
Visualization of C++ Template Metaprograms∗

Zoltán Borók-Nagy Viktor Májer József Mihalicza Norbert Pataki
Zoltán Porkoláb

Dept. of Programming Languages and Compilers
Eötvös Loránd University, Faculty of Informatics

Pázmány Péter sétány 1/C
H-1117 Budapest, Hungary

boroknagyz@gmail.com, majer v@inf.elte.hu, jmihalicza@gmail.com, patakino@elte.hu
gsd@elte.hu

Abstract

Template metaprograms have become an essential part
of today’s C++ programs: with proper template definitions
we can force the C++ compiler to execute algorithms at
compilation time. Among the application areas of template
metaprograms are the expression templates, static interface
checking, code optimization with adaptation, language em-
bedding and active libraries. Despite all of its already
proven benefits and numerous successful applications there
are surprisingly few tools for creating, supporting, and ana-
lyzing C++ template metaprograms. As metaprograms are
executed at compilation time they are even harder to under-
stand. In this paper we present a code visualization tool,
which is utilizing Templight, our previously developed C++
template metaprogram debugger. Using the tool it is pos-
sible to visualize the instantiation chain of C++ templates
and follow the execution of metaprograms. Various presen-
tation layers, filtering of template instances and step-by-
step replay of the instantiations are supported. Our tool
can help to test, optimize, maintain C++ template metapro-
grams, and can enhance their acceptance in the software
industry.

1. Introduction

Templates are key elements of the C++ programming
language [18]. They enable data structures and algorithms
to be parameterized by types thus capturing commonalities
of abstractions at compilation time without performance
penalties at runtime [21]. Generic programming is recently
a popular programming paradigm [14, 16], which enables
the developer to implement reusable codes easily. Reusable

∗Supported by TÁMOP-4.2.1/B-09/1/KMR-2010-0003

components – in most cases data structures and algorithms
– are implemented in C++ with the heavy use of templates.
The most notable example is the Standard Template Library
[9] is now an unavoidable part of professional C++ pro-
grams.

In C++, in order to use a template with some specific
type, an instantiation is required [22]. This process can be
initiated either implicitly by the compiler when a template
with a new type argument is referred, or explicitly by the
programmer. During instantiation the template parameters
are substituted with the concrete arguments, and the gener-
ated new code is compiled.

This instantiation mechanism enables us to write smart
template codes that execute algorithms at compilation time.
In 1994 Erwin Unruh wrote a program in C++ that did
not compile, however, the error messages emitted by the
compiler during the compilation process displayed a list of
prime numbers [20]. Unruh used C++ templates and the
template instantiation rules to write a program that is “ex-
ecuted” as a side effect of compilation. It turned out that a
cleverly designed C++ code is able to utilize the template
mechanism of the language and force the compiler to ex-
ecute a desired algorithm [23]. These compile-time pro-
grams are called C++ template metaprograms. Later, tem-
plate metaprograms’ Turing-completeness has been proved
[3].

Template metaprogramming is now an emerging direc-
tion in C++ programming for executing algorithms at com-
pilation time. We write metaprograms for various reasons,
like expression templates [24] replacing runtime computa-
tions with compile-time activities to enhance runtime per-
formance, static interface checking, [10, 15, 26], which
increases the ability of the compile-time to check the re-
quirements against template parameters, i.e. they form con-
straints on template parameters, active libraries [4], acting

dynamically during compile-time, making decisions based
on programming contexts and making optimizations, and
many others.

As template metaprograms became popular in industrial
applications, their maintenance turned to be a key issue.
Unfortunately, here programmers have experienced major
problems. C++ templates have been designed to express
genericity on data structures and algorithms – i.e. paramet-
ric polymorphism. Template metaprogramming has been
discovered almost as a side effect, and template syntax that
time has already been formulated. That syntax is far to be
expressive regarding template metaprograms. As a result,
C++ template metaprograms are often difficult to read, and
hard to understand.

Moreover, basic program comprehension techniques,
like step by step execution or debugging of template
metaprograms are troublesome. When compiling, the stan-
dard C++ compiler acts as an interpreter which executes a
template metaprogram. Debugging the compiler is useless:
we want to collect information about the interpreted code
(i.e. the template metaprogram) not about the interpreter
(the compiler) itself. Even printouts applied in selected
points of metaprogram execution are challenging. As a re-
sult, maintenance of template metaprograms currently is an
art rather than an engineering process.

In this paper we discuss code comprehension techniques
of C++ template metaprograms. We present a visual de-
bugger for Templight framework. Using the tool we can
reveal the structure of a template metaprogram as it was ex-
ecuted by the compiler in a certain platform. We are able
to replay the instantiation process in a step by step man-
ner, both forward and backward direction. Usual debug-
ger functionalities: step into/out/over instantiations are im-
plemented. Break-points can be placed at source level. In
the debugger syntax highlighting, watch windows and other
conveniences help us to understand metaprograms. A sec-
ond program – Templar, a code visualisation and compre-
hension tool – provides a graphical representation of tem-
plate metaprograms. Various layouts and visualisations help
us to understand template metaprograms displayed in graph
representation. A filtering function is available to eliminate
uninteresting nodes from the visual representation, thus we
can concentrate on the important template instantiations.

There are only a few available tools supporting C++ tem-
plate metaprogramming. Sánchez at al. published a poster
[13] about visualizing template instantiations, but we did
not find any continuation. Steven Watanabe created a tem-
plate profiler, which is currently in the boost sandbox
[28]. His work is useful to measure compilation times (run
time of template metaprograms), but does not help code
comprehension.

The rest of the paper is organized as follows. In Section
2 we overview C++ template metaprogramming and argue

for an adequate code comprehension tool. We explain the
Templight template metaprogram debugger – the foundation
of our code visualisation tool in Section 3. In Section 4 we
present our debugging and visualization tools. In Section
5 we evaluate the tool using examples. We conclude our
paper in Section 6.

2. Understanding template metaprograms

The template facility of C++ allows writing algorithms
and data structures parametrized by types. This abstraction
is useful for designing general algorithms like finding an
element in a list. The operations of lists of integers, char-
acters or even user defined classes are essentially the same.
The only difference between them is the stored type. With
templates we can parametrize these list operations by type,
thus, we have to write the abstract algorithm only once. The
compiler will generate the integer, double, character or user
defined class version of the list from it. See the example
below:

template<typename T>
struct list {

void insert(const T& t);
// ...

};
int main() {

list<int> l; //instantiation for int
list<double> d; // and for double
l.insert(42); d.insert(3.14); // usage

}

The list type has one template argument T. This refers to the
parameter type, whose objects will be contained in the list.
To use this list we have to generate an instance assigning
a specific type to it. That process is called instantiation.
During this process the compiler replaces the abstract type
T with a specific type and compiles this newly generated
code. The instantiation can be invoked either explicitly by
the programmer but in most cases it is done implicitly by
the compiler when the new list is first referred to.

The template mechanism of C++ enables the definition
of partial and full specializations. Let us suppose that we
would like to create a more space efficient type-specific im-
plementation of the list template for bool type. We may
define the following specialization:

template<>
struct list<bool> {

//type-specific implementation
};

The implementation of the specialized version can be to-
tally different from the original one. Only the names of

these template types are the same. If during the instantia-
tion the concrete type argument is bool, the specific ver-
sion of list<bool> is chosen, otherwise the general one
is selected.

Template specialization is essential practice for template
metaprogramming too. In template metaprograms tem-
plates usually refer to other templates, sometimes from the
same class with different type argument. In this situation an
implicit instantiation will be performed. Such chains of re-
cursive instantiations can be terminated by a template spe-
cialization. See the following example of calculating the
factorial value of 5:

template<int N>
struct Factorial {

enum { value=N*Factorial<N-1>::value };
};
template<>
struct Factorial<0> {

enum { value = 1 };
};
int main() {

int result = Factorial<5>::value;
}

To initialize the variable result here, the expression
Factorial<5>::value has to be evaluated. As
the template argument is not zero, the compiler in-
stantiates the general version of the Factorial tem-
plate with 5. The definition of value is N *
Factorial<N-1>::value, hence the compiler has to
instantiate Factorial again with 4. This chain contin-
ues until the concrete value becomes 0. Then, the com-
piler chooses the special version of Factorial where the
value is 1. Thus, the instantiation chain is stopped and
the factorial of 5 is calculated and used as initial value of
the result variable in main. This metaprogram “runs”
while the compiler compiles the code.

Template metaprograms therefore stand for the collec-
tion of templates, their instantiations and specializations,
and perform operations at compilation time. The basic con-
trol structures like iteration and condition appear in them in
a functional way [17]. As we can see in the previous ex-
ample iterations in metaprograms are applied by recursion.
Besides, the condition is implemented by a template struc-
ture and its specialization.

template<bool cond,class Then,class Else>
struct If {

typedef Then type;
};
template<class Then, class Else>
struct If<false, Then, Else> {

typedef Else type;
};

The If structure has three template arguments: a boolean
and two abstract types. If the cond is false, then the
partly-specialized version of If will be instantiated, thus
the type will be bound to Else. Otherwise the general
version of If will be instantiated and type will be bound
to Then.

With the help of If we can delegate type-related deci-
sions from design time to instantiation (compilation) time.
Let us suppose, we want to implement a max(T,S) func-
tion template comparing values of type T and type S return-
ing the greater value. The problem is how we should define
the return value. Which type is “better” to return the result?
At design time we do not know the actual type of the T
and S template parameters. However, with a small template
metaprogram we can solve the problem:

template <class T, class S>
typename If<sizeof(T)<sizeof(S),S,T>::type

max(T x, S y)
{
return x > y ? x : y;

}

Complex data structures are also available for metapro-
grams. Recursive templates store information in various
forms, most frequently as tree structures, or sequences. Tree
structures are the favorite forms of implementation of ex-
pression templates [24]. The canonical examples for se-
quential data structures are typelist [2] and the ele-
ments of the boost::mpl library [8]. Essential helper
functions – like Length, which computes the size of a
list at compilation time – have been defined in Alexan-
drescu’s Loki library[2] in pure functional programming
style. Similar data structures and algorithms can be found
in the boost::mpl metaprogramming library [8].

The examples presented in this Section are far more triv-
ial than the real life applications of template metaprograms.
However, they already show why template metaprograms
are hard to understand. Variables are represented by static
constants and enumeration values, control structures are im-
plemented via template specializations, functions are re-
placed by classes. We use recursive types instead of the
usual data structures.

Professional C++ programmers are eager for tools which
support them to maintain template metaprograms. Such
tools should provide the following features:

• Reveal the actual instantiation process executed by the
compiler.

• Replay the process in a step by step (both forward and
backward manner).

• Usual debugger functionality step into/out/over instan-
tiations.

• Break-points can be placed to help fast forward/stop
replay process.

• Watch windows to inspect various template features.

• Present the state of the template (before/under/after)
instantiation.

• Filter out irrelevant/not in interest instantiation steps.

• Help to understand the overall structure with proper
visualisation.

In this paper we present our toolset which meets these re-
quirements. The Templar template metaprogram visuali-
sation tool presents the template metaprogram as a graph,
where nodes represent the types generated from templates,
and the edges show the instantiation requests. The user is
able to replay the instantiation process either step by step or
in a fast forward mode stopping at breakpoints. Backward
mode is also available. The graph visualizes the actual state
of each nodes.

There are cases when we are not interested in certain in-
stantiations, i.e. “utility templates”. Such nodes can be re-
moved from the view, and their in- and outcoming edges
are merged to the remaining graph. This filtering is based
on template names of the source code.

We want to emphasize that pure static analysis tech-
niques have their certain limitations in the space of template
metaprogram comprehension. The standard of the C++ pro-
gramming language strictly defines which templates should
be instantiated, and how the generated code behaves. There
are very good code visualisation tools for large-scale C++
programs based on static code analysis [19]. However, in
the case of metaprograms it is up to the implementation how
the instantiation process is implemented, how memoization
is handled [1] and what is the resource requirement (both in
factor of time and memory) for the code generation. Such
details are compiler dependent, and a general static analysis
tool would fail to discover the differences.

Therefore our method is not based purely on static analy-
sis, but on the actual compilation process on the target com-
piler and platform. We instrument the source code using
Templight, our template metaprogram debugger [11], and
generate a trace file containing all the necessary information
on the template metaprogram execution. Templar, the code
visualisation tool, utilizes this information and presents it to
the user graphically.

Figure 1 shows the factorial program in the state when
Factorial<4> starts to instantiate Factorial<3>.
The specialization Factorial<1> has already been cre-
ated.

Figure 1. The factorial sample

3. Templight framework

With the Templight framework [11] we can generate a
template instantiation log of the compilation process. We
refer to this log as trace. This trace is a chronological list of
events like

• instantiation of template A began

• type definition found

• instantiation of template A ended

• compilation warning

Having this log generated, we are able to reconstruct
the compilation process from a template metaprogramming
perspective. The order of template instantiation begin and
end events determine the instantiation stack for every mo-
ment. As crashdumps allow post-mortem debugging of run-
time programs, traces allow post-compilation analysis of
template metaprograms. Similarly to many functional lan-
guages, the constructs of C++ template metaprograms have
a stateless nature. Therefore the debugging process is not a
one way road any more, we can freely step back and forth
in time.

This Section shows the basic idea behind Templight and
describes the elements of the tool chain.

The basic input unit of Templight is a compilation unit.
Compilation units are processed independently by the com-
piler, consequently generating the trace for them one by one
does not hurt generality. Trace file generation from a compi-
lation unit has three main stages: annotation, patch and ex-
traction. Annotation analyses the (preprocessed) source file
and locates template metaprogram constructs in it. Patch
then inserts special code fragments at these locations, which
have the following properties:

• they do not change the semantics of the code at all

• compilation warnings are printed whenever the com-
piler processes them

Throughout the whole process we should be very careful
not to alter the compilation process logically. At any point

if the compiler processes the templates in a different manner
due to our modifications, our visualization tool is useless, as
it does not show the real picture.

After patching our source file, we have to compile this
modified unit and save the compiler output, which will con-
tain the warning messages produced by the instrumented
code fragments (on top of the originally existing ones). The
extraction phase retrieves the necessary information from
the special warning messages and generates the trace file.

To show the original source context of an event we have
to transform the position reported in the warning back to its
initial form. For this, it is important to always keep track of
the position changes when the source is modified.

Preprocessing makes our life a lot easier. After that there
is only one file, all the #includes and macros are pro-
cessed and the file is a series of tokens.

This step utilizes boost::wave[8], a C++ preproces-
sor library to get a token sequence from the preprocessed
source. The task in this step is to identify as many template
constructs in the token sequence as possible and record their
details. Currently these constructs are found by using regu-
lar expressions of the form like template keyword + ar-
bitrary tokens + class or struct keyword + arbitrary
tokens + {.

Unfortunately the context sensitive grammar of C++ al-
lows expressions which are very difficult to disambiguate
with such a simple tool as regular expressions. The many
possible roles of commas and relational operators make the
proper automatic identification of an enumeration type al-
most impossible.

The purpose of this phase is to transform the source code
so that informative error messages will be emitted at im-
portant positions of each template construct when they are
instantiated. The inserted code fragments must not change
instantiation order, nor the size and other properties of the
structures to preserve the original compilation flow. In the
following g++ example instrumentation points detected by
the annotator are marked with /**/:

// Before instrumentation:
template<int N> struct Factorial {/**/

enum { value=N*Factorial<N-1>::value };
/**/};

// After instrumentation:
static int TEMPLIGHT__begin(char*);
static int TEMPLIGHT__end(wchar_t*);
template<int N> struct Factorial {

enum { TEMPLIGHT__patch_0
= sizeof(TEMPLIGHT__begin("")) };

enum { value=N*Factorial<N-1>::value };
enum { TEMPLIGHT__patch_1
= sizeof(TEMPLIGHT__end("")) };

};

During compilation whenever an instance of Factorial
is instantiated, we get a warning both at the beginning and
at the end of the given instance. The warning messages will
refer to code positions in this modified source, so here it is
again important to record the location changes to have an
exact mapping.

Having our warning emitter snippets added, we can
compile the patched code. The compiler output contains
progress output, (name of file actually being processed),
possible error messages, and warning messages (both orig-
inal or artificial ones, triggered by instrumented code).

4. Debugging and Visualisation

To visualize template metaprograms, we build a di-
rected graph where nodes represent instantiated templates
(so called specializations) and edges represent the requests
for instantiation. I.e. we have an edge from node A to node
B if A is a template which instantiates B. The trace file which
is generated by Templight has all the information we need.
There are entries in a sequential order. An entry can be
TemplateBegin which means a class template’s instan-
tiation is started. It also can be TemplateEnd that means
a template class’s instantiation has been finished. The en-
tries are in the same order as they occured at compilation
time.

An entry contains the name of the template class and file
positions. This is enough to build the instantiation graph
which is always a tree. We use a very simple algorithm
for it. For example there is a TemplateBegin entry of
type A followed by a TemplateBegin entry of type B.
That means type A instantiates type B. If the next entry
is a TemplateEnd of type B, and after that there is a
TemplateBegin of type C that also means that type A
instantiates type C. The trace has a custom XML format:

<TemplateBegin>
<Position pos="fact.patched.cpp|9|1"/>
<Context context="Factorial<5>"/>

</TemplateBegin>
<TemplateBegin>
<Position pos="fact.patched.cpp|9|1"/>
<Context context="Factorial<4>"/>

</TemplateBegin>
...
<TemplateEnd>
<Position pos="fact.patched.cpp|13|1"/>
<Context context="Factorial<4>"/>

</TemplateEnd>
<TemplateEnd>
<Position pos="fact.patched.cpp|13|1"/>
<Context context="Factorial<5>"/>

</TemplateEnd>

We transform the locations referring to the preprocessed
and instrumented code back to their original source file and
line positions. First, using the line map saved at instru-
mentation, the line numbers are mapped back to their non-
instrumented variants. These line positions correspond to
the preprocessed, but not yet patched code. Then, based on
the location map containing the #line mapping, the orig-
inal source code positions are determined.

This transformation is applied right before the trace
file is written. We use the stack data structure to treat
the instantiation relationships correct. If we read a
TemplateBegin entry, we create a node. If the stack
is not empty, we add an edge to the graph between the node
of the top of the stack and the new node we created. Af-
ter that, we push the new node to the stack. If we read a
TemplateEnd entry, we call the pop member function on
the stack.

4.1. Handling inheritance

Consider the following simple example:

template <typename T>
class Derived : public Base<T>
{ ... };

Given a concrete instance, to say with T=int, we would
expect something like this in the trace file:

Derived<int> begin
Base<int> begin
Base<int> end

Derived<int> end

Without special inheritance handling, however, the basic an-
notation and instrumentation would give different results:

template <typename T>
class Derived : public Base<T>
{ /* instrumentation point

for TemplateBegin */
// ..
/* instrumentation point

for TemplateEnd */
};

Here the TemplateBegin event for Derived<int>
will be reported only after Base<int> has been com-
pletely processed, thus producing the following sequence:

Base<int> begin
Base<int> end
Derived<int> begin
Derived<int>

which is not exactly what we expect. To solve the problem,
an artificial extra first base class is instrumented into all base
class list:

template <typename T>
class Derived :

public TEMPLIGHT_BASE<Derived<T> >,
public Base<T>

where TEMPLIGHT BASE generates a warning right before
the instantiation of Base begins.

4.2. The debugger

Initially Templight was only a set of command line util-
ities and the user had to apply the preprocess, instrumen-
tation, warning translation etc. steps manually. The only
move towards an interactive graphical user interface was a
plugin to an existing IDE on a specific platform. We de-
cided to create an appropriate frontend to our framework
that makes template debugging not only possible but conve-
nient. We kept platform independence in focus, our appli-
cation has only such dependencies which are available on
different platforms. Also, the internals of Templight have
been changed to better handle large projects, the initial ver-
sion had serious performance issues.

Our debugger provides basic file browsing, text editing
functionality with syntax highlight and supports template
debugging. There is a quick debug use case where the ac-
tually opened file can be debugged with a single click. This
makes experimenting very convenient. The other use case
allows us to set up projects with their corresponding com-
piler settings and debug their different files from time to
time as the project evolves.

All the standard debugging features are available for
templates to the extent of Templight’s capabilities. The tem-
plate instantiation stack shows the chain of template instan-
tiations calling each other. We can interactively go through
the compilation process with the very same commands as
in normal debugging: run, continue, step in, step over, step
out. We can set breakpoints inside templates, and we can
check from what context(s) that specific template is instan-
tiated.

There is also a trace window where the whole flow of the
compilation can be observed.

4.3. Templar visualizer

We used the builder design pattern in the visualizer tool.
At the time we have only one concrete builder class named
GraphvizBuilder. It builds a graphviz graph but with this
pattern it is easy to build any kind of graphs (e.g. BGL,
Lemon [5]).

Figure 2. The Templight debugger displaying Factorial sample

Figure 3. The Templar visualisation tool displaying Prime print sample using dot layout

As we mentioned, we create a graphviz graph. Graphviz
[27] is an open source graph visualization software that in-
cludes an open set of layouts. We have chosen Graphviz for
the ease of simplicity, but there are many other possibilities
to pick up a visualisation tool. We are currently evaluating
the possible parametrization of the graphical visualisation
tool and the possible candidates [6, 7].

By default, we use the dot layout because we found it
suitable for directed hierarchical acyclic graphs. The lay-
out of the graph is done by graphviz. Other graph lay-
outs (neato, fdp, twopi, circo) can be also selected, but they
seemed to be suitable for less use cases. We have added col-
oring features to widgets, to express the state of the nodes.
We can also select a node, and there is an option to set the
center of the view to the node whose color has changed.

To really understand what happens during compilation
there is feature to replay the instantiation process step by
step. Our GraphvizBuilder class stores every entry from the
tracefile. To replay the process we iterate over that list and
notify our QGraph class to visualize the steps forward and
backward.

There is an option to focus to the node of which state has
been changed. This small enhancement proved inevitable
for practical use of the tool.

Template metaprograms frequently use utility templates
from third party libraries. They are important for compi-
lation but irrelevant or disturbing to understand the general
structure of template metaprograms. Such utility templates
are common in the boost::mpl and loki libraries. Sim-
ilarly, “native” templates, like STL containers are better not
to be presented in our charts. Templar can filter out these
irrelevant nodes. User can define filtering patterns with reg-
ular expressions. This process regenarates the graph from
the trace file ignoring those classes whose names match to
any of the given regular expressions. Incoming and outcom-
ing edges of filtered nodes are merged to remaining nodes.

We mentioned that there are file positions in the trace
file. With that information it is also a feature to see the
source code of the appointed template class.

Finally our tool can export the visualized graph to PNG.
For small graphs it is done by graphviz, for big graphs it
is done by Qt. We make monochromatic images from very
large graphs.

5. Evaluation

In this Section we present the power of our tool based
on a well-known metaprogram. With the assistance of the
visualizer tool we understand a quite abstruse program.

Our sample code is the very first metaprogram created
by Erwin Unruh in 1994 [20]. We present the code in an
up-to-date version.

template <int p, int i>
struct is_prime {

enum {
prim = (p==2) ||

(p%i) &&
is_prime<(i>2?p:0),i-1>::prim

};
};
template<>
struct is_prime<0,0> { enum {prim=1}; };
template<>
struct is_prime<0,1> { enum {prim=1}; };
template <int i>
struct D {

D(void*);
};
template <int i>
struct Prime_print {

Prime_print<i-1> a;
enum
{ prim = is_prime<i,i-1>::prim };
void f() {

D<i> d = prim ? 1 : 0;
a.f();

}
};
template<>
struct Prime_print<1> {

enum {prim=0};
void f() {

D<1> d = prim ? 1 : 0;
}

};

#define LAST 18

int main() {
Prime_print<LAST> a;
a.f();

}

Strictly speaking, the code is incomprehensible. It is hard
to understand what the program does and how it works. So,
before we analyze the code, we try it. But when the program
has been compiled, error diagnostics are emitted:

error: initializing argument 1 of
’D<i>::D(void*) [with int i = 17]’

error: initializing argument 1 of
’D<i>::D(void*) [with int i = 13]’

error: initializing argument 1 of
’D<i>::D(void*) [with int i = 11]’

error: initializing argument 1 of
’D<i>::D(void*) [with int i = 7]’

Figure 4. Prime numbers generation – instan-
tiation of is prime<2,1> is just completed.

Figure 5. Prime numbers generation – all
is prime have been instantiated, generating
instances of template D starts.

error: initializing argument 1 of
’D<i>::D(void*) [with int i = 5]’

error: initializing argument 1 of
’D<i>::D(void*) [with int i = 3]’

error: initializing argument 1 of
’D<i>::D(void*) [with int i = 2]’

Now we have figured out what the code does. This program
generates primes numbers at compilation time, and prints
them in form of error messages. But many questions are
arisen. How does the code work? Where do the prime num-
bers come from? Why one gets error messages when the
program is being compiled? Why are the primes printed in
error messages? What does cause error messages?

Let us consider the previous code. The error message
points to the constructor of class template D. This construc-
tor takes a parameter of void*, but where the constructor
is called integers are passed. In the code the integer is 0 or
1 and only the integer 0 can be passed as void*. If the
argument of constructor is 1, it results in an error. But what
is the problem with prime numbers?

Figure 4 and figure 5 make the flow much more
clear. The LAST macro is set to 5. First,
Prime print<5> is instantiated which starts a loop, and
instantiates Prime print with 4, 3, 2 and 1. Every
Prime print<i> instantiates is prime<i, i-1>.
These is prime templates start instantiate themselves, by
decreasing their second argument one by one to 1. These

class templates determine if their first argument is prime. In
the Prime print class templates use the class template
D’s constructor as passed is prime information about
primeness in the member function f. If it is prime, then
an error message is generated as seen before.

Figure 3 also presents the characteristics of the program.
However, we cannot read the “runtime” complexity of the
program easily. It is very hard to analyze the previous
code’s runtime complexity. Figure 3 presents that the algo-
rithm runs in quadratic time. This means that the compiler
has to instantiate asymptotically (N*N) templates, where
N stands for the LAST constant.

Figures have proven that our framework makes metapro-
grams easier to understand and maintain. With the help of
our tool one can estimate the run time of metaprograms too.

6. Conclusion

In this paper we presented a toolset for C++ tem-
plate metaprogram comprehension. Based on our previous
Templight framework, we have developed a graphical user-
interfaced debugger and visualizer tool. Using the tools we
can reveal the structure of a template metaprogram as it was
executed by the compiler on a certain platform.

We are able to replay the instantiation process in a step
by step manner, both in forward and backward direction.
Usual debugger functionalities: step into/out/over instantia-
tions are implemented. Breakpoints can be placed in source
level. In the debugger syntax highlighting, watch windows
and other conveniences help us to understand metapro-
grams. Using the visualisation tool metaprograms appear in
a graph based representation in different layouts. Template
instantiations out of interest can be filtered out to focus on
relevant instantiations. We believe that with the help of this
toolset maintenance of template metaprograms is easier and
more reliable.

It is up to the implementation how the instantiation pro-
cess is implemented, memoization is handled and what is
the resource requirement for the code generation. Such de-
tails are compiler dependent, and a general static analysis
tool would fail to discover the differences. Our tool utilizes
the results of the actual compilation section, therefore it is
essential to reveal such implementation details.

References

[1] Abrahams, D., Gurtovoy, A.: C++ template metapro-
gramming, Concepts, Tools, and Techniques from
Boost and Beyond, Addison-Wesley, Boston, 2004.

[2] Alexandrescu, A.: Modern C++ Design: Generic
Programming and Design Patterns Applied, Addison-
Wesley, 2001.

[3] Czarnecki, K., Eisenecker, U. W.: Generative
Programming: Methods, Tools and Applications,
Addison-Wesley, 2000.

[4] Czarnecki, K., Eisenecker, U. W., Glück, R., Vandevo-
orde, D., Veldhuizen, T. L.: Generative Programming
and Active Libraries, Springer-Verlag, 2000.

[5] Dezső, B., Jüttner, A., Kovács, P: LEMON – an Open
Source C++ Graph Template Library, in Proceedings
of Workshop on Generative Technologies 2010, pp. 3–
14.

[6] Holten, D.: Hierarchical Edge Bundles: Visualization
of Adjacency Relations in Hierarchical Data, IEEE
Transactions on Visualization and Computer Graphics
(TVCG; Proceedings of Vis/InfoVis 2006), Vol. 12,
No. 5, pp. 741–748, 2006.

[7] H. Hoogendorp, O. Ersoy, D. Reniers, A. Telea: Ex-
traction and Visualization of Call Dependencies for
Large C/C++ Code Bases: A Comparative Study, In
Proc. VISSOFT. IEEE, 2009. to appear.

[8] Karlsson, B.: Beyond the C++ Standard Library: An
Introduction to Boost, Addison-Wesley, 2005.

[9] Musser, D. R., Stepanov, A. A.: Algorithm-oriented
Generic Libraries, Software-practice and experience,
27(7) July 1994, pp. 623–642.

[10] McNamara, B., Smaragdakis, Y.: Static interfaces in
C++, In First Workshop on C++ Template Metapro-
gramming, October 2000.

[11] Porkoláb, Z., Mihalicza, J., Sipos, Á: Debugging C++
Template Metaprograms, Proc. of Generative Pro-
gramming and Component Engineering 2006 (GPCE
2006), The ACM Digital Library, pp. 255–264.

[12] Reis, G. D., Stroustrup, B: Specifying C++ concepts,
Proceedings of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL), 2006: pp. 295–308.

[13] Sánchez, A. J., Dei-Wei, J.: Towards a graphical no-
tation to express the C++ template instantiation pro-
cess (poster session), Addendum to the 2000 pro-
ceedings of the conference on Object-oriented pro-
gramming, systems, languages, and applications (Ad-
dendum), (OOPSLA 2000), Minneapolis, Minnesota,
United States, January 2000, pp. 117–118.

[14] Siek, J.: A Language for Generic Programming, PhD
thesis, Indiana University, 2005.

[15] Siek, J., Lumsdaine, A.: Concept checking: Binding
parametric polymorphism in C++, In First Workshop
on C++ Template Metaprogramming, October 2000.

[16] Siek, J., Lumsdaine, A.: Essential Language Support
for Generic Programming, Proceedings of the ACM
SIGPLAN 2005 conference on Programming lan-
guage design and implementation, New York, USA,
pp 73-84.

[17] Sipos, Á., Porkoláb, Z., Pataki, N., Zsók, V.:
Meta<Fun> - Towards a Functional-Style Interface
for C++ Template Metaprograms, in Proceedings of
19th International Symposium of Implementation and
Application of Functional Languages (IFL 2007), pp.
489–502.

[18] Stroustrup, B.: The C++ Programming Language
Special Edition, Addison-Wesley, 2000.

[19] Telea, A., Voinea, L.: An interactive reverse engi-
neering environment for large-scale C++ code, In
Koschke, R., Hundhausen, C., D., Telea, A. (Eds.):
Proceedings of the ACM 2008 Symposium on Soft-
ware Visualization, Ammersee, Germany, September
16-17, 2008. ACM 2008, ISBN 978-1-60558-112-
5SOFTVIS pp. 67–76.

[20] Unruh, E.: Prime number computation, ANSI X3J16-
94-0075/ISO WG21-462.

[21] Vandevoorde, D., Josuttis, N. M.: C++ Templates:
The Complete Guide Addison-Wesley, 2003.

[22] Veldhuizen, T. L.: Five compilation models for
C++ templates, In First Workshop on C++ Template
Metaprogramming, October 2000.

[23] Veldhuizen, T. L.: Using C++ Template Metapro-
grams, C++ Report vol. 7, no. 4, 1995, pp. 36–43.

[24] Veldhuizen, T. L.: Expression Templates, C++ Report
vol. 7, no. 5, 1995, pp. 26–31.

[25] Wills, G. J.: NicheWorks – Interactive Visualization
of Very Large Graphs, Journal of Computational and
Graphical Statistics, 8(3), June 1999, pp. 190–212.

[26] Zólyomi, I., Porkoláb, Z: Towards a template intro-
spection library, LNCS Vol.3286, 2004, pp.266–282.

[27] Graphviz, the Graph Visualization Software,
http://www.graphviz.org/

[28] Watanabe’s Template profiler in boost sandbox,
https://svn.boost.org/svn/boost/
sandbox/tools/profile_templates/

