
Automatic Classification of
Semantic User Interface Services

Károly Tilly
Oracle Hungary

Lechner Ödön fasor 7.
1095 Budapest, Hungary

+36705065195

karoly.tilly@oracle.com

Zoltán Porkoláb
Eötvös Lóránd University

Pázmány Péter sétány 1/C
1117 Budapest, Hungary

+36309225731

gsd@inf.elte.hu

ABSTRACT
Current user interfaces are ad hoc, application dependent and
constantly change while offering the same functionalities in many
different ways. This article investigates methods for creating
semantic user interfaces, which are much easier to develop,
learn, teach and use. The basic idea of semantic user interfaces
is to analyze specific application domains (like word processing,
file handling or application deployment), organize domain
concepts into ontologies, associate user interface presentation
attributes (like icons, menu labels and line mode command) to
ontology nodes, and to use the ontology as a central controlling
entity of application development and execution. The ontology is
used inside a service oriented semantic user interface framework,
whose elements and potential benefits are also explained.

The main contribution of this article is to investigate methods for
analyzing and classifying computer system services, as a
fundamental step of making the presented semantic user interface
architecture operational. The problems and steps of service
analysis are described and an automatic classification algorithm
is presented based on formal semantic specifications and graph
isomorphism. Implementation details and practical experiences
are also outlined.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems] – Human factors, I.5.3
[Clustering] - Algorithms

General Terms
Algorithms, Human Factors.

Keywords
semantic user interface; service oriented architecture; formal
semantic specification; classification algorithm;

1. INTRODUCTION
State of the art graphical user interfaces (GUIs) are based on
metaphores of real world objects and their related operations,
which are well known to anyone from everyday life. Metaphores

are presented by the user interface in graphical form as windows,
icons and menus. Fundamental concepts of graphical user
interfaces have remained basically unchanged since the eighties
of the last century, when they were introduced in Xerox Star
[18].

Graphical user interfaces are intuitive, which means that users
are supposed to be able to associate a semantic meaning to the
graphical (icon or menu) representations of the real world
metaphores when they see them for the first time. Intuitivity
admits learning by exploring, so that in theory no additional user
training is needed to apply a GUI.

On the other hand at the state of the art there are no strict
standards or known theoretical background, which would limit
the designers of intuitive graphical interfaces in choosing
arbitrary attributes (e.g. form of icons, text of menu labels or
menu topology) for displaying user interface metaphors. That is
why user interfaces become diverse even inside a specific
application domain.

Diverse user interfaces make it almost impossible to teach novice
users a sound background which they could apply in a generic
way for a long time. While grammar school students receive
generic knowledge in physics or biology, they receive short term,
specific knowledge in informatics, just because there is no well
known, widely accapted specification of computer system
services and their common representations.

The main problem with creating and learning state of the art user
interfaces is that the semantics of real world metaphores is
associated to their user interface representations in an implicit
way. We think that intuitivity is a very good thing from the
user’s perspective, but it is bad at the user interface designer’s
side. Certain parts of user interfaces, like icons, menu labels and
menu structure along with the semantic specification of
elementary services should be invariant, application, platform
and device independent, while other properties, like skin or
layout design of the interface may arbitrarily change. This
approach is similar to the user interface of modern cars: they all
have the steering wheel, pedals and important controls arranged
the same way, while the shape of the body, form and colours of
the seats and the dashboard may arbitrarily change. It guarantees
that we do not have to learn to drive our new car again, while we
may still find its interior and body design exciting.

This article investigates methods for creating user interfaces,
which are much easier to develop, learn, teach and use. The
basic idea is to analyze specific application domains (like word
processing, file handling or application deployment), to organize
domain concepts into ontologies, to associate user interface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLASH 2010, Workshop on Ontology Driven Software Engineering,
October 18, Reno, Nevada, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

presentation attributes (like icons, menu labels and line mode
commands) to ontology nodes, and to use the ontology as a
central control repository of application development and
execution.

In Section 2 the architecture and potential benefits of ontology
driven semantic user interfaces are outlined. The proposed
semantic user interface architecture is service oriented, so
services form the central part of the driving ontology. A
fundamental step of making the architecture operational is to
analyze and classify computer system services, which is the main
contribution of this article. Section 3 explains methods for
describing and classifying semantic user interface services. In
section 4 semantic service specifications are introduced as our
method for describing user interface services. Section 5 explains
properties and generation of equivalent service graphs and
outlines a classification algorithm for semantic service
specifications based on graph isomorphism. Section 6 describes
implementation details, while section 7 summarizes practical
experiences.

2. SEMANTIC USER INTERFACES [1]
Semantic user interfaces are based on static, user editable
documents (so called semantic user interface documents -
SUIDs), which can contain references to arbitrary services,
whose contracts are specified in domain ontologies.

According to Figure 1, SUIDs empower domain experts to create
applications by editing sets of static documents, while IT
professionals design and implement reusable user interface
components and service provider components based on standard
specifications stored in domain ontologies. To achieve this,
domain ontologies must be created and an execution
infrastructure is required.

The operation of semantic user interfaces follows a service
oriented approach [16]. There has been recent efforts made for
extending service oriented architecture with semantic elements
including ontologies and refined functionalities, among others
discovery, composition or mediation based on formal languages
and automated reasoning [7,17]. While the operating
environment of semantic service oriented systems is the internet
containing an arbitrary number of distributed components,

semantic user interfaces apply similar paradigms in smaller scale
domains, like a single computer or a smart phone. Similarly, in
service oriented architectures a service is generally considered a
large, complex entity, while in semantic user interfaces it makes
sense using small, elementary services organized into rigorous
service ontologies.

Semantic User Interface (SUI) applications work in a
request/response style. A request is defined as a list of objects,
where each object has an associated semantic meaning. One of
the objects defines a service, and the others define a set of
arguments. Requests are executed by service providers, which
implement activities with predefined contracts (services
associated with specific argument names and types) stored in
domain ontologies.

Architectural elements and operation of a semantic user interface
infrastructure are explained according to Figure 1.

The SUI Document Browser renders SUIDs containing objects
with specific content types registered in domain ontologies.

User interaction through a semantic user interface is based on a
simple interaction model, the presentation-navigation-selection-
activation cycle. According to this model the user interface
presents a set of content objects. The user assembles requests by
navigating desired objects; selecting them; assigning a semantic
role to each of them, and finally performing a terminating
gesture to initiate request execution.

Terminating gestures, like pressing the Enter key, signal the
SUID Browser that the user has assembled a request, which
should be forwarded for execution. The system executes the
request, and returns a result, which is combined by the SUID
Browser with the actually displayed pieces of contents.

The Service Channel assures semantic separation, which means
that domain concepts of the user’s mental model are explicitly
separated from user interface components and application
components. The set of separated domain concepts allow a
dynamic mapping between elements of user interface documents
and underlying application components.

In a technical sense the Service Channel dynamically matches
requests to service provider contracts according to the roles and
content types of request objects. The Service Channel
determines the actual provider contract from the request,
retrieves the providers offering the given contract from the
Provider Registry, and selects one of them to execute. In other
words service requests are not wired to specific executable
entities as in state of the art systems (even in application servers,
which merely offer spatial separation), but they are bound during
run time, before execution.

According to domain ontology specifications the user interface
always presents a specific service the same way independently of
its arguments. For example, if service copy has an associated
shortcut Ctrl+C, it can be used to copy selected content to the
clipboard (as usual), but it can also be used to copy a source to a
target argument independently of the fact, whether the content
type of the arguments are local file, URL or even two files with
different formats (which requires implicit conversion). This way
the user can formulate semantically similar requests the same
way, while the execution of requests may need providers with
drastically different complexity and resource requirements.

Figure 1. Semantic user interface architecture

.

3. ANALYSIS AND REPRESENTATION
OF SEMANTIC USER INTERFACE
SERVICES
The goal of analyzing user interface services is to find a minimal,
set of services, to organize them into an ontology and to
standardize them by associating service attributes like
specification, help text, icon, menu label, command mnemonic,
keyboard shortcut or mouse gesture.

The use of a generic service ontology has the following
advenatges:

• User interface designers can reference service ontology
items in semantic user interface documents by simply
decorating certain objects with relationships to
ontology nodes.

• Component developers can implement service
providers based upon standardized service
specifications stored in the ontology.

• Users can learn (can be taught) the attributes and
specification of generic services stored in the ontology.

These properties make service ontolgies the central driving entity
of a semantic user interface framework. Service Ontologies
eliminate user interface diversity and support easy creation,
learning, teaching and use of new interfaces.

Building a user interface service ontology includes the following
steps:

1. Gather semantic information about services of existing
applications considering their presentation and
informal, written specifications.

2. Determine relationships between service specifications
and build a classification.

3. Eliminate equivalent services from the classification.

4. Give meaningful names for service classes generated
by the classification algorithm. Associate specification,
help text, icon, menu label, line mode command
mnemonic, keyboard shortcut and mouse gesture to all
service items, which were not eliminated in step 3.

There are thousands of services offered by commercial computer
applications in everyday use with hundreds of thousands of
potential relationships. It is not just time consuming but
practically impossible to find all relevant relationships and
equivalences between specific services, and to reduce their
number to probably several hundreds. That is why the process
must be at least partly automated.

Gathering semantic information about services (Step 1) can be
based on software documentation, which could be considered as
a corpus of text. In our case, however, text based automatic
ontology generation methods using linguistic analysis, lexical
proximity or statistical analysis [11] cannot be applied. It is
mainly because our concepts are not defined by words in a text
and their internal relationships, but by larger text fragments
containing several sentences to several pages. State of the art
lingustic methods are simply not precise enough to detect exact
semantic similarities between concepts under such
circumstances.

That is why Step 1 cannot be automated, so semantic
specifications of individual services must be explicitly defined.
To make specifications sound and easy to process we use first

order logic statements, which proved to be useful from multiple
aspects for building ontologies in the past.

Formal ontologies represent categories through axioms and
definitions in the form of (mainly first order) logic
statements [6]. Since formal representations admit
automatic inference (like resolution), additional information
can be deduced and even the ontology itself can be
automatically extended. Notice that service ontologies are
not formal, and we have no intention to make automatic
inference above ontological service descriptions. We just
need formal service specifications as a starting point for
classification.

Another relevant association to our approach is Formal Concept
Analysis [4,5], which supports organizing a set of notions into
formal concept lattices, by formulating the same set of logical
propositions with truth values true or false above all studied
notions. If there are n notions and m propositions, a T table of n
rows and m columns is created. Any cell T(i,j) contains 1
whenever proposition j is valid for notion i, and the cell contains
0 otherwise. Neighboring cells holding 1s can be united into
concepts, and further to concept lattices. This approach is
however not appropriate to us, because the applied propositional
logic description does not admit the formulation of generic
statements, so it results in extraordinarily large concept tables.
Furthermore this approach can only handle relations between
notions, but cannot handle relations between propositions
efficiently, which is crucial for describing services referring to,
and modifying a set of interrelated objects.

Building classifications and eliminating equivalent services
(Steps 2 and 3) can be automated. This is a good news, since
these are the activities, where relationships and equivalences
must be detected, whose potential number is by magnitudes of
order higher than the number of basic services. To find
relationships and to eliminate equivalent services we use an
algorithm based on graph isomorphism [8,9,10], because it is
much easier and more efficient to match equivalent graph
representations of formal service specifications then to perform
direct text based matching of first order logic statements (for
more details see section 5).

Graph matching based on formal, language independent concept
definitions has been applied in the field of schema matching,
which is among others related to finding similarities and upper
level categories in existing ontologies [14]. For example the
S-Match semantic matching algorithm [12] finds semantic
similarities between ontological trees containing nodes labelled
by concepts. As a preprocessing step original concept labels are
automatically compiled into statements of an internal concept
language based on first order logic. S-Match handles different
semantic relations between concept nodes (equivalence,
more/less general, mismatch or overlapping). S-Match computes
semantic relations between pairs of tree node concept labels as
matrices.

A solution close to our approach is the Graphdiff [13] generic
tree matcher, which perfroms approximate matching of trees
based on subgraph isomorphism. Tree nodes have types and
edges have distances. Only nodes with the same type can match,
and the strength of match is determined by distances of
neighboring edges. Graphdiff computes scores to qualify the
strength of tree match based upon the number of matching edges
and the ratios of their associated distances. To enhance practical
runtime efficiency Graphdiff applies geometric hashing and
heuristics derived from a valence based model.

Step 4 (specifying meaningful names and associating attribute
values) again cannot be automated, because at this point human
decisions are needed.

In the following sections a set of notions will be defined to
establish a method for describing formal semantic specifications
of services. An algorithm called SONG (Semantic user interface
ONtology Generator) is presented, which uses formal service
specifications to generate hierarchical service classifications, also
referred to as service ontologies. Concepts and operation of the
algorithm are described, and its practical use is introduced
through a simple example.

4. SEMANTIC SERVICE
SPECIFICATION
Service semantics describe the meaning of a service to the user.
To capture common properties of arbitrary services, the meaning
of the service must be specified in a formal way, which is totally
independent of the software system, usage, appearance and other
syntactic features of services.

Users formulate requests and await results according to their
mental model of services. The classification method should be
based on a formal description of user's mental service models.
According to our supposed interaction model, service execution
from the user's point can be considered as a request/response
pair. To formulate a request, the user must fulfill some
preconditions (e.g. supply arguments, assure certain content
types or system states). When the request is executed, a
response and a set of additional effects are generated for the user.
For example if a user wants to copy a file into another, he has to
specify two filenames. The response is a message, whether the
file copy succeeded, and the effect is a new file, which holds the
contents of the source file. Fortunately the details of execution
are totally unimportant to the user, so we have a good chance to
describe service models in a simple and compact form.

According to Figure 2 a semantic service specification is a named
entity with a precondition and an effect part, each of which
contain a set of first order logic predicates. The set of potential
predicates and their arguments are predefined and their number
is kept at a minimum level.

As an example let us consider the semantic service specification
of the Windows Copy service shown in the left hand side of
Figure 3. This specification says that there is a service named
Copy in Windows, which can be initiated by specifying two
arguments named a1 and a2, where the initial value of a1 is v1.
When the service is executed, a new object is created named a2,
whose value is v1 (i.e. the value of a1). Furthermore the value of
a2 is stored in a persistent location (i.e. in a file).

5. CLASSIFYING SEMANTIC
SERVICE SPECIFICATIONS
As a result of analysis a separate semantic service specification is
created for each computer system service using the approach
described above.

The task of the classification algorithm is to compare pairs of
semantic service specifications and to determine their largest
intersections. It seems quite easy: take the textual form of two
semantic service specifications, and find the common parts,
which can be considered as a class of semantic service
specifications. This approach is however surprisingly hard to
implement, because:

• The text of two semantic service specifications can
contain arbitrary predicates in arbitrary order, which
does not admit easy matching by e.g. ordering
predicates lexically and pruning common prefixes.
Parsing techniques are required, which are not easy to
implement even using sophisticated pattern matchers
like regexp parsers or similar machinery.

• Predicates reference each others through arguments.
To allow incremental addition of new semantic service
specifications without any knowledge of other existing
specifications, argument names are consistent only
inside a specific semantic service specification. In
other words argument x1 does not necessarily denote
the same argument in two semantic service
specifications, which means that two textually
equivalent predicates may be semantically different,
while two semantically equivalent predicates may be
textually different. To solve this problem, argument
names must be normalized, which requires additional
parsing.

service('<service_name>','<application_name>');
 precondition;
 {<predicate>(‘<argument1>’{,’<argumentn>’});}
 effect;
 {<predicate>(‘<argument1>’{,’<argumentn>’});}

Figure 2. Semantic Service Specification syntax elements

These problems
make direct textual
matching clumsy. On
the other hand it is
easy to transform
semantic
specifications into an
equivalent graph
representation, where
argument names are
simply eliminated
and relationships
between predicates
are expressed directly
by adjacency of nodes
inside the equivalent
graphs. This way
parsing and argument
name normalization
can be avoided, while
a method is required
for matching
equivalent graph
representations of
semantic service
specifications. This
method is subgraph
isomorphism, which
generates the kind of
results we need.

To see how semantic
service specifications
are transfomed into
equivalent service
graphs, let us
consider the
Windows Copy
example in Figure 3.
Equivalent service
graphs have predicate
nodes (one for each
predicate in the
original semantic
service specification)
and attribute nodes
(one for each named
attribute). Predicate
nodes are labelled by
the original
predicate’s name
(e.g. argument or
value) and the
information, whether
the predicate was
part of the
precodition or effect
part (denoted by the
p. or e. prefixes
respectively). There
is an edge between a
predicate node and
an attribute node
whenever the

Equivalent Service Graph

Service Specification

service('Copy','Win');

 precondition;

 argument(’a1’);

 argument(’a2’);

 value(’a1’,’v1’);

 effect;

 new(’a2’);

 value(’a2’,’v1’);

 storage(’a2’,’x2’);

 persistent(’x2’);
Figure 3. Mapping semantic service specifications to

equivalent service graphs

.

p.argument

p.argument

e.value

p.value

att
r

att
r

att
r

att
r

e.new

e.persistent

e.storage

1

2

1

2

1

2

predicate contains a reference to the specific attribute. Edges are
labelled by an integer number according to the position of the
related attribute inside the original predicate. Notice that
attribute names are neglected, and predicate-attribute references
are transformed to adjacency relations of the predicate and
attribute nodes inside the equivalent service graph. This solution
guarantees that two service graphs can be matched even if the
original semantic service specifications contain different attribute
names.

Similarities between service specifications are discovered
through detecting maximal isomorph subgraphs of any pairs of
service graphs for a set of semantic service specifications.
Simply speaking, two graphs are isomorph, if they can be
redrawn in a way that they look exactly the same. A maximal
isomorph intersection of two service graphs is either (1) equal to
both service graphs, (2) a common subgraph of both service
graphs or (3) empty.

In case (1) the two services are semantically equal, so one of
them can be omitted from the classification. In case (2) the
maximal isomorph intersection is a potential service class, which
should be compared to other service graphs as well. In case (3)
there is no semantic relationship between the two services.

The graph/subgraph relation between an equivalent service graph
and its isomorph intersections defines a containment hierarchy,
which is an ordering relation. This ordering relation is used as
the basis of classification.

5.1 Service Classification Algorithm
We constructed an algorithm called SONG (Service Ontology
Generator), which finds all maximal isomorph intersections of all
potential pairs in a set of equivalent service graphs.

For the general case there is no graph isomorphism algorithm
with worst case time complexity better than exponential [10].
Fortunately our service graphs have some nice properties, which
admit solving the problem with low order polinomial practical
time complexity algorithms.

1. Service graphs are always bipartite: Since first order
logic predicates can never directly refer to another
predicate, two predicate nodes or two attribute nodes
cannot be adjacent.

2. Service graphs are relatively small. An average service
graph has less than five predicate nodes, and our
current experiences suggest that the number of
predicate nodes will rarely exceed a dozen.

3. Node and edge labels of isomorph intersections must
be equal.

Property (1) may look pretty, but in fact properties (2) and (3)
prove to be much more useful. Property (2) lets us radically
decrease the number of potential subgraphs to match, while
property (3) allows drastical pruning of the search space while
matching a single pair of graphs. For k service specifications
having an average number of n predicates the estimated time
complexity of our algorithm is between O(nk) and O(n2k2).
Practical time complexity is nearer to O(nk).

At the end service graphs are converted to OWL format to admit
the last, manual step of building the service taxonomy. Attribute
names are regenerated by simply assigning unique labels to each
attribute nodes inside a service graph.

6. IMPLEMENTATION
A prototype of SONG has been implemented within the
Oracle10g environment using SQL and PL/SQL. This choice
may seem strange for the first sight, because relational databases
are ment for solving data intensive and not computation intensive
algorithmic tasks, so the resulting solution is supposed to have
relatively low runtime efficiency. On the other hand it offers
extraordinary flexibility at the implementation level, so this
unusual environment is highly adventageous for prototyping.
Underlying data structures could be designed easily using
relational tables, while SQL is highly powerful for implementing
complex graph matching operations in a simple and natural way.
Furthermore Oracle 10g is optimized for efficient large scale
parallel data manipulation, which admits high speed execution, if
SQL operations are carefully tuned.

Experiments were started by creating semantic service
specifications for a set of nearly one hundred Windows and FTP
line mode system commands. Although this task requires precise
domain knowledge, the work is quite straightforward. An
average semantic service specification can be created within five
minutes.

When semantic service specifications has been loaded, the
taxonomy is generated by converting semantic service
specifications to graphs and performing all steps of the service
classification algorithm.

7. PRACTICAL EXPERIENCES
This section demonstrates the use of our method for classifying a
small set of Ftp and Windows services. The examples are
intentionally very simple, so that they can be easily followed.

We started from semantic service specifications for six Windows
and Ftp services (copy, restore, dir, get, ls and mdir).

The resulting taxonomy is converted to an OWL text file to
support manual editing.

Figure 4 shows the taxonomy opened for further editing using
Protége 4 [15]. At this stage the service ontology must be
completed through giving meaningful names for generated
service classes, and associating specification, help text, icon,
menu label, command mnemonic, keyboard shortcut and mouse
gesture to all service nodes of the taxonomy according to step 4
of the classification process described in section 3.

Figure 4. Editing classifications

Figure 4 shows, that according to the original semantic service
specifications copy and restore are the same, and they have a
strong relationship to the get service. An appropriate labeling for
service classes ABS.11 and ABS.7 can be Copy and LocalCopy
respectively. Similarly, ls and mdir are the same, and they are
strongly related to the dir service. A possible labeling for
ABS.10 and ABS.12 can be Context and RemoteContext
respectively.

8. CONCLUSIONS
In this article a formal modeling method has been introduced for
describing computer system services, and an automatic
classification algorithm was outlined for generating service
taxonomies. Practical applicability of the method was
demonstrated through a prototype implementation and a simple
example.

Our experiences convinced us about the practical usefulness of
the presented method, which proved to be surprisingly efficient
even using our current Oracle10g implementation aimed for
prototyping. During our tests a taxonomy for 95 Windows and
Ftp semantic service specifications could be generated well
within 1 minute on a Lenovo T400 PC with 2.26 GHz dual
Pentium P8400 CPU and 2 Gbytes of RAM. This implies that
our current implementation is fully appropriate for generating
service taxonomies of practical size as well.

The high run time efficiency was a positive surprise to us. After
all Oracle’s SQL engine is one of the best optimized software
components in the world, which directly supports basic
operations of the calssification algorithm (join and filtering),
furthermore we carefully optimized the source code at the SQL-
PL/SQL level.

On the other hand there is a lot of work ahead. To generate a
taxonomy for a sufficient set of computer system services, their
semantic service descriptions must be created, taxonomies must
be generated, propely labelled and annotated.

The large number and potential diversity of services we will
meet in the future may also harness the representational power of
our semantic service specification model, especially in the
number of required predicates.

A further important step is to extend our algorithm to automatic
classification of other semantic user interface entities (like
content types, roles and attributes). This way it can help us
building a full featured semantic user interface ontology.

9. REFERENCES
[1] K. Tilly, Z. Porkoláb 2010: Semantic User Interfaces, International

Journal of Enterprise Information Systems, 6, 1, (Jan-March 2010)
29-43

[2] G. Booch 1994: Object Oriented Analysis and Design, Addison-
Wesley 1994

[3] G. Busacker, L. Saaty 1968: Finite Graphs and Networks, McGraw
Hill 1968

[4] N. Guarino, C. Welty 2000: Ontological Analysis of Taxonomic
Relationships, Proc. of ER-2000 The International Conference on
Conceptual Modeling (October 2000)

[5] B. Ganter, R. Wille 1999: Formal Concept Analysis · Mathematical
Foundations, Springer Verlag 1999

[6] J. F. Sowa: Ontology. http://www.jfsowa.com/ontology/ (2003).

[7] D. Anicic, M. Brodie, J. de Bruijn, D. Fensel, T. Haselwanter, M. Hepp
et. al. 2006: Semantically Enabled Service Oriented Architecture,
Technical Report, DERI, University of Inssbruck, Austria

[8] J. Ullmann 1976: An Algorithm for Subgraph Isomorphism, Journal of
the ACM, 23, (1976) 31-42

[9] K. Yamazaki, B. de Bodlaender 1997: Isomorphism for Graphs of
Bounded Distance Width. Algorithmica 24, 2, (1997) 105-127

[10] S. Bachl 1999: Isomorphic Subgraphs, Lecture Notes in Computer
Science 1731, (1999) 286-97

[11] C. Biemann 2005: Ontology Learning from Text: A Survey of Methods
LDV Forum 20, 2, (2005) 75-93

[12] F. Giunchiglia, P. Shvaiko, M. Yatskevich 2004: S-Match: An
Algorithm And An Implementation Of Semantic Matching,
Proceedings of the European Semantic Web Symposium, LNCS 3053,
(2004) 61-75

[13] K. Zhang, D. Shasha (1997): Approximate tree pattern matching, in A.
Apostolico, Z. Galil (eds): Pattern matching in strings, trees, and
arrays. Oxford University Press, (1997) 341–371

[14] E. Rahm, P. A. Bernstein 2001: A survey of approaches to automatic
schema matching, The VLDB Journal 10, (2001) 334–350

[15] Protégé Ontolology Editor and Knowledge Acquisition System (2010),
Retrieved July 30, 2010 from Protégé Web Site:
http://protege.stanford.edu

[16] C. M. Mackenzie, K. Laskey, F. MacKabe, P. F. Brown, R. Metz 2006:
Reference Model for Service Oriented Architecture, OASIS Standard,
http://www.oasis-open.org/specs/#soa-rmv1.0, (2006)

[17] S. A. McIlraith, T. C. Son, H. Zeng 2001: Semantic Web Services,
IEEE Intelligent Systems, 12, 2, (2001) 46-53

[18] Johnson, J., Roberts T. L., Verplank W., Smith D. C., Irby C., Beard
M., Mackey K. 1989: The Xerox “Star”: A Retrospective IEEE
Computer 22, 9 (Sept. 1989), 11-26, 28-29

	1. INTRODUCTION
	2. SEMANTIC USER INTERFACES [1]
	3. ANALYSIS AND REPRESENTATION OF SEMANTIC USER INTERFACE SERVICES
	4. SEMANTIC SERVICE SPECIFICATION
	5. CLASSIFYING SEMANTIC SERVICE SPECIFICATIONS
	5.1 Service Classification Algorithm

	6. IMPLEMENTATION
	7. PRACTICAL EXPERIENCES
	8. CONCLUSIONS
	9. REFERENCES

