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ABSTRACT
Current  user  interfaces  are  ad  hoc,  application  dependent  and 
constantly change while offering the same functionalities in many 
different  ways.  This  article  investigates  methods  for  creating 
semantic  user  interfaces,  which  are  much  easier  to  develop, 
learn, teach and use.  The basic idea of semantic user interfaces  
is to analyze specific application domains (like word processing, 
file  handling  or  application  deployment),  organize  domain 
concepts  into  ontologies,  associate  user  interface  presentation 
attributes (like icons, menu labels and line mode command) to 
ontology nodes, and to use the ontology as a central controlling 
entity of application development and execution.  The ontology is  
used inside a service oriented semantic user interface framework, 
whose elements and potential benefits are also explained.

The main contribution of this article is to investigate methods for 
analyzing  and  classifying  computer  system  services,  as  a 
fundamental step of making the presented semantic user interface 
architecture  operational.   The  problems  and  steps  of  service 
analysis are described and an automatic classification algorithm 
is presented based on formal semantic specifications and graph 
isomorphism.  Implementation details and practical experiences 
are also outlined.

Categories and Subject Descriptors
H.1.2  [User/Machine  Systems]  –  Human  factors,  I.5.3 
[Clustering] - Algorithms

General Terms
Algorithms, Human Factors.

Keywords
semantic  user  interface;  service  oriented  architecture;  formal 
semantic specification; classification algorithm;

1. INTRODUCTION
State  of the  art  graphical  user  interfaces  (GUIs)  are  based  on 
metaphores  of real  world  objects  and  their  related  operations,  
which are well known to anyone from everyday life.  Metaphores 

are presented by the user interface in graphical form as windows, 
icons  and  menus.   Fundamental  concepts  of  graphical  user 
interfaces have remained basically unchanged since the eighties 
of the  last  century,  when  they were  introduced  in  Xerox  Star  
[18].

Graphical  user  interfaces are  intuitive,  which means that  users 
are supposed to be able to associate a semantic meaning to the 
graphical  (icon  or  menu)  representations  of  the  real  world 
metaphores  when  they see  them  for  the  first  time. Intuitivity 
admits learning by exploring, so that in theory no additional user 
training is needed to apply a GUI.

On  the  other  hand  at  the  state  of  the  art  there  are  no  strict  
standards  or known theoretical  background,  which would limit  
the  designers  of  intuitive  graphical  interfaces  in  choosing 
arbitrary attributes  (e.g.  form of icons,  text  of menu labels  or 
menu topology) for displaying user interface metaphors.  That is 
why  user  interfaces  become  diverse  even  inside  a  specific 
application domain.

Diverse user interfaces make it almost impossible to teach novice 
users  a sound background which they could apply in  a generic 
way for  a  long time.   While  grammar  school  students  receive 
generic knowledge in physics or biology, they receive short term, 
specific knowledge in informatics, just because there is no well  
known,  widely  accapted  specification  of  computer  system 
services and their common representations.

The main problem with creating and learning state of the art user 
interfaces  is  that  the  semantics  of  real  world  metaphores  is 
associated  to their  user  interface representations  in  an implicit  
way.   We think  that  intuitivity is  a  very good thing from the 
user’s perspective, but it  is bad at the user interface designer’s  
side.  Certain parts of user interfaces, like icons, menu labels and 
menu  structure  along  with  the  semantic  specification  of 
elementary  services  should  be  invariant,  application,  platform 
and  device  independent,  while  other  properties,  like  skin  or 
layout  design  of  the  interface  may  arbitrarily  change.   This 
approach is similar to the user interface of modern cars: they all  
have the steering wheel, pedals and important controls arranged 
the same way, while the shape of the body, form and colours of 
the seats and the dashboard may arbitrarily change.  It guarantees 
that we do not have to learn to drive our new car again, while we  
may still find its interior and body design exciting.

This  article  investigates  methods  for  creating  user  interfaces,  
which  are  much easier  to  develop,  learn,  teach and  use.   The 
basic idea is to analyze specific application domains (like word 
processing, file handling or application deployment), to organize 
domain  concepts  into  ontologies,  to  associate  user  interface 
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presentation  attributes  (like  icons,  menu  labels  and  line  mode 
commands)  to  ontology nodes,  and  to  use  the  ontology as  a 
central  control  repository  of  application  development  and 
execution.

In Section 2 the architecture  and potential  benefits  of ontology 
driven  semantic  user  interfaces  are  outlined.   The  proposed 
semantic  user  interface  architecture  is  service  oriented,  so 
services  form  the  central  part  of  the  driving  ontology.  A 
fundamental  step  of  making  the  architecture  operational  is  to 
analyze and classify computer system services, which is the main 
contribution  of  this  article.   Section  3  explains  methods  for 
describing and classifying semantic  user  interface services.   In 
section  4 semantic  service  specifications  are  introduced  as  our 
method for describing user interface services.  Section 5 explains  
properties  and  generation  of  equivalent  service  graphs  and 
outlines  a  classification  algorithm  for  semantic  service 
specifications based on graph isomorphism.  Section 6 describes  
implementation  details,  while  section  7  summarizes  practical  
experiences.

2. SEMANTIC USER INTERFACES [1]
Semantic  user  interfaces  are  based  on  static,  user  editable 
documents  (so  called  semantic  user  interface  documents  - 
SUIDs),  which  can  contain  references  to  arbitrary  services,  
whose contracts are specified in domain ontologies.

According to Figure 1, SUIDs empower domain experts to create 
applications  by  editing  sets  of  static  documents,  while  IT 
professionals  design  and  implement  reusable  user  interface 
components and service provider components based on standard 
specifications  stored  in  domain  ontologies.   To  achieve  this,  
domain  ontologies  must  be  created  and  an  execution 
infrastructure is required.

The  operation  of  semantic  user  interfaces  follows  a  service  
oriented approach [16].  There has been recent efforts made for 
extending service  oriented  architecture  with  semantic  elements 
including  ontologies  and  refined  functionalities,  among  others 
discovery, composition or mediation based on formal languages 
and  automated  reasoning  [7,17].   While  the  operating 
environment of semantic service oriented systems is the internet 
containing  an  arbitrary  number  of  distributed  components,  

semantic user interfaces apply similar paradigms in smaller scale 
domains, like a single computer or a smart phone.  Similarly, in  
service oriented architectures a service is generally considered a 
large, complex entity, while in semantic user interfaces it makes 
sense  using small,  elementary services  organized  into rigorous 
service ontologies.

Semantic  User  Interface  (SUI)  applications  work  in  a 
request/response style.  A request  is defined as a list of objects, 
where each object has an associated semantic meaning.  One of 
the  objects  defines  a  service,  and  the  others  define  a  set  of 
arguments.   Requests  are executed by service providers,  which 
implement  activities  with  predefined  contracts  (services 
associated  with  specific  argument  names  and  types)  stored  in 
domain ontologies.

Architectural elements and operation of a semantic user interface 
infrastructure are explained according to Figure 1.

The  SUI  Document  Browser  renders  SUIDs containing objects 
with specific content types registered in domain ontologies.

User interaction through a semantic user interface is based on a 
simple interaction model, the presentation-navigation-selection-
activation  cycle.   According  to  this  model  the  user  interface 
presents a set of content objects.  The user assembles requests by 
navigating desired objects; selecting them; assigning a semantic  
role  to  each  of  them,  and  finally  performing  a  terminating  
gesture to initiate request execution.

Terminating  gestures,  like  pressing  the  Enter  key,  signal  the 
SUID Browser  that  the  user  has  assembled  a  request,  which 
should  be  forwarded  for  execution.   The  system  executes  the 
request,  and  returns  a  result,  which is  combined  by the  SUID 
Browser with the actually displayed pieces of contents.

The  Service Channel assures  semantic separation,  which means 
that  domain concepts  of the user’s  mental  model  are  explicitly 
separated  from  user  interface  components  and  application 
components.   The  set  of  separated  domain  concepts  allow  a 
dynamic mapping between elements of user interface documents  
and underlying application components.

In a  technical  sense  the  Service  Channel dynamically matches 
requests to service provider contracts according to the roles and 
content  types  of  request  objects.   The  Service  Channel 
determines  the  actual  provider  contract  from  the  request,  
retrieves  the  providers  offering  the  given  contract  from  the 
Provider Registry, and selects one of them to execute.   In other 
words  service  requests  are  not  wired  to  specific  executable 
entities as in state of the art systems (even in application servers,  
which merely offer spatial separation), but they are bound during 
run time, before execution.

According to  domain  ontology specifications  the  user  interface 
always presents a specific service the same way independently of 
its  arguments.   For example,  if service  copy  has an associated 
shortcut  Ctrl+C,  it  can be used to copy selected content to the 
clipboard (as usual), but it can also be used to copy a source to a 
target  argument  independently of the  fact,  whether  the content 
type of the arguments are local file, URL or even two files with 
different formats (which requires implicit conversion).  This way 
the  user  can formulate  semantically similar  requests  the  same 
way,  while  the execution of requests  may need providers  with  
drastically different complexity and resource requirements.

Figure 1. Semantic user interface architecture

.



3. ANALYSIS AND REPRESENTATION 
OF SEMANTIC USER INTERFACE 
SERVICES
The goal of analyzing user interface services is to find a minimal,  
set  of  services,  to  organize  them  into  an  ontology  and  to 
standardize  them  by  associating  service  attributes  like 
specification,  help text,  icon, menu label,  command mnemonic, 
keyboard shortcut or mouse gesture.

The  use  of  a  generic  service  ontology  has  the  following 
advenatges:

• User interface designers can reference service ontology 
items in semantic user  interface documents  by simply 
decorating  certain  objects  with  relationships  to 
ontology nodes.

• Component  developers can  implement  service 
providers  based  upon  standardized  service 
specifications stored in the ontology.

• Users can  learn  (can  be  taught)  the  attributes  and 
specification of generic services stored in the ontology.

These properties make service ontolgies the central driving entity 
of  a  semantic  user  interface  framework.  Service  Ontologies 
eliminate  user  interface  diversity  and  support  easy  creation,  
learning, teaching and use of new interfaces.

Building a user interface service ontology includes the following 
steps:

1. Gather semantic information about services of existing 
applications  considering  their  presentation  and 
informal, written specifications.

2. Determine relationships between service specifications 
and build a classification.

3. Eliminate equivalent services from the classification.

4. Give  meaningful  names  for  service  classes  generated 
by the classification algorithm.  Associate specification, 
help  text,  icon,  menu  label,  line  mode  command 
mnemonic, keyboard shortcut and mouse gesture to all  
service items, which were not eliminated in step 3.

There are thousands of services offered by commercial computer 
applications  in  everyday  use  with  hundreds  of  thousands  of 
potential  relationships.   It  is  not  just  time  consuming  but  
practically  impossible  to  find  all  relevant  relationships  and 
equivalences  between  specific  services,  and  to  reduce  their 
number to probably several  hundreds.   That  is why the process 
must be at least partly automated.

Gathering semantic information about  services  (Step  1) can be 
based on software documentation, which could be considered as 
a  corpus  of text.   In  our  case,  however,  text  based  automatic 
ontology generation  methods  using  linguistic  analysis,  lexical 
proximity or  statistical  analysis  [11]  cannot  be  applied.   It  is 
mainly because our concepts are not defined by words in a text  
and  their  internal  relationships,  but  by  larger  text  fragments 
containing several  sentences to several  pages.   State  of the art 
lingustic methods are simply not precise enough to detect exact 
semantic  similarities  between  concepts  under  such 
circumstances.

That  is  why  Step  1  cannot  be  automated,  so  semantic 
specifications of individual  services  must  be explicitly defined. 
To make specifications sound and easy to process  we use first 

order logic statements, which proved to be useful from multiple  
aspects for building ontologies in the past.

Formal  ontologies  represent  categories through axioms  and 
definitions  in  the  form  of  (mainly  first  order)  logic 
statements   [6].   Since  formal  representations  admit 
automatic inference (like resolution), additional information 
can  be  deduced  and  even  the  ontology  itself  can  be 
automatically extended.  Notice that service ontologies are 
not  formal,  and we have no intention  to  make automatic  
inference above ontological  service descriptions.   We just 
need formal  service specifications  as a starting  point  for 
classification.

Another relevant association to our approach is Formal Concept 
Analysis  [4,5],  which supports  organizing a  set  of notions into 
formal  concept  lattices,  by formulating the  same set  of logical 
propositions  with  truth  values  true  or  false above  all  studied 
notions.  If there are n notions and m propositions, a T table of n 
rows  and  m  columns  is  created.   Any cell  T(i,j)  contains  1 
whenever proposition j is valid for notion i, and the cell contains 
0  otherwise.   Neighboring cells  holding  1s  can be united  into 
concepts,  and  further  to  concept  lattices.   This  approach  is 
however not appropriate to us, because the applied propositional 
logic  description  does  not  admit  the  formulation  of  generic 
statements,  so it  results  in extraordinarily large concept tables.  
Furthermore  this  approach  can  only handle  relations  between 
notions,  but  cannot  handle  relations  between  propositions 
efficiently,  which is crucial  for describing services referring to,  
and modifying a set of interrelated objects.

Building  classifications  and  eliminating  equivalent  services 
(Steps 2 and 3) can be automated.   This  is a good news,  since 
these  are  the  activities,  where  relationships  and  equivalences 
must  be detected,  whose potential  number is  by magnitudes of 
order  higher  than  the  number  of  basic  services.   To  find 
relationships  and  to  eliminate  equivalent  services  we  use  an 
algorithm  based  on graph  isomorphism  [8,9,10],  because  it  is 
much  easier  and  more  efficient  to  match  equivalent  graph 
representations of formal  service specifications then to perform 
direct  text  based  matching  of first  order  logic  statements  (for 
more details see section 5).

Graph matching based on formal, language independent concept 
definitions  has  been  applied  in  the  field  of schema  matching,  
which is among others related to finding similarities  and upper  
level  categories  in  existing  ontologies  [14].   For  example  the 
S-Match  semantic  matching  algorithm  [12]  finds  semantic 
similarities  between  ontological trees  containing nodes labelled 
by concepts.  As a preprocessing step original concept labels are 
automatically  compiled  into  statements  of an  internal  concept 
language  based  on first  order  logic.  S-Match  handles  different 
semantic  relations  between  concept  nodes  (equivalence, 
more/less general, mismatch or overlapping).  S-Match computes 
semantic relations between pairs of tree  node concept labels  as 
matrices.

A solution close to our approach is  the  Graphdiff [13] generic 
tree  matcher,  which  perfroms  approximate  matching  of  trees 
based  on  subgraph  isomorphism.   Tree  nodes  have  types and 
edges have distances. Only nodes with the same type can match, 
and  the  strength  of  match  is  determined  by  distances  of 
neighboring  edges.   Graphdiff  computes  scores  to  qualify the 
strength of tree match based upon the number of matching edges 
and the ratios of their associated distances. To enhance practical  
runtime  efficiency  Graphdiff  applies  geometric  hashing  and 
heuristics derived from a valence based model.



Step  4  (specifying meaningful  names  and  associating  attribute 
values) again cannot be automated, because at this point human 
decisions are needed.

In  the  following  sections  a  set  of  notions  will  be  defined  to 
establish a method for describing formal semantic specifications 
of services.  An algorithm called SONG (Semantic user interface 
ONtology Generator)  is  presented,  which  uses  formal  service 
specifications to generate hierarchical service classifications, also 
referred to as service ontologies.  Concepts and operation of the 
algorithm  are  described,  and  its  practical  use  is  introduced 
through a simple example.

4. SEMANTIC SERVICE 
SPECIFICATION
Service semantics describe the meaning of a service to the user.  
To capture common properties of arbitrary services, the meaning 
of the service must be specified in a formal way, which is totally 
independent of the software system, usage, appearance and other 
syntactic features of services.

Users  formulate  requests  and  await  results  according  to  their  
mental  model of services.   The classification method should be 
based  on a  formal  description of user's  mental  service models.  
According to our supposed interaction model,  service execution 
from the  user's  point  can be  considered  as  a  request/response 
pair.   To  formulate  a  request,  the  user  must  fulfill  some 
preconditions  (e.g.  supply  arguments,  assure  certain  content 
types  or  system  states).   When  the  request  is  executed,  a 
response and a set of additional effects are generated for the user. 
For example if a user wants to copy a file into another, he has to 
specify two filenames.   The response is a message, whether the 
file copy succeeded, and the effect is a new file, which holds the 
contents of the source file.  Fortunately the details of execution 
are totally unimportant to the user, so we have a good chance to 
describe service models in a simple and compact form.

According to Figure 2 a semantic service specification is a named 
entity  with  a  precondition  and  an  effect  part,  each  of  which 
contain a set of first order logic predicates.  The set of potential  
predicates and their arguments are predefined and their number 
is kept at a minimum level.

As an example let us consider the semantic service specification 
of the  Windows  Copy service  shown  in  the  left  hand  side  of 
Figure 3.  This  specification says that  there is a service named  
Copy in  Windows,  which  can  be  initiated  by  specifying  two 
arguments named a1 and a2, where the initial value of a1 is v1. 
When the service is executed, a new object is created named a2, 
whose value is v1 (i.e. the value of a1).  Furthermore the value of 
a2 is stored in a persistent location (i.e. in a file).

5. CLASSIFYING SEMANTIC 
SERVICE SPECIFICATIONS
As a result of analysis a separate semantic service specification is  
created  for  each  computer  system  service  using  the  approach 
described above.

The task  of the  classification  algorithm is  to compare pairs  of 
semantic  service  specifications  and  to  determine  their  largest 
intersections.   It seems quite easy: take the textual form of two 
semantic  service  specifications,  and  find  the  common  parts,  
which  can  be  considered  as  a  class  of  semantic  service 
specifications.   This  approach  is  however  surprisingly hard  to 
implement, because:

• The  text  of  two  semantic  service  specifications  can 
contain  arbitrary predicates  in  arbitrary order,  which 
does  not  admit  easy  matching  by  e.g.  ordering 
predicates  lexically  and  pruning  common  prefixes. 
Parsing techniques are required, which are not easy to 
implement  even  using  sophisticated  pattern  matchers 
like regexp parsers or similar machinery.

• Predicates  reference  each  others  through  arguments. 
To allow incremental addition of new semantic service 
specifications without any knowledge of other existing 
specifications,  argument  names  are  consistent  only 
inside  a  specific  semantic  service  specification.   In 
other  words argument  x1  does not necessarily denote 
the  same  argument  in  two  semantic  service 
specifications,  which  means  that  two  textually 
equivalent  predicates  may  be  semantically  different, 
while  two semantically equivalent  predicates  may be 
textually different.   To solve  this  problem,  argument 
names  must  be normalized,  which requires  additional 
parsing.

service('<service_name>','<application_name>');
 precondition;
  {<predicate>(‘<argument1>’{,’<argumentn>’});}
 effect;
  {<predicate>(‘<argument1>’{,’<argumentn>’});}

Figure 2. Semantic Service Specification syntax elements



These  problems 
make  direct  textual 
matching clumsy.  On 
the  other  hand  it  is 
easy  to  transform 
semantic 
specifications into an 
equivalent  graph 
representation, where 
argument  names  are 
simply  eliminated 
and  relationships 
between  predicates 
are expressed directly 
by adjacency of nodes 
inside  the  equivalent 
graphs.   This  way 
parsing and argument 
name  normalization 
can be avoided, while 
a method is  required 
for  matching 
equivalent  graph 
representations  of 
semantic  service 
specifications.   This 
method  is  subgraph 
isomorphism,  which 
generates  the kind of 
results we need.

To see how semantic 
service  specifications 
are  transfomed  into 
equivalent  service 
graphs,  let  us 
consider  the 
Windows  Copy 
example  in Figure 3. 
Equivalent  service 
graphs have predicate 
nodes  (one  for  each 
predicate  in  the 
original  semantic 
service  specification) 
and  attribute  nodes 
(one  for  each named 
attribute).   Predicate 
nodes are labelled by 
the  original 
predicate’s  name 
(e.g.  argument  or 
value)  and  the 
information,  whether 
the  predicate  was 
part  of  the 
precodition  or  effect 
part  (denoted  by the 
p.  or  e.  prefixes 
respectively).   There 
is an edge between a 
predicate  node  and 
an  attribute  node 
whenever  the 

Equivalent Service Graph

Service Specification

service('Copy','Win');

  precondition;

         argument(’a1’);

         argument(’a2’);

        value(’a1’,’v1’);

  effect;

              new(’a2’);

        value(’a2’,’v1’);

       storage(’a2’,’x2’); 

       persistent(’x2’);
Figure 3. Mapping semantic service specifications to 

equivalent service graphs
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predicate contains a reference to the specific attribute.  Edges are 
labelled  by an integer  number  according to the position of the 
related  attribute  inside  the  original  predicate.   Notice  that 
attribute names are neglected, and predicate-attribute references 
are  transformed  to  adjacency  relations  of  the  predicate  and 
attribute nodes inside the equivalent service graph.  This solution 
guarantees  that  two service graphs can be matched even if the  
original semantic service specifications contain different attribute 
names.

Similarities  between  service  specifications  are  discovered 
through detecting maximal  isomorph subgraphs  of any pairs  of 
service graphs  for  a  set  of  semantic  service  specifications. 
Simply  speaking,  two  graphs  are  isomorph,  if  they  can  be 
redrawn in a way that  they look exactly the same.  A maximal  
isomorph intersection of two service graphs is either (1) equal to 
both  service  graphs,  (2)  a  common  subgraph  of  both  service 
graphs or (3) empty.

In case  (1)  the  two services  are  semantically equal,  so one of 
them can  be  omitted  from the  classification.   In  case  (2)  the  
maximal isomorph intersection is a potential service class, which 
should be compared to other service graphs as well.  In case (3) 
there is no semantic relationship between the two  services.

The graph/subgraph relation between an equivalent service graph 
and its  isomorph intersections defines  a containment  hierarchy, 
which is an ordering relation.  This ordering relation is used as 
the basis of classification.

5.1 Service Classification Algorithm
We constructed  an  algorithm  called  SONG (Service  Ontology 
Generator), which finds all maximal isomorph intersections of all  
potential pairs in a set of equivalent service graphs.

For  the  general  case  there  is  no graph  isomorphism algorithm 
with  worst  case  time  complexity better  than  exponential  [10]. 
Fortunately our service graphs have some nice properties, which 
admit  solving the problem with  low order  polinomial  practical 
time complexity algorithms.

1. Service graphs are always  bipartite:  Since first  order 
logic  predicates  can  never  directly  refer  to  another 
predicate,  two predicate  nodes or two attribute  nodes 
cannot be adjacent.

2. Service graphs are relatively small.  An average service 
graph  has  less  than  five  predicate  nodes,  and  our 
current  experiences  suggest  that  the  number  of 
predicate nodes will rarely exceed a dozen.

3. Node and edge labels  of isomorph intersections must 
be equal.

Property (1) may look pretty,  but in fact properties  (2) and (3) 
prove  to  be  much more  useful.   Property (2)  lets  us  radically 
decrease  the  number  of  potential  subgraphs  to  match,  while 
property (3)  allows  drastical  pruning of the search space while  
matching a  single  pair  of graphs.   For  k  service specifications 
having an  average  number  of  n  predicates  the  estimated  time 
complexity  of  our  algorithm  is  between  O(nk)  and  O(n2k2). 
Practical time complexity is nearer to O(nk).

At the end service graphs are converted to OWL format to admit  
the last, manual step of building the service taxonomy.  Attribute  
names are regenerated by simply assigning unique labels to each 
attribute nodes inside a service graph.

6. IMPLEMENTATION
A  prototype  of  SONG  has  been  implemented  within  the 
Oracle10g  environment  using  SQL and  PL/SQL.   This  choice 
may seem strange for the first sight, because relational databases  
are ment for solving data intensive and not computation intensive 
algorithmic tasks,  so the resulting solution is supposed to have 
relatively low runtime  efficiency.   On the  other  hand  it  offers 
extraordinary  flexibility  at  the  implementation  level,  so  this 
unusual  environment  is  highly  adventageous  for  prototyping. 
Underlying  data  structures  could  be  designed  easily  using 
relational tables, while SQL is highly powerful for implementing 
complex graph matching operations in a simple and natural way.  
Furthermore  Oracle  10g  is  optimized  for  efficient  large  scale  
parallel data manipulation, which admits high speed execution, if 
SQL operations are carefully tuned.

Experiments  were  started  by  creating  semantic  service 
specifications for a set of nearly one hundred Windows and FTP 
line mode system commands.  Although this task requires precise  
domain  knowledge,  the  work  is  quite  straightforward.   An 
average semantic service specification can be created within five 
minutes.

When  semantic  service specifications  has  been  loaded,  the 
taxonomy  is  generated  by  converting  semantic  service 
specifications to graphs and performing all  steps of the service 
classification algorithm.

7. PRACTICAL EXPERIENCES
This section demonstrates the use of our method for classifying a 
small  set  of  Ftp  and  Windows  services.   The  examples  are 
intentionally very simple, so that they can be easily followed.

We started from semantic service specifications for six Windows 
and Ftp services (copy, restore, dir, get, ls and mdir).

The  resulting  taxonomy is  converted  to  an  OWL text  file  to 
support manual editing.

Figure  4 shows the taxonomy opened for further  editing using 
Protége  4  [15].   At  this  stage  the  service  ontology must  be 
completed  through  giving  meaningful  names  for  generated 
service  classes,  and  associating  specification,  help  text,  icon, 
menu label,  command mnemonic, keyboard shortcut and mouse 
gesture to all service nodes of the taxonomy according to step 4  
of the classification process described in section 3.



Figure 4. Editing classifications

Figure 4 shows,  that according to the original  semantic service 
specifications  copy  and  restore  are  the  same,  and they have a 
strong relationship to the get service.  An appropriate labeling for 
service classes  ABS.11  and  ABS.7  can be  Copy  and  LocalCopy  
respectively.  Similarly,  ls  and  mdir  are the same, and they are 
strongly  related  to  the  dir  service.   A  possible  labeling  for 
ABS.10  and  ABS.12  can  be  Context  and  RemoteContext  
respectively.

8. CONCLUSIONS
In this article a formal modeling method has been introduced for 
describing  computer  system  services,  and  an  automatic 
classification  algorithm  was  outlined  for  generating  service 
taxonomies.   Practical  applicability  of  the  method  was 
demonstrated through a prototype implementation and a simple 
example.

Our experiences convinced us about the practical usefulness  of 
the presented method, which proved to be surprisingly efficient  
even  using  our  current  Oracle10g  implementation  aimed  for 
prototyping.  During our tests a taxonomy for 95 Windows and 
Ftp  semantic  service  specifications  could  be  generated  well  
within  1  minute  on  a  Lenovo T400  PC with  2.26  GHz dual 
Pentium P8400 CPU and 2 Gbytes of RAM.  This implies that 
our  current  implementation  is  fully appropriate  for  generating 
service taxonomies of practical size as well.

The high run time efficiency was a positive surprise to us. After 
all  Oracle’s  SQL engine  is  one of the  best  optimized software 
components  in  the  world,  which  directly  supports  basic 
operations  of  the  calssification  algorithm  (join  and  filtering),  
furthermore we carefully optimized the source code at the SQL-
PL/SQL level.

On the other hand there is a lot of work ahead.  To generate a  
taxonomy for a sufficient set of computer system services,  their  
semantic service descriptions must be created,  taxonomies must 
be generated, propely labelled and annotated.

The  large  number  and  potential  diversity  of  services  we  will  
meet in the future may also harness the representational power of 
our  semantic  service  specification model,  especially  in  the 
number of required predicates.



A further important step is to extend our algorithm to automatic 
classification  of  other  semantic  user  interface  entities  (like 
content  types,  roles  and  attributes).   This  way it  can  help  us 
building a full featured semantic user interface ontology.
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