
Lore: A Database Management System for Semistructured Data*

J a s o n M c H u g h , S e r g e A b i t e b o u l , R o y G o l d m a n , D ~ l a n Q u a s s , J e n n i ~ r W i d o m

S t a n f o r d U n i v e r s i t y

{mchughj,abitebou,royg,quass,widom}@db.stanford.edu
http://www-db.stanford.edu/lore

Abstract

Lore (for Lightweight Object Repository) is a DBMS de-
signed specifically for managing semistructured information.
implementing Lore has required rethinking all aspects of a
DBMS, including storage management, indexing, query pro-
cessing and optimization, and user interfaces. This paper
provides an overview of these aspects of the Lore system, as
well as other novel features such as dynamic structural sum-
maries and seamless access to da ta from external sources.

1 Introduction

Traditional database systems force all da ta to adhere to an
explicitly specified, rigid schema. For many new database
applications there can be two significant drawbacks to this
approach:

• The da ta may be irregular and thus not conform to a
rigid schema. In relational systems, null values typ-
ically are used when da ta is irregular, a well-known
headache. While complex types and inheritance in
object-oriented databases clearly enable more flexibil-
ity, it can still be difficult to design an appropriate
object-oriented schema to accommodate irregular data.

• It may be difficult to decide in advance on a single,
correct schema. The structure of the da ta may evolve
rapidly, da ta elements may change types, or da ta not
conforming to the previous structure may be added.
These characteristics result in frequent schema modi-
fications, another well-known headache in tradit ional
database systems.

Because of these limitations, many applications involving
semistructured data [Abi97] are forgoing the use of a data-
base management system, despite the fact that many
strengths of a DBMS (ad-hoc queries, efficient access, con-
currency control, crash recovery, security, etc.) would be
very useful to those applications.

As a popular first example, consider da ta stored on the
World-Wide Web. At a typical Web site, da t a is varied
and irregular, and the overall s tructure of the site changes
often. Today, very few Web sites store all of their avail-
able information in a database system. It is clear, however,
that Web users could take advantage of database support ,
e.g., by having the ability to pose queries involving da ta
relationships (which usually are known by the site's cre-
ators but not made explicit). As a second example, con-
sider information integrated from multiple, heterogeneous
da ta sources [Com91, LMRg0, SL90]. Considerable effort is
typically spent to ensure that the integrated da ta is well-
s tructured and conforms to a single, uniform schema. Ad-
ditional effort is required if one or more of the information

*This work was s u p p o r t e d by the Ai r Force R o m e Labo ra to r i e s
and DA1KPA under C o n t r a c t s F30602-95-C-0119 and F30602-96-1-
031, and by equ ipment g r an t s f rom IBM and Dig i t a l E q u i p m e n t
Corpora t ions .

sources changes, or when new sources are added. Clearly,
a database system that easily accommodates irregular da t a
and changes in structure would greatly facilitate the rapid
integration of heterogeneous databases.

This paper describes the implementation of the Lore sys-
tem at Stanford University, designed specifically for manag-
ing semistructured data. The da ta managed by Lore is not
confined to a schema, and it may be irregular or incomplete.
In general, Lore a t t empts to take advantage of structure
where it exists, but also handles irregular da ta as gracefully
as possible. Lore (for Lightweight Object Repository 1) is fuUy
functional and available to the public.

Lore's da t a model is a very simple, self-describing, nested
object model called OEM (for Object Exchange Model), in-
troduced originally in the Tsimmis project at Stanford
[PGMW95]. One of our first challenges was to design a
query language for Lore that allows users to easily retrieve
and update da ta with no fixed, known structure. Lorel, for
Lore Language, is an extension of OQL [Cat94, BDK92] tha t
introduces extensive type coercion and powerful pa th ex-
pressions for effectively querying semistructured data. OEM
and Lord are reviewed briefly in this paper; for details
see [AQM+96].

Building a database system that accommodates semi-
s t ructured da ta has required us to rethink nearly every as-
pect of database management. While the overall architec-
ture of the system is relatively traditional, this paper high-
fights a number of components that we feel are particularly
interesting and unique.

First , query processing introduces a number of challenges.
One obvious difficulty is the absence of a schema to guide
the query processor. In addition, Lorel includes a powerful
form of navigation based on path expressions, which requires
the use of au tomata and graph traversal techniques inside
the database engine. The indexing of semistructured da ta
and its use in query optimization is an interesting issue,
particularly in the context of the automatic type coercion
provided by Lorel. As will be seen, despite these challenges
we are able to execute queries using query plans based pri-
marily on familiar database operators. To accommodate
semistructured da ta at the physical level (as well as support
for mult imedia da ta such as video, postscript, gif, etc.) we
impose no constraints on the size or structure of atomic or
complex objects. Meanwhile, however, the layout of objects
on disk is tailored to facilitate browsing and the processing
of pa th expressions.

Perhaps the most novel aspects of Lore are the use of
DataGuides in place of a s tandard schema, and Lore's exter-
nal data manager. A DataGuide is a "structural summary"
of the current database that is maintained dynamically and
serves several functions normally served by a schema. For
example, DataGuides are essential for users to explore the
structure of the database and formulate queries. They also
are impor tant for the system, e.g., to store statistics and

I Original ly , " l igh tweight" referred bo th to the s imple ob jec t model
used by Lore and to the fact t h a t Lore was a l igh tweight sy s t em sup-
po r t i ng s ingle-user , read-only access. As will be seen, Lore is evolv ing
towards a more t r a d i t i o n a l "heavyweight" DBMS in i ts funct ional i ty .

54 SIGMOD Record, Vol. 26, No. 3, September 1997

guide query optimization. Finally, because one of the moti-
vations for using a DBMS designed for semistructured data
is to easily integrate data from heterogeneous information
sources (including the World-Wide Web), Lore includes an
external data manager. This component enables Lore to
bring in data from external sources dynamically as needed
during query execution, without the user being aware of the
distinction between local and external data.

We have chosen to implement Lore from scratch, rather
than building an extension to an existing DBMS to handle
semistructured data. Building our own complete DBMS al-
lows us full control over all components of the system, so
that we can experiment easily with internal system aspects
such as query optimization and object layout. In paral-
lel, however, we are implementing our semistructured data
model and query language on top of the 02 object oriented
system [BDK92], in order to compare the implementation
effort and performance against Lore. This paper focuses on
Lore, although the O2 implementation is discussed briefly.

1.1 Related Work

A preliminary version of the language Lorel was introduced
in [QRS+95]. Details of the syntax and semantics of the
current version of Lorel can be found in [AQM+96]. A com-
parison of Lorel against more conventional languages such
as OQL [Cat94], XSQL [KKS92], and SQL [MS93] appears
in [QRS+95]. Although the Lore system has been demon-
strated [QWG+96], this is the first paper to describe imple-
mentation aspects of Lore.

The closest current system to Lore is UnQL [BDS95,
BDHS96], which also is designed for managing semistruc-
tured data and uses a data model similar to OEM. While
the UnQL query language is more expressive than Lorel, we
believe it is less user-friendly. Furthermore, UnQL work has
focused primarily on aspects of the query language and its
optimizations and, so far, less on system implementation. A
much earlier system, Model 20~ [O'N87], was based on self-
describing record structures. As will be seen, the data model
used in Lore is more powerful in that it includes arbitrary
object nesting, and Lore's query language is richer than the
language of Model 204. Thus, query processing in Lore is
significantly different than in Model 204, which concentrated
on clever bit-mapped indexing structures. Furthermore, to
the best of our knowledge, Model 204 did not include con-
cepts analogous to our DataGuides or external data.

There have been a number of other proposals that in-
vent or extend query languages roughly along the lines of
Lorel, or that integrate traditional databases with semistruc-
tured text data. Most of this work operates on strongly-
typed data, or in some cases is designed specifically for
the World-Wide Web. Examples include [BK94, BCK+94,
CACS94, CCM96, CM89, KS95, LSS96, MMM96, MW95,
MW93, YA94]. For a more in-depth comparison of these
languages and systems against Lore, see [AQM+96].

1.2 Outline of Paper

Section 2 reviews the data model and query language used
by Lore. Section 3 introduces the overall architecture and
the individual components of the Lore system. Query and
update processing, optimization, and indexing are consid-
ered in Section 4. Section 5 covers Lore's external data
manager and DataGuides. Section 6 describes the various
interfaces to Lore for developers, users, and application pro-
grams. Finally, Section 7 covers system status, describes
how to obtain the Lore system, and discusses current and
future work.

2 Representing and Querying Semlstructured Data

To set the stage for our discussion of the Lore system, we
first introduce its data model and query language. For mo-
tivation and further details see [AQM+96].

2.1 The Object Exchange Model

The Object Exchange Model (OEM) [PGMW95] is designed
for semistructured data. Data in this model can be thought
of as a labeled directed graph. For example, the very small
OEM database shown in Figure 1 contains (fictitious) infor-
mation about the Stanford Database Group. The vertices
in the graph are objects; each object has a unique object
identifier (oid), such as &5. Atomic objects have no outgo-
ing edges and contain a value from one of the basic atomic
types such as integer, real, string, gif, java, audio, etc.
All other objects may have outgoing edges and are called
complex objects. Object &3 is complex and its subobjects
are &8, &9~ RI0, and & l l . Object &7 is atomic and has
value "Clark". Names are special labels that serve as aliases
for objects and as entry points into the database. In Fig-
ure 1, DBGroup is a name that denotes object &l. Any
object that cannot be accessed by a path from some name
is considered to be deleted.

In an OEM database, there is no notion of fixed schema.
All the schematic information is included in the labels, which
may change dynamically. Thus, an OEM database is self-
describing, and there is no regularity imposed on the data.
The model is designed to handle incompleteness of data, as
well as structure and type heterogeneity as exhibited in the
example database. Observe in Figure 1 that, for example:
(i) members have zero, one, or more offices; (ii) an office is
sometimes a string and sometimes a complex object; (iii) a
room may be a string or an integer.

For an OEM object X and a label l, the expression X.I
denotes the set of all /-labeled subobjects of X. If X is an
atomic object, or if l is not an outgoing label from X, then
X.l is the empty set. Such "dot expressions" are used in the
query language, described next.

2.2 The Lorel Query Language

In this subsection we introduce the Lorel query language,
primarily through examples. Lorel is an extension of OQL
and a full specification can be found in [AQM+96]. Here we
highlight those features of the language that have an impact
on the novel aspects of the system--features designed specif-
ically for handling semistructured data. Many other useful
features of Lorel (some inherited from OQL and others not)
that are more standard will not be covered.

Our first example query introduces the basic building
block of Loreh the simple path expression, which is a name
followed by a sequence of labels. For example, DBGroup.
Member.0ffice is a simple path expression. Its semantics
consists of the set of objects that can be reached starting
with the DBGroup object, following an edge labeled Member,
then following an edge labeled Off ice. Range variables can
be assigned to path expressions, e.g., "DBGroup.Member.
Off ice X" specifies that X ranges over the set of offices.
Path expressions also can be used directly, in an SQL style,
as in the example.

The example query retrieves the offices of the older mem-
bers of the group. The query, along with its answer for our
sample database in Figure 1, follow. Note that in the query
result, indentation is used to represent graph structure.

QUERY
select DBGroup.Member.Office
where DBGroup. Hember. Age> 30

SIGMOD Record, Vol. 26, No. 3, September 1997 55

DBGroup
M e m b e r ~ ~ ~ --._._Project

IName / A g e / Offic:\ ~ / [Age "~ Office - - - - - -]Ti t le . - Title

Bulldi~ ~ OOm Buildi~ ~om
"CIS 411 Gates" 252

Figure h An OEM database

RESULT
Office "Gates 252"
Office

Building "CIS"
Room "411"

The database over which the query is evaluated presents
a number of irregularities, as discussed earfier. A guiding
principle in Lorel is that, to write a query, one should not
have to worry about such irregularities or know the precise
structure of objects (e.g., the structure of offices), nor should
one have to bother with precise types (e.g., the type of Age is
integer). This query will not yield a run-time error if an Age
object has a string value or is complex, or if Ages or Offices
are single-valued, set-valued, or even absent for some group
members. Indeed, the above query will succeed no matter
what the actual structure of the database is, and will return
an appropriate answer.

The Lore query processor rewrites queries into a more
elaborate OQL style. For example, the previous query is
rewritten by Lore to:

select 0
from DBGroup.Member M, M.Office 0
where exists A in M.Age : A > 30

The Lore system then executes this OQL-style query, incor-
porating certain features such as special coercion rules (see
Section 4.3) for the comparison A > 30. 2

Note that a from clause has been introduced in the rewrit-
ten version of the query. (Omitting the from clause is a mi-
nor syntactic convenience in Lorel; a similar shorthand was
allowed in Postquel [SK91].) Also note that the comparison
on Age has been transformed into an existential condition.
This transformation occurs because all properties are set-
valued in OEM. Thus, the user can write DBGroup.Member.
Age > 30 regardless of whether Age is known to be single-
valued, "known to be set-valued, or unknown. We will see in
Section 4 that an important first step of query processing in
Lorel is rewriting the query into an OQL-style as above.

~-We also are implementing Lorel on top of the 02 system based
on this translation to OQL; see Section 7 for a brief discussion.

Lorel offers a richer form of "declarative navigation" in
OEM databases than simple path expressions, namely gen-
eral path expressions. Intuitively, the user loosely specifies
a desired pattern of labels in the database: one can specify
patterns for paths (to match sequences of labels), patterns
for labels (to match sequences of characters), and patterns
for atomic values. A combination of these three forms of
pat tern matching is illustrated in the following example:

QUERY
select DBGroup.Member.Name
where DBGroup.Member. Office(.RoomZI.Cubicle)?

like "Z252"
RESULT

Name "Jones"
Na=e "Smith"

Here the expression Room~o is a label pat tern that matches
all labels starting with the string Room, e.g., Room, Rooms,
or Room68. For path patterns, the symbol "[" indicates dis-
junction between two labels, and the symbol "?" indicates
that the label pattern is optional. The complete syntax is
based on regular expressions, along with syntactic wildcards
such as "#" , which matches any path of length 0 or more.
Finally, " l i ke Z252" specifies that the data value should
end with the string "252". The l i k e operator is based
loosely on SQL. We also support grep (similar to Unix) and
soundex for phonetic matching.

During preprocessing, simple path expressions are elimi-
nated by rewriting the query to use variables, as in our first
example. It is not possible to do so with general path ex-
pressions, which require a run-time mechanism (described
in Section 4.2). Indeed, note that if the database contains
cycles, then a general path expression may match an infi-
nite number of paths in the data. When trying to match
a general path expression against the database, we match
through a cycle at most once, which appears to be a reason-
able simplification in practice.

We conclude with two more examples that illustrate ad-
vanced features of the language. The following query illus-
trates subqueries and constructed results. It retrieves the
names of all members of the Lore project, together with
titles of projects they work on other than Lore.

56 SIGMOD Record, Vol. 26, No. 3, September 1997

Results

~ e r a ~ t i m i z ~ /) l - ' a r s m g (Lorel to OQL) Generat~,~~t imiz~/)

Non-Query Data Engine /
Requests

Storage

Lore
System

External,
Read-only

Data
Sources

Figure 2: Lore architecture

QUERY
select M.Name,

(select M.Project.Title
where M.Project.Title != "Lore")

from DBGroup.Member M
where M.Project.Title = "Lore"

RESULT
Member

Name "Jones"
Title "Tsimmis"

Over a larger database, this query would construct one
Member object for each group member in the result, con-
taining the member 's Name and a Title for each qualifying
project.

A Lore database is modified using Lorel's declarative up-
date language, as in the following example:

update P.Member +=
(select DBGroup.Member
where DBGroup.Member.Name = "Clark")

from DBGroup.Project P
where P.Title = "Lore" or

P.Title = "Tsimmis"

This update adds all group members named Clark as
members of the Lore and Tsimmis projects. Intuitively, the
from and where clauses are first evaluated, providing bind-
ings for P. For each binding, the expression "P. Member +="
specifies to add Member edges between P and every object
returned by the subquery. In general, the update language
supports the insertion and removal of edges, the creation of
new vertices (objects), and the modification of atomic values
and name assignments. (As mentioned earlier, object dele-
tion is by unreachability, i.e., garbage collection, so there is
no explicit delete operation.)

Lorel also offers grouping and aggregate functions in the
style of OQL, external functions and predicates, and a pow-

SIGMOD Record, Vol. 26, No. 3, September

erful bulk loading facility that allows merging new da ta into
an existing database. There is also a means of attaching
variables to certain objects on paths, or even to the labels
or paths themselves (in the style of the a t t r ibute and pa th
variables of [CACS94]), which yields a rich mechanism for
structure discovery. Such features, described in [AQM+96],
are beyond the scope of this paper.

3 System Architecture

The basic architecture of the Lore system is depicted in Fig-
ure 2. This section gives a brief introduction to the com-
ponents that make up Lore. More detailed discussions of
individual components appear in subsequent sections.

Access to the Lore system is through a variety of applica-
tions or directly via the Lore Application Program Interface
bAPI). There is a simple textual interface, primarily used

y the system developers, but suitable for learning system
functionality and exploring small databases. The graphical
interface, the primary interface for end users, provides pow-
erful tools for browsing query results, a DataGuide feature
for seeing the structure of the da ta and formulating sim-
ple queries "by example," a way of saving frequently asked
queries, and mechanisms for viewing the multimedia atomic
types such as v ideo , audio, and java . These two interface
modules, along with other applications, communicate with
Lore through the API. Details of interfaces are discussed in
Section 6.

The Query Compilation layer of the Lore system consists
of the parser, preprocessor, query plan generator, and query
optimizer. The parser accepts a textual representation of a
query, transforms it into a parse tree, and then passes the
parse tree to the preprocessor. The preprocessor handles the
transformation of the Lorel query into an OQL-like query
(recall Section 2.2}. A query plan is generated from the
transformed query and then passed to the query optimizer.
In addition to doing some (currently simple) transformations
on the query plan, the optimizer also decides whether the

1997 57

use of indexes is feasible. The optimized query plan is then
sent to the Data Engine layer.

The Data Engine layer houses the OEM object manager,
query operators, external data manager, and various utili-
ties. The query operators execute the generated query plans
and are explained in Section 4. The object manager func-
tions as the translation layer between OEM and the low-
level file constructs. It supports basic primitives such as
fetching an object, comparing two objects, performing sim-
ple coercion, and iterating over the subobjects of a complex
object. In addition, some performance features, such as a
cache of frequently accessed objects, are implemented in this
component. The index manager, external data manager,
and DataGuide manager are discussed in Sections 4.3, 5.1,
and 5.2 respectively. Finally, bulk loading and physical ob-
ject layout on disk are discussed in Section 4.5.

4 Query and Update Processing in Lore

As depicted in Figure 2, the basic steps that Lore follows
when answering a query are: (1) the query is parsed; (2) the
parse tree is preprocessed and translated into an OQL-like
query; (3) a query plan is constructed; (4) query optimiza-
tion occurs; and (5) the optimized query plan is executed.
Query processing in Lord is fairly conventional, with some
notable exceptions:

* Because of the flexibility of Lorel, the preprocessing of
the parse tree to produce the OQL-like query is com-
plex. We have implemented the specification described
in [AQM+96] and we will not discuss the issue further
here.

• Although the Lore engine is built around standard op-
erators(such as Scan and Join), some take an original
flavor. For example, Scan may take as argument a gen-
eral path expression, and therefore may entail complex
searches in the database graph.

• A unique feature of Lore is its automatic coercion of
atomic values. Coercion has an impact on the imple-
mentat ion of comparators (e.g., = or <), but more
importantly we shall see that it has important effects
on indexing.

The result of a Lorel query is always a set of OEM ob-
jects, which become subobjects of a newly created Result
object. The Result object is returned through the API. The
application may then use routines provided by the API to
traverse the result subobjects and display them in a suitable
fashion to the user.

To illustrate the sequence of steps that Lore follows when
answering a query, we will trace an example through query
planning and then discuss the operators used to execute the
query plan. Consider the query introduced in Section 2,
whose OQL-like version is:

select 0
from DBGroup.Member M, R.0ffice 0
where exists A in M.Age : A > 30

The initial query plan generated for this query is given in
Figure 3. Before discussing tim various operators in this
plan, it is necessary to first understand the flow of control
and the auxiliary data structures used when executing such
a plan.

4.1 Iterators and Object Assignments

Our query execution strategy is based on familiar database
operators. We use a recursive iterator approach in query

processing, as described in, e.g., [Gra93]. With iterators,
execution begins at the top of the query plan, with each node
in the plan requesting a tuple at a time from its children and
performing some operation on the tuple(s). After a node
completes its operation, it passes a resulting tuple up to its
parent. For many operators, an iterator approach avoids
creation of temporary relations.

The "tuples" we operate on are Object Assignments, or
OAs. An OA is a simple data structure containing slots cor-
responding to range variables in the query, along with some
additional slots depending on the form of the query. For
example, the OA slots for the example query are shown in
Figure 4. Intuitively, each slot within an OA will hold the
oid of a vertex on a data path currently being considered
by the query engine. For example, if OA1 holds the oid for
member "Smith", then OA2 and OA3 can hold the oids for
one of Smith's Office subobjects and one of his Age subob-
jects, respectively. Note that at a given point during query
processing, not all slots of the current OA necessarily con-
thin a valid oid. Indeed, the goal of query execution is to
build complete OAs. Once a valid OA reaches the top of the
query plan, oids in appropriate slots are used to construct a
component of the query result.

4.2 Query Operators

We now briefly explain the query operators appearing as
nodes in Figure 3; query operators not appearing in this
plan are discussed later. Each operator takes a number of
arguments, with the last argument being the OA slot that
will contain the result of the operation. Exceptions to this
are the Select and Project operators, which do not have a
target slot.

The Scan operator, which is used in several leaf nodes,
is similar in functionality to a relational scan. Here, how-
ever, instead of scanning the set of tuples in a relation, our
scan returns all oids that are subobjects of a given object,
following a specified path expression. The Scan operator is
defined as:

Scan (Starting0hSlot, Path_expression,
Target0ASlot)

Scan starts from the oid stored in the S t a r t i ng0ASlo t , and
at each iteration places into the Targe t0hSlo t the oid of
the next subobject that satisfies the Path_express ion, until
there are no more matching subobjects. Note that in most
cases Path_express ion consists of a single label, however it
may be a complex data structure representing an arbitrary
component of a general path expression (recall Section 2.2),
essentially a regular expression. For the regular expressions
that we currently support, it is sufficient for the Scan op-
erator to keep a run-time stack of objects visited in order
to match the Path_expression. However, for general regu-
lax expressions a finite-state automaton is required. Recall
that to avoid infinite numbers of matching paths, we match
acyclic paths in the data only. Currently, the Scan operator
can avoid traversing a cycle by ensuring that no oid appears
more than once on its stack. Since the stack grows no larger
than acyclic paths in the database, we do not expect its size
to be a problem.

As a simple example of the Scan operator, consider the
following node from our example plan:

Scan (0A1, "Of f i ce" , 0A2)

This iterator will place into slot OA2, one at a time, all
Office subobjects of the object appearing in slot OA1. Note
the special form for the lower left Scan:

Scan (Root, "DBGroup", OAO)

58 SIGMOD Record, Vol. 26, No. 3, September 1997

li Project
[(OA2) t

Join , ~

. ~ Scan
Join (OA 1,"Office",OA2)

Scan Scan
(Root,"DBGroup",OA0) (OA0,"Member",OAl)

Select
(OA4 = TRUE)

< >
Aggr

(Exists, OA3, OA4)

Select
(OA3 > 30)

Scan
(OA I ,"Age",OA3)

Figure 3: Example Lore query plan

I OA0 (DBGroup)] OA1 OA3 (OA0"Member) I OA2 (OA1.Age) (true/false) I

Figure 4: Example object assignment

Instead of using an OA slot as the first argument, the value
Root, which is a system-known object from which all names
(such as DBGroup) can be reached, is used.

The Join, Project, and Select nodes are nearly identical
to their corresponding relational operators. Like a relational
nested-loop join, the Join node coordinates its left and right
children. For each partially completed OA that the left child
returns, the right child is called exhaustively until no more
new OAs are possible. Then the left child is instructed to
retrieve its next (partial) OA. The iteration continues until
the left side produces no more OAs. The Projectnode is used
to limit which objects should be returned by specifying a set
of OA slots, while the Select node applies a predicate to the
object identified by the oid in the OA slot specified.

The Aggregation node (shown in Figure 3 on the right
side of the query plan as Aggr) is used in a somewhat novel
way, since it implements quantification as well as aggrega-
tion. At a high level, the aggregation node calls its child
exhaustively, storing the results temporari ly or computing
the aggregate incrementally. When the child can produce
no more valid OAs, a new object is created whose value is
the final aggregation; this new object is identified within the
target OA mot. In the example shown, the aggregation node
adds to the target slot (OA4) the result of the aggregation,
which here is the value true ff the existential quantification
is satisfied (an object exists in OA3) and false otherwise.
Filtering of OAs whose quantification is true occurs in the
Select node immediately above the aggregation node. Note
that the exists aggregation operator "short circuits" when it
finds the first satisfying OA, while other aggregation opera-
tors may need to look at all OAs.

There are four other pr imary query operators in Lore,
in addition to operators for plans that use indexes (see Sec-
tion 4.3): SetOp, ArithOp, CreateSet, and Groupby. SetOp
handles the Lorel set operations Union, Intersect, and Ex-
cept. Likewise, ArithOp handles ari thmetic operations such
as addition, multiplication, etc. CreateSet is used to pack-
age the results of an arbi t rary subquery before proceeding;
it calls its child exhaustively, storing each old returned as
part of a newly created complex object. After the child has
produced all possible OAs, the CreateSet operator stores the

oid for the new set of objects within the target slot in the
OA. Finally, the Groupbyoperator handles (sub)queries that
include a groupby expression.

To give a more in-depth flavor of query plan construction,
we consider a second query. This query asks for the names
and the number of publications for each database group
member who is in the Computer Science ("CS') department. 3

select M.Name, count(M.Publication)
from DBGroup.Member M
where M.Dept = "CS"

It is important to note that both/4. Name and M. Publication
appearing in the select clause are sets of objects, and in
the general case are represented by subqueries. Thus, the
OQL-like translation of this query is:

select (select N from M.Name N),
count(select P

from M.Publication P)
from DBGroup.Member M
where exists D in M.Dept : D = "CS"

To see the construction of the query plan, refer to Figure 5.
The subtree for the from clause is constructed first. Each
simple pa th expression (or range variable) appearing within
the from becomes a Scan node. If several of these exist,
then a left-deep tree of Scan nodes with Join nodes con-
necting them is constructed. At the top of the from subtree
a Join node connects the from clause with the subtree for
the where clause. For where, each e x i s t s becomes a Select,
Aggr, and Scan node, and each predicate becomes a Select
node. Finally, for the s e l e c t clause, another Join node is
added to the top of the tree, and the query plan subtree for
the s e l e c t clause becomes the right child.

Let us further consider the subtree for the s e l e c t clause.
The plans for the two expressions constituting the s e l e c t
clause are combined via union (using the SetOp operator).

3Several of our group members are in the Electrical Engineering
department.

SIGMOD Record, Vol. 26, No. 3, September 1997 59

II (Root,"DBGroup".OA0) (OA0,"Member",OA 1)

From clause
(Rooto" D BSCra:p" , O A 0) I [(OAO."MeSmC;nr".OA,)II

From and Where clauses [

Select [
(OA3 = TRUE)

-4..~
Aggr [

(Exists, OA2, OA3)
..L ..L
Select I

(OA2 = "CS")
..[J~
Scan I

(OA1 ,"Dept",OA2)

Final Query Plan

I Project
(OA7) I

So n II (Root," DBGrou p" ,OA0) (OA0,"Member" ,OA 1)

I Select
(OA3 = TRUE)

J.$-
Aggr

(Exists, OA2, OA3)
../£.

Select
(OA2 = "CS")

Scan
(OAl,"Dept",OA2)

SetOp
(Union,OA5,
OA6, OA7

CreateSet]
(OA4, OA5)

.,[1.
Scan] I (OAl,"Name".OA4)

Figure 5: Steps in constructing a query plan

Aggr
(Count, OA6, OA7)

..tJ.
Scan

(OA 1 ,"Publications",
OA6)

Thus, each (complex) object in the result contains the set
of all Name subobjects of a Member (the left subtree of the
Union), together with the count of all publications for tha t
member. (In Lorel, a s e l e c t list indicates union, while or-
dered pairs would be achieved using a tuple constructor op-
erator [AQM+96].) The CreateSet operator, described ear-
lier, is needed to obtain all Name children of a given member
before returning its object assignment up the query tree. A
CreateSet operator is not used in the right subtree, however,
since the Aggregation operator by definition already calls its
subquery to exhaustion (and then applies the aggregation
operator, in this case count) before continuing.

4.3 Query Optimization and Indexing

The Lore query processor currently implements only a few
simple heuristic query optimization techniques. For exam-
ple, we do push selection operators down the query tree, and
in some cases we eliminate or combine redundant operators.
In the future, we plan to consider additional heuristic op-
timizations, as well as the possibility of truly exploring the
search space of feasible plans.

Despite the lack of sophisticated query optimization, Lore
does explore query plans that use indexes when feasible. In
a tradit ional relational DBMS, an index is created on an
a t t r ibute in order to locate tuples with part icular a t t r ibute
values quickly. In Lore, such a value index alone is not suf-
ficient, since the pa th to an object is as important as the
value of the object. Thus, we have two kinds of indexes in
Lore: a link (edge) index, or Lindex, and a value index, or
Vindex. A Lindex takes an old and a label, and returns the

oids of all parents via the specified label. (If the label is
omitted all parents are returned.) The Lindex essentially
provides "parent pointers," since they are not supported by
Lore's object manager. A Vindex takes a label, operator.
and value. It returns all atomic objects having an incom-
ing edge with the specified label and a value satisfying the
specified operator and value (e.g., < 5). Because Vindexes

60

argl arg2 string real int

string - s t r ing -+rea l bo th-~rea l
real string--+real - tnt--+real
~nt both-+real i n t - ~ r e a l --

Table 1: Coercion for basic comparison operators

are useful for range (inequality) as well as point (equality)
queries, they are implemented as B-q--trees. Lindexes, on
the other hand, are used for single object lookups and thus
are implemented using linear hashing [Lit80].

Used in conjunction, these two kinds of indexes enable
query processing in Lore to avoid the s tandard Scan opera-
tor. Before examining query plans that exploit indexes, we
first take a more detailed look at Vindexes and how they
handle the coercion present in Lorel.

4.3.1 Value indexes

Value indexing in Lore requires some novel features due to
its non-strict typing system. When comparing two values
of different types, Lore always a t t empts to coerce the val-
ues into comparable types. Currently, our indexing system
deals with coercions involving integers, reals, and strings
only. Table 1 illustrates the coercion that Lore performs for
these types; note that we simplify the situation by always
coercing integers to reals. Now, in order to use Vindexes
for comparisons, Lore must maintain three different kinds
of Vindexes:

1. A String Vindex. which contains index entries for all
string-based atomic values (s t r i n g , HTRL, URL, etc.).

2. A Real Vindex. which contains index entries for all
numeric-based atomic values (i n t e g e r and r e a l) .

SIGMOD Record, Vol. 26, No. 3, September 1997

f
(/

Vindex
("Age", >, 30, OA2)

Project
j (OA3)

/ , f

<2
Join ~

Once Named_Obj
(OA 1) C DBGroup", OA0)

Lindex [Lindex
(OA2,"Age",OAI) (OAl,"Member",OA0)

l Scan
(OA l,"Office",OA3)

Figure 6: A query plan using indexes

3. A String-coerced-to-real Vindex, which contains all string
values that can be coerced into an integer or real {stored
as reals in the index).

For each label over which a Vindex is created, three separate
B+-trees, one for each type, are constructed.

When using a Vindex for a comparison (e.g., find all Age
objects > 30), there are two cases to consider, based upon
the type of comparison value:

1. If the value is of type string, then: (i) do a lookup in
the String Vindex; (ii) if the value can be coerced to
a real, then also do a lookup for the coerced value in
the Real Vindex.

2. If the value is of type real (or integer), then: (i) do a
lookup in the Real Vindex; (ii) also do a lookup in the
String-coerced-to-real Vindex.

4.3.2 Index Query Plans

If the user's query contains a comparison between a path
expression and an integer, real, or string (e.g., "DBGroup.
Member.Age > 30"), and the appropriate Vindexes and Lin-
dexes exist, then a query plan that uses indexes will be gen-
erated. For simplicity, let us consider only queries in which
the where clause consists of one such comparison.

Query plans using indexes are different in shape from
those based on Scan operators. Intuitively, index plans tra-
verse the database bot tom-up, while scan-based plans per-
form a top-down traversal. An index query plan first locates
all objects with desired values and appropriately labeled in-
coming edges via the Vindex. A sequence of Lindex oper-
ations then traverses up from these objects at tempting to
match the full path expression in the comparison. 4 Note
that once we have an OA that satisfies the where clause,
it may be necessary to use one or more Scan operations to
find those components of the s e l e c t expression that do not
appear in the where clause.

Let us consider the following query (in its OQL-like form),
first introduced in Section 2:

4An obvious a l t e r n a t i v e is t o use full pa th indexes m place of the
Lindex. P a t h indexes would be (much) m o r e expens ive to m a i n t a i n
but (much) f a s t e r a t que ry t ime. P a t h indexes a re discussed in more
detai l in [GW97].

select 0
from DBGroup. Member M, M.0ffice 0
where exists A in M.Age : A > 30

A query plan using indexes is shown in Figure 6. This plan
introduces four new query operators: Vindex, Lindex, Once,
and Named_Obj. The Vindex operator, which appears as
the left child of the second Join operator, iteratively finds
all atomic objects with value less than 30 and an incoming
edge labeled Age, placing their oids in slot OA2. The Lindex
operator that appears below the Once operator iteratively
places into OA1 all parents of the object in OA2 via an Age
edge. (Since OEM data may have arbi t rary graph structure,
the object could potentially have several parents via Age, as
well as parents via other labels.) Since Age is existentially
quantified in the query, we only want to consider each par-
ent once, even if it has several Age subobjects; this is the
purpose of the Once query operator. The second Lindex
operator finds all parents of the OA1 object via a Member
edge, placing them in OA0. Since we want the object in
OA0 to be the named object DBGroup, the Narned_Obj op-
erator checks whether this is so. Once we have traversed
up the database using index calls and constructed a valid
OA, we finally use a Scan operator to find all O f f i c e sub-
objects, which are returned as the result via the topmost
Project operator.

Currently, for processing where clauses, Lore only consid-
ers subplans that are completely index-based (i.e., bot tom-
up), such as the one discussed here, or subplans that are
completely Scan-based (i.e., top-down), such as the one in
Figure 3. An interesting research topic that we have just be-
gun to address is how to combine both bot tom-up (index)
and top-down (Scan) traversals. When the two traversals
reach a predefined "meeting point", the intersection of the
objects discovered by the index calls and the Scan operators
identify paths that satisfy the where clause. The appropri-
ate meeting point depends on the "fan-in" and "fan-out" of
the vertices and labels in the database, and requires the use
of statistical information.

4.4 Update Query Plans

Thanks to query plan modularity, we were able to handle
arbi trary Lorel update statements by adding a single opera-
tor, Update, to the query execution engine. We illustrate the
approach with our example update query from Section 2.2:

S I G M O D R e c o r d , V o l . 26 , N o . 3, S e p t e m b e r 1 9 9 7 61

Query plan to find all projects with
the title "Lore" or "Tsimmis".

results placed in OAI

t Update
(Create_Edge, OA 1,

OA5, "Member") ~ Query plan to find all members
with name "Clark", results
placed in OA5

/

Figure 7: Example update query plan

update P.Member +=
(select DBGroup.Member

where DBGroup. Member. Name = "Clark")
from DBGroup. Project P
where P.Title = "Lore" or

P.Title = "Tsimmis"

reader a flavor of these components. For further details on
the external data manager see [MW97]. Further details on
DataGuides can be found in [GW97].

S.1 External Data

The query plan is outlined in Figure 7. The left subtree of
the Update node computes the :from and where clauses of the
update. In our example, the left subtree finds those projects
with title "Lore" or "Tsimmis". For each OA returned, the
right subtree is called to evaluate the query plan for the sub-
query to the right of +=. (Other valid update assignment
operators are := and -= [AQM+96]). In our example, the
right subtree finds those members whose name is "Clark".
Once the right subtree completes the OA, the Update node
performs the actual update operation; valid operations are
Create_Edge, Destroy_Edge, and Modify_Atomic. In our ex-
ample, the Update node creates an edge labeled Member be-
tween each pair of objects identified by its subtrees. Clearly
a number of optimizations are possible in update process-
ing. For instance, in our example the right subtree of the
Update node is uncorrelated with the left subtree and thus
needs to be executed only once. We currently perform this
optimization, and we are investigating others.

4.S Bulk Loading and Physical Storage

Data can be added to a Lore database in two ways. Either
the user can issue a sequence of update statements to add
objects and create labeled edges between them, or a load file
can be used. In the latter case, a textual description of an
OEM database is accepted by a load utility, which includes
useful features such as symbolic references for shared sub-
objects and cyclic data, as well as the ability to incorporate
new data into an existing database.

Lore arranges objects in physical disk pages; each page
has a number of slots with a single object in each slot. Since
objects are variable-length, Lore places objects according
to a first-fit algorithm, and provides an object-forwarding
mechanism to handle objects that grow too large for their
page. In addition, Lore supports large objects that may span

• many pages; such large objects are useful for our multimedia
types, as well as for complex objects with very broad fan-
out. Objects are clustered on a page in a depth-first manner,
primarily because our Scan-based plans traverse the data-
base depth-first. It is obviously not always possible to keep
all objects close to their parents since an object may have
several parents. For now, if an object has multiple parents
then it is stored with an arbitrary parent. Finally, if an
object o cannot be reached via a path originating from a
named object, then o is deleted by our garbage collector.

S Novel Features

This section provides brief overviews of two novel features
of Lore: the external data manager and DataGuides. Due
to space constraints, coverage is cursory, but should give the

Lore's external data manager enables dynamic retrieval of
information from other data sources based on queries issued
to Lore. The externally obtained data is combined with res-
ident Lore data during query evaluation, and the distinction
between the two types of data is invisible to the user. (Thus,
external data in Lore provides a way to query distributed
information sources by essentially transforming Lore into an
information integration engine.) An external object stored
within a Lore database functions as both a placeholder for
the external data, and specifies how Lore interacts with the
external data source. During query processing, when the
execution engine discovers an external object, information
is fetched from the external source to answer the query, and
the fetched information is cached within the Lore database
until it becomes "stale."

Clearly there are many possible approaches that can be
taken to integrate external data in this fashion. Our main
motivation in choosing the approach outlined below was to
enable Lore to bring in data from a wide variety of exter-
nal sources, and to introduce a variety of argument types
and optimization techniques to limit the amount of data
fetched from an external source to that which is immedi-
ately useful in answering a given query. Because the re-
lated Tsimmis project at Stanford has focused on build-
ing "wrappers" that provide OEM interfaces to arbitrary
data sources [PGGMU95], we are able to easily exploit such
sources as external data in Lore.

In Figure 8, we see the logical and physical views of a
small database with an external object (shaded in the fig-
ure). The logical view is that seen by the user, as if the
external data is stored in Lore. The physical view shows
how Lore encodes the information associated with an ex-
ternal source, along with any fetched data. The sample
database contains information about member "Jim", where
Jim's publication information is obtained externally. Dur-
ing query processing, the Scan operator notifies the external
data manager whenever an external object is encountered.
The external data manager may need to fetch information
from the external source, and will provide back to the Scan
operator zero or more oids that are used in place of the old
of the external object. Query processing then proceeds as
normal.

The physical view in Figure 8, simplified from the ac-
tual implementation, shows that the specification for an ex-
ternal object includes: (i) the location of a Wrapper pro-
gram that fetches the external data and translates it into
OEM, (ii) a Quantum that indicates the time interval until
fetched information becomes stale, and (iii) a set of Argu-
ments that are used to limit the information fetched in a
call to the external source. Arguments sent to the external
source can come from three places: the query being pro-
cessed (query-defined), values of other objects in the local
database (data-defined), or constant values tied to the exter-

62 SIGMOD Record, Vol. 26, No. 3, September 1997

Member

Name Publications

"Jim"

Logical View

Member

Name Publications

.J~im, ~ F e t c h e d ~
Argl f Arg2 ~ \ C~uantum /F~ched ~

Val~j A Wri:~etch.o" ~ 1 ~ : ~ \
Type Type Query Label

"Data "Query "Keyword"
Defined" Defined"

Physical View

Figure 8: The logical and physical views of the da ta

nal object (hard-coded). Example data-defined and query-
defined arguments can be seen in Figure 8 as Argl and
Arg2 respectively. The value of the atomic object pointed
to by the Value edge from Art1 is sent to the da ta source
as one argument. In the query-defined argument specifica-
tion, the Query Label object with value "Keyword" speci-
fies that if the query being processed has a predicate of the
form "Member. Pub l i ca t ions .Keyword = X", then X is sent
to the external da ta source as another argument.

Many calls to an external source can quickly dominate
query processing time. We briefly mention two of the ways
our external da ta manager a t tempts to limit the number of
calls. First, if a single query will result in multiple calls
to an external source (due to multiple bindings for data-
defined and /o r query-defined arguments), then we have a
mechanism for recognizing when a call to an external source
will subsume another scheduled call with a different argu-
ment set, and we eliminate the second call. Second, we track
the argument sets used by previous queries and determine
when previously fetched (non-stale) information partially or
entirely subsumes information required by the current argu-
ment set. A more detailed description of argument sets and
optimizations appears in [MW97].

5.2 DataGuides

Since a Lore database does not have an explicit schema,
query formulation and query optimization are particularly
challenging. Without some knowledge of the structure of the
underlying database, writing a meaningful Lorel query may
be difficult, even when using general path expressions. One
may manually browse a database to learn more about its
structure, but this approach is unreasonable for very large
databases. Further, without information about the struc-
ture of the database, the query processor may be forced to
perform more work than necessary. For example, consider
the query plan discussed in Section 4, which finds the offices
of all group members older than 30. Even if no members
have an office, the query plan would needlessly examine ev-
ery member in the database.

A DataGuide is a concise and accurate summary of the

Mem~,/ M ember N~jeet

Nam~/ ~Age ~ k O f f i c e ~ Title

C) oom (3

Figure 9: A DataGuide for Figure 1

structure of an OEM database, stored itself as an OEM ob-
ject. Each possible path expression of a database is encoded
exactly once in the DataGuide, and the DataGuide has no
path expressions that do not exist in the database. In typ-
ical situations, the DataGuide is significantly smaller than
the original database. Figure 9 shows a DataGuide for the
sample OEM database from Figure 1. In Lore, a DataGuide
plays a role similar to metada ta in tradit ional database sys-
tems. The DataGuide may be queried or browsed, enabling
user interfaces or client applications to examine the struc-
ture of the database. As will be seen in the next section, an
interactive DataGuide is an impor tant part of Lore's Web
interface. Assuming the role of the missing schema, the
DataGuide can also guide the query processor. Of course,

SIGMOD Record, Vol. 26, No. 3, September 1997 63

in relational or object-oriented systems the schema is explic-
itly created before any data is loaded; in Lore, DataGuides
are dynamically generated and maintained over all or part
of an existing database.

For a given OEM database, there are many DataGuides
that satisfy the desired properties specified above (accuracy
and conciseness). For example, in Figure 9 we could fuse
all leaf objects into a single object without changing the
fact that every path expression is encoded exactly once (and
without adding superfluous patlhs). It turns out that certain
DataGuides are much easier to keep consistent in response
to updates to the underlying database. In addition, some
DataGuides support storage of annotations within objects:
properties of the set of objects reachable by a path expres-
stun in the original database. We store an annotation for
a given path expression by assigning it to the single object
in the DataGuide reachable by that path expression. An-
notations are useful, e.g., for storing sample atomic values
reachable via a given path expression, or for specifying the
statistical chances of finding an outgoing edge with a certain
label.

In [GW97], formal definitions for DataGuides are pro-
vided as well as algorithms to build and incrementally main-
tain DataGuides that support annotations. Also given is a
discussion of how DataGuides aid query formulation in prac-
tice and their use for query optimization.

6 Interfaces to Lore

As shown in Figure 2, the Lore Application Programming
Interface (API) provides a gateway between Lore and any
user interface or client application. It is used, for instance,
by the system's textual interface, which passes user com-
mands to Lore and presents query results in a hierarchical
display. After summarizing the API, we describe a Java-
based Web interface that makes Lore simple to use in an
interactive fashion.

t0[e S ~'ax ch ~ S staple 0uem s I~ H e'~9"i

III

v , DB Group

:i v~,~ Oro~ Member
:i , N ~

,Position = "P~ St~lent"
. P ~ h l a t e ~ t = 'Se~i~tr~-t~red Data ~
. De~e
• PersonaII~e~

! + Oh~h~l Horn
• Ye~s At Staz~ford > 1 ~ <

il v , Pm, d
i, • Name

), * Project Member
* HomeP~

:il * Title
i

i * Coherence
i

• Postscript

Figure 10: A DataGuide in Java

6.1 Application Programming Interface

The Lore API is composed of a small collection of C + +
classes. For any client, Lore is simply viewed as a single
library, accessible through the API classes and methods de-
clared in a single header file. (Eventually we hope to move
Lore toward a traditional client-server model.) At the high-
est level, the API allows a client program to connect to a
Lore database, submit queries and commands, and process
query results.

Any session with a Lore database is encapsulated in an
instance of the LoreConnect ion class. A client will first
Connect to a specific database (and eventually Disconnect
when finished). Clients submit Lorel queries using the
Submit function. Submit is also used for other Lore sys-
tem commands, such as index creation and updates. When
called with a Lorel query, Submit returns the query result as
a Lore0em object. A Lore0em instance initially contains only
an old; the actual value is fetched from the database on de-
mand. For atomic objects, a client may request the Type and
Value of the object. To traverse the subobjects of a complex
object, a client instantiates a L o r e I t e r a t o r . Each succes-
sive call to the i terator 's Next method returns a different
Lore0em subobject and its Label. By nesting L o r e I t e r a t o r
instances, a client may perform arbitrary traversals of OEM
objects.

6.2 Web Interface

A user connects to our graphical Web interface by visit-
ing a specific URL and choosing a database. The user is

then presented with a Java program featuring a DataGuide,
as described in Section 5.2. Users can quickly and easily
browse the DataGuide to explore the structure of the under-
lying database. Through the Web interface, the user may
submit a textual Lorel query or select a sample prewrit-
ten query. Furthermore, in a style similar to Query-By-
Example [Zlo77], queries may be formulated and submitted
without any knowledge of Lorel by using the DataGuide
to select path expressions and specify selection conditions.
Currently, DataGuide queries can express Lorel queries with
simple path expressions and a where clause that is conjunc-
tive with respect to unique path expressions.

As an example, Figure 10 is a screen snapshot of the
Java presentation of a DataGuide. This DataGuide summa-
rizes an existing database for Stanford's Database Group,
similar in structure to (but much larger than) the sample
database used throughout this paper. Arrows accompany
complex objects and are used to expand or collapse s u b -
objects. Also, a diamond is associated with each displayed
label, corresponding to a unique path expression from the
root. When the user clicks on a diamond, a dialog box
pops up, from which the user may view sample values, se-
lect the path expression for the query result, or add filtering
conditions. When the user selects a path expression, the
corresponding diamond is rendered in a different color. Fil-
tering conditions are displayed next to the corresponding la-
bel. The DataGuide shown in Figure 10 represents a query
to select all group members that are PhD students, have a
research interest in semistructured data, and have been at
Stanford more than one year but less than six. When the
user clicks Go, the Java program automatically generates an
equivalent Lorel query and sends it to Lore to be processed.

64 SIGMOD Record, Vol. 26, No. 3, September 1997

Regardless of how a query is submitted, the interface dis-
plays query results in HTML, in a hierarchical format that
is easy to read and navigate. By formatting OEM objects in
HTML, we can leverage Web browser support for our multi-
media data (such as g i f files, audio, or video). To make the
hierarchical display of OEM more readable, we perform two
small presentation transformations. First, if several objects
share the same label, we display the label only once and
show the values of the objects underneath it. For example,
if a query result contains ten objects, each with the same
label P ro jec t , we create an HTML page that begins with
a single header P ro j ec t s , followed by the values for all ten
projects. Second, we present complex OEM objects as ac-
tive hyperlinks. Clicking on the link brings up a new HTML
page showing the subobjects of that complex object.

7 System Status and Future Work

As of June 1997, the Lore system is functional and robust for
a large subset of the Lorel language. It consists of approxi-
mately 60,000 lines of C + + code. Some language features,
such as external predicates and functions, are still under
implementation. Also, general path expressions are not yet
implemented in their full generality, although a substantial
and very useful subset is.

A Lore server with sample databases is available for pub-
lic use. Users can submit queries and can experiment with
features such as DataGuides and result browsing. To visit
our on-line demo, see h t t p ://www-db. s t a n f o r d , edu/ lore .
In addition, Lore system binaries for several platforms are
available through the Web page.

We are considering many possible enhancements and ex-
tensions to Lore, as follows.

7.1 Compatibility and Interoperabillty

As mentioned in Section 2 and covered in detail in [AQM+96],
OEM and Lorel can be translated to ODMG and OQL
[Cat94]. In the translation, OEM objects are represented
by ODMG objects, while Lorel queries are transformed into
pure OQL queries that use method calls to handle Lorel
features such as type coercion and general path expressions.
As a proof-of-concept for the translation, we have imple-
menting Lorel on top of the 02 object-oriented database
management system [BDK92]. Note that this implemen-
tation enables the storage of semistructured (OEM) and
structured (ODMG) data in a single repository, providing
a useful setting in which we are studying integration of the
two data models. We also plan to explore how Lorel could
be translated to SQL3 and thus implemented on top of an
object-relational database management system.

7.2 Performance Issues

To date we have done little performance analysis of Lore.
There are a number of performance aspects we want to con-
sider, such as overall performance and bottlenecks in the sys-
tem, scalability of the system to extremely large databases,
and comparing the performance of Lore against our imple-
mentation of Lorel on top of 02 (see Section 7.1).

There is significant additional research to do in query
optimization, including query rewriting, operation ordering,
selecting the best use of indexes in query plans, and exploit-
ing information stored in the DataGuide.

As described in Section 4.3, we can build in Lore a link
index (Lindex) in order to quickly find all parents of a given
object reachable via a given label. Alternatively, we could
instead augment our storage manager to store with objects
their inverse (parent) pointers in addition to their subobject

(child) pointers. We plan to compare the performance of a
storage manager with inverse pointers to that of our current
approach based on Lindexes. We also plan to consider us-
ing path indexes in place of the Lindex. Interestingly, the
functionality of path indexes is incorporated easily into the
DataGuide, as discussed in [GW97].

Currently all "expansions" of path expressions in query
paths are done at run-time. However, for some classes of
path expressions, it is possible to use information in the
DataGuide to expand the regular expressions to all pos-
sible completions at query compilation time. We plan to
explore the compile-time approach and compare its perfor-
mance against the run-time approach we now take.

7.3 New Functionality

We are in the process of implementing transaction support
for concurrency control and recovery. As with other aspects
of Lore, the semistructured nature of Lore's data is requiring
us to rethink some aspects of traditional solutions.

In the user interface area, we plan to increase the expres-
siveness of DataGuide queries toward the full power of Lorel.
In addition, to follow the recent trend of enabling database
systems to dynamically generate customized HTML displays
of query results [Gaf97, BDK92], we plan to investigate more
sophisticated techniques for customizing the presentation of
OEM objects in a Web environment.

In a companion project, we have extended OEM and
Lorel in order to treat changes to the data as a first-class
concept [CAW97], similar to the Heraclitus system that op-
erates on structured data [GHJ96]. Currently we are imple-
menting this model and language on top of the Lore system.

Initial work is underway to define both view and trigger
mechanisms appropriate for semistructured data, and to im-
plement them in Lore. (See [AGM+97] for a discussion of
views in the context of OEM and Lord.) Finally, because
many applications appropriate for a semistructured DBMS
such as Lore include a significant amount of text data, we
plan to incorporate a special t e x t type along with a full-text
indexing system into Lore.

Acknowledgments

For their many contributions to the Lore project and system
implementation we are grateful to (alphabetically) Kevin
Haas, Matt Jacobsen, Tirthankar Lahiri, Qingshan Luo,
Svetlozar Nestorov, Anand Rajaraman, Hugo Rivero,
Michael Rys, and Takeshi Yokokawa. We also thank many
other members of the Stanford Database Group for fruitful
discussions about Lore and Lord, including (alphabetically)
Sudarshan Chawathe, Joachim Hammer, Shuky Sagiv, Jeff
Ullman, Janet Wiener, and Jun Yang. Finally, we are grate-
ful to an anonymous referee for a careful reading and helpful
comments.

References

[Abi97]

[AGM + 97]

[AQM + 96]

S. Abiteboul. Querying semistructured data. In
Proceedings of the International Con]erence on
Database Theory, Delphi, Greece, January 1997.

S. Abiteboul, R. Goldman, J. McHugh, V. Vassa-
los, and Y. Zhuge. Views for semistructured data.
In Proceedings o] the Workshop on Management
of Semistructured Data, pages 83-90, Tucson, Ari-
zona, May 1997.

S. Ablteboul, D. Quass, J. McHugh, J. Widom,
and J. Wiener. The Lorel query language for semi-
structured data. Journal of Digital Libraries, 1(1),
November 1996.

SIGMOD Record, Vol. 26, No. 3, September 1997 65

[BCK + 94]

[BDHS96]

[BDK92]

[BDS95]

[BK94]

[CACS94]

[Cat94]

[CAW97]

[CCM96]

[CM89]

[Com91]

[Gaf97]

[GHJ961

[G ra93]

[GW97]

[KKS92]

[KS95]

G. Blake, M. Consens, P. Kiipel~inen, P. Larson,
T. Snider, and F. Tompa. Text / re la t iona l data-
base management systems: Harmonizing SQL and
SGML. In Proceedings of the First International
Conference on Applications of Databases, pages
267-280, Vadstena, Sweden, 1994.

P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A query language and opt imizat ion tech-
nieques for uns t ruc tured data . In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 505-516, Montreal ,
Canada, June 1996.

F. Bancilhon, C. Delobel, and P. Kanellakis, edl-
tots. Building an Object-Oriented Database Sys-
tem: The Story of 02. Morgan Kaufmann, San
Francisco, California, 1992.

P. Buneman, S. Davidson, and D. Suciu. Program-
ming constructs for uns t ruc tured data . In Proceed-
ings of the 1995 International Workshop on Data-
base Programming Languages (DBPL), 1995.

C. Beeri and Y. Kornatski. A logical query language
for hypermedia systems. Information Sciences, 77,
1994.

V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. From s t ructured documents to novel
query facilities. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, pages 313-324, Minneapolis, Minnesota , May
1994.

R.G.G. Cattell . The Object Database Standard:
ODMG-93. Morgan Kaufmann, San Francisco, Cal-
ifornia, 1994.

S. Chawathe, S. Abiteboul, and J. Widom. Rep-
resenting and querying changes in semist ructured
data . Technical report , Stanford University Data-
base Group, February 1997.

V. Christophides, S. Cluet, and G. Moerkotte . Eval-
uat ing queries with generalized pa th expressions.
In'Pr0ceedings of the A CM SIGMOD International
Conference on Management of Data, pages 413-
422, Montreal, Canada, June 1996.
M.P. Consens and A.O. Mendelzon. Expressing
s t ruc tura l hyper text queries in GraphLog. In Pro-
ceedings of the Second ACM Conference on Hy-
pertext, pages 269-292, P i t t sburgh , Pennsylvania,
November 1989.

IEEE Computer . Special Issue on Heterogeneous
Distributed Database Systems, 24(12), December
1991.

J. Gaffney. I l lustra 's web da tab lade module.
Technical report , Informix Corporat ion, Febru-
ary 1997. Available at h t tp : / /www.informix.co~a
as /informix/corpinfo/zines/whitpprs/illuswp/
d b l a d e , htm.

S. Ghandehar izadeh, It. Hull, and D. Jacobs. Her-
aclitus: Elevating deltas to be first class citizens in
a da tabase programming language. A CM Transac-
tions on Database Systems, 21(3):370-426, 1996.

G. Graefe. Query evaluation techniques for large
databases . ACM Computing Surveys, 25(2):73-170,
1993.

R. Goldman and J. Widom. Dataguides: Enabl ing
query formulation and opt imizat ion in semistruc-
tured databases. In Proceedings of the Twenty-
Third International Conference on Very Large
Data Bases, Athens, Greece, August 1997.
M. Kifer, W. Kim, and Y. Sagiv. Querying object-
oriented databases. In Proceedings of the ACM
SIGMOD International Conference on Manage-
ment of Data, pages 393-402, San Diego, Califor-
nia, June 1992.

D. Konopnicki and O. Shmueli. W3QS: A query
system for the World Wide Web. In Proceedings of
the Twenty-First International Conference on Very
Large Data Bases, pages 54-65, Zurich, Switzer-
land. September 1995.

flitS0]

[LMR90]

[LSS96]

[MMM96]

[MS93]

[MW931

[MW95]

[MW97]

[O'N87]

[PGGMU95]

[PGMW95]

[QitS+951

[QWG + 96]

[SK91]

[SLg0]

[YA94]

[Zlo771

W. Litwin. Linear hashing: a new tool for file and
table addressing. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, pages
212-223, Montreal, Canada, October 1980.
W. Litwin, L. Mark, and N. Roussopoulos. Interop-
erability of multiple au tonomous databases . A CM
Computing Surveys, 22(3):267-293, 1990.
L.V.S. Lakshmanan, F. Sadri, and I.N. Subrama-
alan. A declarative language for querying and re-
s t ruc tu r ing the Web. In Proceedings of the Sizth In-
ternational Workshop on Research Issues in Data
Engineering (RIDE '96), New Orleans, February
1996.
A.O. Mendelzon, G. Mihaila, and T. Milo. Querying
the world wide web. In Proceedings of the Confer-
ence on Parallel and Distributed Information Sys-
tems (PDIS'96), December 1996. Full version to
appear in the Journal of Digital Libraries.
J. Melton and A.R. Simon. Understanding the New
SQL: A Complete Guide. Morgan Kaufmann, San
Francisco, California, 1993.
T. Minohara and It. Watanabe . Queries on struc-
ture in hypertext . In Proceedings of the Conference
on Foundations of Data Organization (FODO '98),
pages 394-411. Springer Verlag, 1993.
A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases . SIAM Journal of
Computing, 24(6), 1995.
J. McHugh and J. Widom. In tegra t ingdynamical ly-
fetched external information into a dbms for semi-
s t ructured data . In Proceedings of the Workshop on
Management of Semistructured Data, pages 75-82,
Tucson, Arizona, May 1997.
Patrick O'Neil. Model 204 archi tecture and per-
formance. In Proceedings of the gnd International
Workshop on High Performance Transaction Sys-
tems (HPTS), pages 40-59, Asilomar, CA, 1987.
Y. Papakonstant inou, A. Gupta , H. Garcia-Molina,
and J. UIIman. A query t rans la t ion scheme for
rapid implementat ion of wrappers. In Proceedings
of the Fourth International Conference on Deduc-
tive and Object-Oriented Databases, Singapore, De-
cember 1995.
Y. Papakonstant inou, H. Garcia-Molina, and
J. Widom. Object exchange across heterogeneous
information sources. In Proceedings o/the Eleventh
International Conference on Data Engineering,
pages 251-260, Taipei, Taiwan, March 1995.

D. Quass, A. Ra ja raman , Y. Sagiv, J. Ullman,
and J. Widom. Querying semis t ructured hetero-
geneous information. In Proceedings of the Fourth
International Conference on Deductive and Object-
Oriented Databases, pages 319-344, Singapore, De-
cember 1995.
D. Quass, J. Widom, R. Goldman, K. Haas, Q. buo,
J. McHugh, S. Nestorov, A. Ra ja raman , H. Rivero,
S. Abiteboul, J. Ullman, and J. Wiener. LORE: A
Lightweight Object REposi tory for Semistructured
Data. In Proceedings of the ACM SlGMOD Inter-
national Conference on Management of Data, page
549, Montreal , Canada, June 1996. Demonst ra t ion
description.
M. Stonebraker and G. Kemnitz . The P O S T -
GILES next-generat ion da tabase management sys-
tem. Communications of the ACM, 34(10):78-92,
October 1991.
A. Sheth and J.A. Larson. Federated da tabase sys-
tems for managing dis t r ibuted, heterogeneous, and
autonomous databases . A CM Computing Surveys,
22(3):183-236, 1990.
T. Yan and J. Annevelink. In tegra t ing a s t ructured-
text retrieval system with an object-or iented data-
base system. In Proceedings of the Twentieth In-
ternational Conference on Very Large Data Bases,
pages 740-749, Santiago, Chile, September 1994.
M.M. Zloof. Qurey-by-Example: a da t a base lan-
guage. IBM Systems Journal, 16(4):324-343, 1977.

66 SIGMOD Record, Vol. 26, No. 3, September 1997

