
Inheritance Profiles of Process Functional Programs 
 

Jaroslav Porubän, Peter Václavík*

Department of Computers and Informatics,  
Technical University of Košice, Letná 9, 042 00 Košice, Slovakia 

E-mail: {jaroslav.poruban, peter.vaclavik}@tuke.sk 
 

Abstract 

An execution profiling attempts to provide feedback by reporting to the programmer information 
about inefficiencies within the program. Instead of writing whole code highly optimized, the programmer can 
initially write simple, maintainable code without much concern for efficiency. Profiling is an effective tool 
for finding hot spots in a program or sections of code that consumes most of the computing time and space. 
The paper presents already implemented execution profiler for process functional program. From the 
viewpoint of implementation, process functional language is between an impure eager functional language 
and a monadic lazy pure functional language. The key problem of execution profiling is to relate gathered 
information about an execution of the program back to the source code in well-defined manner. The paper 
defines language constructs for monitoring resource utilization during the program execution. In our solution 
programmer can associate label with each expression in a program. All resources used during the evaluation 
of a labeled expression are mapped to the specified label. The paper is concerned with creating of inheritance 
profiles. Inheritance profile can reduce the time spent with program profiling. Research results are presented 
on sample program illustrating different types of time and space profiles generated by already implemented 
profiler for process functional programs. 

Keywords: process functional language, execution profiler, inheritance profiles. 
 

                                                           
* This work was supported by VEGA Grant No. 1/1065/04 - Specification and implementation of aspects in 
programming. 

1. Introduction 
 
A purely functional language is concise, 
composable and extensible. The reasoning 
about the pure functional programs defined in 
terms of expressions and evaluated without 
side effects is simpler than the reasoning about 
the imperative programs describing the stateful 
systems. From the viewpoint of systems 
design, it seems more appropriate (at least to 
most of programmers) to describe the systems 
using an imperative language, expressing the 
state explicitly by variables as memory cells. 
Although the reliability of an imperative 
approach may be increased using object 
oriented paradigm, it solves neither the 
problem of reasoning about the functional 
correctness of fine grains of computation, 
since they are still affected by subsequent 
updating the cells in a sequence of 
assignments, nor the problem of profiling the 
program to obtain the execution satisfying the 
time requirements of a user. 

 
Using the today compilers, code generators 
and tools, programmer can define functionality 
of a program on a higher abstract level than 
anytime before. Many programmers write their 
programs without knowledge of resource 
utilization during the program execution what 
leads to inefficiencies within the code. Barry 
Boehm reports that he has measured that 20 
percent of the routines consume 80 percent of 
the execution time [1]. Donald Knuth found 
that less than 4 percent of a program usually 
accounts for more than 50 percent of its run 
time [7]. That is why the code optimization is 
so important. An execution profiling attempts 
to provide feedback by reporting to the 
programmer information about inefficiencies 
within the program [12]. Information about 
resource utilization are collected during the 
program execution. Instead of writing whole 
code highly optimized, the programmer can 
initially write simple, maintainable code 
without much concern for efficiency.  



Once completed the performance can be 
profiled, and effort spent improving the 
program where it is necessary [11]. Profiling is 
an effective tool for finding hot spots in a 
program, the functions or sections of code that 
consume most of the computing time. Profiles 
should be interpreted with care, however. 
Given the sophistication of compilers and the 
complexity of caching and memory effects. as 
well as the fact that profiling a program affects 
its performance, the statistics in a profile can 
be only approximate. 
 
Many of ideas for process functional program 
profiling come out a pure functional program 
profiling because of the same functional basis 
[2],[10],[11]. Our previous work proved that 
all process functional programs can be easily 
transformed into pure functional programs 
using state transformers and monads. The 
paper presents our approach to profiling of 
process functional program, but it is simple to 
extend the approach to both imperative and 
functional language. 
 
2. Process Functional Language 
  
From the viewpoint of implementation, PFL is 
between an impure eager functional language 
and a monadic lazy pure functional language. 
The main difference between a process 
functional language and a pure functional 
language is variable environment that is 
designed to fulfill the needs of easier state 
representation in a functional program [4], [6].  
 
Variable environment in PFL is a mapping 
from variable to its value. The variable 
environment are updated and accessed during 
the runtime implicitly applying the process to 
values.  The process in the process functional 
language differs from a function in a purely 
functional language only by its type definition.  
 
Let us define process f as an example. 
 
f :: a Int → b Int → Int 
f x y = x + y 
 
Applying the process f to arguments, for 
example f 2 3, expression evaluates to 5, 

environment variable a is updated to value 2 
and environment variable b is update to value 
3. If the process is applied to a control value 
(), for example f () 4 than the process is 
evaluated using the current value of the 
environment variable a and variable b is 
updated to 4. 
 
3. Resources and execution profiling 
 
There are two main resources that are utilized 
in program and systems: computation time and 
memory space.  
The main approach to the code optimization is 
either to minimize the time or memory space.  
Although it would be better to minimize both 
time and space, it is well understood that these 
two requirements are contradictory and it is 
impossible to fulfill both at the same time. 
 
Before being able to improve the efficiency of 
a program, a programmer must be able to [12]: 

• Identify execution bottlenecks of the 
program - parts of a program where 
much of time and space is used. 

• Identify the cause of these bottlenecks 
The potential benefits of execution 

profiling were first highlighted by Knuth [5]. 
A profiler must conform two main criteria: 

• must measure the distribution of the 
key program resources, 

• measurement data must be related to 
the source code of a program in 
understandable manner. 

Execution profile describes resource 
distribution during the program execution. 
Information about resource distribution are 
gathered during the program execution. The 
profiling cycle (shown on Fig. 1) describes the 
process of improving the program efficiency 
based on the program execution profile [12].   
 



 

Fig. 1: The profiling cycle. 

 
The key problem of execution profiling is to 
relate gathered information about an execution 
of the program back to the source code in 
well-defined manner. This is difficult when 
functional program is profiled since it provides 
higher level of abstractions than imperative 
one. Some features of a functional language, 
which makes program profiling more difficult 
than profiling an imperative program are: 

• program transformation during 
compilation, polymorphism,  

• higher-order function, 
• lazy evaluation, 
• lot of simple functions within code. 

 
4. Simple program profiling 
 
Since our aim is "to compute" resource 
utilization at any point of computation, we 
define special constructs to monitor the 
resource utilization during the PFL program 
execution. In our solution programmer can 
associate label with each expression in a 
program as follows: 
 

label name  e 
 
All resources used during the evaluation of an 
expression e are mapped to the label specified 
with label name. Using this construct 
programmer can concentrate on a specific part 
(or parts) of a program. Expression label name  
e is evaluated to value of  e. Construct label is 
useful for the profiling purposes only. 
Of course, it is necessary to preserve the 
semantics of the expressions labeling during 
the transformation of the program when it is 
compiled. To be more precise, constructs for 

conditional profiling were incorporated into 
the process functional language. The first one 
is as follows. 
 

label name  e when ec
 
If expression ec is evaluated to value True of 
the Bool type, then all resources used during 
the evaluation of e are associated with label 
name. Otherwise, all used resources are 
attributed to the parent label. Of course, 
evaluation of ec cannot update the variable 
environment, because it is necessary to 
evaluate the program to the same value during 
the program profiling as during the program 
execution. On the other side, variable 
environment can be accessed during the 
evaluation of expression ec. Fulfillment of the 
rule is checked during the static analysis in the 
PFL compiler. Resources used during the 
evaluation of the conditional expression ec are 
attributed to the special label profiling 
representing profiling overhead costs. 
Labeling inside the ec is ignored. It is clear, 
that conditional labeling is not the same as 
 

if ec then label name e else e 
 
because of two main reasons: 

• expression ec is evaluated only during 
the profiling nor the program 
execution, 

• all resources used during the evaluation 
of ec are attributed to the center with 
label profiling regardless of labeling in 
ec.  

 
Conditional profiling can enormously extend 
the time of profiling depending on the 
complexity of expressions ec. Using 
conditional profiling label can be dynamically 
activated based on decision during the 
execution of a program. 
Next example presents conditional labeling. 
 
label "test" is_prime n when n > 100 
  



5. Inheritance profiles 
 
Usually the cost of function evaluation 
depends on arguments to which are function 
applied. Sometimes it is useful to consider the 
context of function in which it is called -
parent. That is why the inheritance profiles are 
created. Usage and meaning of inheritance 
profile of a program is explained on example. 
On Fig. 2 call graph of a simple program is 
depicted. Function h is called from function f 
10 times with total cost 500 and from function 
g 20 times with total cost 100.  
 

 

Fig. 2: Call graph example. 

 
Simple profile for the program is in the 
following table on Fig. 3.  
 

Function Called Cost 
f 1 10 
g 4 80 
h 30 600 

Fig. 3: Simple profile. 

 
Fig. 4 presents inheritance profile for the 
presented call graph (Fig. 2) and function h. 
The first one is statistical profile that is 
generated from count and simple profile. The 
second one is measured accurate inheritance 
profile. 
 
Parent → 
Function 

Called/ 
Total 

Cost 
Statistical 

Cost 
Accurate 

Inheritanc
e 

Inheritanc
e 

 
f → h 10/30 200 500 
f → g 20/30 400 100 

Fig. 4: Inheritance profiles. 

 
In our profiler a few constructs for inheritance 
profile support were implemented. The first 
one construct defined for conditional labeling 
with regard to parent context. 
 

label name  e when enclosed namec
 
Using this construction, label can be activated 
if parent center is same as specified. This 
construct can be used to create inheritance 
profiles. Resources used during the evaluation 
of expression e are attributed to the center with 
label name only if parent label is namec. 
Otherwise, resources are attributed to the 
parent label. 
 
Next example presents usage of conditional 
enclosed labeling. 
 
f = label "f" h 500 
g = label "g" h 100 
h n = label "f-h" (label "f-g" (p n)  

when enclosed "f") when 
enclosed "f" 

 
For more flexible inheritance profiling two 
other constructions were defined.  
  

label name inherits e 
label name inherits e when ec

 
Parent context are automatically added to the 
current labeled center. Inheritance profiling is 
not limited only to two levels parent/child. 
Next example presents labeling for inheritance 
profiling of a simple process functional 
program. 
 
f = label "f" h 500 
g = label "g" h 100 
h n= label "h" inherits (p n) 
 
Function h can be evaluated from function f or 
h. Using the inheritance-profiling label "h" is 



always connected with context of evaluation 
(function "f" or "g"). 
 
Implemented process functional program 
profiler nowadays supports five types of 
profiles:  

• frequency count profile 
• time profile 
• heap profile 
• maximum requirements heap profile 
• variable access/update profile 

 
Program profile is created during the 
execution using the sampling method. 
Execution is interrupted in specified time 
intervals (predefined value is 10 milliseconds) 
and information about used resources are 
collected and attributed to the current labeled 
center. Program profiling increases execution 
time approximately from 5 to 10 percent 
depending on the concrete program and 
labeling. Formal semantics of the execution 
profiling is out of the scope of the paper and 
can be found in [5]. 
 
7. Conclusion 
  
Expressing the imperative semantics by 
functional structure of programs in PFL seems 
to be useful for representing the resources and 
evaluating the behavior of programs and 
systems.   

Using the execution profile of a 
program a programmer had to answer next two 
questions: 

• How are resources distributed during 
the program execution? 

• What is the effect of a particular 
modification of a program? 

 
Our solution to process functional program 

execution profiling was presented in this 
paper. Using our method every expression in 
the PFL program can be separately profiled.  
The definition of profiling grains is up to the 
programmer. 
We have already defined formal semantics of 
process functional program profiling. This 
work is based on our previous research of 
profiling and static evaluation of process 
functional programs [8]. 

As a result, the static evaluation 
method is strongly associated with the source 
specification. This may help to a programmer 
while program development considering not 
just the function but also the behavior, 
represented by resources used. Combining 
execution profiling with static analysis look 
very promising in gathering information about 
resource utilization during program execution.  
 The results of this research may 
contribute to the field of real time and 
embedded systems [13], [14], system scalabity 
[9]. 

Our future plan is to extend profiling 
tools to object oriented PFL and to formal 
specification of a program profiling for 
parallel environment [3]. 
 
References 
  
[1] Barry W. Boehm: Improving Software 

Productivity. IEEE Computer 20, Vol. 9, 
1987, pp. 43-57. 

[2] Chris D. Clack, Stuart Clayman, David 
Parrott: Lexical Profiling: Theory and 
Practice. Journal of Functional 
Programming Vol 5., No. 2, 1993, pp. 225-
277. 

[3] Z. Horváth, Z. Hernyák, V. Zsók: Control 
Language for Distributed Clean. Acta 
Cybernetica 17, 2005,  pp. 247-271. 2005. 

[4] Ján Kollár: Partial Monadic Approach in 
Process Functional Language. Acta 
Electrotechnica et Informatica No. 1, Vol. 3, 
Košice, Slovak Republic, 2003, pp. 36-42. 

[5] Ján Kollár, Jaroslav Porubän, Peter 
Václavík: Time and Memory Profile of a 
Process Functional Program. Acta 
Polytechnica Hungarica, Vol. 3, No. 2, 2006, 
pp. 27-40. 

[6] Kollár Ján, Porubän Jaroslav, Václavík 
Peter: From Eager PFL to Lazy Haskell. 
Computing and Informatics, Vol. 25, No.1, 
2006, pp. 61-80. 

[7] Donald E. Knuth: An Empirical Study of 
FORTRAN Programs. Software - Practice 
and Experience 1, 1971, pp. 105-133. 

[8] Jaroslav Porubän: Time and space 
profiling for process functional language. 
Proceeding of the 7'th Scientific Conference 
with International Participation EMES '03, 



Felix Spa-Oradea, May 29-31, 2003, pp. 
167-172.    

[9] L. Cs. Lörincz, T. Kozsik, A. Ulbert, Z. 
Horváth: A method for job scheduling in 
Grid based on job execution status. 
Multiagent and Grid Systems - An 
International Journal 4 (MAGS), Vol.1, 
No.3, 2005, pp. 197–208. 

[10] Colin Runciman, David Wakeling: 
Heap Profiling of Lazy Functional 
Programs. Journal of Functional 
Programming, Vol.3, No.2, pp. 217-245, 
1993. 

[11] Patrick M. Sansom: Execution profiling 
for non-strict functional languages. Research 
Report FP-1994-09, Dept. of Computing 
Science, University of Glasgow, September 
1994. 

[12] Patrick M. Sansom, Simon L. Peyton 
Jones: Profiling lazy functional programs. 
Functional Programming, Glasgow 1992, 
Springer Verlag, Workshops in Computing, 
1992. 

[13] D. Zmaranda, G. Gabor, C. Rusu: 
Evaluation method algorithm used to 
improve real-time control systems stability. 
Analele Universitatii din Oradea, Proc. 8-th 
International Conference on Engineering of 
Modern Electric Systems, Felix Spa-Oradea, 
May 26–28, University of Oradea, Romania, 
2005, pp. 170–175. 

[14] D. Zmaranda, G. Gabor, M. Gligor: A 
Framework for Modeling and Evaluating 
Timing Behaviour for Real-Time Systems, 
Proc. SINTES 12 – Int. Symposium on 
Systems Theory, Oct. 20–22, University of 
Craiova, Romania, 2005, pp. 514–520. 


	Cost
	Total

	References

