
Automated Software Size Estimation based on Function Points 
using UML Models 

 
Aleš Živkovič, Ivan Rozman, Marjan Heričko 

 
University of Maribor, Faculty of Electrical Engineering and Computer Science,  

Smetanova 17, SI-2000 Maribor, Slovenia 
Phone: +386 2 235 5115, e-mail: ales.zivkovic@uni-mb.si 

 
Abstract 
A systematic approach to software size estimation is important for accurate project planning. 
In this paper, we will propose the unified mapping of UML models into function points. The 
mapping is formally described to enable the automation of the counting procedure. Three 
estimation levels are defined that correspond to the different abstraction levels of the software 
system. The level of abstraction influences an estimate's accuracy. Our research, based on a 
small data set, proved that accuracy increases with each subsequent abstraction level. Changes 
to the FPA complexity tables for transactional functions will also be proposed in order to 
better quantify the characteristics of object-oriented software. 
 
 
Keywords: function points, software size measure, project planning 
 

1 Introduction 
The focus of scientific research regarding object development and component-based 
development has already shifted from implementation to earlier development activities in 
software and information system development. Additionally, emphasis has also been placed 
on all aspects of software development that have been investigated in the context of structured 
techniques, from executable specifications, testing strategies to estimation models and 
metrics. In this paper, we will focus on one metric only: the size estimation metric for object-
oriented development. Software size contains important information for project planning. 
Costs and schedule estimates depend on its existence and its accuracy; indirectly the project's 
success also depends on it. A software project is successful if the requirements are fulfilled 
and no budget or deadline overflows occur [25]. With systematic size estimation, the risk of 
overflows is lower. Systematic software size estimation requires a method that defines a 
procedure for measurement, involving units and accuracy. In general, Functional Size 
Measurement (FSM) methods, as defined in ISO/IEC TR 14143 [12, 13, 14, 15] can be 
categorized into two groups. In the first group, there are technology-independent methods; an 
example would be the Function Point Analysis (FPA) method [10]. In the second group, there 
are technology-dependent methods; for example Lines of Code (LOC) or number of classes. 
The methods from the first group have obvious advantages over the methods from the second 
group. The ultimate goal is to use only technology-independent methods. The FPA method 
dates back to 1979 [2] and has been updated several times. However, the core concepts and 
the counting procedure remains the same. Every information system processes some data that 
can be stored in the application database or is taken from external applications. Four 
operations are performed on data records: create, read, update and delete. Besides that, 
information systems use several query functions for data retrieval and report construction. 
Each record consists of several fields of basic data types or another record that can be further 
deconstructed. The FPA method quantifies: the number of fields in each record, the distinct 



operations performed on these records, and the number of these operations that are necessary 
to perform a business function. The sum over all business functions, multiplied with some 
empirically determined weights, represents the unadjusted function points value. The final 
calculation is made using a Value Adjustment Factor (VAF) that measures system 
complexity. Based on the FPA method, several methods like Feature points, Full Function 
Points, Function Weight, Function Bang, Mk II Function Points Analysis, COSMIC-FFP and 
NESMA evolved. A detailed comparison of the selected methods can be found in [33].  
Although the methods are technology-independent, their use in object development is quite 
difficult. Methods use their own abstraction to represent a software system in a convenient 
way, so as to perform size count. In object development, the Unified Modeling Language 
(UML) is used to represent the software system as an abstraction. To overcome the gap 
between these two abstractions, the mapping that transforms the elements used in one 
abstraction to the elements of the other abstraction, has to be defined. This paper focuses on 
OO-to-FPA mappings. With OO-to-FPA mapping defined, the late analysis and design size 
estimation problem is solved, however the estimation cannot always be applied early in a 
software development process. To perform an early estimate, historical data are needed to 
fulfill the missing information with some statistical function. The fact is that the early 
estimates are far more valuable than the estimates in design time, but difficult to acquire in 
desired accuracy. In our approach, the statistical approach is used.  
 
This paper is divided into five sections. In the next section, the importance of size estimation 
is emphasized, the FPA method is briefly described, and a detailed review of the literature is 
given. In the third section, different OO-to-FPA mappings are described and compared. Based 
on the results, a new, unified OO-to-FPA mapping is proposed in section four, together with 
several additional improvements that address current size estimation problems. The problem 
of inaccuracy in early estimates is addressed with the aid of different estimation levels. 
Section five summarizes the results of the improvements that were introduced into the size 
estimation process for object-oriented projects and also discusses further improvements.  

2 Related work 
The research community found several problems related to the FPA method. These problems 
can be grouped together by their research area: 

1. Correlation between FPA elements [17,18,20]. 
2. Inappropriate formulation of the VAF and the General System Characteristic (GSC) 

[21]. 
3. Informal definition and violation of monotony [1,6,7]. 
4. The gap between OO and FPA abstractions [3,4,5,8, 27, 31]. 

 
Lokan [20] analyzed 269 projects and tried to discover the correlation between five elements 
used in the FPA method to represent a software system. He found out that External Inputs (EI) 
and Internal Logical Files (ILF) always correlate, while External Interface Files (EIF) rarely 
correlate with other elements.  
Another paper [21] analyzed 235 projects with an emphasis on GSC. The research was 
divided into two parts. In the first part, Lokan proved that GSC is out-of-date and not 
appropriate for today's systems. In the second part, he used empirical analysis to show that 14 
technical factors were not independent and expressed overlapping characteristics. Therefore, 
the smaller set could be used instead. The research also showed that VAF improved the 
estimated size in less than half of all cases.  
All methods for software size estimation lack adequate formal foundations in their origin 
descriptions. There were some attempts [6,7] to add formality to functional size measurement. 



Fetcke's model is applicable to different methods since it introduced an additional level of 
abstraction, called a data-oriented abstraction. The approach proposed by Diab et al. was 
designated COSMIC-FPP [35] and had a specific purpose. In our research, the model defined 
by Fetcke is used as a basis and further refined by the definition of a mapping function [33]. 
The abstraction is also used to formally describe an OO-to-FPA transformation, as proposed 
in this paper.  
The violation of monotony first addressed in MK II FPA [30], later formally proven by Fetcke 
[6] and again addressed in research [1] resulted in a change in complexity weights. Since our 
research also resulted in a change of complexity tables different from the one proposed by [1], 
this approach is discussed in more detail. In Al-Hajri's research, tables gathered with the 
training methods from Neural Networks replaced the original complexity tables. The results 
showed that the average error decreased and the convergence between actual effort and 
estimated effort improved. The authors extended complexity tables and related ordinal scales 
with absolute ones. However, the new tables are not appropriate for our research since we 
deal with object-oriented systems that have specific characteristics. These characteristics will 
be presented in the next section. We believe that Al-Hajri's approach could also be used to 
further improve our tables. Unfortunately, at the moment there is not enough empirical data 
available in the ISBSG repository [11] to apply his procedure of weights validation.  

3 OO-to-FPA mappings 
 
3.1 Method proposed by Fetcke, et al. 
Fetcke et al. [8] focused their research on a specific method, namely Object-Oriented 
Software Engineering (OOSE) [16]. This method is based on use cases. The authors proposed 
four groups of rules: 
 

• Identification of the counting boundary. 
• Identification of items within the boundary (transactional and data functions). 
• Identification of the item type (Data Element Type, DET; Record Element Type, RET; 

File Type Referenced, FTR) for all items. 
• Prescribing the weight factors. 

 
The application boundary is set in accordance with the definition of the boundary in the Use 
Case (UC) diagram, as defined in the UML standard. Actors are mapped into users of the 
system. Use Cases are mapped into transactional functions. This mapping is not always one-
to-one. The number of transactional functions for the particular UC is usually defined by the 
UC description. The authors do not provide additional guidelines on the matter. The reference 
to the rules of the original method is noted. Since the OOSE method distinguishes between 
three types of objects (control, entity and boundary), only entity objects and objects with 
unknown types performing a count at the time, are used as data functions. Aggregation and 
generalization are treated in a specific way. Both concepts can have a significant impact on 
the number of data elements types, record element types and file types referenced, 
respectively. 
 
3.2 Method proposed by Uemura, et al. 
Uemura et al.[28,29] use class and sequence diagrams as sources for OO-FPA mapping. The 
mapping is specified for diagrams developed in design that conduct design specification. The 
system boundary is identified according to the messages in the sequence diagrams. The 
messages sent by actors to non-actor objects represent the system boundary. Basically, the 
rule is the same as defined in the UML standard [23], the only difference is the diagram from 



which the boundary is identified. We can simplify this rule to become consistent with the rule 
used by Fetcke et al.[8]. Under the presumption that each sequence diagram is directly related 
to one UC in the UC diagram, the boundary can be identified from the UC diagram. Objects 
with at least one attribute that have one or more methods or call methods of other objects are 
mapped into data functions. The classes with methods that influence the state of other objects 
are mapped to external interface files (EIF). All others are considered internal logical files 
(ILF). Transactional functions are identified according to five different communication 
patterns from the sequence diagram. The transactional function type is also identified from the 
communication pattern. 
 
3.3 Method proposed by Antoniol, et al. 
Antoniol et al. [3,4,5] propose two methods for estimating size during the development 
process. In the early project phase, the use of the original FPA method is suggested. After the 
design is conducted, a method developed by the authors, called Object-Oriented Function 
Points (OOFP), is considered to be the most appropriate. The OOFP method is based on the 
deliverables of the design phase and takes advantages of the information available in the class 
diagrams. With this method, the gap between the system abstraction (used by the FPA 
method) and the abstraction made with class diagrams is supposed to be resolved. The method 
provides additional rules and allows some freedom of choice for the mapping algorithm, in 
cases where class diagrams exhibit complex class hierarchies. The number of attributes and 
associations with other classes are used to define internal logical file complexity. To 
distinguish between data element types and record element types, a simple but indistinct rule 
is used. The complex data types are classified as record element types, while simple or 
primitive data types are classified as data element types.  
Transactional functions are identified according to the methods in the class. The authors call 
them service requests. Abstract methods and inherited methods are ignored. Method 
complexity is determined according to the number of parameters and global variables 
referenced in the method. As is the case with attributes, the element data type is used for the 
classification of data element types, or the file types referenced. 
 
3.4 Method proposed by Ram, et al. 
The mapping is basically the same as in the OOFP approach. The function points for each 
class are calculated. The number of function points for the class is a sum of its logical file and 
transactional functions contribution. The transactional functions contribution is calculated 
from the methods; whereas for methods without parameters and with the void return type, 
complexity is considered as if it were for one DET. Ram and Raju [26] define additional rules 
for class complexity classification. These rules are used in the second step. Class complexity 
is defined as being low if the class processes less than 50% of data visible to the class, 
average if 51 to 70% is processed, and high if the amount of processed data exceeds 70%. A 
numerical value is then assigned to the given complexity and multiplied with the number of 
function points calculated in the first step. The final amount is lowered by 10, 40 or 70 
percent, depending on its complexity. The term "data elements which are visible to all 
methods of a class" used by Ram and Raju [26] is uncommon since such data elements are 
called attributes and are by definition visible in all methods. The term "process the data" is 
also weakly defined. Do the get and set methods process the data? If the answer is yes, then 
the second step concept fails, otherwise it is difficult to automate steps, since a deep insight 
into the method's behavior must be considered. 
 



3.5 Comparison of mappings 
Comparing all four mappings we can conclude that [8] and [28,29] define "boundary" in the 
same way. Fetcke et al.[8] uses UC diagrams as a reference for boundary identification, 
Uemura et al.[28, 29] uses sequence diagrams. Conceptually, the mappings are the same. 
However, from our point of view, Uemura's approach is less applicable for two reasons: 
 

• Sequence diagrams are usually made in combination with a UC. It is uncommon to 
draw only sequence diagrams. However, it is not necessary for the sequence diagram 
to have an actor (e.g. associations "include" and "extend"). On the other hand, one UC 
can have many sequence diagrams that aggravate boundary identification. From the 
UC diagram, the boundary is directly visible and clearly defined by the UML standard.  

 
• In the design time, it is usually clear what is in the system and what is outside it. 

Classes represent the abstraction of the system to be built and are inside the fictive 
boundary of the system. In fact, setting the boundary at the design time is unnecessary. 
Thus, it does not influence further steps. Antoniol et al.[3,4,5] and Ram et al. [26] 
choose the same approach.  

 
All approaches are unified in their view of data function mapping. The class is mapped to a 
logical file. However, the definitions for separation on internal or external logical files are 
weak in all four methods. Uemura et al. [28,29] uses supplemental rules to distinguish 
between two data element types using class operations. Antoniol et al. [3,4,5] retain the 
original guidelines regarding logical files division. In the OO systems, external classes 
encapsulate non-system components, such as other applications, external services and reused 
library classes. External classes correspond to external logical files, according to Antoniol et 
al.[3,4,5]. However, a precise definition on how to count external classes is missing. Ram and 
Raju [26] uses Antoniol's definition.  
In mappings for transactional functions, the gap between approaches is greater. Fetcke et 
al.[8] defines transactional functions according to the UC and their description. Uemura et 
al.[28,29] defines five interaction patterns. Transactional functions are recognized from the 
sequence diagrams according to the type of the object starting and completing the interaction 
sequence. Patterns are used to identify transactional function complexity. Antoniol et al. 
[3,4,5] uses the term “service request” instead of method, although the methods are actually 
counted and mapped into transactional functions. Abstract and inherited methods are not 
counted. In Antoniol's opinion, it is impossible to determine the type of transactional function 
from the class diagrams. The complexity table for external inputs and queries is used. Ram 
and Raju [26] also use methods to determine the number and complexity of transactional 
functions. When comparing his approach with Antoniol's, it can be noted that Ram and Raju 
[26] are more careful with inherited methods. If the inherited method overrides a method, its 
complexity is considered for that derived class alone. Ram and Raju [26] also point out that 
abstract methods are defined in the derived classes and should be considered when calculating 
the complexity of each derived class. Antoniol et al. [5] indirectly uses the same rule, 
although he does not formulate it. Ram and Raju [26] calculate the complexity of 
transactional functions in two steps. For the first step, they use Antoniol's approach of using a 
method's signature to determine its complexity contribution. In the second step, Ram and Raju 
[26] use its unique class complexity classification (see section 2). Antoniol et al.[3,4,5], Ram 
and Raju [26] and Fetcke et al.[8] pay regard to different kinds of associations that can map to 
either data element types or record element types/file types referenced. The rules are different. 
Only Uemura et al.[28,29] set the number of record element types to one for all cases.  



Since compared mappings use identical transformations for the main OO concepts, it is 
reasonable to define a unified OO-to-FPA mapping. In the next section, one of the proposed 
improvements is the unification of the mapping and its formalization in such a way that size 
estimation can be automated using UML artifacts. 

4 Proposed improvements 
In the previous section, four different mapping approaches were described and compared. In 
this section, improvements to the approaches described above are presented. The 
improvements are: 

1. Adaptation of the ISBSG statistical approach to early estimates for use cases. 
2. Unified OO-to-FPA mapping. 
3. A new complexity table that better captures the characteristics of object development. 
4. A formal description of the mapping rules. 
5. An integrated approach to size estimation in object development 

 
The aim is to solely use UML diagrams and cover all development phases -- not only late 
analysis and design. Therefore, Fetcke's idea to use UC diagrams for early estimates is 
supplemented with a semi-formal description of use case scenarios and integrated with an 
ISBSG approach to early estimates, which is based on statistical data [11]. This approach 
estimates software size based on deficient data, replacing the missing information with 
statistically proven relations between the FPA elements. In our approach, the use cases are 
supposed to be described with activity diagrams. Each activity in the swimlane named system 
is counted as one transactional function. The early estimate of software size (FPC) is 
calculated according to the equation E1. 
 

TFR
WNFPC TFTF ∗=  (E 1) 

 
where: 
• FPC is software size in function points 

 is the total number of transactional functions for all use cases • NTF

• TFR is the statistically acquired ratio between transactional functions and other FPA 
elements using the ISBSG repository or our own historical data 
• W  is the average weight for transactional functions calculated from original FPA tables TF
 
For more detailed estimates, class diagrams are used. We decided to use Antoniol's [3,5] 
mapping, change complexity tables as proposed in [4,26] and simplify the transformation 
procedure. The simplifications made in this research used a single class strategy [5] for 
identifying logical files and complexity tables that ensure minimal errors resulting from a 
mixture of FPA elements [33]. Some may argue that class diagrams become available late in 
an analysis and that no actual improvement regarding information in other diagrams is made. 
However, with a detailed analysis of all UML diagrams we found that the information in 
sequence diagrams were identical to classes together with responsibilities in the class 
diagram. For the function point counting procedure, the statechart diagram just supplements 
information about class responsibilities. Therefore, from the OO-to-FPA mapping perspective 
only elements in the class diagram need to be mapped. From the counting procedure’s point-
of-view, additional rules are needed to define the procedure of information extraction from 



sequence, statechart and activity diagrams. The definition of additional rules is beyond the 
scope of this paper. 
According to [5], OO-to-FPA mapping requires a change in complexity tables. We propose 
the use of Table 1 for transactional functions. The table is based on an OO metrics data 
analysis [9,22]. The metrics of interest are the average methods per class and average number 
of parameters per method. In the table, values for the number of DETs and FTRs are lowered 
to reach the same complexity. In object-oriented development, the number of parameters per 
method is usually lower than the values in the original FPA tables. To ensure results 
comparable to those produced by the FPA method, the linearity problem of the weights was 
deliberately left unsolved. This problem can be solved using several different approaches 
[1,19]. The size estimation results using a changed complexity table (see Table 1) can be 
found in the method evaluation section.  
 
4.1 Mapping formalization 
In this section, a procedure for counting function points based on UML artifacts is formalized 
using data abstraction as defined in [7, 33]. The system is composed of different data and 
transactional types. The number of data and transactional types, and their attributes, contribute 
to the size of the software system. Some methods also define a third component that has an 
influence on software size -- the technical complexity of the solution. The universal function 
that maps application attributes into size is therefore: 
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 where:  
• FPC(a) is the function that maps attributes of application a into software size, expressed in 
function points. 
• FPC (t ) is the function that maps transactional type t  into size. 1 i i

• FPC (f ) is the function that maps data type f  into size. 2 j j

• FPC3(TC) is the function that maps technical complexity of the anticipated solution for 
application a into a factor. 
 
The total value for an application size is the sum of FPC  and FPC1 2 multiplied by the factor of 
the solution’s complexity. The factor can reduce or increase the overall size. However, it is 
not clear if the factor actually measures raw application size or is an attribute of the 
implementation and should be part of the function that maps size to effort. In this research, the 
function of FPC3 was not examined. FPC functions for our approach are presented by the 
equation E3. 
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In equation E3, the functions WEI and WILF transform descriptive element complexity to the 
number of function points in accordance with the original FPA tables and the changed table 
(Table 1). Function W has two parameters. For transactional functions, those parameters are 
the number of data elements (N ) and the number of file types referenced (Nd r). The values for 
N , Nd r and Ng are determined once for each class from a corresponding class diagram. The 
value is calculated differently for transactional functions (FPC ) and data functions (FPC1 2). 
For transactional functions, the parameter Nd is calculated as the sum of function S values. A 
transactional function is equal to a method in object development, therefore i from equation 
E2 runs from 0 to the number of methods. S has the value 1 if the parameter p of the method i 
is of a simple type and otherwise 0. Function S-1 is an inverse function for S. For data 
functions, a similar meaning can be found in the parameter Ng, which represents the number 
of record element types (RET). The value Ng is determined by the attributes and relations of 
the class. The algorithm in symbolic code for the described transformation is: 
 

1. softwareSize:=0; 
2. classes:=class_diagram.getAllClasses(); 
3. for i=1 to classes.size() do 
4.    numOfDets:=0;   //Nd 
5.    numOfRets:=0;    //Ng 
6.    class:=classes.getClass(i); 
7.    class_attributes:=class.getAttributes(); 
8.    for ii=1 to class_attributes.size() do 
9.       attribute:=class_attributes.getAttribute(ii); 
10.       if(attribute.getType() = basic_type) then 
11.          numOfDets++; 
12.       else  
13.          numOfRets++; 
14.       endif 
15.    enddo 
16.    associations:=class.getAssociations(); 
17.    for ii=1 to associations.size() do 
18.       association:=associations.getAssociation(ii); 
19.       if(association.getMultiplicity() = 1) then 
20.          numOfDets++; 
21.       else  
22.          numOfRets++; 
23.       endif 
24.    enddo 
25.    softwareSize:=softwareSize+evalDataFunctions(numOfDets, numOfRets); 
26.    numOfDets:=0; 
27.    numOfFtrs:=0;    //N  r
28.    class_methods:=class.getMethods(); 



29.    for iii=1 to class_methods.size() do 
30.       method:=class_methods.getMethod(iii); 
31.       method_parameters:=method.getParameters(); 
32.       for a=1 to method_parameters.size() do 
33.          parameter=method_parameters.getParameter(a); 
34.          if(parameter.getType = basic_type) then 
35.             numOfDets++; 
36.          else  
37.             numOfFtrs++; 
38.          endif 
39.       enddo; 
40.       if (method.getReturnType() = basic_type) then 
41.           numOfDets++; 
42.       else 
43.           numOfRets++; 
44.       end if 
45.       softwareSize:=softwareSize+evalTransFunctions(numOfDets, numOfFtrs); 

 
46.    enddo; 
47. enddo; 

 
Suppose we have only one class named A with two attributes att1 and att2, two associations 
r1 and r2 both with a multiplicity of 1:1, and two methods m1 and m2 without parameters. 
The method m1 return type is int and the method m2 return type is String. Both types are 
treated as simple data types. Table 2 summarizes the execution of the algorithm described 
above. In the first column, we can find line numbers as labeled in the algorithm, the second 
column shows the name of the observed variable and the last column shows its value for the 
first and second cycles respectively. The method evalDataFunctions(numOfDets, numOfRets) 
evaluates the complexity of data functions and returns a low complexity. The evaluation of 
transactional functions also returns a low complexity in both cases of our example. The 
estimated size for class A is therefore 9 FPs. 
The mapping and the algorithm seem to be applicable to the class diagrams only. In fact, the 
algorithm uses information that is best covered in the class diagrams, but can also be provided 
using other diagrams, for example: sequence and statechart diagrams. However, attributes and 
associations that are used for the evaluation of a data function’s contribution can only be 
found in the class diagram. If a class diagram is not available at the time of size estimation, 
the complexity of the data functions must be determined with a statistically based 
approximation [32]. The approximation is based on statistically proven ratios between the 
FPA elements. The ratios are calculated from the ISBSG repository data or from our own 
data, if available. 
 
4.2 Early estimates problem 
In our approach, early estimates are based on use case diagrams. The use case diagram is 
available early on in the project’s life cycle. Use cases are usually briefly described using 
natural language. The description is needed to be able to divide use cases to iterations and to 
build an iteration plan. The average number of transactional functions is assigned to each use 
case by default and can be changed according to expert opinion if required. Statistical data are 
used, as described in Section 3, to get the complete size of the software. When a more detailed 
use case description becomes available, re-assessment is automatically made using a tool. The 
tool was developed in Java and takes UML models in XMI format as an input and calculates 
software size according to the algorithm described in the previous section. To be able to 
automate the procedure, each use case must be described in more detail with an activity 
diagram.  



In our approach, size estimation is done in three stages. What estimate to apply, depends on 
the information available. The defined estimation stages are: 
 

- Basic estimation - information from the use case diagram is used to calculate system 
size. It is based on statistical data and average values. The estimation is available early 
in the project. 

- Comparative estimation - with additional information available, the statistically 
founded basic estimate could be replaced with an estimate based on actual project 
data. The activity diagrams are used in this estimation; results from sequence diagrams 
are also considered.  

- Final estimation - this estimation is based on the domain class diagram using OO-to-
FPA mapping, as described in Section 2. This estimate is the final one in the 
prediction cycle. The estimates that follow are performed for purposes of comparison 
and repository fulfillment only.  

 
The estimates for all three stages presume complete models. For further information about the 
impact of model completeness on our approach, please see [34].  
 

5 Empirical results and discussion 
In this section, empirical research results are presented. The research statements that we 
would like to prove are: 
 

H01: The final estimate of a project's size is not significantly different from the actual 
project's size. 
H02: The size estimate’s accuracy improves with more data available (i.e. analysis 
classes, activity diagrams for each UC). 

 
If we manage to prove H01, that the estimated size of the final estimate is close enough to the 
true value, than it can be used as a conventional true value [12]. With H01 proven, we can 
prove H02 if we calculate and compare the standard errors of the basic and the comparative 
estimations.  
 
5.1 Test data set and estimation procedure description 
To evaluate the method described in the previous section we conducted a controlled 
experiment on a test data set. The test data set contains thirteen applications covering a size 
range from 35 FP to 278 FP. The characteristics of the applications can be found in Table 3. 
Most projects were developed in Java with a relational database on a PC platform. Regarding 
the team size, each data set was divided into two groups. The team size of applications P1-P6 
is one, P7-P12 three, and the application P13 was developed by a group of six developers. In 
the data set, seven applications have a web-based user interface, five have a classical GUI, 
and one application has both a classical GUI and web-based user interface for searching and 
reporting. For each application, the use case diagram was developed, all the use cases were 
described with the activity diagram and, at the end, the complete domain class model was 
developed. The UML models were exported using the XMI export capability of the CASE 
tool used in the research. Then, the data about the project were imported into an estimation 
tool specially developed for this purpose. The tool was developed in Java and covers three 
areas: (1) size estimation, (2) effort tracking and (3) data analysis. The estimation process is 
automated for the comparative and final estimation; the basic estimation requires expert 



mediation. Thus, each application has three values for its size and a value for actual effort (see 
Table 4). 
 
5.2 Data analysis 
The descriptive statistical data are provided in Table 5. The means and medians are similar for 
all three estimations; the correlation between estimates is positive with a 95% confidence 
interval for our sample.  
 
Figure 1 shows the differences between the basic, comparative and final estimates. The 
comparative estimate should be between the basic and the final estimate in order to improve 
the size estimation. In our test case, this is true in more than half of all cases. Since the true 
value for software size cannot be measured, we use the final estimate for the conventional true 
value. The error for a basic and a comparative estimate is then calculated using the equation 
E4. 
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In Table 6, the average and maximum errors of the data set are expressed in function points 
and relative error in percentages. The comparative estimate gives better results, however the 
difference for our sample is not significant since the value for p, as calculated with the 
Student's t-Test, is 0.598. In calculations, the value of the final estimate is used as the 
conventional true value. Now we have to prove the statement H01 and show that the 
difference between the final estimate and a reference value calculated using the ISBSG 
regression model [11] is not significantly different. Using a final estimate for the application 
size and equation E5b, the project work effort (PWE) was calculated. The coefficients in 
equation E5 are taken from the ISBSG repository. For both equations, N is 10 while R2 is 
0.955 for E5a, and 0.731 for E5b. 
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In Table 7, the results of the statistical analysis for calculated and actual effort is shown. The 
table has three parts for R2 and σ. The graph in Figure 2 shows an interesting grouping of 
values for calculated and actual effort. Therefore, two regression models are used. The first 
model uses only project size and the second also considers team size. The correlation between 
effort and size is stronger for values calculated using the second model. The standard 
deviation is also much smaller. The correlation between actual and calculated effort is very 
good (0.997). The result of the Student's t-Test indicates no significant difference (p=0.176) 
between efforts. 
 
The equation E6 helps us calculate the standard error of the mean. For our sample (P1-P12) 
the error is 9.8%. P13 is quite different in terms of language, team size, methodology) and 
therefore not appropriate for use in this part of the analysis. 
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Figure 3 shows the project effort as the function of the size for our test sample. The data is 
divided into two groups according to the number of participating developers. Both groups 
correspond to the exponential model with values for R2 higher than 0.9. 

6 Conclusion and future work 
In this paper, several problems in the size estimation of object projects were presented and 
discussed. First, the gap between an object abstraction and the FPA abstraction was fulfilled 
via unified mapping based on four existing mappings. One important contribution was a 
modified complexity table based on OO metrics that defined less data elements to achieve the 
same complexity. The table and the mapping give good results that are statistically equivalent 
to average industry values. The standard error of the mean for our sample is 9.8%. The core 
solution to the early estimates problem is not new. Our contribution is in its integration with 
object development. The use cases were used in the early estimates, where the missing 
information was filled in with statistical ratios in five FPA elements. The relative error of the 
approximation for our sample was 40%. To reduce the error, three estimation stages were 
introduced. Our hypothesis that the accuracy of the estimates improve with more available 
data was confirmed. However, the difference between the basic and comparative estimate was 
not significant for our sample. Based on our data, the conclusion can be made that the 
comparative estimate was not worth the effort and should be omitted from the estimation 
process. On the other hand, in some cases the improvement was greater then 50% and 
encourages further research as well as the collecting of additional data. 
 
Future work will focus on collecting additional data and refining the steps needed for the 
measurement process. Some preliminary research was already done with Use Case Points as a 
second measure early in the project's life cycle. Based on this, a decision can be made about 
the quality of the basic estimate, as defined in this research. The approach will also be tested 
in iterative development, where both the availability and completeness of the information 
should be considered. 
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Table 1: Changed complexity table for transactional functions, with the original values shown in brackets 

 0-4 (1-5) DET 5-10 (6-19) DET more than 10  
(20 or more) DET 

0 or 1 FTR low (low) average (low) high (average) 
2 (2-3) FTR average (low) average high 
3 or more  
(4 or more) FTR 

average high high 

 



Table 2: A simplified example, showing the values of the variables used in the algorithm  

Variable Value Code 
Line # 

Variable Name 
cycle 1 cycle 2 

2 classes {A}  
6 class A  
7 class_attributes {att1, att2}  
9 attribute att1 att2 
11 numOfDets 1  
13 numOfRets  1 
16 associations {r1, r2}  
18 association r1 r2 
20 numOfDets 2 3 
25 softwareSize 3 FP (Low)  
28 class_methods {m1,m2}  
30 method m1 m2 
31 method_parameters {}  
40 method.getReturnType() int  
41 numOfDets 1 1 
45 softwareSize 6 FP (2xLow) 9 FP (3xLow) 

 



Table 3: Characteristics of the test data set 

Project Team size Web 
Programming 

language Data store 
Platform 

P1 1 Yes Java relational PC 
P2 1 No Java relational PC 
P3 1 No Java relational PC 
P4 1 No Java without PC 
P5 1 Yes Java file PC 
P6 1 Yes Java relational PC 
P7 3 No Java file PC 
P8 3 Yes Java relational PC 
P9 3 Yes Java relational PC 

P10 3 Yes Java relational PC 
P11 3 Partial Java relational PC 
P12 3 Yes Java relational PC 
P13 6 No Smalltalk file PC 

 



 
Table 4: Project size estimates and effort 

Estimated size (FP) Project 
Basic Comparative Final 

Effort (h)

P1 96 104 110 52
P2 37 35 45 42
P3 185 208 157 57
P4 81 61 173 54
P5 37 35 35 39
P6 111 121 54 44
P7 155 117 163 191
P8 96 69 47 163
P9 155 126 136 186
P10 126 100 71 171
P11 177 173 72 180
P12 229 234 192 204
P13 148 226 278 471

 



 
Table 5: Statistical results for three estimates of all projects 

 Basic Comparative Final 

Mean 126 123 118 

Median 126 117 110 

Skewness -0.01264 0.401123 0.777929 

Standard deviation (σ) 56.8 68.2 72.9 

Basic  0.90 0.56 
Correlation 

Comparative   0.69 

 



 
Table 6: The errors for basic and comparative estimates 

 Basic Comparative 
Average error (FP) 46.46 42.15 
Max. error (FP) 130 112 
Standard deviation 40.66 35.21 
Relative error (%) 39.3 35.7 

 



Table 7: Statistical analysis for actual and calculated effort 

 Complete sample Partial sample 

(MaxTeamSize=1) 

Partial sample 

(MaxTeamSize=3) 

 PWEactual PWEcalculated PWEactual PWEcalculated PWEactual PWEcalculated

R2 (with size) 0.450 0.457 0.916 0.981 0.914 0.982 

σ 119 158 7.3 4.4 14 17 

R 0.997 

t-Test 0.176 

 



Captions to illustrations 
 
Figure 1: Comparison of the size estimates 
Figure 2: Calculated vs. Actual effort 
Figure 3: Project effort as a function of size  
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