.: A
Complexity Measure Based on Nesting Level ACM
Sigplan Notices,16(3), pp.63-74 (1981).
 [Hen96] Henderson-Sellers, B.: Object-oriented
metrics: measures of complexity, Prentice-Hall,
pp.142-147, (1996).
[McC76] McCabe, T.J.: A Complexity Measure
IEEE Trans. Software Engineering, SE-2(4), pp.308-
320 (1976).
[Mul] Multiparadigm Programming Home Page:
http://www.multiparadigm.org
[PZ1] Fóthi Á., Nyéky-Gaizler J., Porkoláb Z.: The
Structured Complexity of Object-Oriented Programs
Mathematical and Computer Modelling 38, pp.815-
827 (2003).[Piw82] Piwowarski,P.: A Nesting Level
Complexity Measure ACM Sigplan Notices, 17(9),
pp.44-50 (1982).

