
C-Logic of Complex Objects

Weidong Chen and David S. Warren
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794

Abstract

Our objective ‘is to have a logical framework for
natural representation and manipulation of com-
plex objects. We start with an analysis of semantic
modeling of complex objects, and attempt to un-
derstand what are the fundamental aspects which
need to be captured. A logic, called C-logic, is then
presented which provides direct support for what
we believe to be basic features of complex objects,
including object identity, multi-valued labels and a
dynamic notion of types. C-logic has a simple first-
order semantics, but it also allows natural specifi-
cation of complex objects and gives us a framework
for exploring efficient logic deduction over complex
objects.

1 Introcluction

Reasoning about complex objects has been the focus of ac-
tive research in databases during the last few years [1,2,6,7]
[8,12,13,14,20,22,23). One feature common to most of these
proposals is that they are language-based. That is, a lau-
guage is first presented for describing complex objects, and
the semantics of the language is then given. This language-
based approach has two disadvantages. First, different lan-
guages have various features, and it is not always clear
why they are needed and how they support complex ob-
jects. Even the same feature may have subtle semantic
differences in different languages. This makes it difficult

to compare the semant,ics of complex objects across dif-
ferent languages. Second, each language may impose ccr-
Gn seemingly unnecessary constraints over complex ob-
ject specification, which can make the language inflexible.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies arc not made or distributed for direct commucial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Assodion for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1989 ACM 0-89791-u)84/89/0oo3/o369 $1.56

The primary purpose of co&lex dbjects is to capture
more of the structure of real world data. Our strategy is to
focus on complex object modeling instead of specific lan-
guages. And the design of a language should be guided
by what need to be modeled, rather than the other way
around. This paper consists of two major parts. First,
we start with an analysis of semantic modeling of com-
plex objects, and try to identify fundamental aspects of
complex objects which need to be captured. An infor-
mal discussion is given about identities, labels and types :
of complex objects, and how they might be modeled in a
logical framework. Second, based upon this analysis, we
present a logic, called C-logic, to support what we believe
to be essential features of complex objects, including ob-
ject identity, multi-valued labels and a dynamic notion of
types. A transformation into first-order logic is then.de-
scribed, which provides an alternative way of understand-
ing complex objects in a well-known framework.

The design of C-logic has been stimulated by Maier’s O-
logic [22]. O-logic contains notions such as object identity,
labels and types, which are essential for modeling complex
objects. As Maier pointed out in [22], however, O-logic also
has some problems. C-logic can be viewed as an extension
of O-logic in the sense that it attempts to clarify and solve
some problems in O-logic.

In addition to the semantics of complex objects, sim-
plicity and flexibility are alsc~ guiding principles for us in
the design of C-logic. First, C-logic is not just yet an-
olher logic for complex objects. Its semantics is first-order
and can be understood easily. Each formula in C-logic cau
actually be transformed into an equivalent first-order for-
mula. It directly supports only what we view as fundamen-
tal aspects of complex objects. Other higher-level features
such as single-valued labels and a static notion of types
can be added on top of C-logic. Tbis makes C-logic very
simple and easily imple,mentable. Second, C-logic is much
more than just first-order logic. It supports many useful
aspects of sets. And it enables the user to provide clus-
tering information in the specification of complex objects.
More e!iicieut logir deduction can be done directly over
complex objects by taking advantage of this information.

The simplicity of C-logic makes it a suitable paradigm for

such exploration.

36P

2 Complex Object Modeling

The objective of complex objects is to model structured en-
tities in the real world. Each eutity can have various prop-
erties and can be classified into various classes according to
these properties. In order to model real world entities, we
need corresponding representations of entities, their prop-
erties, and classes, using identities, labels and types. In
the following, we discuss informally how each of the three
aspects will be treated in C-logic.

2.1 Object Identity

In the real world, the actual existence of an entity in time
and space identifies the entity. To model such a situation
directly, we need to represent the identity of an entity. The
importance of object identity has been argued in (17,21,22].
The question is how to represent identities in a logic frame-
work.

In Maier’s O-logic [22], only object variables are intro-
duced for referring to object identities. This is insufficient,
as Maier points out, when objects are defined by rules.
Consider the following example:

path: C(src +X. dest =+Y, length ~-1) :-
node: X(linkto +Y).

path: C(src +X, dest +Y, length *L) :-

node: X(linkto =+Z),

path: CO(src +Z, dest =+Y, length *LO),

L is LO + 1.

In O-logic, such rules are considered as entity-creating
rules. However, these rules themselves do not determine
what entities are to be created, i.e., how C should be quan-
tified with respect to other variables in the rules. It was
recognized by Maier that C should be existential. But
the scope of the existential quantifier remains unspecified.
There are several possible cases, each of which is reason-
able and each of which has a different semantics. The path
objects can be determined by either

1. node objects at both ends only; or

2. :lodc objects at both ends and the length of the path
only; or

3. the sequence of node objects of the path.

Consider variables in the second rule. The quantification
would be VXVY3C.. . for the ilrst case, and VXVYVL3C. . *
for the second. For the third case, one possible quantifica-
tion of variables is VXVCO3C . . *. The user should specify
which is the intended semantics. The skolem function of
the existential variable could then be automatically gener-
ated or explicitly given by the user. For example, if path
objects are determined by node objects at both ends only,
the rules would become

path: id(X,Y)[src +X, dest =F-Y. length *I] :-
node: X[linkto +q.

path: id(X,Y)[src +X, dest +Y, length *L] :-
node: Xllinkto +Z].
path: CO[src +Z, dest +Y, length -*LO],
L is LO + 1.

Notice that the existential object variable C in each rule
has been replaced by id(X,Y). As we have said, this re-
placement can be done by either the system or the user.

A logic of complex objects should allow explicit COIN-
struction of object identities. As proposed in (181, we pro-
vide constants and functions for constructing object iden-
tities in C-logic. Our original motivation for introducing
structured object identities is to support skolemization of
existential object variables. However, this does not meau
that the user need be worried about constructing .unique
identities. Instead, based upon C-logic, a high-level iuter-
face can be built, in which the user specifies only what
determines the objects to be created, but not how to con-
struct identities of these objects. The acutal construction
of unique identities can be left to’the system supporting
C-logic. Given such a high-level interface, the user, in the
above example, would uot give the explicit roustruction
id(X. Y) of identities, but only that object variable C iu
the original rules is existentially dcpeudent upw X and Y.

2.2 Labels as Properties

Properties of an object can be represented by labeled val-
ues. For example, consider the fact that the uu&~r of
the book Foundations of Loyic Programming is John W.
Lloyd. In other words, the property author of a book ob-
ject Foundations of Logic Programming has value John W.
Lloyd. Labels have been introduced in various languages
of complex objects. However, it is not always char what
these labels mean [3,4,6,12].

In O-logic [22], labels are considered semantically as
partial functions from objects to objects. A program con-
taining a multiply-defined label would have no models. So
even if a program contains only Horn-like rules, it may st,ill
be inconsistent. Consistency checking of a program essen-
tially requires evaluating the whole program, which may
be difficult if rules are involved, even undecidable if there
are structures.

While inconsistency in O-logic is global, there are some
other proposals [6,18] which employ a lattice-based seman-
tics of objects and introduce a top object T. The idea is
that if a label is multiply defined, T would be derived for
the value of the label. It has been pointed out in [18] that
introducing T makes inconsistency local to objects and la-
bels being concerned. For example, suppose that

john[name +“John”].
john[name *‘“John Smith”].

aud “John” and “John Smith” do not have any common
super-object except T. Then in the semantics of the dat.a
base, johnlname +T] would be true. Therefore john(name
.:A. “David”] should also be derivable since it is a sub-object
of johnjname +T]. However, this derivation canuot be

370

none using dy resolution-like inference rules.
In C-logic, we consider labels as binary prcdicatcs over

objects. There are many cases in which such multi-valued
labels are very convenient. For example, a person may have
several telephone numbers and several children. A student
may have several co-advisors. Multi-valued labels do not
have the builtin functionality constraint, and t,hus are eas-
ier to implement. For a logic supporting basic feat,ures of
complex objects, we do not want to build constraints into
the logic which are hard to enforce.

Viewing labels as binary predicates has another impli-
cation. Since each label is a binary predicate, a description
of an object with several labeled values can be viewed as
a conjunction of several atomic formulas, For example,

john[name +“John Smith”, age +28]

can be considered as

john[name +“John Smith”] h john[age =+28]

or as

name(john, “John Smith”) A age(john, 28)

in first-order logic. There are three aspects worth pointing
out. First, from a complex description of an object, we
can infer any sub-part of the description of the object. So
john[name +“John Smith”] and john[age +28] can be in-
fered from john[name =+‘“John Smith”, age +28]. Second,
we can combine various pieces of descriptions together to
infer a complex one. For instance, given john[name + “John
Smith”] and john[age +28], we can infer john[name *“John

Smith”, age +28]. This is important since information
about an object may be accumulated piecewise. Third,
the translation of complex object descriptions into first-
order logic provides an understanding of complex objects
within a well-known logic system, as well as a simple imple-
mentation. One difference, however, between C-logic and
first-order logic is that C-logic encourages structured de-
scriptions of complex objects. While a complex description
is very natural in C-logic, programming using conjunctions
of atomic formulas in first-order logic is not so common.

2.3 Types of Objects

Thus far we have argued that objects must have both iden-
tities and Properties or labeled values. Objects can be
divided into various classes according to properties they
have. In databases, a class of objects has two aspects. Un-
der the dynamic aspect, a class denotes the set of objects
(or object identities) in the class, and such membership
may be changed by database updates. The static aspect
represents common structural propertie, of all objects in
the class, i.e., what properties an object must have in order
to belong to a cer(ain class This ~llav also be chaugcd if
the database schema IS modihea. C;orresponcling to these
two aspects, there are two different notions of types: dy-
nantic and static.

In a dynarmc notion of types, a type is &ply a set of
object identities. It is essentially part of the database state.
There are no additional assumptions regarding what prop-
erties an object must have in order to be in a certain type.
Instead, whenever an object is added to the database, it.
must also be specified what type the object will be in.
(A clefault type, such as object, which includes all objects,
may also be used.) Each type can be treated as a unary
predicate.

In a static notion of types, the meaning of a type is
not so clear. Roughly speaking, a type indicates a set.
of properties which must be possessed by objects of that
*type. Log~ally, let II,. . . ,I, be labels corresponding to

-alI properties indicated by a type T. Then one possible
meaning of 7 is a set of objects specified as follows:

T(X) :- X(11 a x1, * * *, 1, * XJ.

Of course, all objects Xl,. . . , X,, can be further typed. The
point is that every object with all properties specified by
a type will automatically belong to the type.

Types can be organized into hierarchies. In a dynamic
notion of types, the type hierarchy has to be explicitly
specified, while in a static notion of types, the hierarchy
is implicitly determined by properties of each type. In
C-logic, we choose to use a dynamic notion of types. The
reason is t.hat the static notion is a kind of constraint which
seems better t.[eated with schema information and other
constraints over the database state such as functionality of
labels. Since we will not deal with constraints, we use the
dynamic notion of types to make the framework simpler.

3 Basic Framework

This section describes the formal syntax and semantics of
C-logic, and presents a transformation of this logic into
first-order logic. The transformation provides an alterna-
tive way of understanding complex objects, and a basis
for rensoning about complex objects in first-order logic.
It iJso indirectly establishes (by the Herbrand theorem of
first-order logic) that mechanical reasoning about complex
objects corresponds to complete pure logic deduction.

3.1 Languages of Objects

The basic syntax is as follows. In addition to parentheses
and logical connectives (A v 7 > V El), a language of
objects contains:

l a countably infinite set of variables;

l a (countable, possibly empty) set of (possibly zero-
ary) function symbols;

l a (countable, possibly empty) set of predicate sym-
bols;

l a (countable, possibly empty) set of labels;

l a countable, partially ordered set of type symbols,

which contains a type symbol object such that for
any type L, L 5 object.

Assume that all of these sets of symbols are disjoint.
Let L be any type symbol. A term is either

l L : X where X is a variable; or

b L: c where c is a constant; or

0 (: j(t,,... , t,), where f is an n-ary function symbol,
ti(l<i~7Z)isaterm;or

b till * el,...,l,, + e,,] (n 2 l), where t is a term
of the form L : X, L : C, or L : f(~~,..*,st), and
li (1 5 i < n) is a label, and ei (1 < i 5 n) either a
term or a collection of terms of the form {If, . . . , iii}
in which tf,... , tf are all terms.

As a notational convenience, a term of the form object : 1
can be abbreviated as t.
Ezample 1: The following

X
path: g(X.Y)llength *lOI
person: johnlchildren +

{person: bob, person: bill}]

instructor: david[course =xourseid: cse538,
course =xourseid: cse505]

are terms, but

student: id(namc-+joe](age+20]

part: f(part-id +123)
part i f[part-id + 1231

where f is a unary function symbol, are not terms.
Intuitively, a term like L : t[l, + t,, . . . ,I, =+ t,,] repre-

sents an object of type L, whose identity is 1, with certain
properties indicated by li + ti (1 5 i 5 n).

An atomic formula is either p(t,, - . . , tn) or t, where p is
an n-ary predicate symbol, and t, ti (1 < i 5 n) are terms.
Formulas can be constructed from atomic formulas using
logical connectives in the usual way.

3.2 Semantics of Languages of Objects

Given a language L of objects, a semantic structure is a
pair M = (M, I) where h4 is a nonempty set called the do-
main of the structure, and I is the interpretation function
which assigns values to nonlogical symbols in L as follows
(P is the powerset operator):

. I(f) E [M” + AJ] for every n-ary function symbol

f;

. I(p) E P(A4”) for every n-ary predicate symbol p;

l I(I) E P(A4’) for every label 1;

b I(L) E P(M) for every type 6.

such i.hat for any two types Lo and ~2, if L1 5 12, then
I c I. Notice that a label is semantically the same
as a binary predicate and so is possibly multi-valued (C)I

uon-functional). And a t.ype is seman~.ically the swne as a
unary predicate. However, labels and t.ypes are pragmat-
ically different from predicates in a language of objects.
‘.l?ley can appear inside t,erms while predicates caunot. b’or
convenience, we will also use a~ to denote I(a) for each
uonlogical symbol a.

Since formulas and terms may coutaiu free variables,
their semantics usually depends upou specific variable as-
signments. A term will have two meanings since it can
be used both for denot.iug an object and for indicating
whctl,er the denoted object sntisfies cert.411 proprrt.ics.
Given a language L of objects, let

a be a formula in L,
M a semantic structure for L,
s : [V -+ M] a function from the set I/ of all

variables into the domain A4 of M.

Let Term denote the set of all terms in L. We recursively
define the extension 5~ : Term -+ M of a variable assign-
ment s to the set of all terms as follows:

l For each variable X, sM(L : X) = s(X).

l For each constant c, sM(L : c) = CM.

b Ift 1, . * . , t, are terms and j is an n-ary ful.ction sym-
bol, then

B&f(L : f(tJ,. *. , h)) = ~M(SM(~I), *. . , EM.

l Ift is a term oftheform L: X, L : c, or L : j(&,. . . , t,),

and 1; (1 5 i 5 n) is a label, then

S~(t[l~ * el,..- 11, * enI) = SM(t)

where e; (1 5 i _< n) either a term or a collection
{tf,... , ti,} of terms.

We now define what it means for M to satisfy a with s,

M I= +I
as follows:

l For every variable X, M k L : X[s] if s(X) E LM;

l For every constant c, M /= L : c[s] if CM E :M;

b If t 1,. . . , t,, are terms and j is an n-ary funchion
symbol, then M k L : f(h,.-- ,t.,)[s] if .?M(L :
f(b,.” , t,,)) E LM and M b ti(S] for every i(l 5
i 5 72).

l IftisaternioftheformL: X,~:c,orL: j(tl,-.+,f,,,),

aud 2; (1 2 i 5 n) is a label, then M /= f.[11 L’,
el, . . . , I, =+ e,][s] if M k t[s], aud for every ei, ei-
ther

- e; is a term, M k e;[s] and < SM(t),?M(e,) >C-
(1.h.~: or

- e, 1s a c0llectioIl of terlns of the form {ft,. .,
tj,,), w1t1 for every j(1 < j < 7~~1, M I- t;iJI

372

aud < 3~(1),S~(tj) >E (li)M.

0 If 1 1, .. *, t, are terms aud p is an n-ary predicate
symbol, then M /= p(ti,*. . ,tn)(s] if M t= li(s] for
every i(1 < i 5 7%) and < sM(t,),...,sM(&,) >E pM.

The meaning of general formulas can be defined in the
usual way from those of atomic formulas.

The semantics of C-logic has the following property. A
term of the form 2[1i * tl,. .. ,l, * tn] is semantically
equivalent to l[li 3 ti] A ... A r[ln * t,,]; a term of the

‘form 1[1 * {ti, . *. , tn}] is semantically equivalent to t[l =2
t,] A *. * A I[I + I,,]. Thus a complex object description can
always be decomposed into atomic descriptions involving
only one label, and various pieces of descriptions can be
combined into a complex one.

Another aspect is that C-logic has both terms and pred-
icates for formulas and they are semantically different. For
example, from the following two facts in which p is a con-
stant denoting an object:

pjsrc =+a, dest +bJ.

p[src JC, dest +d].

we can infer p[src *a, dest +dj or p[src JC, dest +b].
However, given

p(a, b). P(C, 4.

in which p is a binary predicate, we cannot infer either
p(a, d) or p(c, b). The difference is that. labels of a term
are independent, while arguments iu a tuyle of a predicate
are associated together. This has certain implications with
regard to query evaluation which will be discussed later.

3.3 Transformation into First-Order Logic

We show that, for any formula in a language of objects,
there exists an equivalent genuine first-order logic formula.
This transformation iuto first-order logic can be used to
provide the basis for implementing complex object reason-
ing in first-order logic. Since formulas are freely generated
from atomic formulas by logical connectives, we will show
only how an atomic formula in a lauguage of objects call

be transformed iuto a conjunct.ion of first-order atomic for-
mulas. There are three levels iuvolved in a transformatiou
iuto first-order logic: language, semantic structure, aud
formula.

Given any language L of objects, there is a correspond-
ing first-order language L’ whose alphabet contains the
following sets of symbols:

0 logical connectives: A V 7 > V 3;

l auxiliary symbols: I‘(“, ‘I)” and “,“;

l the countably infinite set of variables of L;

l the set of function symbols of L;

l the set of predicate symbols of L;

l a binary predicate symbol I for each label 1 in L;

l a unary predicate symbol L for each type L in L.

As a first-order logic language, L’ has its own definitiou of
individual terms and first-order formulas as usual.

Semantically, for every structure M (= (Al, I)) of L,
there is a first-order structure M’ (= (M, I)) of L’ which
is essentially the same. However, a semantic structure for
L’ is not necessarily a semantic structure for L because
it may not respect the type hierarchy of L. We define a
set TAL. of first-order formulas called the type axioms of
L’. For any two type symbols ~1 and ~2 such that pi 5 Lo,
TAp contains a formula VX(L~(X) > us), which is also
written in Prolog’s cnnventiou as

Lz(X) :- Lx(X).

Then any first-order semantic structure of L’ satisfying
TAL- would also correspond to a semantic structure of
L. Obviously, the correspondence is one-to-one between
semantic structures of L and semantic structures of L’
that satisfy TAL..

Theorem 1 For any atomic formula a in a language L
of objects, there ezists a first-order formula 0’ in L’ such
that

1. For any semantic structure M of L and any variable
assiynment s, M t= (I[s] iflM* k cr’[s];

t. For any semantic structure M’ of L’ suiisfying TAL- ,
there ezists a semantic structure M of L s,uch that fof,
any variable assignment s, M’ + a*[~] iflM I= a[~].

Proof: Since the correspondence is one-to-one between
semantic structures of L and semantic structures of L’
that satisfy TAL., we will just prove (1).

Given an atomic formula in L, we will construct an
equivaleut conjunction of first-order atomic formulas in L’.
First, given a term t, we construct a first-order term t’ as
follows:

l (L : X)’ z X for every variable X;

0 (L: c)’ E c for every zero-ary function c;

. 0 (L: f(tl,.-.,tn))) = f(t;,*-*,t:);

0 (211, *t,,*-. ,I, * In])’ t 1’.

It can be proved by induction that, given any term t,
sM(t) = SM.(t’) for every semantic structure M of L and

every variable assignment s.
Given an atomic formula a, we construct a conjunction

a* of first-order atomic formulas as follows:

l (L : X)’ E L(X) for every variable X;

0 (1 : c)’ E L(C) for every zero-ary functiou c;

0 (L: f(fl,...,ln))’ f
~((6: f(tI,...,tn))‘)At;A...Atf;

373

0 (f[l, j el,+..,l, * e,])’ s t*Aa;A...Acui, wlierf~
for every ei, either

- ei is a term and of is ef A Zi(t’, e:); Or

- ei is a collection {tf , . . .
(ti)’ A li(t’,(if)‘) A

, If,!} of terms, and of is
. . * A (fki)’ A I,(t’, (tf,,)‘);

l (p(h,*.. ,t”))* z t;A...At:,Ap(f:,...,1:,).

It can be proved by induction that, given any atomic for-
mula a, M /= a[a] iff M’ + o’(s] for any semantic struc-
ture M and any variable assignment s. QED.
Ezarnplc 2: The atomic formula

determiner: thelnum =+{singuiar. plural}, def =+definit,]

can be transformed into

detcrminer(tbe) A

. object(singulrr) A num(the, singular) A
object(plural) A num(the, plural) A

object(definite) A def(the, definite)

Recall that a term of the form object: t can be abbreviated
85 1.

4 Specification and Computation
of Complex Objects

We are interested in a logic programming approach to com-
plex objects. That is, complex objects can be specified by
facts and rules in a logic, and complex object reasoning or
computation can be carried out as logic inferencing. Given
a language of objects, a clausal subset of formulas is de-
fined as follows:

l A literal is either an atomic formula or the negation
of an atomic formula.

l A clause is a disjunction of literals

in which all variables are implicitly universally quan-
tified at the outmost level.

l A definite clause is a clause containing exactly one
positive literal, i.e., A V -B1 V -*. V -B,, (m > O),
which is also written as

A : - B1,...,B,.

where A, B1, . . . , B, are all atomic formulas.

. A negative clause is a clause containing no positive
literals, i.e., lB1 v . . . v -B,, which is also written
as

:- &,..., Bm.

A negative clause is also called a query or a god.

In the definition of languages of objects, we have assumed,
for simplicity, that each larrguage has a countable partially
ordered set of type symbols with a greatest elemeut ob-
jecf. The only assumption we actually need is that each
language has the greatest type object, w/rich is a supertype
of any other type. Aud we would like to have the user
be able to specify the ordering among other type symbols.
Subtype declarations are therefore introduced:

s A subtype declaration is of the form

where or and ~~ are type symbols.

A program is a finite set of subtype declarations and defi-
nite clauses.
Ezomple 3: The foIlowing program dafines objects of type
noun-phrase.

name: john.
name: bob.

determiner: the[num *{singular, plural},

def *definite].
determiner: a[num *singular, def =+indef].
determiner: all[num *plural, def +indef].

noun: student[num qsingular].

noun: students[num =+-plural].

propernp: X[pers =+3. num *singular.
def *definite] :-

name: X.
commonnp: np(Det, Noun)[pers =+3,

num +N, def =PD] :-
determiner: Det[num =+N, def +D],

noun: Nounlnum +N].

propernp < noun-phrase.
commonnp < noun-phrase.

And we may pose a query like

:- noun-phrase: X[num =+plural].

IIIK~ obt.ain two answers for X: np(the, students) and np(all.
students).

We have shown in the previous section that every atomic
formula in a language of objects can be tran&rmed into
an equivalent conjunction of first-order atomic rurmulas.
Thus every clause of the form

L, v . . . v L,

can be t.ransformed into a disjunction of conjunctions (or
the negation of conjunctions) of first-order atomic formulas

S,(A:A...AA:,)V...VS,(A;A...AA~“)

where Si is either 7 if Li is a negative literal or empty if Li
is a positive literal. The.resulting clause is called a gener-

374

alized clause. If the original clause is a definite clause, the
resulting clause is also called a generalized definite clause.
Obviously, a generalized (definite) clause can be further
transformed into a finite number of first-order (definite)
clauses.

Every subtype declaration of the form

can be transformed into a first-order clause of the form

L2(X) :- LI(X).

Given a program of objects consisting of a finite set of
subtype declarations and definite clauses, we can obtain a
generalized logic program composed of a finite set of first-
order clauses and generalized dtfinite clauses. And this
generalized logic program can be further transformed into
a first-order logic program consisting of only first-order
definite clauses.

There is still one technicality in transformiug a logic
program of object,s into an equivalent first-order logic pro-
gram because of the type hierarchy. We assume that there
is a type object which is a supertype of any other type.
If we translate this assumption into first-order axioms, we
could possibly get an infinite number of first-order clauses
because of the possibly infinite number of type symbols.
Fortunately every logic program of objects contains only a
finite number of type symbols. Aud we need to incorporate
type axioms for only those’type symbols occurring in the
program. That is, for every type symbol L occurring in the
object program, we add a first-order clause

object(X) :- L(X).

to the corresponding generalized logic program (and hence
also to the final first-order logic program).

For instance, the above program can be transformed
into the following generalized logic program. Recall that
if the type of a term is object, t.he type can be omitted.

object(X) :- name(X).
object(X) :- determiner(X).

object(X) :- noun(X).

object(X) :- proper..np(X).

object(X) :- common~np(X).
object(X) :- noun-phrase(X).

name(john).
name(bob).

determiner(the),

object(singular), num(the, singular),

object(plural), num(the, plural),
object(definite), def(the. definite).

determiner(a), object(singular), num(a, singular),

object(indef), def(a, indef).
determiner(all), object(plural), num(all. plural),

object(indef), def(all, indef).

num(student, singular).

noun(students). object(plural),

num(students, plural).

proper.np(Xj. abject(3), pers(X, 3).
object(singular), num(X, singular),
object(definite). def(X, definite) :-
name(X).

common-np(np(Det, Noun)),
object(Det), object(Noun),

abject(3), pers(np(Det, Noun), 3)
object(N), num(np(Det, Noun), N),
object(D), def(np(Det. Noun), D)

:-

determiner(Det), object(N), num(Det, N),
object(D), def(Det. D),

- .5--
noun(Noun), object(N), num(Noun, N).

noun-phrase(X) :- propernp(X).

noun-phrase(X) :- common-np(X).

which can be easily transformed into first-order logic pro-
grams by splitting each generalized definite clause into a
finite number of first-order definite clauses. And the query
would be

:- nounphrase(object(plural),
num(X. plural).

Notice that multiple occurrences of the same variable in the
head are independent. For example, the rule for proper-np
can be split into several clauses like

proper-np(X) :- name(X).

pers(X, 3) :- name(X).
num(X. singular) :- name(X).

in which every occurrence of X is universally quantified
with respect to each clause.

There are two important implications of this trans-
formation into first-order definite clauses. First, model-
theoretic results iu deductive databases and logic program-
ming can be readily applied. (Negation can also be added
although we do not include it in this paper.) Second,
known query evaluation techniques, including both bottom-
up and top-down methods, can be used for computation
of complex objects. Because of the structure of complex
ohjrcts, each rule of complex object specification natu-
rally corresponds to a generalized or multi-head first-order
clause. Therefore, in bottom-up computation, each suc-
cessful evaluation of the body may produce multiple re-
sults.

Rowever, it is also obvious from the above example that
the resulting first-order logic program may have certaiu re-
dundancies, especially in typing predicates. Most of these
redunclaucies cau be eliminated by static program analysis.
We cousider two cases for generalized logic programs:

1. If both Lo and Lo appear in the head or the noun(student), object(singular),

375

2.

body of a generalized definite clause, and ~~ 5 Lo,
the71 cz(X) can be deleted;
If ;,(A, appears in the head and L*(X) iI1 t.he body
of the same generalized definite clause, and l2 < L,,
then Lo in the head can be deleted.

After these two cases are eliminated, the definition for corn-
nton-np would become

common-np(np(Det, Noun)), abject(3),

pcrs(np(Det. Noun), 3).
num(np(Det, Noun), N).

def(np(Dei, Noun), D) :-

determiner(Det), object(N),

num(Det, N), object(D), def(Det, D),
noun(Noun), num(Noun, N).

There are other redundancies whose detection requires a
little bit more complicated program analysis. For example,
there are many redundant clauses for object which cm be
eliminated. The type object is special in the sense that
it is a supertype of every other type. It can be used to
inquire about the existence of an object in the database.

If we consider the corresponding first-order logic program
for a program of objects, then the meaning of object is
actually the set of all ground terms in the success set. So
object is essentially the active domain which includes every
individual object in the database.

An interesting alternative is to consider a direct imple-
mentation of complex object reasoning without translat-
ing complex object specification into first-order logic pro-
grams. This is based on the following observation. The
syntax of complex objects allows the user to cluster com-
ponent objects together according to specific applications.
And it is very likely that the user would also pose queries
that way. Reasoning directly over complex objects may
allow the system to take advantage of such clustering in-
formation provided by the user. This seems to be the case,
especially when most labels are functional or single-valued.
For example, given a program

path: pl[src +a, dest *b).

path: p2[src JC, dest =-+d].

in which all labels are functional, and a query

:- path: X[src =+S, dest +D].

we can evaluate the qner)- by-Unifyi*ig it wit.11 each fact and
all the two sets of answer5 will be obtained for X, S, and
D. Notice that if the above program is first transformed
into the corresponding first-order logic program

object(X) :- path(X).
path(p1). object(a). src(pl, a).

object(b). dest(p1, b).

path(p2). object(c). src(p2, c).
object(d). dest(p2. d).

and the query would be

:- path(X), object(S), src(X, S).

object(D). dest(X, D).

whose direct evaluation using SLD resolution directly would
be very inefficient.

For multi-valued labels, query evaluation would be more
complex. Suppose that we have two facts:

path: p[src +-a, dest +bJ.
path: p[src =sc, dest *d].

and a query

:- path: p[src +a, dest +d].

The query should succeed according to our semantics. HOW-

ever, naive evaluation using unification will fail. The prob-
lem is that we need to solve part of the query at one time,
take the residual and then proceed. In this example, we
first try to solve label src usiug t,he first fact, aud get the
residual

:- path: p[dest =+d].

which can then be solved using the second fact. (Recall
that labels of a term are independeut, while arguments of
a predicate are associated together.)

For extensional databases, we may merge all informa-
tion about an object together. For the above example, we
may have a single fact:

path: p[src +{a. c}. dest +{b, d}].

and the query can be solved by checking ~PI’IMII ordering
over complex object descriptions [6]. Iloweycr: in int<.n-
sional databases, it is conceivable that there may be several
rules, each of which deals with partial infnrn&on about
the same object. And we cannot simply merge these rules
together.

Another aspect which may be more easily handled by
direct reasoning over complex objects is types. Using order-
sorted resolution may be more efficient in dealing with in-
heritance hierarchies [4,11].

5 Multi-Valued Labels and Sets

Set manipulation seems to be accepted as an important
aspect of any system for complex objects. It is, however,
not yet clear how sets should be supported in a simple logic
framework. Our C-logic of complex objects is first-order
and thus does not have set values. On the other hand,
multi-valued labels do allow the user to use the concept
of sets (in useful but restricted ways) to model complex
objects. For example, we might have a fact

person: johnlchildren *{bob, bill, joe}].

and a query

:- person: john[children =+{X, Y}].

376

According to our semantics, labels are essentially binary
predicates. Both the fact and the query can be transformed
into the following:

person: johnlchildren *bob,
children =+bill, children qjoe].

:- person: johnlchildren +X. children +Y].

And both X and Y can be bound to each of bob, bill, joe
to make the query succeed.

Rather than thinking of a label as a binary predicate,
the user may consider a label intuitively as a set function.
That is, a label maps each object identity to a (possibly
empty or infinite) set of object identities. So =+ can be un-
derstood as either “containing as a subset” if a collection
of terms is followed, or “containing an elemeut” if a single

term is followed. For inhtance, the fact in the above exam-
ple can be viewed as silying that children maps john to a
set of objects which contains {bob, bill, joe} as a subset.
And the original query can be considered as asking for a set
{X, Y} which is contained in the set of children correspond-
ing to john. Furthermore, by passing john around, the set
associated with john by children (in the intuitive sense)
can be indirectly accessed through object john. If complex
objects are defined by rules, then definitions in separate
rules support set union. And unification supports certain
aspects of set intersection. Pragmatically, these uses may
be able to satisfy most of what a user wants from set ma-
nipulation. The only aspect that is lacking in our logic is
the ability to return a set value and to check whether two
sets are equal (i.e. set unification).

The idea of using multi-fields for set manipulation was
originally proposed by Maier in [22]. But the formal se-
mantics of multi-fields was not specified. Set union through
separate rules appeared in CC0 [6] by Bancilhon and
Khoshafian, although only finite sets can be constructed.
This idea was further extended by Kifer and Wu in [18],
where each set is associated with an object identity. We
have given a formal first-order semantics for set manipula-
tion through multi-valued labels. Tltis shows that without
using higher-order logic, we can still support many useful
aspects of set manipulation.

6 Conclusion and Future Work

We have presented a simple and flexible framework for rea-
soning about complex objects. It supports fundamental
features of complex objects such as object identity, multi-
valued labels and a dynamic notion of types. Although the
semantics is first-order, the logic itself encourages struc-
tured description of complex obejcts and provides many
useful aspects of set manipulation through multi-valued
labels. Static type constraints and single-valued labels are
not built into the logic but can be added on top of it if
needed. This makes the logic much simpler, more flexible
and easier to implement.

There are several issues wort.hy of further exploration.
First, because of the heterogeneous structure of co~nplc~x
ob.iects, there are problems of how to store complex old-

jects, IIOW to cluster component$ of a complex object to-
gether, and how to efficiently reason about complex ol)-
jects. Work on some of these issues has been reported
[16,19]. The simplicity and flexibility of our scheme makes
it a suitable paradigm for pursuing these problems. Sec-
ond, in addition to object data, there is also meta-data
or schema information in databases. This meta-data usu-
ally includes constraints over database states, such as do-
main constraints and functionality constraints. How to ex-
tend C-logic to incorporate these constraints and to reason
about them is another interesting problem to be further
studied.

Acknowledgements

Our work obviously depends crucially on. Maicr’s O-
logic. We have benefitted greally from discussions in a
series of joint meetings with Michael Kifer, James Wu,
Cl~y~uhwa Chen, T. Krishnaprasad, Esther Shilcrat and
Jiyang Xu. And we thank David Maier and his group for
many helpful comments on a draft. of this paper. This work
is support.ed in part by the National Science Foundation
under grant number DCR-8319966.

References

Ill

PI

131

(41

Abiteboul S. and Beeri C., On the Power of
Languages for the Manipulation of Complex Ob-
jects, Draft, April 1987.

Abiteboul S. and Grumbach S., COL: A Logic-
Based Language for Complex Objects, in:
Proc. Workshop on Database Programming Lan-

guaw, Roscoff, France, September 1987, pp.
253-276.

Ait-Kaci H. and Nasr R., Logic and Inheritance,
in: 13th ACM Symp. on Principles of Program-
ming Languages, Florida, January 1986, pp.
219-228.

Ait-Kaci H. and Nasr R., LOGIN: A Logic Pro-
gramming Language with Built-in Inheritance,
em Journal of Logic Programming 3(1986), pp.
185-215.

151 Buneman P. and Atkinson M., lnherital~ce
and Persistence in Database Programming Lan-
guages, in: Proc. of ACM SIGMOD’86, Wash-
ington, D.C., May 1986, pp. 4-15.

[6] Bancilhon, F. and Khoshaf?an S., A Calculus for
Complex Objects, in: Proc. of 5th ACM Symp.
on Principles of Database Systems, Cambridge,
Massachusetts, March 1986, pp. 53-59.

[7] Beeri C., Naqvi S., Shmueli 0. and Tsur S., Sets
and Negations in a Logic Database Language

‘377

PI

PI

PO1

(LDL), in: Proc. ACM Conf. PODS, San Diego,
March 1987, pp. 21-37.

WI

Beeri C., Nasr R. and Tsur S., Embedding d-
terms in a Horn-Clause Logic Language, MCC
Tech&I Report, February 1988.

CardeIIi L., A Semantics of Multiple Inheri-
tance, in: Semantics of Data Types, LNCS 173,
1984, pp. 51-67.

1231

Debray S.K. and Warren D.S., Detection and
Optimization of Functional Computations in
Prolog, in: Third international Conference on
Logic Programming, ed. Ehud Shapiro, London,

1241

July 1986, pp. 490-504.

[II] Huber M. and Varsek I., Extended Prolog for
Order-Sorted Resolution, in: Proc. 1987 IEEE
Symp. on Logic Programming 1987, pp. 34-43.

[12] Hull R., A Survey of Theoretical Research
on Typed Complex Database Objects, in:
Databases, ed. J. Paredaens, Academic Press
(London), 1987, pp. 193-256.

[13] Hull R., Four Views of Complex Objects: A So-
phisticate’s Introduction, Draft, May 1988.

(141 Kuper G., Logic Programming with Sets, in:
P~oc. 6th ACM Cont. on PODS, San Diego,
1987, pp. 11-20.

(15) Kuper C., An Extension of LPS to Arbitrary
Sets, in: IBM Research Report, 1987.

[lSJ Ketabchi M.A. and Berzins V., Mathematical
Model of Composite Objects and Its Application
for Organizing Engineering Databases, IBEE
Trans. Software Engineering, vol. 14, no. 1, Jan-
uary 1988, pp. 71-84.

[17] Khoshafian S.N. and Copeland G.P., Object
Identity, in: OOPSLA ‘86, 1986, pp. 406-416.

[18] Kifer M. and Wu J., A Logic for Object-Oriented
Logic Progranmiing (Maier’s O-logic Revisited),
in: Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database

Systems, March 1989, to appear.

1191 Kim W., Chou H.-T. and Banerjee J., Opera-
tions and Implementation of Complex Objects,
IEEE Trans. Software Engineering, vol. 14, no.
7, July 1988, pp. 985-995.

[20] Krishnamurthy R. and Naqvi S., Towards a Real
Horn Clause Language, MCC Technical Report
No. ACA-ST-077-88, March 1988.

[21] Kuper G.M. and Vardi M.Y., A New Approach
to Database Logic, in: Proc. ACM SZGACT-
SIGMOD Symp. on PODS, 1984, pp. 86-96.

Maier D., A Logic for Objects, in: Preprxts

of Workshop on Ebundutions of Deductk

Database and Logic Programming, ed. Jack

Minkrr, Washington DC, August 1986.

Roth M.A., Korth H.F. and Silberschatz A., Ex-
tended Algebra and Calculus for -1NF Rela-
tional Databases, Technical Report TR-84-36,
University of Texas at Austin, 1984.

Xu J. and Warren D.S., A Type Inference Sys-
tem for Prolog, in: Proc. 5th Znternat. Conf und

Symp. on Logic Programming 1988, pp. 604-619.

378

