
Empirical Validation of Object-Oriented Metrics
on Open Source Software for Fault Prediction

Tibor Gyimóthy, Rudolf Ferenc, and István Siket

Abstract—Open source software systems are becoming increasingly important these days. Many companies are investing in open

source projects and lots of them are also using such software in their own work. But, because open source software is often developed

with a different management style than the industrial ones, the quality and reliability of the code needs to be studied. Hence, the

characteristics of the source code of these projects need to be measured to obtain more information about it. This paper describes how

we calculated the object-oriented metrics given by Chidamber and Kemerer to illustrate how fault-proneness detection of the source

code of the open source Web and e-mail suite called Mozilla can be carried out. We checked the values obtained against the number of

bugs found in its bug database—called Bugzilla—using regression and machine learning methods to validate the usefulness of these

metrics for fault-proneness prediction. We also compared the metrics of several versions of Mozilla to see how the predicted fault-

proneness of the software system changed during its development cycle.

Index Terms—Fact extraction, metrics validation, reverse engineering, open source software, fault-proneness detection, Mozilla,

Bugzilla, C++, compiler wrapping, Columbus.

�

1 INTRODUCTION

OPEN source software systems are becoming evermore

important these days. Many large companies are
investing in open source projects and many of them are

also using this kind of software in their own work. As a

consequence, many of these projects are being developed

rapidly and are quickly becoming very large. But, because

open source software is usually developed outside compa-

nies—mostly by volunteers—and the development metho-

dology employed is quite different from the usual methods

applied in commercial software development, the quality
and reliability of the code needs to be investigated. Various

kinds of code measurements can be quite helpful in

obtaining information about the quality and fault-proneness

of the code.
In this paper, we describe how we calculated and

validated the object-oriented metrics suite given by Chi-

damber and Kemerer [8] for fault-proneness detection from

the source code of the well-known open source Web and

e-mail suite called Mozilla [17], [20]. This metrics suite has

already been validated by Basili et al. [1] and Briand et al.

[3] [4], [5] for this purpose and similar results were also

presented by Fioravanti and Nesi [13] and Yu et al. [22], but

our aim was to supplement their work with measurements

obtained from a real-size open source software system (one

with over a million lines of code). Besides using well-known

statistical methods for analysis (logistic and linear regres-

sion), we also employed machine learning techniques

(decision trees and neural networks) to predict the fault-
proneness of the code.

In order to perform our analyses we collected the
number of bugs found and corrected in each class of the
system from the Bugzilla [6] database, which contains all the
bugs that arose during the development of Mozilla.

We analyzed the source code of Mozilla with the help of
our reverse engineering framework called Columbus [9],
[10], which we also used to calculate the required metrics.
The Columbus framework has been further improved
recently with a so-called compiler wrapping method [11]
which allows us to automatically analyze and extract
information from practically any software system that
compiles with GCC on the GNU/Linux platform (the idea
is also applicable to other compilers and operating systems).
Moreover, we can do this without modifying any of the
source code or makefiles. The details of this method will be
given later on. It should be mentioned here that we
performed a full analysis of the source code of Mozilla
and the results obtained can be used for any re and reverse
engineering task like architecture recovery and visualiza-
tion. Here, we used them only for calculating metrics, but
their use is by no means limited to this task.

The main contributions of this paper are summarized in
the following: First, we performed the analysis of, and
calculated metrics from, an open source real-word software
system. Previous studies mostly analyzed smaller software
packages and, when the size was similar, it was proprietary
software and no details were published. Analyzing open
source software is interesting because it is not being
developed with the usual standard methodologies. Second,
besides the common statistical methods, we applied
machine learning techniques to predict the fault-proneness
of the code. Third, we analyzed the changes in the fault-
proneness of Mozilla through seven versions using our
results.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005 897

. The authors are with the Department of Software Engineering at the
University of Szeged, H-6720 Szeged, �AArpád tér 2, Hungary.
E-mail: {gyimi, ferenc, siket}@inf.u-szeged.hu.

Manuscript received 25 Mar. 2005; revised 9 Sept. 2005; accepted 13 Sept.
2005; published online 3 Nov. 2005.
Recommended for acceptance by Harman, Korel, and Linos.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0080-0305.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

We will proceed as follows: In the next section, we will
describe the metrics suite presented by Chidamber and
Kemerer [8] and validated by Basili et al. [1], and also state
our hypotheses about their expected connection with fault-
proneness. In Section 3, we will present our methods of fact
extraction from the C++ source code of Mozilla and its bug
database called Bugzilla. Next, in Section 4, we will
compare the results of some basic statistical calculations
with those published by Basili et al. [1]. Then, in Section 5,
we will present the results of further statistical analyses and
compare them with those found in other articles. We will
also describe the results of our experiments in applying
machine learning methods to fault-proneness prediction. In
Section 6, we will study the changes of the metrics over
different releases of the Mozilla internet suite. Afterward, in
Section 7, we will discuss some works similar to ours.
Finally, in Section 8, we will present some conclusions and
then outline directions for future work.

2 STUDIED METRICS

In this section, we define the eight metrics that we
investigated.1 Six of these metrics were first presented by
Chidamber and Kemerer [8], but they were modified
slightly by Basili et al. [1] to reflect the special features of
the C++ language. We also used these modified metrics and
added one more object-oriented metric (LCOMN) and the
well-known lines of code metric (LOC) because we were
also interested in comparing object-oriented metrics with
the traditional code-size metric. The metrics we investigated
were the following:

. WMC (Weighted Methods per Class). The WMC is
the number of methods defined in each class. More
precisely, WMC is defined as being the number of all
member functions and operators defined in each
class. However, “friend” operators (C++ specific
constructs) are not counted. Member functions and
operators inherited from the ancestors of a class are
also not counted.

. DIT (Depth of Inheritance Tree). The DIT measures
the number of ancestors of a class.

. RFC (Response For a Class). This is the number of
methods that can potentially be executed in re-
sponse to a message being received by an object of
that class. The RFC is the number of C++ functions
directly invoked by member functions or operators
of a C++ class.

. NOC (Number Of Children). The NOC is the
number of direct descendants for each class.

. CBO (Coupling Between Object classes). A class is
coupled to another one if it uses its member
functions and/or instance variables. The CBO gives
the number of classes to which a given class is
coupled.

. LCOM (Lack of Cohesion on Methods). The
number of pairs of member functions without
shared instance variables, minus the number of

pairs of member functions with shared instance
variables. However, the metric is set to zero
whenever this subtraction is negative.

. LCOMN (Lack of Cohesion on Methods allowing
Negative value). The LCOMN is calculated in the
same way as LCOM except that its value is not set to
zero when the subtraction is negative.

. LOC (Lines Of Code). The LOC of a class is the
number of all nonempty, noncomment lines of the
body of the class and all of its methods.

Basili et al. [1] drew up six hypotheses (one for each
metric) that represented the expected connection between
the metrics and the fault-proneness of the code. They
tested these hypotheses and found that some of the
metrics were very good predictors, while others were not.
We adopted five of their six hypotheses but we modified
their NOC hypothesis because, in the case of NOC, their
observed trend was contrary to that stated by their NOC
hypothesis. We set up our own hypotheses for the two
additional metrics (LCOMN and LOC). Our hypotheses2

were the following (the corresponding null hypotheses
are given in parentheses):

. WMC hypothesis. A class with more member
functions than its peers is more fault-prone than
they are. (Null hypothesis: A class with more
member functions than its peers is no more fault-
prone than they are.)

. DIT hypothesis. A class located lower in a class
inheritance lattice than its peers is more fault-prone
than they are. (Null hypothesis: A class located
lower in a class inheritance lattice than its peers is no
more fault-prone than they are.)

. RFC hypothesis. A class with larger response sets
than its peers is more fault-prone than they are.
(Null hypothesis: A class with larger response sets
than its peers is no more fault-prone than they are.)

. NOC hypothesis. A class with a larger number of
children than its peers is less fault-prone than they
are. (Null hypothesis: A class with a larger number
of children than its peers is no less fault-prone than
they are.)

. CBO hypothesis. A class which is more coupled
than its peers is more fault-prone than they are.
(Null hypothesis: A class which is more coupled
than its peers is no more fault-prone than they are.)

. LCOM and LCOMN hypotheses. A class with
lower cohesion than its peers is more fault-prone
than they are. (Null hypothesis: A class with lower
cohesion than its peers is no more fault-prone than
they are.)

. LOC hypothesis. A class with a larger number of
code lines than its peers is more fault-prone than
they are. (Null hypothesis: A class with a larger
number of code lines than its peers is no more fault-
prone than they are.)

In the following, we will test the null hypotheses on
Mozilla and either accept the null hypotheses or reject them

898 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

1. We should mention here that our Columbus reverse engineering
framework is able to compute over 80 additional metrics.

2. These are considered as the alternative hypotheses of the null
hypotheses.

(in this case, we will accept the corresponding alternative
hypotheses), but first we will describe how we calculated
the metrics from the source code of Mozilla and how we
extracted the bugs that arose during its development from
its bug database Bugzilla.

3 FACT EXTRACTION FROM MOZILLA AND

BUGZILLA

Fact extraction from a real-world system’s source code is a
very difficult task. Such software products usually contain
several configurations to be able to compile themselves on
different platforms (hardware and/or operating systems).
Moreover, properly analyzing the source code written in
such a complex programming language as C++ introduces
additional difficulties.

In previous work [11], we showed that there are several
important steps that have to be performed to obtain the
information needed about the source code. These steps
include the acquisition of configuration information, the
analysis of the source files with analyzer tools, the creation
of some kind of representation for the extracted informa-
tion, the merging of these representations, and various
further calculations performed on this merged representa-
tion to put the collected data into a useable form. In our
case, this last step means the calculation of the necessary
metrics for each class in the software system being
analyzed. In this section, we will briefly describe how we
managed to perform these tasks.

Bugzilla stores the bugs in an SQL database, so extracting
the bugs from it was a straightforward task. The real
challenge, however, was to associate these bugs with the
classes found in the source code. We will describe how we
achieved this later in this section. But first, we will briefly
describe the toolset we developed to support the fact
extraction process.

3.1 The Columbus Framework

Columbus [9], [10] is a reverse engineering framework that
has been developed in cooperation between the University
of Szeged, the Nokia Research Center, and FrontEndART
[14]. The main motivation behind developing the Columbus
framework was to create a toolset which supports fact
extraction in general and provides a common interface for
other reverse engineering tasks as well.

The framework contains all the necessary components to
be able to perform the analysis of arbitrary C/C++ source
code and to present the extracted information in any
desired form. In this study, we used the compiler wrapper
module of Columbus to perform the extraction of facts from
Mozilla’s source code. This will be described in the
following.

3.2 Compiler Wrapping

The source code of a software system is usually divided into
several files and these files are arranged into folders and
subfolders. Furthermore, different preprocessing configura-
tions may apply to them. In the case of Mozilla, the
information on how these files are related to each other and
what settings apply to them are stored in makefiles (used by
the make tool). An important issue that we addressed was to

not change anything in the subject system (not even the
makefiles). The technique described below successfully
deals with this issue. It was tested with the GCC compiler
in the GNU/Linux environment, but the idea is applicable
as well to other compilers and operating systems.

The make tool and the makefiles represent a powerful
pair for configuring and building software systems.
Makefiles may contain not just the references to files to
be compiled and their settings, but also various commands
like those invoking external tools. A typical example is
when the source file to be compiled is generated on-the-fly
from IDL descriptions by another tool. These powerful
possibilities are problematic for reverse engineers because
every action in the makefile must somehow be simulated in
the reverse engineering tool. This may be extremely hard
or even impossible to do in some cases.

We solved this problem by wrapping the compiler. This
means that we temporarily hide the original compiler by a
wrapper toolset. This toolset consists basically of several
scripts. Among the scripts, there is a key one that is
responsible for hiding the original compiler by changing
the PATH environment variable. Actually, all the user has
to do is to run this script. The script inserts the path of the
folder in which the other scripts can be found at the
beginning of the PATH environment variable. The names
of the other scripts correspond to the executable files of
the compiler (for instance g++, gcc, ar, and ld). Afterwards,
if the original compiler is invoked, one of our wrapper
scripts will start instead.

The scripts first execute the original compiler tool (e.g.,
g++) with the same parameters and in the same environ-
ment so the output remains the same; hence, the user will
not notice any difference. After calling the original
compiler, the scripts also call our corresponding analyzer
tool which creates a file containing the extracted informa-
tion. These files are merged together by our linker tool
invoked by the linker wrapper script in parallel with the
original linker program. At the end of the analysis, the
results consist of several linked files which contain the
extracted information for each component/subsystem (e.g.,
shared libraries and executables) of the analyzed system.

As a last step, these linked files are merged together by
executing only one script to produce the full representation
of the system. This so-called superlinked file was used to
calculate the needed metrics. The result of this calculation is
a table containing the classes found in the source code along
with their position/interval in the code (path and line
information) and the eight calculated metrics. We repeated
this whole process for all the seven examined Mozilla
versions (1.0-1.6) and created a table for each version.

In the following, we will describe how we extended
these tables by associating the bugs extracted from the
Bugzilla database with the classes found in the source code.

3.3 Mining Bugs from Bugzilla

To be able to perform our analyses, we also needed to
collect the number of bugs found and corrected in each class
of the system in all of the analyzed versions. At the time of
writing, the actual version of Mozilla was 1.7 and we
collected all the bugs beginning from version 1.0 (released
in June, 2002). We gathered the bugs in the following way.

GYIM�OOTHY ET AL.: EMPIRICAL VALIDATION OF OBJECT-ORIENTED METRICS ON OPEN SOURCE SOFTWARE FOR FAULT PREDICTION 899

The developer community of Mozilla kindly provided us
with the full Bugzilla [6] database, which contained all the
bugs reported since the beginning of the development of the
software.

The Bugzilla database contained 256,613 different bug
entries, but not all of these were of interest to us (see
Table 1). First, we removed the bugs reported for
accessory software like Bonsai and Tinderbox. After this
step, 231,021 bugs remained. Next, we considered only
those bugs that were fixed (57,151 remained) and the fix
of the bug contained a patch file that corrected the bug
(22,553 remained). Version 1.0 of Mozilla was released in
June 2002, so we filtered out those bugs which were fixed
before this date (9,539 remained). Similarly, we filtered
out those bugs which were reported after Mozilla 1.7 was
released in June 2004. We found 8,936 different bug
entries which fulfilled all these requirements.

By analyzing the patch files, we assigned the bugs to an
interval in the code. A patch file contained the name of the
changed file and it described how many lines were deleted
starting from a given line number and how many lines were
inserted at a given line number. From these four numbers,
we determined an interval of changes in the file for
localizing the bug.

We wanted to associate the bugs to classes in concrete
release versions, but the database did not explicitly state
which version the patch file was applied to. Fortunately, it
contained the date when the bug was reported and also the
date when it was fixed. So, we considered a bug to be
present in the actual release at the time when it was
reported and in all subsequent releases up to the date of the
fix (see Fig. 1). Regarding the bugs reported before version
1.0, we took into account only those which were fixed after
version 1.0.

Next, we had to associate the bugs to the classes found
in the source code (see Section 3.2). We did this one at a
time for each bug in each affected version. Concretely, we
examined the bugs one by one and, in each version
concerned, we searched for a class whose interval in the
source code overlapped the interval of the bug. If we
found such a class, then we increased the number of bugs

in that class. If the bugfix changed more than one class,
then the bug was associated with all these classes. With
this method, we extended the tables obtained in the
previous section with a new column containing the
number of bugs for each class.

This way, we could associate 4,429 different bugs to
classes, which is about half of the number of bugs extracted
from Bugzilla (8,936—see Table 1). If we take into account
that we associated bugs only with classes (which are object-
oriented constructs, written in C++) and that, in Mozilla,
there are many C source files as well (more than 1,500), then
this result is acceptable.

As a last step, we filtered out those classes which were

generated on-the-fly during compilation because there could

be no bugs associated with them. We also filtered out all

bug-free classes which existed in all seven analyzed versions

ofMozilla andwhere none of the metrics changed. This way,

we arrived at 3,192 remaining classes (out of 3,677 extracted

classes) for Mozilla version 1.6. We used these classes in our

further analyses described in the next sections. We summar-

ized our findings in Table 2. More than half of the classes

(1,850 of them) contained no bugs, and about one fifth (666 of

them) contained only one bug.
Table 3 shows the Pearson’s linear correlations (R2:

Coefficient of determination) between the numbers of

900 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

TABLE 1
Filtering Steps of the Bug Reports

Fig. 1. Mozilla versions where a bug is associated with a class.

TABLE 2
Distribution of the Bugs in Version 1.6

TABLE 3
Correlations between the Number of Bugs Associated

to the Different Analyzed Versions

bugs associated with the classes in the versions we
analyzed. (For calculating correlation between two ver-
sions, we took into account classes which exist in both
versions and calculated the correlation between the
numbers of bugs associated with these classes.) All
correlations are significant (p-value < 0.001) and they are
high, which means there is strong linear association
between the bugs in the different versions. This is why
we chose to use only the results for version 1.6 in our
further analyses. (We should mention here that, at the end
of our analyses, we tested these results on version 1.0 as
well. See Section 5 for details.)

Versions In the following section, we will compare some
basic statistical data and the distribution of the metrics
collected from Mozilla 1.6 with the results published by
Basili et al. [1].

4 COMPARISON OF THE METRICS

Basili et al. [1] studied object-oriented systems written by
students in C/C++. They carried out an experiment in
which they set up eight project groups each consisting of
three students. Each group had the same task—to develop a
small/medium-sized software system. Since all the neces-
sary documentation (for instance, reports about faults and
their fixes) was available, they could search for relation-
ships between the fault density and metrics. They used the
same Chidamber and Kemerer metrics suite [8] as we did
and analyzed the distribution of the metrics and also the
correlations between them. Afterwards, they employed
logistic regression—a standard technique based on max-
imum likelihood estimation—to analyze the relationship
between metrics and the fault-proneness of classes.

Now, we will compare the metrics obtained from
Mozilla 1.6 with those presented by Basili et al. [1]. Fig. 2
shows a comparison of the histograms of the metrics. As the
reader will notice, the distributions of WMC, NOC, and
LCOM are fairly similar in both cases. On the other hand,
the distributions of DIT, RFC, and CBO are quite different.
The only difference between LCOM and LCOMN is that
more than 10 percent of the classes have negative LCOMN
values, while the LCOM values of these classes are 0. In the

rest of the cases—when LCOM is positive—the two metrics
are the same. The distribution of LOC shows that there are
many small classes (about two third of all classes are shorter
than 100 lines of code).

Table 4 shows the basic statistical information about the
two systems.3 The Minimum values are almost the same but
the Maximum values increased dramatically. This is not
surprising because, in Mozilla, we analyzed about 18 times
more classes than Basili et al. [1] did (they examined
180 classes, while, in Mozilla 1.6, there were 3,192 of them).
Since LCOM and LCOMN are proportional to the square of
the size (number of methods) of a class, their very large
values are to be expected. (This is also the reason for the very
low Min. value of LCOMN.) In Mozilla, we examined about
three thousand classes, so the extremely high Max. value of
NOC may seem surprising at first. But, the second biggest
value of NOC is just 115 and the next is only 37; hence, we
deduced that the class with the largest value is probably a
common base class from which almost all other classes are
inherited. (The source code was checked afterwards, which
confirmed this assumption.) Median and Mean are more or
less similar to the values of Basili et al. [1], except for the
LCOM value (whose case is similar to the Max. value case).
Since, in Mozilla, there are many more classes and these are
more variegated, the metrics change over a wider range. The
Standard Deviation values support this view.

The reader may notice that the Max. LOC value is 9,371
—which is quite high—and that the average class size is
only 183.27. Unfortunately, Basili et al. [1] did not study this
metric so we could not compare our results with theirs.

Basili et al. [1] also calculated the correlations of the
metrics (see Table 5), which is also an important statistical
quantity. They found that Pearson’s linear correlations (R2:
Coefficient of determination) between the object-oriented
metrics studied were, in general, very weak. Three coeffi-
cients of determination appeared somewhat larger than the
others. But, they concluded that these metrics are mostly
statistically independent. We also calculated the same
correlations for Mozilla 1.6 and found that all correlations

GYIM�OOTHY ET AL.: EMPIRICAL VALIDATION OF OBJECT-ORIENTED METRICS ON OPEN SOURCE SOFTWARE FOR FAULT PREDICTION 901

Fig. 2. Distribution of the metrics. The X axes represent the values of the metrics. The Y axes represent the percentage of the number of classes

having the corresponding metric value. The darker columns (and dashed lines) represent the original values of Basili et al. [1], while the brighter ones

(and solid lines) represent the values calculated form Mozilla 1.6.

3. The values were different from our previous work [11] because, here,
we filtered out some classes (see the previous section).

were significant (p-value < 0.001) except for the correlations

of NOC which were not significant. This means that there is

no linear association between NOC and the other metrics.

DIT correlates only with RFC (its other correlation values

are very small). The correlation between LCOM and

LCOMN is high—as was expected—but the LCOM correla-

tion values compared with the other metrics are much

larger than the LCOMN ones. The other four metrics

(WMC, RFC, CBO, and LOC) have more or less notable

correlations with each other and with LCOM. What is more,

there are some large values (for instance, between WMC

and LCOM and between WMC and LOC), so it follows that

these metrics are not totally independent and represent

redundant information.

5 ANALYSES

In this section, we will describe the analyses we performed

to discover the relationships between the values of the

metrics and the numbers of bugs found in the classes. We

first employed regression analysismethods, which are widely

used to predict an unknown variable based on one or more

known variables. We chose logistic regression [16] to study

the relationships between the metrics and fault-proneness

of classes. Basili et al. [1] performed the same analyses, so

we could compare our results with their conclusions and

examine whether their results are generally valid for large

open source software.

The logistic regression method only predicts if a class is
faulty or not, but does not say anything about the possible
number of faults in that class. In the case of Mozilla, there
are several classes which contain a lot of bugs, thus we
applied linear regression [18] as well where the number of
bugs could also be predicted. Linear analysis was applied
by Yu et al. [22] too, but, since we calculated only four of the
eight metrics in the same way as they did, we could
compare only these.

Naturally, other statistical methods can be applied as
well. For instance, Subramanyan and Krishnan [21] vali-
dated four of the eight metrics we analyzed (WMC, DIT,
CBO, and LOC4) with a slightly modified linear regression
analysis where the reciprocal of the number of the bugs is
estimated. Hence, we will compare only their conclusions
with ours.

In logistic and linear analyses, we applied both univariate
and multivariate regressions. Univariate regression analysis
is used to examine the effect of each metric separately,
while multivariate regression analysis examines the com-
mon effectiveness of the metrics.

Besides the two statistical approaches, we also employed
two machine learning methods to predict the fault-proneness
of the classes. These methods are rarely applied in this area.
We chose the decision tree method [19], which is more or less
based on statistics, and the neural networks method [2]. Both
methods are able to predict the faults using just one

902 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

TABLE 4
Descriptive Statistics of the Classes

TABLE 5
Correlations between the Metrics

The bold numbers denote large correlations.

4. In their study, the LOC metric is called SIZE.

metric—which is just like univariate regression—and it is
also possible to consider several metrics together for
prediction—which is similar to multivariate regression.

We compared the results of the four methods and
obtained very similar results in all cases. We also compared
our observations with those presented by Basili et al. [1],
Yu et al. [22], and Subramanyan and Krishnan [21]. But first,
we will present the results of the methods one at a time.

5.1 Logistic Regression Analyses

In logistic regression, the unknown variable, called the
dependent variable, can take only two different values.
Therefore, we divided the classes into two groups according
to whether a class contained at least one bug or not. The
known variables, called explanatory variables, are the metrics.
Since these metrics change over different ranges, they were
standardized, which means that each metric has zero mean
and unit variance.

The multivariate logistic regression model is based on the

�ðX1; X2; . . . ; XnÞ ¼
eC0þC1�Xi1

þ...þCn�Xin

1þ eC0þC1�Xi1
þ...þCn�Xin

relationship equation where the Xis are the explanatory
variables and � is the probability that a fault was found in a
class during validation. Logistic regression is a widely used
statistical method so we will not describe it here in detail (a
detailed description is given by Basili et al. [1] and Hosmer
and Lemeshow [16]). Univariate logistic regression is a
special case of multivariate regression in the case when
there is only one explanatory variable in the model.

First, we performed univariate logistic regression (see
Table 6). The Coefficient is the estimated regression coeffi-
cient. The larger the absolute value of the coefficient, the
stronger the impact (positive or negative, according to the
sign of the coefficient) of the explanatory variable on the
probability of a fault being detected in a class. The p-value is
related to the statistical hypothesis and tells us whether the
corresponding coefficient is significant or not. We used the
� ¼ 0:05 significance level to assess the p-values we
obtained. The R2 coefficient is defined as the proportion
of the total variation in the dependent variable y that is
explained by the regression model. The bigger the value of
R2, the larger the portion of the total variance in y that is
explained by the regression model and the better the
dependent variable y is explained by the explanatory
variables.

We can see that seven of the eight metrics are very
significant (p-value < 0.001) and NOC is the only metric
which is not significant (p-value = 0.551). CBO has the
largest R2 value—larger than the value of LOC—which
suggests that CBO is the best predictor. The R2 values of

DIT, LCOM, and LCOMN are significantly smaller than the
others, hence, they seem less useful. We should mention
here that, in logistic regression, high R2 values are rare
opposed to the R2 values of least-square regression because
they are built on very different formulae. For this reason,
these values should not be compared with the R2 values of
other regression analyses like the R2 values of our linear
regression.

We know that the examined metrics are not totally
independent (see Table 5) and, hence, must capture
redundant information. Thus, not all of them are required
in multivariate analyses. A standard procedure called
stepwise selection was used to select the necessary variables
for multivariate analysis (see Table 7). The metrics were
selected in the CBO, DIT, WMC, LOC order. As can be seen,
all four metrics are significant at � ¼ 0:05. The R2 value of
the multivariate logistic regression is 0.175, which is only
slightly better than the R2 value of CBO in univariate
analysis.

Logistic regression provides models for classifications;
one for each metric in univariate logistic regression and
one for the multivariate logistic regression. These models
were applied with a threshold value of 0.5, which means
that, if 0:5 < �, the class is classified as faulty, otherwise,
as not faulty. Table 8 shows the results of the multivariate
logistic regression model, where the numbers in parenth-
eses are the sum of faults that were found in that group
of classes. As can be seen, the model classified 2,222
(1,624 + 598) of the 3,192 classes correctly, that is, with a
precision of 69.61 percent.

From a testing point of view, there are two more
important quantities which say more about the quality of
the model. The first one is the correctness [3] value, which
describes what percentage of the faulty predicted classes is
really faulty—more precisely, it is the number of classes
observed and predicted faulty divided by the number of all

GYIM�OOTHY ET AL.: EMPIRICAL VALIDATION OF OBJECT-ORIENTED METRICS ON OPEN SOURCE SOFTWARE FOR FAULT PREDICTION 903

TABLE 6
Result of Univariate Logistic Regression

TABLE 7
Result of Multivariate Logistic Regression

TABLE 8
Classification Result

faulty predicted classes. The larger the correctness, the fewer
faultless classes have to be tested, which, in turn, improves
the efficiency of the testing. In this case, 824 (226 + 598)
classes were predicted as faulty and 598 of them were really
faulty, meaning that the correctness was 72.57 percent.

The other important question is what percentage of the
total number of faults can be captured in this way. This is
expressed by the completeness [3] value, which is defined as
the number of faults in faulty predicted classes divided by
the number of faults in all classes. The larger the
completeness values, the bigger the rate of the faults that
are predicted. Although the multivariate model identified
less than half of the faulty classes correctly—598 out of 1,342
(744 + 598)—this smaller group contains many more
faults—2,584 out of 3,961 (1,377 + 2,584)—so the complete-
ness is 65.24 percent.

Table 9 shows the values for the precision, correctness,
and completeness of the univariate models and the multi-
variate logistic regression model in the last row as well.
Since, in the case of NOC, the model classified all classes as
faultless, there is no point in calculating the correctness and
the completeness for NOC. LCOM and LCOMN have very
high correctness values (81.34 percent and 85.02 percent),
meaning that only a small percentage (18.66 percent and
14.98 percent) of the faultless classes were predicted as
faulty. This is very good, but the low completeness values
(43.68 percent and 39.01 percent) mean that only a small
fraction of the faults could be discovered by these metrics.
DIT’s completeness value was also low (45.17 percent) and
its precision and correctness value were also poorer. These
values correspond the low R2 values of LCOM, LCOMN,
and DIT. On the other hand, the values of LOC, WMC, and
RFC are more or less equal and these values are acceptable.
The precision and completeness values of CBO are the
largest—larger than the values of the multivariate model
—and its correctness value is also good, once again
confirming that CBO is the best predictor.

Out of interest, we decided to test the model built on
Mozilla 1.6 on version 1.0. The result of the precision,
correctness, and completeness can be seen in Table 10. We
chose version 1.0 because it is the most distant analyzed
version in time. We can say that, even though the precision
and completeness values worsened, the model is still useful
for predicting the fault-proneness of classes.

5.2 Linear Regression Analyses

In Mozilla, there are many classes which contain a lot of
bugs and the number of bugs varies over a wide range (see
Table 2). This situation cannot be modelled by logistic
regression, so we also performed linear regression analyses.
In linear regression, the explanatory variables are the
standardized metrics as well, but the dependent variable
is the number of bugs in a class.

First, we applied the univariate linear regression analysis
(see Table 11). Similar to the results of the logistic
regression, seven of the eight metrics are very significant
and only NOC is not significant as before. CBO has the
largest R2 value, but it is only slightly better than the value
of LOC. On the other hand, the value of DIT has the
smallest one, which is also similar to the results of the
univariate logistic regression analysis.

We also performed a multivariate linear regression
analysis (see Table 12). Four of the five selected metrics
are the same as in the case of the logistic regression and
CBO was selected first as well but the selection order of the
other metrics changed.

The R2 value is 0.43, which means that 57 percent of the
total variation was not captured. There are several possible
reasons of this. One might be that we used heuristics to
assign classes to bugs and bugs to versions. Classes which
were faultless and did not change over the seven versions
were filtered out, but the remaining ones may not be
homogeneous. This means that the number of bugs in the
new classes was counted precisely, but, for classes which
existed before version 1.0, we only counted the bugs which
were corrected after version 1.0. Thus, the number of bugs
counted by us might depend on the class creation time.

5.3 Machine Learning Models

In this section, we will present our results of employing
machine learning tools (C4.5 [19] for building decision trees

904 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

TABLE 9
Precision, Correctness, and Completeness on Mozilla 1.6

TABLE 10
Precision, Correctness, and Completeness on Mozilla 1.0

TABLE 11
Result of Univariate Linear Regression

and a neural network system developed at our university)
to predict the probable number of bugs in a class with the
help of metrics as predictors. We trained the systems in two
different ways. First, we set up a training database in which
we treated a class as faulty if it contained at least one bug.
Second, we considered four levels of faultiness. This way,
we had two classifications. These were:

1. We considered only two categories: one category
which contained classes without bugs and the other
which contained classes with bugs (at least one). We
will use the < 0; 1-34 > notation for this case.

2. We considered four categories: one with classes
without bugs, another with only one bug, one which
contained 2 to 12 bugs, and a category with 13 or
more bugs. We will use the < 0; 1; 2-12; 13-34 >
notation for this case.

In our experiments, we employed the method of 10-fold
cross-validation for learning and testing. This means that
we divided the training data into 10 equal parts and then
performed the learning process ten times. Each time, we
chose another part for testing and used the remaining nine
parts for learning. After, we calculated the average values
and the deviation values from the ten different testing
results. We applied this procedure to both learning systems.

Table 13 shows the overall precision of the learning with
all metrics used as predictors (the numbers in parentheses
show the deviation). We analyzed the models and found
that the two learning approaches make mistakes mostly in
classifying classes where the number of bugs is one or two,
but are more reliable with those classes which are bug-free
or contain three or more bugs.

We also tested the efficiency of our learning approaches
using only one metric at a time to find out which metrics are
good predictors of fault-proneness. Table 14 gives the

results for the < 0; 1-34 > classification, while Table 15
provides the results for the < 0; 1; 2-12; 13-34 > case.

As can be seen, the most precise metric in both models
is CBO. Its average learning precision is 69.77 percent in
the first classification (< 0; 1-34 >) for the decision tree
model and 69.46 percent for the neural network, which
are both slightly better than the overall learning preci-
sions (69.58 percent for the decision tree and 68.77 percent
for the neural network).

We also calculated the same correctness and completeness
values as those described in Section 5.1 for our learning
results. These are presented in Table 16 (we calculated these
values only for the < 0; 1-34 > classification because the
definitions of correctness and completeness deal only with
this case). This table lists the average values and deviation
values for the correctness and completeness of the
10 different cases. It shows the same values for each metric
separately as well.

Upon analyzing Table 16,wenotice that CBO is once again
the best metric in our study. In the decision tree model, the
learning correctness value of CBO (69.13 percent) is surpris-
ingly larger than the overall correctness value (68.38 percent)
and its learning completeness value (67.02 percent) is very
close to the overall completeness value (67.84 percent). In the
neural networkmodel, the learning correctness value of CBO
is also the best and its completeness value is larger than the

GYIM�OOTHY ET AL.: EMPIRICAL VALIDATION OF OBJECT-ORIENTED METRICS ON OPEN SOURCE SOFTWARE FOR FAULT PREDICTION 905

TABLE 12
Result of Multivariate Linear Regression

TABLE 13
Overall Learning Precision

TABLE 14
Learning Precision for Individual Metrics (< 0; 1-34 >)

TABLE 15
Learning Precision for Individual Metrics (< 0; 1; 2-12; 13-34 >)

TABLE 16
Correctness and Completeness for Individual Metrics

(< 0; 1-34 >)

overall value, but LOC has the largest completeness value
here. The correctness and completeness of NOC cannot be
interpreted because, when using NOC for learning, both
models always predict that every class will be nonfaulty. The
correctness values of DIT (63.13 percent and 61.36 percent)
are only slightly worse than other correctness values, but its
completeness values are very low (41.09 percent and
40.52 percent). Overall, we may conclude that CBO is the
bestmetric here,NOC seems quite unimportant in predicting
the number of bugs in a class, and the usability of DIT is
somewhat limited.

Afterward, we performed the same interesting experi-
ment as in Section 5.1. That is, we tested the precision, the
correctness, and the completeness of the models trained on
version 1.6 on Mozilla 1.0. Tables 17 and 18 list the results.

Similar to our findings in Section 5.1, the values
worsened a little (except for the correctness value), but the
model is still useful for predicting the fault-proneness of
classes.

5.4 Discussion and the Validation of the
Hypotheses

In this section, we will exploit the results of the previous
three sections to validate our hypotheses stated in Section 2.
At the same time, we will also compare our conclusions
with those of Basili et al. [1], Yu et al. [22], and
Subramanyan and Krishnan [21] (see Table 19).

Apart from the results of the regression analyses, the
precision, correctness, and completeness values can also
help us in the validation process. These values were
calculated via the logistic regression, decision tree, and
neural network approaches (see Sections 5.1 and 5.3). We

summarized the descriptive values of these three models in
Table 20. (Note that the linear regression analyses did not
produce these values.)

. WMC hypothesis. WMC (Weighted Methods per
Class) was found to be very significant in our
regression analyses. On the other hand, Basili et al.
[1] found it less significant, but, for extensively
modified classes and for UI classes, it was more
significant. In the study by Yu et al. [22], WMC was
significant and it was found to be the best
predictor—which is similar to our linear regression
results where it is one of the best predictors.
Subramanyan and Krishnan [21] found WMC to be
significant for C++ (but not significant for Java).

The results of machine learning are also in line
with our statistical results where the precision
values—which are around 66 percent—are almost
the same as those in the statistical models. The
correctness and the completeness values changed
slightly in the three models but there is no extremely
high or low value (see Table 20).

All of our four analyses of WMC yielded the same
result; hence, we rejected the null hypothesis of
WMC and accepted the alternative hypothesis.

. DIT hypothesis. DIT (Depth of Inheritance Tree)
was found to be very significant in logistic regres-
sion. This finding is similar to those given by Basili
et al. [1]. Subramanyan and Krishnan [21] found
that DIT was significant as well but in an inverse
way, which contradicts our result. Furthermore, DIT
was significant in linear regression as well, contra-
dicting the result of Yu et al. [22], where DIT was

906 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

TABLE 17
Overall Learning Precision for Version 1.0

TABLE 18
Correctness and Completeness for Version 1.0 (< 0; 1-34 >)

TABLE 19
Results of the Different Validations

þ denotes that this metric is significant (þþ means that it is more
useful). � denotes that this metric is significant, but in an inverse way
(��means that it is more useful). 0 denotes that this metric is not
significant. A blank entry means that our hypothesis was not examined
or the metric was calculated in a different way.

TABLE 20
Summary of Precision, Correctness, and Completeness

found to be insignificant. In spite of the good
p-value, the R2 values were smaller than those of
the other metrics in the two regression analyses,
which follows the smaller precision value of
64 percent. The precision of the machine learning
models is around 63 percent, which is significantly
smaller than the others (except NOC). The correct-
ness values are more or less similar to the values of
the other metrics, but the completeness values are
worse in both the logistic regression and machine
learning models (see Table 20).

We can only say that we rejected the null

hypothesis of DIT and accepted the alternative

hypothesis, but DIT is not such a good predictor as

the others and further investigation is needed.
. RFC hypothesis. We found RFC (Response For a

Class) to be very significant—which is the same as
the result of Basili et al. [1]. Yu et al. [22] found RFC
to be significant as well but they calculated the RFC
in a different way.5 We examined the difference
between the two RFCs in the case of Mozilla and we
found a high (R2 ¼ 0:66) and significant (p-value <
0.001) correlation between them, so we decided to
ignore the differences between the two definitions of
RFC. The precision values of the machine learning
models—which are about 66 percent—are the same
as the precision value of logistic regression. The
completeness values of the three models are fairly
similar and the difference in the correctness values is
not too large (see Table 20).

Taking into account these results, we rejected the

null hypothesis of RFC and accepted the alternative

hypothesis.
. NOC hypothesis.6 We found that NOC (Number Of

Children) was not significant in the linear and
logistic regression analyses. The machine learning
models predicted that all classes would be faultless,
which agrees with the inference about the insignif-
icance of the statistical models. These extreme
classifications say that the precision is the same as
the percentage of faultless classes (see Table 2) and
that the correctness and completeness values mean
nothing. In accordance with our findings, we saw
that NOC could not be used for fault-proneness
prediction and we could not validate our NOC
hypothesis.

Basili et al. [1] found NOC to be very significant
and they noticed that, the larger the value of NOC,
the lower the probability of fault detection. Accord-
ing to Yu et al. [22], NOC was significant as well but
they found that, the more children a class has, the
more fault prone it is—which contradicts the result
of Basili et al. [1].

We accepted the null hypothesis of NOC and our

conclusion is that not only is NOC a bad predictor

for fault-proneness detection, but it is also unreliable

because the three different studies evaluated this
metric in three different ways.

. CBO hypothesis. CBO (Coupling Between Object
classes) was found to be very significant and it is the
best predictor in both linear and logistic regression
analyses. Just like WMC, this metric was found
significant in all three studies [1], [21], [22]7—which
also confirms that the CBO is the best among these
metrics.

The machine learning models confirmed the
findings of the regression analyses because the
precision, correctness, and completeness values of
CBO are the best among the metrics (except for
completeness in the case of the neural network
where LOC is slightly better—see Table 20). More-
over, the precision values of CBO on its own are
better than those of the multivariate models, and the
correctness and completeness values are also better
in some cases.

Thus, we can say that not only we did reject the

null hypothesis of CBO (and accepted the alternative
hypothesis), but that CBO is the best predictor out of

the eight metrics in every aspect.
. LCOM hypothesis. LCOM (Lack of Cohesion on

Methods) was found to be very significant during
the regression analyses, contradicting the result of
Basili et al. [1], where LCOM was shown to be
insignificant. Yu et al. [22] calculated LCOM in a
totally different way, hence, we could not compare
our results with theirs.

The precision values of our models are almost the

same, but the correctness value of the logistic
regression model is significantly larger than those

of the machine learning models, while the complete-

ness is much smaller (see Table 20). We do not know
the reason for these big differences, so it needs

further investigation.
Overall, though, we rejected the null hypothesis

of LCOM and accepted the alternative hypothesis.
. LCOMN hypothesis. LCOMN (Lack of Cohesion on

Methods allowing Negative value) was found to be
very significant (like LCOM) but, in both regression
analyses, its R2 coefficient values were worse than
LCOM’s values. The correctness of the regression
model was larger and the completeness was smaller
than those of LCOM. On the other hand, the values
from the machine learning models are the same in
almost every case. Our conclusion is that LCOM and
LCOMN are similar and we cannot say which one of
them is better.

Similar to LCOM, we rejected the null hypothesis

of LCOMN and accepted the alternative hypothesis.
. LOC hypothesis. LOC (Lines Of Code) was found to

be very significant in both regression analyses and
only CBO was better than LOC. Subramanyan and
Krishnan [21] also found that LOC was significant,
but neither Basili et al. [1] nor Yu et al. [22] examined
this metric.

GYIM�OOTHY ET AL.: EMPIRICAL VALIDATION OF OBJECT-ORIENTED METRICS ON OPEN SOURCE SOFTWARE FOR FAULT PREDICTION 907

5. The methods of the class in question were excluded from RFC by Yu
et al. [22].

6. In our NOC hypothesis, the relationship between the NOC
metric and the number of bugs was the inverse of that of Basili et al.
[1] and Yu et al. [22].

7. In the study of Yu et al. [22], CBOout represents the same metric as
CBO here.

The precision values of LOC were good and only

the values of CBO were better. The correctness and

completeness values indicate that LOC is one of the

best metrics for fault prediction.
All analyses yielded the same result, therefore, we

rejected the null hypothesis of LOC and accepted the

alternative hypothesis.

We used the results of the univariate models to validate

the hypotheses. Now, we will also compare the results of

the multivariate analyses to each other. The multivariate

logistic analysis chose four metrics (CBO, DIT, WMC, and

LOC) while the multivariate linear analysis chose five

metrics (CBO, WMC, LOC, DIT, and RFC). Although the

same four metrics were chosen, the order of the selection

was different.
The precision and correctness values of the logistic

regression model are slightly better than those obtained

from the machine learning models, but the completeness

value of the decision tree model is better than that from

logistic regression (see the last row in Table 20). The neural

network approach produced the weakest model, although

its correctness value was slightly better than that from the

decision tree model.

6 STUDYING MOZILLA’s EVOLUTION

In this section, we will analyze how Mozilla evolved from

version 1.0 released in June of 2002 to version 1.6 released in

January of 2004 using the results of our analyses discussed

in the previous section.

In Table 3, we listed the correlations between the
number of bugs associated with the classes in the different
versions. The table shows that the correlations are very
large even in the case of the most distant versions in time
(1.0-1.6). We also tested the effectiveness of our models
(built on version 1.6) on version 1.0 (see Sections 5.1 and
5.3) and concluded that, even when the precision and
completeness values decreased, the correctness values of
the models were still very good.

We analyzed the distribution of the metrics in the
different versions (see Fig. 2 for version 1.6), but, because
of the large amount of data we had to deal with, it was hard
to draw any sound conclusions from it. Hence, we decided
to examine aggregated data. We know that we cannot draw
completely trustworthy conclusions from the averages of
the metrics, but we tried to identify some trends in these
values. Table 21 lists the mean and standard deviation
values of the Mozilla versions (Fig. 3 shows the same
information using graphical charts).8 The deviations are
high, but this is normal for such a large software system as
Mozilla (there are more than 3,000 classes and they are
highly variegated).

Looking at Fig. 3, we noticed an interesting phenomen-
on. The values of WMC, RFC, LCOM, CBO, and LOC
increased significantly with version 1.2. (The values of DIT
and LCOMN changed in the opposite direction, but, as
previously stated, these metrics are not really useful for
fault prediction.) With that version, the number of bugs also
increased, which is interesting too because, at the same
time, the number of classes decreased (see Table 21).

We presumed from these observations that there must
have been a bigger reorganization of the Mozilla source
code with version 1.2, causing a significant increase in the
metric values and the number of the bugs. Of course, many
other factors might also influence the number of submitted
bugs and fixed bugs, so further investigation is needed to
obtain more precise results.

7 RELATED WORK

Many researchers have sought to analyze the connection
between object-oriented metrics and code quality. A
summary of the empirical literature was given by Sub-
ramanyan and Krishnan [21]. Here, we considered only
those which are closely connected to our work. The work
that is most similar to ours is Basili et al.’s paper [1], which
we discussed in Section 4.

Yu et al. [22] chose eight metrics (actually, 10, because
CBO and RFC were divided into two different types) and
they examined the relationship between these metrics and
the fault-proneness. The subject system was the client side
of a large network service management system developed
by three professional software engineers. It was written in
Java and consisted of 123 classes and around 34,000 lines of
code. First, they examined the correlation among the
metrics and found four highly correlated subsets. Then,
they used univariate analysis to find out which metrics
could detect faults and which could not. They found that

908 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

TABLE 21
Changes in the Mean Value of the Metrics

over Seven Versions of Mozilla

8. We did not include the values of NOC because we rejected the NOC
hypothesis in the previous section.

three of the metrics (CBOin, RFCin, and DIT) were
unimportant, while the others were significant but to
different extents (WMC, LOC, CBOout, RFCout, LCOM,
NOC, and Fan-in).

Subramanyam and Krishnan [21] chose a relatively large
e-commerce application developed in C++ and Java and
collected metrics from 405 C++ and 301 Java classes. They
examined the effect of the size along with the WMC, CBO,
and DIT values on the faults by using multivariate
regression analysis. Besides validating the usefulness of
metrics, they compared the applicability of the metrics in
different languages; thus, they validated their hypotheses
for C++ and Java classes separately. They concluded that
the size was a good predictor in both languages, but WMC
and CBO could be validated only for C++.

Fioravanti and Nesi [13] used the results of the same
projects as Basili et al. [1] to examine how metrics could be
used for fault-proneness detection. They calculated 226 me-
trics and their aim was to find a minimum number of
metrics for obtaining a good identification of faulty classes
in medium-sized projects. First, they reduced the number of
metrics to 42 and attained a very high accuracy score (over
97 percent). But, this model was still too large to be useful in
practice. Applying statistical techniques based on logistic
regression, they created a hybrid model which consisted of
only 12 metrics with an accuracy that was still good enough
to be useful (close to 85 percent). The metrics suite they
obtained was not the same as the one used by Basili et al. [1]
but there are many similarities.

This article is the continuation of previous work [11],
where we described our fact extraction process and
wrapper tools in detail. We analyzed seven different
versions of Mozilla and calculated metrics from them. At
that time, we had no information about the faults, so we
used the results of Basili et al. [1] to analyze Mozilla. We
compared some basic statistics of the metrics with those of
Basili et al. [1] and examined how Mozilla changed over its
seven version evolution.

Mozilla was investigated earlier by Godfrey and Lee [15].
They examined the software architecture model of Mozilla
Milestone-9. The authors used the PBS [12] and Acacia [7]
reverse engineering systems for fact extraction and visua-
lization. They created the subsystem hierarchy of Mozilla
and looked at the relationships among them. Their model
consisted of 11 top-level systems which could be divided

into smaller subsystems. They created the subsystem
hierarchy by taking into consideration things like source
directory structure and software documentation. It turned
out that the dependency graph was nearly complete, which
means that almost all the top-level systems used each other.

8 CONCLUSION AND FUTURE WORK

The main contributions of this paper are the following:

1. We presented a method and toolset with which
metrics (and also other data) can be automatically
calculated from the C++ source code of real-size
software (the toolset is freely available for academic
purposes and can be downloaded from the home
page of FrontEndART [14]).

2. By processing the Bugzilla database, we associated
the bugs with classes found in the source code.

3. We employed statistical (logical and linear regres-
sion) and machine learning (decision tree and neural
network) methods to assess the applicability of the
well-known object-oriented metrics to predict the
number of bugs in classes.

4. Using the calculated metrics, we studied how
Mozilla’s predicted fault-proneness changed over
seven versions covering one and a half years of
development.

Our main observations are the following:

1. All four assessment methods employed yielded very
similar results.

2. The CBO metric seems to be the best in predicting
the fault-proneness of classes.

3. The LOC metric performed fairly well and, because
it can be easily calculated, it seems to be suitable for
quick fault prediction. However, for fine-grained
analyses, the multivariate models perform much
better (e.g., in the case of linear regression, the
R2 value of LOC was 0.34, while the R2 value of the
multivariate model was 0.43).

4. The correctness of the LCOM metric is good, but its
completeness value is low.

5. The DIT metric is untrustworthy, and NOC cannot
be used at all for fault-proneness prediction.

6. In Mozilla version 1.2, we noticed significant
changes in the metrics—which we believe reflects a

GYIM�OOTHY ET AL.: EMPIRICAL VALIDATION OF OBJECT-ORIENTED METRICS ON OPEN SOURCE SOFTWARE FOR FAULT PREDICTION 909

Fig. 3. Changes in the mean value of the metrics over seven versions of Mozilla.

fall in quality—but it slowly restored in the later
versions.

The precision of our models is not yet satisfactory, so we

have to analyze what the reasons are for the most common

errors in the models and examine whether other metrics can

improve them. We will also check whether multiple models

perform better when combined in some way (e.g., using

voting majority).
We are currently performing the same kind of investiga-

tion on other large software systems (OpenOffice.org and

two industrial systems). In the future, we plan to scan

Mozilla (and other open source systems) regularly for fault-

proneness and make these results publicly available for the

software developer community.

ACKNOWLEDGMENTS

The authors would like to thank the developer community

of Mozilla who kindly provided us the Bugzilla [6]

database. They would also like to thank Lajos Fülöp for

his assistance in performing various machine learning tasks,

László Viharos for his statistical advice, Ernö Jójárt for his

help in processing the Bugzilla database, László Tóth for

providing us with his neural network system, and David

Curley for correcting this paper from a linguistic point of

view. This work was supported by grants No. GVOP-3.3.1.-

2004-04-0024/3.0 and No. GVOP-3.1.1.-2004-05-0345/3.0.

REFERENCES

[1] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans.
Software Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996.

[2] C.M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon Press, 1995.

[3] L.C. Briand, W.L. Melo, and J. Wüst, “Assessing the Applicability
of Fault-Proneness Models Across Object-Oriented Software
Projects,” IEEE Trans. Software Eng., vol. 28, no. 7, pp. 706-720,
July 2002.

[4] L.C. Briand and J. Wüst, “Empirical Studies of Quality Models in
Object-Oriented Systems,” Advances in Computers, vol. 56, Sept.
2002.

[5] L.C. Briand, J. Wüst, J.W. Daly, and D.V. Porter, “Exploring the
Relationships between Design Measures and Software Quality in
Object-Oriented Systems,” The J. Systems and Software, vol. 51,
pp. 245-273, 2000.

[6] Bugzilla for Mozilla, http://bugzilla.mozilla.org, 2005.
[7] Y.-F. Chen, E.R. Gansner, and E. Koutsofios, “A C++ Data Model

Supporting Reachability Analysis and Dead Code Detection,”
IEEE Trans. Software Eng., vol. 24, no. 9, pp. 682-693, Sept. 1998.

[8] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, 1994.

[9] R. Ferenc and �AA. Beszédes, “Data Exchange with the Columbus
Schema for C++,” Proc. Sixth European Conf. Software Maintenance
and Reeng. (CSMR 2002), pp. 59-66, Mar. 2002.

[10] R. Ferenc, �AA. Beszédes, M. Tarkiainen, and T. Gyimóthy,
“Columbus—Reverse Engineering Tool and Schema for C++,”
Proc. 18th Int’l Conf. Software Maintenance (ICSM 2002), pp. 172-181,
Oct. 2002.

[11] R. Ferenc, I. Siket, and T. Gyimóthy, “Extracting Facts from Open
Source Software,” Proc. 20th Int’l Conf. Software Maintenance (ICSM
2004), pp. 60-69, Sept. 2004.

[12] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller,
J. Mylopoulos, S. Perelgut, M. Stanley, and K. Wong, “The
Software Bookshelf,” IBM Systems J., vol. 36, pp. 564-593, Nov.
1997.

[13] F. Fioravanti and P. Nesi, “A Study on Fault-Proneness Detection
of Object-Oriented Systems,” Proc. Fifth European Conf. Software
Maintenance and Reeng. (CSMR 2001), pp. 121-130, Mar. 2001.

[14] FrontEndART Software Ltd., http://www.frontendart.com, 2005.
[15] M.W. Godfrey and E.H.S. Lee, “Secrets from the Monster:

Extracting Mozilla’s Software Architecture,” Proc. Second Int’l
Symp. Constructing Software Eng. Tools (CoSET 2000), pp. 15-23,
June 2000.

[16] D. Hosmer and S. Lemeshow, Applied Logistic Regression. Wiley-
Interscience, 1989.

[17] The Mozilla Homepage, http://www.mozilla.org, 2005.
[18] J. Neter, W. Wasserman, and M.H. Kutner, Applied Linear

Statistical Models, third ed. Richard D. Irwin, 1990.
[19] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.
[20] C.R. Reis and R. Pontin de Mattos Fortes, “An Overview of the

Software Engineering Process and Tools in the Mozilla Project,”
Proc. Workshop Open Source Software Development, pp. 155-175, Feb.
2002.

[21] R. Subramanyan and M.S. Krishnan, “Empirical Analysis of CK
Metrics for Object-Oriented Design Complexity: Implications for
Software Defects,” IEEE Trans. Software Eng., vol. 29, pp. 297-310,
Apr. 2003.

[22] P. Yu, T. Systä, and H. Müller, “Predicting Fault-Proneness Using
OO Metrics: An Industrial Case Study,” Proc. Sixth European Conf.
Software Maintenance and Reeng. (CSMR 2002), pp. 99-107, Mar.
2002.

Tibor Gyimóthy is the head of the Software
Engineering Department at the University of
Szeged in Hungary. His research interests
include program comprehension, slicing, reverse
engineering, and compiler optimization. He has
published more then 60 papers in these areas
and was the leader of several software en-
gineering R&D projects. He is the program
cochair of the 21th International Conference on
Software Maintenance (ICSM 2005).

Rudolf Ferenc obtained the PhD degree in
computer science from the University of Szeged
in 2005. His chosen field of research is source
code analysis, modeling, measurement, and
design pattern recognition. He is also interested
in software quality assurance and open source
software development. He is member of the
program committee and tools cochair of the 21th
International Conference on Software Mainte-
nance (ICSM 2005).

István Siket obtained the MSc degree in
mathematics and in computer science from the
University of Szeged in 2003 and is currently a
PhD student. His main research interests are
source code measurement and software quality
assurance.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

