
VLDB Journal, 4, 727-794 (1995), Ramamohanarao Kotagiri, Editor 727
QVLDB

The Power of Languages for the Manipulation of
Complex Values

Serge Abiteboul and Catriel Beeri

Received November 2, 1992; revised version received, March 30, 1994; accepted Novem-
ber 1, 1994.

Abstract. Various models and languages for describing and manipulating hierar-
chically structured data have been proposed. Algebraic, calculus-based, and logic-
programming oriented languages have all been considered. This article presents
a general model for complex values (i.e., values with hierarchical structures), and
languages for it based on the three paradigms. The algebraic language generalizes
those presented in the literature; it is shown to be related to the functional style of
programming advocated by Backus (1978). The notion of domain independence
(from relational databases) is defined, and syntactic restrictions (referred to as
safety conditions) on calculus queries are formulated to guarantee domain inde-
pendence. The main results are: The domain-independent calculus, the safe cal-
culus, the algebra, and the logic-programming oriented language have equivalent
expressive power. In particular, recursive queries, such as the transitive closure,
can be expressed in each of the languages. For this result, the algebra needs the
powerset operation. A more restricted version of safety is presented, such that
the restricted safe calculus is equivalent to the algebra without the powerset. The
results are extended to the case where arbitrary functions and predicates are used
in the languages.

Key Words. Database, query language, complex value, complex object, database
model.

1. Introduction

The first normal fo rm restriction forces the componen t s of tuples in relat ional
databases to be a tomic (Codd, 1970). It is widely recognized that this restr ict ion
imposes unacceptab le constraints on the use of da tabase technology in a variety of
appl icat ion domains such as engineering, compu te r aided design, or office systems

Serge Abiteboul, Prof. Dr., is Researcher, INRIA Rocquencourt, Domaine de Voluceau, BP 105, F-78153
Le Chesnay Cedex, France, abitebou@db.stanford.edu; Catriel Beeri, Prof. Dr., is Full Professor, Depart-
ment of Computer Science, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel, beeri@huji.ac.il.

728

(Makinouchi, 1977; Kobayashi, 1980; Macleod, 1981). Many models that incorporate
more semantics into databases have been introduced and studied (Abiteboul et
al., 1994; Hull, 1986). In the mid-1980's, a variety of models generalized the
relational model by allowing hierarchically structured data; these are the nested
relation and complex value models (Schek and Scholl, 1986; Korth et al., 1988;
Abiteboul and Bidoit, 1986; Abiteboul and Beeri, 1988). 1 Towards the end of the
decade, the emphasis shifted to semantic and, particularly, to object-oriented models
that incorporate some of the features of the complex value models. (An extension of
our model with object-oriented features can be found in Abiteboul and Kanellakis,
1989.)

A variety of languages were proposed for these models, encompassing all
known paradigms of query languages: algebraic, calculus-based, logic-programming
oriented, and SOL-extensions. The variety of features and operations found in those
languages is quite confusing. It seems that we still do not have a commonly agreed
upon approach to the design of query languages, or even to the generalization of
known paradigms to new models. One of our goals in this article is to improve our
understanding of this issue.

1.1 Overview of the Results

We present and compare query languages for the model of complex values. Complex
values are obtained from atomic values using set and tuple constructors. No restric-
tions are placed on the order of application of the constructors, nor on the depth
of the constructed values (except that a database scheme fixes the depth of values
in the corresponding instances). This model lacks features such as object identity
and behavior modeling. Nevertheless we believe that, since complex structures are
an important component of object-oriented and semantic models, languages that
allow one to access such structures are important and worthy of study. We consider
a calculus-based language (cf., Jacobs, 1982; Hull, 1986; Korth, 1988), an algebra,
and a logic-programming language (cf., Kuper and Vardi, 1984; Beeri et al., 1987;
Kuper, 1987; Abiteboul and Grumbach, 1988).

Our main results concerning these languages are:

• The classical equivalence between the domain-independent calculus and the
algebra is valid in our model as well.

• Domain independence is a semantic, undecidable, property. Therefore, we
consider syntactic restrictions that guarantee domain independence. Syn-
tactically restricted formulas are called safe in this article. Our next result
is that the algebra and the safe calculus are equivalent. This implies, in

1. In the original report (Abiteboul and Beeri, 1988), we used the term "complex object" instead of complex
value. Since then, this term has been associated more and more with the object-oriented paradigm, so we
decided not to use it. Note that, in particular, our complex values have no identity.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 729

particular, that this syntactic restriction "captures" the semantic notion of
domain independence.

To make the algebra equivalent to the calculus, we had to include in it
a powerset operation that generates all subsets of a given set. This is an
expensive operation, as its output size is exponential in the size of its input.
It allows one to express queries that cannot be computed in PTIME ill the
size of the database. It is, therefore, interesting to characterize the power of
the algebra without the powerset operation. We present a restricted notion
of safety, and we prove that the calculus, thus restricted, corresponds to the
algebra without powerset, thereby characterizing the power of many algebras
found in the literature.

It is well-known that even simple recursive queries (e.g., transitive closure)
cannot be expressed using relational calculus (Aho and Ullman, 1979). This
does not hold for our languages: the algebra, the safe (or domain-independent)
calculus, and a language for complex values based on recursive rules are
equivalent. This is similar to the use of the powerset in the algebra or the
unrestricted use of the calculus. Expressing recursive queries using powerset
leads to resource-consuming computations, which is another indication that
the powerset should not be included.

In addition to the technical results described above, we have also tried to address
the issue of generalizing linguistic paradigms to new models. We believe that our
approach to this issue is also a contribution (although it is not a theorem), and we
describe it briefly.

If one is interested in generalizing the relational model to allow more structure
to be represented, then there are several directions to follow: First, one may allow
arbitrary atomic domains, with arbitrary collections of functions and predicates.
That is, database users are allowed to define their own types, and use them in the
database. (Additionally, one can add features such as object identity and behavior,
but these are not considered here.) Second, one may generalize the notion of a
tuple, by allowing type constructors to be used in the construction of tuple elements.
These may include tuple, set, list, and array; additionally, the orthogonality principle
implies that one should be able to use these constructors in any order. An important
advantage of this approach is that at least some of the structure can be defined
in terms of constructors that are part of the data model; hence, storage structures
and access paths for them, and optimization strategies for queries, can be built into
the database system, enabling efficient organization and optimization of accesses.
Nevertheless, since not all users' needs can be anticipated, or captured by a given
set of constructors, it is important to consider both directions.

The bulk of this article is concerned with the second approach. The basic idea
is to view the classical language paradigms as linguistic frameworks that can accept
arbitrary type systems as parameters. The complex value model generalizes the
relational model by allowing set and tuple constructors to be recursively applied. A

730

type constructor is associated with operations and predicates specific to it. These
typically include constructors and selectors. For example, for tuples (or records)
one has tuple construction as a constructor, and selection by attributes as selectors.
For sets, the membership predicate plays the role of a selector. Often, additional
useful operations and predicates are included. Our approach is to consider such a
collection of operations and predicates to be given for each type constructor. Each
of the classical languages is then extended by adding these operations and predicates.
This approach emphasizes orthogonality, rather than notions like minimality of a
set of operations. Although our model is based on the set and tuple constructors,
the approach applies to other constructors as well. Hence, the model and the
languages could easily be generalized to include such constructors. Furthermore,
the languages are designed so that no assumption is made on the underlying atomic
type, and functions and predicates of these types can be freely used. Thus, the
first direction above is also taken care of. The main results of the article apply
in this general setting (with some restrictions, see Section 8). This generalizes, for
example, the results of Klug (1982) and Ozsoyoglu and Ozsoyloglu (1983).

Our approach works smoothly for the calculus-based and logic-programming
paradigms. For the algebra, more effort is needed. A complex value language
has to include operations to allow one to describe quite complicated restructuring
of complex values, and also to manipulate collections of such elements, combine
them in various ways, or apply restructuring functions to possibly deeply nested
components. It turns out that the classical relational algebra is specifically tailored
for the relational model, and cannot be used without change for the more general
model. Thus, although we have some of its operations without change, some (in
particular those that deal with restructuring) had to be generalized, and a couple
of operations were added. 2 Our generalization emphasizes the view of the algebra
as a functional language, in which higher-order operations generalize some of the
classical operations. Our generalized algebra fits the paradigm above, namely, it
can be viewed as a framework that can accept various type systems.

Another issue that had to be considered has to do with the dual nature of the
set constructor in our model. On one hand, sets are used to organize the database;
we traditionally view a database as a vector of named sets of values. The classical
algebra operations are tailored for the manipulation of such collections. But, the
set constructor can also be used in the construction of elements, so there is a need
for set operations for the manipulation of elements that contain set components.
Our approach is to allow the use of the algebraic operations on any sets. Thus, the
algebra is a recursive language in that algebraic operations can be nested. Nesting
of operations in queries allows one to deal in a straightforward manner with the
nesting of database values.

2. O n e of these, the powerset, was added for a different reason, as expla ined above.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 731

1.2 Comparison with Previous and Related Work

Our model generalizes the non-first-normal-form relational models (Makinouchi,
1977; Jaeschke and Schek, 1982; Fischer and Thomas, 1983; Schek and Scholl, 1986;
Abiteboul and Bidoit, 1986; Korth et al., 1988). The original proposal to generalize
the relational model to allow entries in relations to be sets is often attributed to
Makinouchi (1977). The data structure in the "nested relation model" (Jaeschke
and Schek, 1982; Fischer and Thomas, 1983) is slightly more restrictive than the
one we use here, although the difference is mostly cosmetic. On the other hand,
the data structure in the V-relation model (Abiteboul and Bidoit, 1986) or in the
Partition Normal Form nested relation model (Korth et al., 1988) is much more
restrictive. (This is illustrated by a simple cardinality argument given in Section 2.)

The values we deal with can also be seen as values resulting in semantic
database modeling (Hammer and McLeod, 1981; Hull and Yap, 1984; Abiteboul
and Hull, 1988) from the use of aggregation (tuple constructors) and classification
(set constructors), only sets of homogeneous values are considered. In that respect,
the data structure that we study is strictly weaker than those considered in Hull and
Yap (1984) and Abiteboul and Hull (1986, 1988), but we believe that our results
can be extended easily if heterogeneous sets are allowed. The expressive power of
languages for a model that allows heterogeneous sets was considered in Hull and
Su (1991).

Our types can be described by trees. Unlike those in Kuper and Vardi (1984),
cycles are not allowed in type definitions; equivalently, we disallow recursive type
definitions so that one cannot, for example, define lists in terms of pair and variant
constructions. However, note that, even in a model with objects and object identity
(i.e., models where cycles are allowed) a query result is defined by an expression
that is applied to each object in a set, and contains conditions that must be satisfied
by the object and other objects and values that are reachable from it by attribute
applications. The objects and values reachable from an object form a (virtual) tree.
Thus, our languages can be applied to such models as well.

Equivalence results of algebraic and calculus-based languages have been reported
(Kuper and Vardi, 1984; Ozsoyoglu et al., 1987; Ozsoyoglu and Ozsoyoglu, 1983).
The equivalence of relational algebra and calculus with aggregates was considered
by Klug (1982), and extended by Ozsoyoglu and Ozsoyoglu (1983) to relations with
set-valued attributes. A comparison was proposed by Korth et al. (1988) for a
non-first-normal-form relational model. However, they chose to restrict their work
to the case where the nest and unnest operators commute, and their equivalence
proof uses unnest to reduce the problem to the case of flat relations, and nest to
restore the original relations. They do not introduce any algebraic operators that
can access set-valued components of tuples. Since nest and unnest in general do
not commute, there is a need for such operations in the algebra, and a need for a
direct proof. An equivalence result for a different and, in a sense, more general
model, in which objects have identities and cycles are allowed, was given in Kuper

732

and Vardi (1984). Our characterizations of syntactic safety, and the comparison to
recursive languages are new. The equivalence results obtained in the presence of
interpreted functions and predicates are also new.

A model slightly less general than ours was presented in Dalhaus and Makowski
(1985). They allowed nested structures in which internal nodes are sets, and the
leaves are relations. They extended the results of Chandra and Harel (1980)
concerning completeness of query languages to this model. Their techniques can
be extended to our model; however, completeness of languages in the sense of
Chandra and Harel (1980) is not treated here.

Our main technical results were included in the previous, unpublished, version
of this article (Abiteboul and Beeri, 1988). Since then, much work has been done
on languages for complex values, and many results that extend and complement
those presented here have been obtained (some of this work is mentioned in the
following text). The languages that we present are strictly more powerful than the
relational calculus, not only in allowing one to query complex values, but even in
that mappings from relations to relations which cannot be expressed in the relational
calculus, can be defined in them. This is a consequence of the ability to manipulate
richer structures in intermediate results, and the ability to use thepowerset operation
to create such structures. In particular, one can exhibit a hierarchy of languages,
based on restrictions on the types of intermediate results and show that the calculus
can express all elementary time (or space) queries (Hull and Su, 1991; Kuper and
Vardi, 1993). Exact complexity characterizations are obtained with fixpoint, which
is no longer redundant when the level of set nesting is bounded (Grumbach and
Vianu, 1991).

The algebra proposed in the earlier models did not incorporate powerset and
could not express this operation. When considering mappings from relations to
relations, the algebra without powerset does not provide more expressive power
than relational algebra (or calculus), so queries in this language can be evaluated in
PTIME. This was first demonstrated for the V-relation model (Abiteboul and Bidoit,
1986), and is not surprising for that particular model. More interestingly, the same
result also holds for the model we consider here (Paredaens and Van Gucht, 1988).

It has been argued that queries in practical languages should not require more
than PTIME. Thus, the unrestricted calculus, equivalently the algebra with powerset,
is too powerful. This emphasizes the significance of our result that the strictly safe
calculus is equivalent to the algebra withoutpowerset. Additionally, some restrictions
on the calculus guaranteeing PTIME bound and closely related to our strict safety,
are exhibited in Grumbach and Vianu (1991).

In this article, we also study a rule-based language. In the rule-based paradigm,
nesting can be expressed in many ways. Indeed, a main difference between various
proposals of logic programming with a set construct is in their approach to nesting:
grouping in /~79/~ (Beeri et al., 1987), data functions in COL (Abiteboul and
Grumbach, 1988), and a form of universal quantification (Kuper, 1987). In Kuper
(1988), equivalence of various rule-based languages was proved. In Gyssens and Van

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 733

Gucht (1988), it was shown that various programming primitives are interchangeable:
powerset, fixpoint, various iterators.

As already mentioned, this article emphasizes a general approach to extending
existing languages to new models. This has consequences, in particular for the
algebra. Algebras described in the literature of the 80's have a wide variety of
operations and differ quite a lot in how the restructuring problem is tackled. Our
algebra is simpler than the one in the previous version (Abiteboul and Beeri,
1988), and we believe that it provides a good understanding of which operations
are essential for a general algebra. The emphasis is on composition and a few
selected higher-order operations. Both our approach and the language are related
to recent research on query languages for bulk types that uses category-theoretic
and type-theoretic frameworks and, in particular, to the notion of monads (Wadler,
1990; Trinder, 1991). It has been shown that a monadic algebra, if restricted to
the set and tuple constructors, is equivalent to our algebra without the powerset
(Breazu-Tannen, 1992). Conservativeness results for the monadic languages were
presented by Wong (1993), who showed (in the spirit of Paredaens and Van Gucht,
1988) that, for relational input and output, the monadic languages have precisely
the expressive power of the classical relational languages.

The powerset operation is quite powerful (Hull and Su, 1991). In Section 9, we
show that the algebra with powerset can express transitive closure. However, it does
so in a seemingly very inefficient way. Computations of transitive closure using the
algebra with powerset are inherently exponential space--if algebra expressions are
evaluated in a "naive manner" (Suciu and Paredaens, 1994). This seems to indicate
that adding powerset is not the right way to obtain additional expressive power.
However, recent optimization techniques for the algebra with powerset (Abiteboul
and Hillebrand, 1994) indicate that this issue is not yet settled. Another direction
is the study of alternative mechanisms that increase the expressive power, yet are
more amenable to efficient programming, such as various fixpoint extensions of the
languages (Abiteboul et al., 1994).

While we consider extensions of classical paradigms, such as the relational
calculus and algebra, the monad-based approach considers another important com-
putational paradigm, namely the /i-calculus, and shows that interesting and well-
designed query languages can be obtained from it by adding a few bulk-type specific
operations (Breazu-Tannen et al., 1992; Wong, 1993). These include the monadic
algebra mentioned above, and comprehensions that can be viewed as a pure form
of generalized SQL (the only paradigm not considered here). Finally, a recent work
(Hillebrand et al., 1993) also consider the .R-calculus as a query language, but with
an emphasis on the complexity of query evaluation.

1.3 Organization

The article is organized as follows. In Section 2, we present the data model,
and in Section 3 we define databases, functions, and queries. The calculus is
introduced in Section 4, and the algebra in Section 5. Section 6 deals with the

734

equivalence between the algebra and the domain-independent calculus• In Section
7, we introduce syntactic safety restrictions on the calculus, and compare the power
of the resulting languages to the algebra with and without the powerset. In Section
8, arbitrary functions and predicates are introduced into both the algebra and the
calculus• Section 9 deals with recursive queries• A summary is presented in Section
10.

2. Complex Types and Values

In the relational model, instances are sets of tuples. That is, the basic constructors
are the set and the tuple constructors and, in the construction of a type (i.e., a
relation schema), each is used precisely once: first the tuple constructor, then the
set constructor. In the nested relational model, each of the two constructors can
be used more than once, but they must alternate in any given type. We extend
the model further by removing the last restriction, and requiring only that the set
constructor be the last one used.

We assume the existence of a set of d o m a i n n a m e s f f l , D 2 , • • • and of an infinite
set of n a m e s , also called attr ibutes , A 1 , A 2 , . . . Types are structure definitions, that
use domain names, set and tuple constructors, and attributes.

Assume that the domain names are associated with d o m a i n s D1 , D 2 , . . . T h e

nature of the elements of the domains is irrelevant in this article. We frequently omit
the domains in type and value definitions. In examples, we use integers. Naturally,
collections of domains are also equipped with operations. For now, we disregard
such domain-specific functions, and consider only the functions that operate on
tuples and sets (the basic building blocks of our model). Domain-specific functions
are treated in Section 8.

The elements of the domains are called a t o m i c values. Complex values are
constructed from them using the constructors. A type is associated with each value,
in the obvious way; each value is an i n s tance of a type. 3 Formally, types and va lues

are defined as follows:

1. If D is a domain name, then D is an a t o m i c type. For each a in D, a is a
value of this type.

2. If T1, • • •, Tn are types, a n d A 1 , . . . , A n are distinct attributes, then [A 1 : r l ,
• . . , A n : T n] is a tup le type. If vl, . . . , vn are values of types T1, . . . ,
Tn , respectively, then [A1 :vl, . . . , A n :vn] is a value of the type. We also
include T[] as a type. The only value of this type is [], the empty tuple.

3. The statement "v is of type T" in this article always assumes a given assignment of domains to domain
names.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 735

3. If T is a type, then { T} is a set type. Any finite set of values of type T is a
value of type {T}.

Types and values can be viewed as trees. In a type tree, leaves are labeled
by their atomic types and, in a value tree, leaves are labeled by values. Internal
nodes are labeled in both cases by constructors. Since a tuple constructor includes
a sequence of attributes, the edges outgoing from a tuple node are labeled by
attributes. A type is tuple, or set, respectively, according to the constructor at the
root of its tree, and is atomic if its tree consists of a single node. Note that each
type imposes a fixed structure on the corresponding values.

The tuple types, as we defined them, are actually record types, as each component
has an attribute label. We also allow unlabeled tuples, assuming that an unlabeled
n-tuple has (implicitly) the labels 1, . . . , n. These labels should not be confused
with the integers used in examples as domain elements.

We also assume that an unlabeled tuple of length 1 is the same as the element
in it. That is, we identify [v] and v. Because attributes serve as selectors (i.e., as
functions used to select components of tuples), this assumption implies that the
function 1 is the identity function, defined on each domain. This assumption is
commensurate with definitions of tuples in the literature, and simplifies some of
our arguments in the sequel. 4

Let T be a type, different from T[], using domain names D1, . . . , Dk, and
let domains D1, . . . , Dk be given. The set of all values of type T that contain
only values from Di in the leaves of type Di, denoted DOM(T, D1, . . . , Dk), can
alternatively be defined as follows:

1. Replace in the definition tree of T each leaf labeled Di by Di.

2. Replace the labels of internal nodes as follows: Each tuple constructor is
replaced by a labeled cross-product operator (i.e., a cross product that gives
an attribute name to each component), and set constructor is replaced by a
finite powerset operator.

3. Evaluate the tree.

Note that, for T[], the set of values is {[]}, independently of the domains.

Variations. The principal variation of the above structure is the nested relation which
is at the core of the nested relation model. A nested relations type is a complex
value set type in which the set and tuple constructions alternate. For instance,

T1 = { [A , B , C : { [D , E : { [E G] }] }] } , and
= {[A,B,C:{[e:{[F, C l }] }] }

4. However, for readability, we actually use later the notation id for the identity function.

736

are types of nested relations whereas

and
EA, B,C : { { EF, C] } }1}

are not. (For the first, observe two adjacent tuple constructions; and two set
constructions for the second.)

The restriction imposed on the structure of nested relations is mostly cosmetics.
A more fundamental limitation was considered in Abiteboul and Bidoit (1986),
which describes the data structure and the language used in the Verso system. As
in nested relations, set and tuple constructors must alternate. Further, a relation
is defined recursively to be a set of tuples, such that each component may itself
be a relation, but at least one of them must be atomic. The type T1 above would be
acceptable for a Verso relation, whereas type T2 would not, since the intermediate
set construction contains tuples with no atomic attribute.

A further assumption is that, in a Verso instance, for each set of tuples the
atomic attributes form a key. This implies that the cardinality of each set in a Verso
instance is bounded by a polynomial in the number of atomic elements occurring
in the instance. This bound certainly does not apply for a nested relation of type

{[B

which is essentially a set of sets.

3. Databases and Queries

A database scheme is a pair ~ = <[D1,... ,Ok], [Rl: r l , . . " ' en : Znl >, where

T1, • •., Tn are set types, involving only the domain names D1, • •., Dk. A n instance

of ~ is a structure DB = ([D1, . . . , Dk], JR1, . . . , Rn]), where the Di's are

domains and each Ri is a value of D O M (T i , D1, . . . , Dk). We also refer to DB
as the database type, and to DB as the database value; each of the Ri's is called a
relation.

A query of signature DB ~ T (with T of set type) is a partial function from

instances of DB to instances of T. DB and T are the input and output types of the

query. When DB is obvious from the context, we may refer to T as the type of
the query. We assume that the domain names used in T are among those in DB.
The assumption that T is a set type follows the accepted convention in database
systems and models that a query returns a set of values. The result of applying a
query q to a database instance DB is denoted q (DB).

A query language is a notation for expressing queries, coupled with a mechanism
for assigning meaning to the expressions (i.e., for associating queries with expres-
sions). In this article, we are concerned with the three well-known paradigms of
query languages: calculus, algebra, and rule-based deduction.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 737

In general, the value q (DB), where q is a query, may depend on D1, • . . , Dk,
as well as on the relations. 5 We say that a query q is domain independent if, for
any database structure, changing the domains (but keeping them large enough to
contain all atomic entries appearing in the database relations, or the query) does not
change the result of the query (Fagin, 1982). It is well known that the expressions of
relational algebra (assuming complement is not used) define domain-independent
queries. The same holds for our algebra. Calculus formulas do not necessarily
define domain-independent queries. Domain independence is a semantic property,
defined in terms of structures, and known to be undecidable, even for the classical
relational calculus (DiPaola, 1969; Vardi, 1981). The same holds for our calculus,
since it contains the relational calculus. For relational calculus, there are syntactic
restrictions that guarantee domain independence, yet do not limit its expressive
power (Ullman, 1982; Van Gelder and Topor, 1987). We also consider syntactic
restrictions, and prove a similar result.

An important class of operations on complex values that is almost absent from
the relational model, is one that performs restructuring (i.e., changing the structure
of each member of a set). Such restructuring can be defined by a function to be
applied to each member of the set. (The relational projection operation is a restricted
special case.) We call queries in which a function is applied to each element of a
set restructuring filters. The issue of expressing such filters must be addressed in
each complex query language. The relational selection illustrates another type of
filter, a predicative filter, where a predicate is applied to each element of a set. The
elements for which its value is true are unchanged in the output; the others are
ignored.

In the relational model the only elements are (flat) tuples, hence restructuring
is limited to adding or deleting fields of tuples. In our model, the elements in a
set may be of a particular type, and the result after restructuring may be of a quite
different type. Thus, to be able to express interesting queries, we need to be able to
express functions of possibly complex input and output types. When presenting the
languages, we place special emphasis on explaining the mechanisms for expressing
such functions. Since this is quite a rich class of functions, it seems that a relatively
powerful functional language may be needed, possibly based on some version of
the h-calculus. Such an approach was illustrated in Breazu-Tannen et al. (1992).
In all the languages we consider, the functions can be expressed without resorting
to such a formalism, thus preserving the traditional database approach.

4. A Complex Values Calculus

In this section, we present calculus-based query languages. One language is presented
in Section 4.1. Variations on the language are considered in Section 4.2.

5. Because of that, domain names have to appear in the signature of queries.

738

4.1 The Calculus

The calculus is a many-sorted calculus. The sorts are the types, as defined in
Section 2. The domain names are the atomic types, and the non-atomic types are
constructed from them, using the tuple and set constructors.

As is customary in many-sorted calculi, each constant and each variable is
associated with a sort (i.e., a type), and functions and predicates are associated
with signatures. For a k-ary predicate, the signature is a k-tuple of types and, for
a k-ary function, it is a k + l tuple of types. Actually, the functions and predicates
that form the query language are generic, that is, they are families of functions
and predicates indexed by types. Types of constants and variables, and signatures
of functions and predicates, are usually omitted when they are irrelevant or can be
inferred from the context.

The terms of the language are defined, as usual, as the smallest set that contains
the atomic constants and variables, and is closed under the application of functions.
The functions of the language are: the tuple and set constructors and the attributes
(considered as unary functions on tuple values). As just mentioned, these are actually
parametrized families of functions. For each attribute A1, • • -, An and types T1, • •.,
Tn, we have the n-ary const ructor []Ai:T1,...,A~:T~. The term obtained by applying
it to n terms tl, . . . , tn, where each ti is of type Ti, respectively, is []Ai:T1 A,~:T,~
(tl, . . . , tn). As is customary in the database literature, we denote it [A1 : t l , . . . ,
An: tn] . When the types are irrelevant or known, we denote the constructor by
[]A1 A,~ and, when we refer to the generic constructor, the attributes are omit ted
as well. Similarly, for each n and each type T, we have the constructor {}~. Here
also, following standard notation, the term obtained by applying this constructor to
n terms t l , . . . , tn of type T, is denoted {tl, . . . , tn} , and the indexes are omitted.
Thus, the two constructors not only have a type parameter , but are variadic as well.
For the case that n = 0, we obtain the empty tuple [] and, for each type T, the
emptyset { } or ~ for that type. Finally, if t is a term of a tuple type that has A as
a component, then t. A is a term. (The notation should have been A (t), since A is
viewed as a unary function. We use instead the notation customary in the database
area.)

Since we have atomic constants, constructors, and selectors in the language, we
can construct ground terms that denote non-atomic constants (e.g., [B:5, C:O] or
{2,6,7}. For convenience, we also use standard abbreviations such as t.[A,B,C] for
[t.A, t.B, t.C].

Predicates applied to terms (with the pro.per type restrictions) yield atomic
formulas. The set of predicates includes R1, R2, . . . , the names of the database
relations. It also includes the three binary predicates = (equality), 6 E (membership)

6. To distinguish between equality in the formulas of the language, and equality in the metalanguage (e.g.,
for expressing the syntactic equality of formulas), we use ~ for the first, and ~ for the latter throughout
this article.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 739

and C (set containment). Finally, formulas are obtained from atomic formulas by
applications of the connectives A, V, -7, and the quantifiers V, 3. It follows that
each database scheme

~ = ([D 1 , . . . , D k] , [R 1 " T 1 , . . . , R n ' T n])

defines a language in which only the domain names D1, . . . , Dk are used in type
expressions, and only the predicates R1, . . . , Rn are used as relation names.

We now consider the semantics of the language. An interpretation is any database
that is an instance of the scheme, as defined in Section 3 (i.e., is a mapping that
assigns domains D1, • •., D k t o the names D1, • •., Dk, and sets of values R1, . •.,
Rn of appropriate types to R1, . . . , Rn). The domains for the non-atomic types in
a given interpretation are defined as in Section 2, namely, the domain of a tuple
type is the (labeled) cross product of the domains of the component types, and
the domain of a set type is obtained by applying a finitary powerset operation to
the domain of the element type. Note that this differs from the usual definition of
interpretations for many-sorted calculi, where the domains for all the sorts can be
arbitrary. We treat the tuple and set type constructors as having a fixed predefined
meaning. Hence, the domains for non-atomic types are determined by those of
the atomic types. Furthermore, the tuple and set constructors are also interpreted
as the functions that map elements to the tuple or set constructed from them,
and attributes are interpreted as selectors over tuples, so these functions also are
interpreted in a fixed way. The built-in predicates = , C, and C are also given
their standard interpretation. From now on, we identify scheme and instance with
language and interpretation, respectively.

Let DB be an instance of DB. Let T be any type that uses only domain names
from D. The choice of the interpretation DB implicitly assigns a range to each
variable t of type T, namely DOM(T, D1, . •., Dk), as defined in Section 3. Thus,
an interpretation assigns a meaning to the quantifiers, and truth values for formulas
can be defined in the standard way. A truth value is associated with a formula when
each of its free variables is assigned a value from its domain. Note that although
the Dj 's are used only in the definitions of the types, the truth value of a formula

depends not only on the values assigned to the Ri's, but also on the domains assigned
to the Dj's, since the domains determine the ranges for the variables. This is the
standard approach.

A formula defines a query on databases, as follows. A c-query q is an ex-
pression {xl, . . . , x,r~ IV}, where Xl, . . . , xn are the free variables 7 of qo. The
list of free variables is called the target list of the c-query. Let the types of xl ,
• . . , xn be T1, . . . , Tn. Then c-query q expresses a mapping from instances of

7. Since all the free variables are included in the target list it suffices, in principle, to write the formula only.

But this notation can be extended by adding attributes to name the components.

740

to instances of {[T1, . . . , Tn]}, as follows: given DB, q (DB) is defined by: 8

q (DB) = { [Vl , . . . , vn]lvi of type Ti, DB ~ qo (Vl, . . . , Vn) }.
We can identify a c-query with the formula in it, and write go (DB) instead of q (DB).

In the following example, we illustrate the expressive power of the calculus. In
particular, we show how composition of queries can be expressed in the calculus,
and how to express restructuring filters, that is, queries that transform each element
in a set to a value of another type.

Example 4.1 Consider the schema

(R • { [A " ~3,A' • D] } , 3 " { [B " D,B ' • { D }] })

(or (R : { [A,A'] }, S: {[B,B': { }]} > when the domain is omitted for brevity).
The queries are:

1. The union of R and a set of two constant tuples:

{ r [R(r) V r = [A:3, A ' :5] V r = [A:0, A ' :0] }.

2. Select from 3 the tuples where the first component is a member of the second
component:

{s 13(s) A s.B E s.B' }.
3. The (classical) cross product of R and S:

{ t l 3 r,s (R(r) AS(s) A t.[A,A'] = r. IA,A'] A t.[B,B'] = s.[B,B'])},

where t is of type Tt = [A,A', B,B' : { }].
4. The join of R and S, on A = B. We express this query as a composition of

the cross product, which we have expressed above, with a selection. Denote
the formula describing the cross product by qo3. We first write a c-query
expressing a selection on predicate Rt, of type { Tt }:

{t lRt (t) A t.A = t.n}.

Now, we replace Rt (t) in this query by ~3 (t):

{t I qo3 (t) A t.A = t.n },

i.e.,

8. Since tuples are legal types, we could, in principle, restrict attention to formulas with one free variable.

By our convention on one-component tuples, the definition could then be written as q (DB) = {v] v of type

T, DB ~ qO(v)).

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 741

{t[B r,s (R(r) AS (s) A t. [A,A'] = r.[A,A'] A t. [B, Bt] = s.[B,B'])

A t.A = t .B)} .

5. Unnest 3 (i.e., produce a set of flat tuples), each of which contains the first

component of a tuple of S, and one of the elements of the second component.
(This is a slight generalization of the classical unnest.):

{t[3 s (30) A t.B----s.B A t.C E s.B')},

where t is of type [B,C]. Note that the last two conjuncts of the formula
can be viewed as a formula ~b(s, t), with two free variables, that expresses a
relation on the domains of s and domain of t. By prefixing with 3 s 3 (s),
we have transformed it into a restructuring filter on S. (Note that this filter
creates from each tuple of 3 a set of tuples, and the result is their union.
This is why ~b expresses a relation, not a function.)

6. The powerset of the relation .R:

{tit ~R},

.
with t of the same type as R.

The collection of subsets of the second component of tuples of S, which do
not contain the values 2, 4, or 5:

{t] 3 s (3 (s) A t C s . B ' A 2 ~ t A 4 ~ t A S ~ t) } .

Here also, the last part of the formula expresses a relation between s to t,
and composing with the existential quantifier produces the required filter.

[]

In summary, the example shows how to compose queries by "connecting" the
output of one query to the input of another. The technique is generally applicable.

It is based on the fact that any subformula of the form R (t) can always be replaced
by a formula g) (t). Another technique illustrated in the example is how to combine
a formula with two free variables, representing a relation, with another to create a
restructuring filter query. This also is a generally applicable technique. These two
techniques will be considered again when we prove the equivalence of the calculus
and the algebra of the next section.

Recall the definition of domain independence from the previous section. All
the queries above are domain independent. The following is a simple example of
a query that is not domain independent:

{tl 3 r (.R (r) A t.B ¢rA) }

742

where t is of type [B, C]. In the following, we use the term domain-independent calculus,
meaning the calculus restricted to domain-independent formulas and queries.

4.2 Discussion and Variations

It is illuminating to compare the calculus with relational calculus, as presented
by Ullman (1982). The latter is also a many-sorted language since, in practice, a
relational database is defined over a set of domains. However, we have lifted the
restriction on the use of the tuple and set constructors, so we have a richer type
system. We note that relational calculus has two equivalent versions, one that uses
individual variables (the domain calculus), and one that uses tuple variables (the
tuple calculus). Because we allow variables of each type, our calculus generalizes
both. We also note that the additional types we allow are not arbitrary, but have fixed
meanings. Variables with a type that contain one set constructor are second-order;
because we allow any number of set constructions in a type, our calculus is a J-order,
whereas relational calculus is first-order. In both calculi, however, only finite sets
are considered in the semantics.

With a type system, type-specific functions and predicates are normally included.
Our calculus also differs from the relational calculus in allowing unrestricted use
of the functions and predicates associated with the tuple and set type constructors.
We have chosen a rather small set of functions and predicates: A constructor and
a selector for tuples, a constructor for sets, and the membership predicate as a
selector for sets (there is no functional selector for sets). We have added, for
convenience (especially in the formulation of safety), a comparator of sets (i.e., C).
It is redundant: y C z can be expressed by V x (x C y ~ x C z) .

Is the set of functions and predicates we have added the only possible set, or
the best one? We now consider other possibilities.

We first note that, although our set of functions and predicates is small, it is
not minimal. We have noted that C is redundant. The tuple and set constructors
can also be removed. For example, the term [B:5, C:8] can be viewed as an
abbreviation for the use of a variable x (of the appropriate type), "anded" with
x.B = 5 A x.C = 8; and the finite enumerated set {5,8} can be represented by a
variable z, "anded" with the formula y E z ~ y = 5 V y = 8. (The empty tuple
is simply represented by a variable of type T[] since [] is the only instance of that

type.)
The reasons why the constructors are redundant are actually quite simple. First,

the definitions of the types and their domains use the constructors, and the fact that
variables are typed determines for each variable a range of values of a specific form.
Second, the calculus with selectors allows one to construct formulas that describe
relationships between values. Thus, instead of writing a value as an explicit term,
obtained by applying a constructor to some arguments, one can represent it by a
variable, and describe its relationship with its arguments. This is precisely how we

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 743

eliminated the tuple constructor above. For sets, the membership predicate serves
as a selector for this purpose.

We now consider the other direction, namely the inclusion of additional functions
and predicates, and possibly other features, in the language. Here we present several
such extensions, and we show that they all can be considered as abbreviations; hence,
their use does not augment the expressive power of the language.

It is natural to consider additional operations on sets, such as union and
intersection. In general, the inclusion of additional operations in a language makes
it easier to express queries. For example, using difference, the last query in Example
4.1 can be expressed as

{ t [3 s (S (s) A t C (s.B'-- {2 ,4 ,5}))} .

It is easy to show that these can be defined in our language. For example, the
union of sets $1 and $2 can be represented by a variable x "anded" with 'v' y (y
E x ~---~y E S1Vy E $2). As a matter of fact, in Section 6, we prove much more:
The calculus can express each of the algebraic operations introduced in Section 5.
Therefore, we can augment the calculus by introducing in it all algebra operations
without changing its expressive power.

Another useful feature is to augment the class of terms by allowing the definition
of set terms using the classical mathematical notation of set comprehension: {x I ~ }
where ~ is a formula with only free variable x. Note that a comprehension is a
query; thus, we are adding a subquery facility to the language. Set terms have been
in use in mathematics for a long time. The idea of using set terms in a calculus for
complex values seems to have been presented by Klug (1982). A similar notation
for functional languages was proposed by Peyton-Jones (1987). Comprehensions as
a query notation have been shown to be closely related to monad-based bulk types;
for a recent survey, see Buneman et al. (1994).

The expression {x179 } can be replaced by a new variable y "anded" with Vx (x
E y ~ gO. As an example, consider the query on a standard suppliers-and-parts
database asking for suppliers supplying all parts:

{x[{y[3p(part(p) A p . p n o = y } =
{y [3 sp (supply (sp) A sp.snum = x A sp.pnum = y } }.

This query can be written in our calculus as well, by using auxiliary variables, 9 but
its formulation is more difficult to write and understand. Note that, if this kind of
terms is allowed, the definitions of terms and formulas become mutually dependent.
(However, set comprehension also can be viewed as a macro facility with no effect
on the formal definition of the language.)

In summary, given a type system of interest that is represented as a set of
constructors, there is, in general, quite a lot of flexibility in the choice of functions

9. This is related to known techniques for subquery elimination.

744

and predicates that go with it in a language. For a practical language, considerations
such as orthogonality and ease of use play a major role in the design. But we are
not concerned here with languages for use in practice. Our choice of functions and
predicates was motivated by the following considerations. Extending the calculus with
additional features would probably load the proof of equivalence with the algebra
with many additional details, having to do with the additional features, without
bringing more light. (Of course, if we added to the calculus all the operations of
the algebra, then the proof might become trivial.) On the other hand, we have
opted against a minimal language, without the constructors, since we felt that this
would also make the proof too involved, and hide some of its structure.

5. A Complex Values Algebra

The framework for the algebra is essentially the same as for the calculus, namely,
that of many-sorted universes where the sorts are the types. An essential difference is
that there are no predicates. The database relations are simply named sets of values
of appropriate types (i.e., constants); a database instance is an environment that
assigns values to these names. 1° The predicates = , C, and C are handled as binary
boolean-valued functions, as are any predicates defined for the base types. The
algebra is a functional language, and a query is an expression in this language to be
evaluated in the given database. Although the functional viewpoint is not emphasized
in the literature, the relational algebra is also a functional language. But, while most
functional languages are based on the use of variables and lambda abstraction, the
relational algebra uses a different paradigm--it is based on a small set of operations
(i.e., given functions) that encapsulate useful iterations over relations, and that can
be composed to express queries (Backus, 1978, presented a seminal paper on this
paradigm of functional programming). Our algebra generalizes this approach. It
uses several of the relational algebra operations, such as union, intersection, and
difference, since they are generic with respect to the types of the elements in the
sets. Other operations have to be generalized.

- The major issue that we need to consider is how to perform restructuring of
complex values, including the manipulation of deeply nested components. The
classical projection is the primary means (with cross product) for restructuring in
relational algebra. It is sufficient, since restructuring in the relational model can
only map fiat record structures to fiat record structures. Obviously, we need a more
general mechanism. We address this issue as follows: We introduce an operation
for restructuring, which is actually an operation scheme. To use it, one needs to
supply it with a function parameter. Given such a parameter, the operation takes a
set as input, and produces as output the set of its elements, each restructured by the

10. For additional details on the difference in viewpoint between the calculus and the algebra, see Beeri
and Milo (1992).

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 745

given function. In functional language terminology, the operation is a higher-order
function. The use of function parameters in this fashion allows us to deal with
substructures of complex, recursively defined, values. This approach, first used by
Schek and Scholl (1986) for projection, leads to a compact yet powerful notation. It
implies that the algebra has expressions to denote restructuring functions, which are
not necessarily queries. Higher-order functions are commonly used in functional
languages; their use in the algebra indicates clearly that it is a functional language.
Given the idea of a function parameter, it is straightforward to allow also the use
of functions and predicates of the base type as parameters. This is considered in
Section 8.

We first present and explain the meaning of the operations. Then we explain
the overall structure of the algebra, define queries and functions and state some of
their properties, and present examples to illustrate the expressive power and the
programming style of the algebra. Finally, we consider, as we did for the calculus,
issues of redundancy and possible variations.

5.1 Operations

We start by listing the operations, and explaining their semantics. All operations
have set input and output types. In the discussion below, we make general remarks
about the possible types of each operation but, aside from that, we do not consider
the issue of type checking or inference.

Set operations: U, f-q, and \ are binary operations. Their arguments must be of the
same set type, and they produce a result of the same type.

Cross product: If, for i E [1..n], Ri is of type {Ti}, then cross[z I An] (R 1 , . . . , Rn)
is of type { [A1 : T1, • •., A~ : T~] }. The value is the set of n-tuples that have the
Ai component from Ri ll Note that, whereas in the classical relational algebra the
product of two sets of tuples of lengths m and n is a set of tuples of length m -l- n,
our operation produces a set of pairs of tuples. We show later how to express the
classical product. Our definition allows us to take the cross product of any sets,
even if they are not sets of tuples.

Powerset: 12 If R is of type {T}, then powerset (R) is the collection of all subsets of
R. This is a new operation that does not exist in the relational algebra. Its role will
be clarified in the sequel.

Set-collapse: This operation is simply an extended union operation. The argument
must be a set of sets, and the result is the union of the member sets.

11. We also allow the use of cross, which creates unlabeled tuples. It follows from our convention regarding
one-component tuples, that cross (R) is equal to R.

12. Thepowerset was added, not because a need for it was felt in the algebra itself, but rather to make the
algebra as expressive as the calculus. This is considered in the sequel.

746

set-collapse (R) = U R = {x I 3 y (x • y, y • R) }.

This is also a new operation.

Select: The classical relational select is a predicative filter, but the set of predicates
that can be used in it is restricted. We extend it by allowing the use of arbitrary
boolean-valued functions (from the set of functions defined below). Thus, this
operator is also a higher-order operation. We use the notation 13 o-(p) for this
operation; p is the predicate (i.e., a boolean-valued function). Given a set R, and
a predicate p that is applicable to values of the type of the element type of R,
o- (p) (R) is the set containing all the elements of R that satisfy p. Our notation
was chosen to show clearly that an instance of select is obtained from a general
scheme by supplying a function argument. The predicates as defined below are
constructed by using = , E, and C as comparators, and by using arbitrary functions
as comparands.

Replace: This is the main tool for performing restructuring of complex values,
which may include the application of functions to substructures of the values. It is a
higher-order operation, with a function parameter that describes the restructuring.
I f f is a function from the set of functions defined below, then 14 /9 (f) is a replace
operation. If R is a set value, compatible with f in the sense defined below, then:

p (f) (R) = {f(r) l r E R }

This operation appears under various names in functional languages; for example,
apply-to-all in FP (Backus, 1978), map in many others. It embodies the idea of set
construction expressed by the replacement axiom of set theory.

Why is it justified to consider this operation an algebraic operation? Let a
relation R of type {[A,B,C]} be given, and assume we want to project it on the
A,B-components, written as R [A,B], or 7rA,B (R). In addition to the value argument
R, this expression has attribute parameters that determine the structure (i.e., type)
of the result. It is a simple conceptual step to regard the projection list as a function
that transforms each member of R to the desired format. More precisely, each of
the attributes is regarded as a unary function; the attributes are combined to the
restructuring function [A,B] by using the tuple constructor. In our algebra, this
would be written as p ([A,B]) (R) (Section 5.2). Thus, replace is a generalization
of the classical project.

Another example of a restructuring operation is the extend operation (Grey,
1984). Given a relation, it allows the addition of a component to each tuple. The

13. Occasionally we use explicitly select, for readability.

14. Occasionally, we use explicitly replace.

VLDB Journal 4 (3) Abitebouh Languages for Manipulation of Complex Values 747

name of the new component, and the expression defining the function used to
compute it are specified in the operation. This function is applied to each tuple to
produce the value of the new attribute for that tuple. Obviously, both project and
extend are special cases of the general concept of applying some function to each
element of a set. The replace operation has the additional advantage of generalizing
to our more general type system (and to others, e.g., see Breazu-Tannen et al.,
1992) with no change.

5.2 Queries and Functions

Before presenting the definitions, we briefly explain the overall structure of the
algebra. Both queries and functions are obtained from the same building blocks.
As a matter of fact, the queries are a subclass of the functions. In contrast to
the calculus, and to the A-calculus, the algebra does not use variables. The basic
building blocks are base functions, with constants as a special case. Constants can
be viewed as 0-ary functions, or as k-ary functions that ignore their input, for any k.
For example, 5 is a constant; R, a name of a database relation, is a constant; if A
is an attribute name, then it is a unary base function; set construction is a variadic
base function. More complex functions are obtained by combining functions, for
example by composition, or by applying one of the higher-order functions to a
(regular) function. In the definitions below, we emphasize the arities of functions
(i.e., whether a function is 0-ary, unary, binary, and so on), since this, with the input
and output types, determines if functions can be combined (e.g., by composition).
As an example, consider 7rA,B (R). In our algebra, each of A, B is a unary base
function; hence [A,B] is a function. Note that there is no explicit notation for
the input of this function, as, for example, in the A-calculus. The structure of the
function tells us its arity and type: It is a unary function that accepts any tuple that
has at least the attributes A and B as input, and its output is a tuple with the two
attributes A and B. Then p ([A,B] > is also a function whose input is any set of

such tuples. Finally, p<[A,B])(R)is a query.

Whereas functions definable in the algebra can have any arity, queries have arity
0 (i.e., they are constants). This seems to contradict our description of queries as
functions (Section 3). There is, however, no contradiction. In any given database,
A and p ([A,B]) are unary functions whose input types are a tuple containing an

A component and a set of tuples with A,B components, respectively, and R, {5}
are constants. The latter two are queries. When we consider the queries over all
databases, they are functions, with the databases as input. In the discussion above
and the definitions below, the meaning of each construct is given in one (arbitrary)
database.

We now define the class of function expressions and their meanings. The
definition has two parts: a class of base functions, and constructions used to construct
more complex functions expressions. The base functions are: Each constant c, and

748

each database relation name R are functions (of each arity and input type). Rather
than using a special function notation, we abuse the notation, and use c and R,
respectively. Additionally, each attribute A is a function expression. We also use
/d, denoting the identity funct ion) 5 The set constructor { } is a variadic function
expression. (An alternative equivalent formulation with fixed arity functions is to
use 0 as a constant, and insert as a binary operation that takes a set and an element
and returns a new set.) The algebraic operations, except select and replace are also
function expressions. Finally, we have the binary boolean-valued = , C, and C, and
also the boolean connectives V, /k, and 9. The meanings of all these functions in
any given database are obvious.

We now describe how new functions can be constructed. One obvious constructor
is composition, denoted o. Another is the application of a higher-order function.
Recall that replace and select are not functions, but rather function constructors. If
f is a unary function, then p (f) is a function, and if p is a unary boolean-valued
function then cr (p > is a function. Both are unary functions, with set type input
and output. We emphasize that p (f> is not obtained by using composition• It is
an application of a higher-order function to a function, which produces another
function. Of course, such functions can be composed with other functions, as,
for example, in p (g> of. Incidentally, note that this is in general different from
p(gof>.

Although expressions may denote functions of arbitrary arity, only unary functions
can be used as parameters for replace; in this article these are called replace
specifications. Similarly, unary predicates are selection specifications.

The reader may have noticed that the tuple constructor has not been mentioned
so far. This is related to one issue that we still need to consider. For unary functions, o
is sufficient for expression compositions. But, we also have non-unary functions, and
we need a notation for composition for them as well. In the A-calculus, composition
of non-binary functions can be expressed by appropriate use of variables, as, for
example, in Ax. h (f(x), g(x)). In our language there are no variables, so this
approach cannot be used. The solution used in functional languages of this style
is to use the tuple constructor not as a value constructor (as we used it in the
calculus), but as a function constructor. I f f l , . . . , fn are unary functions, then [fl,
• . . , fn] is a unary function whose meaning is defined by If1, --- , fn] (x) = [[1 (x), . . . ,
fn (x)]. Thus, the function above can be written as h o [,g]. Since our model uses
labeled cross products, we use labeled tuple construction as a function constructor,
that is, we allow the formation of expressions like [A1 = f l , . - . , An = f~]. Note
that the Ai's here are not functions but labels. The semantics is given by [A1 = f l ,
• . . , An = fn] (x) = [A1 :fl (x), . . . , An :fn (x)]. Note that this implies that every
function is unary, where its input is possibly a tuple type. Nevertheless, we often

15. In the calculus,/d is obviously redundant: a t e rm/d (t) can always be replaced by t. In the algebra, this

function turns out to be useful, as we illustrate here.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 749

refer to operations such as U or ~ as binary.
Although our notation is standard in both mathematics and functional languages,

it is cumbersome in many cases, and quite different, for example, from the notation
used in relational algebra. Therefore, we adopt a notation that uses application in
place of composition, and introduce a few additional simplifications. We describe
the notation using examples. A, A o B, crossA,BO [C,D)], p (5) o R are all function
expressions, with o explicitly used. In the second expression, B must be a tuple
type with an A-component and, in the last expression, C and D must be set-valued.
That is, type compatibility of functions and arguments must be enforced. In the last
expression, it is clearly seen that the constant R is used as a 0-dry function. However,
we use the notation p (5) (R), which is closer to the classical relational algebra
style. Similarly, we use crossA,B ([C,D)]) in place of crossA,Bo [C,D)]. While the
difference here is not much, the application notation allows us to use infix notation
for binary operations, for example to use A C B rather than C o [A,B] in selection
conditions. Consider the expression [C = A, D = B]. It expresses projection on
two attributes, followed by renaming. The similarity to the structure of target lists
in relational languages is quite evident. Applying this expression to [A :a, B:b,
C:c], we obtain [C:a, D:b]. When the new attribute and the function name are
the same, an even more compact notation can be used: Instead of [A = A , . . .],
we simply write [A , . . .]. Thus, the expression p ([A,B]) (R), denotes the classical

projection of R on the attributes A and B. Finally, instead of A o f or A (f), we use
dot notation: f.A.

Although we use the "application-oriented" notation in the sequel, one should
not conclude that it is superior to the composition-based notation. As a matter of fact,
if the algebra is used for internal representation of queries (that are phrased by the
users in a more user-friendly notation) then the composition-based notation reflects
faithfully the tree or graph notation often used to depict internal representations.
For a discussion of the algebra using this notation, see Beeri (1993).

We conclude the discussion with some simple observations. First, composing
on the left or on the right with id is redundant: f = id o f = f o id. Similarly, c
and c o A are equivalent, so composing any function with c or R (on the left) is
redundant. Although only certain simple constants have been listed above, additional
expressions that are actually complex constants can be obtained: {c} \ {c} gives
the emptyset, any fixed tuple can be obtained by applying the tuple constructor
to appropriate constants. Since p ([]) (E) is {[l}, when E is nonempty, and
otherwise, we can test a set for emptiness. 16 In p ({id}) (2), the replace operation
adds one additional level of set nesting to the relation. Note the use o f / d here as
a means for handling the implicit input. As another example involving id, p (RU
id) (S), when S is a set of sets, adds the contents of R to each of S's elements.

16. Furthermore, we could use { } and { []), the two values of type { [] }, as representing the two truth
values (Breazu-Tannen et al., 1992).

750

(The use of id here is needed; R U is an higher-order function, hence, it is illegal.)
We now define the class of algebraic query expressions, or a-queries. The base

queries are: each set constant {c} and each relation name R is an a-query. The
class of a-queries is the least class of 0-ary expressions that contains these, and is
closed under application of the operations listed in the previous subsection. That
is, if Q1, . . - , Qm are a-queries, and op is an m-ary operation, then op (Q1, . - . ,
Qm) is also an a-query. 17 In "operation" we include any instance of replace or select
obtained by applying them to replace or select specifications, respectively. That is,
if p (f) is a replace operation, and E and f are compatible, then /9 (f) (E) is an
a-query and, similarly for cr (p) (E).

Although we have higher-order operations, our definition disallows higher-order
queries; each query expression must have a value type. Thus, while R U R ~ is a
valid a-query, R U is not.

The definitions of functions and a-queries are now (almost) complete. We still
need to discuss the compatibility of p (f) with E, which allows one to form the
query p (f) (E). This will be considered below. We first present a few examples of
a-queries, starting with those presented for the calculus in Example 4.1.

Example 5.1 Recall the schema (2 : { [A,A']}, S: { [B,B': {}]}) of Example 4.1.
The queries are:

1. The union of R and a set of two constant tuples:

RU {[A:3, A ' :5I , [A:0, A ' : 0] } .

2. Select from S the tuples where the first component is a member of the second
component:

(B B') (5).

3. The (classical) cross product of R and S:

t9 ([C.A, C.A', D.B, D.B']) ((cross[c,D] (2, 5)).

4. The join of R and S, on A = B. This is easily expressed as a composition:

o- (A = B) (p < [C.A, C.A', D.B, D.B']) ((cross[c,D] (2, 5)))

5. Unnest S, that is, produce a set of flat tuples, each of which contains the
first component of a tuple of S, and one of the elements of the second
component:

17. As for functions, application here represents composition, that is, the class of queries is closed under
composition on the left with operations.

VLDB Journal 4 (3) Abitebouh Languages for Manipulation of Complex Values 751

set-collapse (p (cross[B,C] ({B }, B')) (3)).

.

7.

In this expression, the replace transforms each tuple of 3 into a set of pairs.
(Note that cross operates on sets, hence we need to transform B to {B }.)
The first component is called B and its value is the B-value of the given
tuple. The second component, called C, has a value that is a member of the
set B' in the original tuple. This has the effect of pushing B into B', and
making each element of B' a pair. The set-collapse is needed to remove the
extra set brackets from the result.
The powerset of the relation R: powerset (R).
The collection of subsets of the second component of tuples of S, which do
not contain the values 2,4, or 5:

set-collapse (p (powerset (B'-- {2,4,5})) (5)). []

The next examples illustrate complex queries and, in particular, the use of
functions in replace and select expressions for the manipulation of deeply nested
components of complex values.

Example 5. 2
1. Recall the relation S: {[B,B': {}]} of Example 4.1. The relation of type

{[B': {}]}, obtained by adding the value of the B component to the B'
component and deleting the B component, is given by:

p('u {B}

2. We present a more complex query, in which a construction by stages is
helpful. Let R: { [A,B: { { [C,D] } }] } be a scheme. The query is to add a
third attribute E, with the value 5, to each of the tuples in each member of
B and to eliminate the A-component. The replace operation for a set X of
type {[C,D]} is

t91-~ p ([C = C , D = D , E = 5]>.

Or, using our abbreviations,

p , = p < [C , D , e = 5]>.

Now, for Y of type {{[C,D]}}, we want to perform this restructuring on
each set member of Y, so we can use

/92 = p (t9 ([C, D, E = 5]> (id)).

752

The use of t he /d function here is redundant, because it represents a com-
position. The simpler expression is:

p2 = p < p ([C , o , e = 51> >

Since the B component of R has this type, this is a valid replace specification.
To obtain a replace for R, we have to add one more level:

P3 = replace (p (p ([C, D, E = 5]>) (/3)) (R).

Now suppose that, instead of 5, we want to use the A-component. This is
done using:

P3 = replace (p (p ([C,D,E = A] > > (B) > (R).

In this last expression, C,D apply to tuples at the inner level, where such
attributes indeed exist. A is also used at the inner replace, but its meaning
is the A of the outer level tuples. In the inner replace specification, [C,D,E
= A] , A has no meaning in the strict context of the type {[C,D]}. In this
expression, A is essentially free. It remains free on the next level, and it
becomes bound (i.e., is given a meaning) only in the larger context of the
complete query. []

The last issue we consider is the binding of attribute names, illustrated in the last
example. It is relevant to the definition of queries. By the definitions of a-queries
and functions, if Q is a query, and g is a replace specification, then p <A) (Q) and
p <A > (g) are also a query and a replace specification, respectively. So far, we have
mentioned only type compatibility, namely that the output types of Q and g should
be set types. However, assume the element type in the result of Q is not a tuple, or
it is a tuple, but does not containA. In either case, what is the meaning of the query?
On the other hand, no such problem exists for g; i r a is not bound now, presumably
it will be bound when the expression p <A) (g) is embedded in a larger expression.
Thus, it is important for the definition of well-formed queries to give the binding
rules for attributes. This is determined by the relationship of name occurrences to
scopes, as illustrated in the following: suppose we have p (p (A) (S), > (R), where

both S and R are tuple types that contain A. Does A refer to the A component of
or to that of R?

For each function expression, we divide the set of attributes that are used in it
as functions 18 to bound and free. The definition uses induction on the structure of

18. Note: In [A 1 ~ f l ~ • • • , An ~fn], the attributesA 1 , . • • ~ A n are not used as functions!

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 753

function expressions. In the expression A, A is free. The other basic functions do
not include attributes. A function obtained by composition has the form f (f l , • • •,
fk), where f is a basic function or an algebraic operation, and the fi 's are functional
expressions. The free and bound attributes of each of the fi remain free and bound,
respectively, in this expression. I f f does not contain attributes, then we know all the
free and bound attributes of the expression. There are two cases to consider when
f contains attributes: Either f is an attribute, so the expression has the form f l .A
(i.e., A (fl)). For this expression to be legal, f l must have a tuple type with an A
component. Hence, .,4 is bound in this expression. The second case is the application
of p (f) to g, to obtain t9 (f) ~g). (Selection is treated similarly.) The bound and
free attributes of g remain bound and flee, respectively, in this expression, and the
bound attributes o f f also remain bound. The free attributes o f f remain flee, except
that, if g is a set of tuples of type T, and A is an attribute of T, and A was free
in f, then it now becomes bound. The two cases can be summarized as follows:
when a function/operation is applied to an argument (equivalently, composed on
the left), and a free attribute in it is meaningful in the argument, that attribute
becomes bound. The last case to consider is function construction by application
of one of the two higher-order operations. Let f be a function expression, and let
p (f) be a function expression constructed from it. Then the bound/free attributes
in f remain bound/free in this expression.

In summary, binding attributes to their meaning is done from the inside out;
an attribute is bound in the smallest subexpression where a meaning for it exists.
Note that, in some cases, the user's intention may be different. For example, in the
expression p (p (. . . A . . .) (5)) (R), if both relations contain A, the user might

want to refer to theA-component of R. To do that, it is necessary first to rename the
attribute A in S to a new attribute (see below how to rename), then construct the
required expression. Similar problems may arise in the use of the identity function,
and solving them may complicate the expression of queries.

Now we summarize the conditions in terms of bound and free attributes on
the construction of replace specifications and a-queries. There is no restriction on
replace specifications. But, an expression p (f) (Q) is a query only if it contains no
free attribute names.

From the examples and the discussion above it follows that in an a-query
t9 (f) (Q), if f contains a replace operation (i.e., the query has a nested replace),
then this nested replace may contain free attributes. Such attributes necessarily are
given meaning in the context of (the type of) Q, since they cannot remain free. This
was illustrated in Example 5.2. Is it possible to characterize the attributes that thus
can be used in a nested replace? The answer was presented in Schek and Scholl
(1986). Let T be the tree representing some set type, and let x be a node in its tree,
which is also of a set type. An attribute A can be used in a replace specification on
x if it appears either in the type of x or somewhere else in T. In the second case,
we must have that, given a value VT of type T, and a node (i.e., a value) vx of type
x in it, A can be interpreted as denoting a unique node of VT relative for this given

754

vx. In both cases, A plays essentially the same role as a constant, relative to a value
vx. The set is those attributes in the nodes that can be reached from v by going
up, and possibly also sideways and down, without crossing a set constructor on the
way down. If x has a tuple of tuples type, then it also includes those attributes
reachable from v by going down, again without crossing a set constructor. This is
captured in the following definition.

Let T be a type. We associate a set of dynamic constants with each subtype 74
of T, relative to T, as follows. The set dyny (74) is the smallest set of attributes
that satisfies the following conditions.

• If 74 is a tuple type, 74 = [A1 : T1, • •., An : Tn], then dynT (74) = dynT (T1)
. . . . dynT (Tn) and, for each i, Ai is in dynT (74");

• If 7 4 is a set type 74 = {T1}, then dynT(74) C dynT(T1).

For the relation R of Example 5.2, the dynamic constants of the inner tuple
node inside B are C, D, B, A. These are the attributes that can be used in a replace
specification for this node in an a-query on R.

We have illustrated bottom-up construction of queries. The next example
illustrates top-down construction of an a-query, containing replace specifications
with dynamic constants.

Example 5.3 Consider the relation scheme R: { [A: { }, B: { [C, D: { }, E l } l }. We
want to restructure the elements of R, by leaving only B, itself transformed by
dropping the C component from each of its tuples, and leaving in the D component
only those elements that are in A. Furthermore, we want to delete from B those
tuples in which the new D component does not contain 0 and the value in the E
component.

We start with B as a replace specification for R. This is transformed to p ([D,
E]) (B). Next, we replace D with o- (id E A) (D), to obtain the replace specification
p ([or (id C A) (D), E l) (B). We now add a selection on the condition {0, E} C
D, and apply the resulting expression as a replace specification to R to obtain:

p (cr({O, E} _C D) (p ([cr (id C A) (D), EI) (B))) (R). []

To conclude, we state some properties of a-queries and function expressions.

Proposition 5.1 Every a-query is also a function expression.

Proof." It is easy to see that the base queries are functions. The claim follows, since
the query constructions are all also function constructions. []

Note that there are 0-ary functions that syntactically are not queries. We claim
that every constant function is equivalent to a query. We do not prove this directly,
as it follows from the algebra-calculus ecl~ivalen ~ that we prove in the sequel.

An a-query containing relation names R1, • •., Rn defines a function on databases,
in which these relation names are treated as variables. We can compose a-queries,

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 755

by replacing a relation name in a query by another query. Similarly, if a replace
specification contains relation names, we may replace some of them by replace
specifications of the same types.

Proposition 5.2
(i) The class of aLqueries is closed under composition. That is, if E is an a-query

that contains R, and E ~ is another a-query whose output type is the type of

R, then the expression obtained from E by replacing an occurrence of R in
it by E ~ is an a-query.

(ii) The class of replace specifications is closed under replacement of relation
names by replace specifications. That is, if f contains R, and g is another
replace specification of the same output type as R, then the expression
obtained by replacing an occurrence of R in f by g is a replace specification.

Proof."
(i) The proof uses induction on the structure of E, for each fixed E I. The case

that deserves attention is when E = p (f) (Q), and an occurrence of R in f
is replaced by E/. For this case, we use (ii).

(ii) This is proved in a similar manner. Details are left to the reader. Note
that the closure of replace specifications under composition is part of their
definition. []

Note that "closure under composition" was included in the definitions of func-
tions. However, there it referred to closure in one given database. Here, it refers to
functions and queries viewed as functions on databases, which is a different notion.

We conclude this subsection with the following observation.

Theorem 5.3 The algebra is a domain-independent language.

Proof." The proof is by easy induction on the construction of queries. Note that we
use difference, which preserves domain independence. The claim would be false,
had we used complement (w.r.t. a suitable product of the domain with itself). []

5.3 Variations

We now make some observations about the expressive power of the algebra. In
particular, we consider additional operations that can be expressed in it. We also
consider whether certain operations can be removed, or restricted, without changing
the expressive power. Naturally, we are most interested in what can be done using
replace with nested expressions, since it is the nesting of structures in the model
and of expressions in the language, that distinguishes our model and language from
the relational analogs.

What kinds of restructuring can we perform on a relation? We can increase
the level of nesting by adding set or tuple constructors: using the set constructor,

756

we can transform each element into a singleton set; using the tuple constructor,
we can transform each element into a single-component tuple, with any attribute
as a label 19 In the other direction, that of decreasing the level of nesting, we have
several cases to consider. First, if we have a set of sets of T-values, we can use
set-collapse to transform it into a set of T-values. In the special case that each of
the sets is a singleton, this has the same effect as the operation the, used in the
query language of 02 (Bancilhon et al., 1989). Similarly, given a tuple, we can
select one of its components, drop the others, and leave this component without
the tuple constructor. For example, if we have R: { [A: T, . . .]}, then p (A) (R)
has the type {T}. Another related operation is the following: if we have a set of
tuples, where one of the components is a tuple, we can transform it into a set of
fiat tuples. For example, if we have R: { [A, B: [C, D]] }, then p ([A, C, D]) (R) has
the type { [A, C, D] }. This derived operation is called tuple-collapse. It is an analog
of set-collapse. Using this operation, it is easy to obtain the classical cross product
of two sets of tuples: we perform a cross, followed by a tuple-collapse. From that
we obtain the various joins by composing with selections.

Assume we have R : { [A , . . .] }. We can change the name of the first component

to A' by p ([A ' = A , . . .] > (2). Similarly, we can change any attribute in a
substructure by using nested replace. These expressions can be quite cumbersome,
since one has to repeat all the attributes that need not be changed. Since renaming
is a useful operation, it is useful, in practice, to add an operation rename for this
purpose. We use the notation renameA~A, (R) for changing the attribute A to A'
uniformly in R.

From the previous discussion, it follows that we can express all the relational
algebra operations. Let us now consider the nested relational model.

Two well known operations of that model are the nest and unnest (Jaeschke
and Schek, 1982). Assume we have the scheme R: { [A,B,C] }. Nesting on the
attribute C is accomplished as follows. First, we delete from each tuple of R the
C-component, and extend it with a copy of R:

R1 = p ([A,B,D = renameA~A,,B~B, (2)]) (2).

The first two attributes in the copy of R are renamed to prevent ambiguity in the
expression below. Now, we perform a selection on the embedded copies, so that
in a tuple [a,b,d] the d component will contain only the tuples that have a and b
in the first two positions. Then we project the resulting d on its C attribute. This
is accomplished by

= p < [A,8, p < [C] > <A = A'A S = S' > (m))] >

19. When no label is desired, this is an identity transformation.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 757

These two expressions can, of course, be collected into a single algebraic expression.
As a matter of fact, the projection and selection can be pushed inside, so the final
expression is

p ([A,B,D = p ([C]) (o" (A = A t A B = B t) (renameA__,A,,B~B, (R)))]) (R).

This expression is a good description of how this nest is often computed in practice.
For unnest, consider the relation S:{[A,B,C: { [D] }] } . Unnesting on C is

accomplished by

set-collapse (p (p ([A,B,D l) (C)) (R)).

We have shown that all the operations of relational or nested relational algebra
can be expressed in our algebra. The reason why some of these are not basic but
rather derived operations, and that some of the expressions are non-trivial, is that
we have un-bundled the set and the tuple constructors, and our operations and
basic functions treat each one separately. In the relational and nested algebras, the
operations deal with the type constructor set-of-tuple.

Many algebras for nested relations in the literature do not include a facility
such as replace nesting (i.e., for applying algebraic operations to substructures),
like the one we have presented, following Schek and Scholl (1986). Is this facility
essential? We argue informally that, theoretically, it is not. First, we show that
nested replace, that is, a replace within another replace, can be eliminated. Consider
R: { [A,B,C: { [D,E] } l }, and a query p ([. . . , p (f) (C)]) (R). An equivalent way
to express it is as follows. Extend R with an attribute C ~ that is a copy of C, then
unnest on C ~, calling the new attributes, say, J , E ~. Then perform a replace where
the function f is applied to D I, E ~. Then nest the result, and project C out. Note
that, since we have kept all the original attributes in the unnest, the subsequent nest
reconstructs the original relation (except that the copy C ~ of C has been replaced
by p (f) (C'), as required).

We still have that, inside a replace, all algebraic operations, except a replace,
can be used. Consider the relation R:{ [A,B: { },C: { }] }, and a query p ([. . . ,
op (B,C)]) (R), where op is an algebraic binary operation. We consider cross as a
concrete example. An equivalent expression is obtained thus: project the relation
on B, and perform set-collapse, to have the union of the B-values. Do the same for
the C-values. Now perform cross on the results, and extend each tuple of R with
the result. Call the new attribute D. The problem is that the D-value in a tuple
contains, in addition to the pairs in cross (B,C), many other pairs. But a simple
selection eliminates these extra pairs. Similar arguments apply to other operations.

In summary, we could define our algebra so that in the construction of replace
specifications, algebraic operations cannot be used. The analogy to the calculus
would then be complete. However, in eliminating nesting, we are forced to express
functions that can be expressed naturally with nesting, in a very complicated manner.
In a practical language for a model with nested structures, nesting is an extremely
useful tool.

758

In Abiteboul and Bidoit (1986), the language contains operators that are defined
recursively on Verso relations. For example, assume that E and F are two instances
of

{[A,B,C: { [D,E: { [F,G] }]}]}.

Recall that, by definition of Verso instances, {A,B } and {D } are keys at their
respective levels. We can define union of instances of type ([F,G] }, with which
we can define the union of two instances I, J of type { [D,E: { [EG] }] }:

I U J = {u 13. CI, w El, u.D =v.D =w.D, u.E = v . E U w.E}.

More generally, one can define recursively union of Verso instances.
In this operation, it seems that adding levels of nesting to the relations makes

the expressions more complicated (in the algebra presented here). We conjecture
that no single expression of our algebra can express the Verso union (and some of
their other operations) for arbitrary relations.

6. Equivalence of Calculus and Algebra

In this section, we prove that the well-known equivalence holds for our model as
well: the algebra and the domain-independent calculus have the same expressive
power. As we have seen, for each of the two language paradigms, there is a variety
of possible dialects. The details of the proof vary with the choice of a dialect for
each paradigm. We present the proof for the languages presented in Sections 4.1
and 5.1, respectively.

Theorem 6.1 The algebra and the domain-independent calculus are equivalent. That
is, for each a-query there is an equivalent domain-independent c-query and, for
each domain-independent c-query, there is an equivalent a-query.

6.1 From Calculus to Algebra

We follow the lines of the classical proof (Ullman, 1982). The modifications have
to do mainly with the richer structure of terms. We first prove that, for each type,
there is an a-query that, when applied to a database, generates the set of values of
that type that can be constructed from atomic values that appear in the database or
in the query. Given that, we show how to construct for each c-query an a-query that
generates the same answer on a database in which the domains are the so-called
active domains. The claim then follows.

Given a database instance DB = ([D1, . . . , Dk], JR1, . . . , Rn]), denote by
adom (DB, Di) the set of elements of D i that appear in DB (including those that
appear as components of complex values) 2° and by adorn (DB) the vector of sets

20. adom stands for active domain.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 759

adom(DB, O l) , . . . , adorn (DB, £)k). These are the atomic values that appear in
the database. A given query q may include constants that do not appear in the
database. Hence, we extend the notation and use adom (DB, q, L)i), adorn (DB, q)
to denote the appropriate set, or vector of sets, of atomic values that appear in the
database or in the query. In the discussion below, we assume q is given. We also

h

assume that the database schema DB is fixed.

Claim 6.2 For each domain name D occurring in ~ , there is an a-query, denoted
Fb, such that, for every database DB, Fb (DB) =adom (DB, D).

Proof." For each Ri, we construct an a-query F i , such that Fi (DB) is the set of
elements of D, the domain in the database for D, that appear in Ri. Then F b _=
F1 U . . . U Fn. The a-query Fi is constructed by applying the following recursive
procedure:

* I f R i is a set of atoms of t ypeD, t h e n F i --= Ri. I f R i is of atoms from
another atomic domain, then Fi ~ 1~.

• If Ri is of type { {T}} , for any T, then apply the procedure to set-collapse
(ki).

• If Ri is of a tuple type { [A1 : r l , . . . , Am :Tin]}, then apply the procedure

to each of the expressions p (Aj) (Ri). Then take the union of the a-queries
that were generated.

Note that, in the last two cases the procedure is applied to. simpler types; hence
termination is guaranteed. Also note that, if D is not used in Ri, or in an expression
generated in the last two cases, the procedure can be terminated immediately, and
the value returned is 0. []

Since, for each finite set of constants, there is an a-query that returns it on every
database, we can add the constants of the given query to the a-queries of the claim.

Corollary 6.3 For each query q, and for each domain name D, there is an a-query
Fb,q, such that Fb, q (DB) =adom (DB, q, D). []

Recall from Section 2 that, for a type T and a vector of sets b = D1, . . . ,
Dk of atomic values corresponding to the domain names D1, • •., Die, DOM(T, D)
is the set of values of type T that can be constructed from the atomic values in
D. In particular, DOM(T, adorn (DB, q)) is the set of values of type T that can be
constructed from atomic values that appear in DB or in q.

Claim 6.4 For every type T, there is an a-query FT,q, such that, for every database
DB, FT,q (DB) = DOM(T, adom(DB, q)).

Proof." We prove the claim using induction on the structure of types.

Basis: If T is an atomic type, D, then FT,q ~ Fb, q.

Induction: There are two cases to consider.

760

• If r = { S }, then FT,q ~ powerset (FS,q).
• If T = [A1 : T1, • •., An : Tn], then FT,q ~ c r o s s [A x , . . . , A s] (FTi,q, • • ", F T . , q) "

[]

Note the use of the powerset operation in this proof. This is the only place in
the translation from calculus to algebra where this operation is used, and it was
included specifically for this part of the proof to work.

We have now finished the first stage in the proof, namely showing that the
active domain of each type can be expressed by an a-query. It follows that for each
variable x, there is an a-query, which we denote by E q that computes the set of X '

values, constructed from atomic values that appear in the database or in q that this
variable can take on. Indeed, this query is simply FT,q, where T is the type of x.

We now state and prove the main claim of this subsection, from which this
part of the theorem follows. For a given c-query, as above, and for a database DB,
denote by DBq the database that has the same relations as DB, but in which the

domain for Di is adorn (DB, q, Di). That is, the database relations are preserved, but
the domains are the smallest domains that contain the values used in the database
or in the query. From the results above, we have that, for each variable x of type
T, and for each database DB,

Eqx (DB) ---- DOM (T, adom (DB, q)) ---- Eqx (DBq).

That is, the a-query Eq z computes on DBq precisely the set of values on which
the variable x ranges in this database, namely the domain of the type of x in this
database.

We next show that the algebra is as expressive as the domain-independent
calculus.

Proposition 6.5 Let q be a domain-independent c-query. Then there is an a-query
Eq, such that, for every database DB,

Eq (DB) = Eq (DBq) = q (DBq) = q (DB).

Proof." It suffices to show that, for some Eq, Eq (DBq) = q (DBq) (for q (DB) =
q (DBq) since q is domain independent, and Eq (DB) = Eq (DBq) since the algebra
is domain independent).

Let qo be the formula in q. The proof is by induction on the structure of ~. As
explained in Section 4, one can associate a c-query with every formula, and with
any number of variables, including 0. We refer to the c-queries that correspond to
subformulas of ~p as subqueries of q. We construct a-queries for all subqueries of
qo, using structural induction.

Let us consider the structure of atomic formulas. They may be of the forms
Ri (t), or tlO t2, where t, tl, t2 are terms, and 0 is one of the comparators = ,
E, and C. We note that, for each term, there is a set of values that it can take

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 761

on in the database DBq. Before we can deal with the atomic formulas, we need
to show the existence of a-queries that compute this set of values for each term.
We already know that such a-queries exist for variables, and they surely exist for
constants. The existence for arbitrary terms therefore can be proved by induction
on the structure of terms. However, we actually need to prove a slightly stronger
claim. If we consider an atomic formula as a query, then the target list of this
query is not the term or terms in the formula, but rather the list of variables in the
term(s). When the answer is computed, whenever the term(s) satisfy the formula,
the assignment to the variables is output, rather than the value of the term(s).
Hence, what we really need is to construct an a-query that computes the set of
possible assignments for the variables in the term, and for each of them the value
of the term(s). Then, when we find that the formula is satisfied by an assignment,
we can use the assignment for the output.

Claim 6.6

(i) Let t be a term in q with I variables Xl, . . . , xt (l may be 0); then there is an
a-query Gt q such that Gt q (DBq) is a set of (l + 1)-tuples, the first l of which
are all combinations of values from Eq~ (DBq), i = 1, . . . , l (i.e., possible
assignments to the variables in the database DBq), and the last component
in each tuple is the value of t for the assignment represented by the first 1
components.

(ii) Let tl, t2 be two terms in q, with l variables Xl, • •., xt (l may be 0); then
q q (DBq) is a set of (l + 2)-tuples, there is an a-query Gtl,t 2 such that Gtl,t 2

the first l of which represent assignments to the variables as above, and the
last two are the values of the two terms for the assignments.

Proof."

(i) The proof uses induction on the structure of terms. If t is a variable x, then
we have Eq~, that computes the domain for x in DBq. To obtain Gq~, we take

p ([1 = id, 2 = id]} (Eq z).

If t is a constant ¢, then l = 0 and Gt q is simply {c }. Note that this works for
non-atomic constants and relation names as well, so if t contains no variables,
the construction for t is complete.

If t contains variables, and is not a simple variable, then it is obtained by
applying a function to some terms. We consider each of the functions that
can be applied. The first case is that t = t l .A, where tl is of a tuple type on
which A is defined. By induction hypothesis, we have Gtqx . The I variables
of t are those of tl. Hence,

Gt q _ = p ([1 , . . . , l , l + 1 = (l + 1).Al)(Gtq~).

762

The second case is when t = []Aa,...,A,~ (t l , • •. , tn), or using our al ternat ive
notat ion, t = [A1 : t l , • •. , A n :tn]. H e r e the set of variables of t is the union
of the sets of variables of the ti's. Hence,

Gt q ~ p ([1 , . . . , l, 1 -1- 1 = [a 1 = 1 + 1 , . . . , A n = 1 + n]) (H~),

where

H~ _= permute (l'oin on c o m m o n variables (cross (Etql, . . ., Etq))).

In this expression, each Etq~ computes tuples of length li-q- 1, of which the
first li are variables values. In the cross product , a variable tha t appea r s in
m o r e than one ti has m o r e than one c o m p o n e n t cor responding to it. The
join contains a selection that forces, for each variable, all its values to be the
same, fol lowed by a project ion that leaves just one copy of the value. T h e
cross product also has one posit ion for each of the terms. Af te r the join,
the permute 21 moves these to the posit ions l + 1 , . . . , l + n; then the tuple
constructor in the final replace collects them into a tuple, as required.

T h e last case is that t is obta ined by applicat ion of the set constructor . T h e
construct ion of Gt q for this casd is similar, and is omit ted.

(ii) This case is t rea ted essentially as in the appl icat ion of a const ructor in the
previous case. Given Gtq~, for i = 1,2, we pe r fo rm a natura l join on the
c o m m o n attributes, and move the two te rms to the last two positions. []

We now consider a tomic formulas. The first case is a fo rmula R (t). Assume t
has l variables. We want to construct an a-query equivalent to {Xl, • •., xt I R (t) }.
We have, by the construct ion above, an algebraic expression Gt q that computes all
possible values in the database for [xl , • . . , xz, t]. T h e requi red a-query is

p ([1 , . . . , I]) (o ' ((l + 1) C R) (G t q)) .

Note that, for the case l = 0, the selection outputs an answer of type {[1 :]}, that
is, a set of tuples of arity one. The result of the replace is then e i ther { []} if t is
in R, or ~, otherwise.

The o ther case for a tomic formulas is tlO t2, where /9 is one of = , C, or C .
T h e a-query is

p ([1 , . . . , l] } (o ((l -] - 1) 0 (l - -1-2)} q (Gtl , t2)) .

21. Of course, for any given t, instead of doing this permutation, we could use the proper column numbers
in the final replace.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 763

The remark above about the case l = 0 holds here also. For example, if the
query is R (x.A), then the formula is p (1) (or (2E R) (p ([1: id, 2 :A]) (Eq~)))

and, if the formula is a C R (for some element a), then the formula is p ([])

(or (1 C R) ({ [a] })). It is easy to see that, when a subformula ¢ of qo is atomic,
if E¢ denotes the formula we have constructed for it, then

E¢ (DBq) = • (DBq).

Now we consider induction on the structure of formulas. It suffices to consider
the cases where a formula is obtained from simpler formulas by applying A, ~, or
3. The proof is essentially as in Ullman (1982). We use natural join for A. For
negation, we take the complement with respect to the cross product of the Eqx's,
for those x's that appear as free variables in the formula being negated. 22 Finally,
we use projection for the existential quantifier.

For each of the three cases, we assume by induction hypothesis that the a-queries
equivalent to the c-queries that correspond to the subformulas of the given formula
are given, and we prove that such an a-query also exists for the formula. The
only nontrivial step is the association of projection with the existential quantifier.
However, for the active-domain database DBq, the range of an existentially quantified
variable x is Eq x (DBq), and it follows that projection indeed has the same effect as
the existential quantifier.

When the construction described above terminates, we have for the given formula
qp (x) an a-query, E~o, such that E~ (DBq) = qp (DBq). This is the required Eq.
This concludes the proof of the proposition, and one direction of the equivalence
theorem. []

The following observations are of interest. If T = {S } is a set type, the set
of possible values of type T is the powerset of the set of values of type S. Hence,
we need the powerset in the algebra to construct the domains for non-atomic types
and variables, and this is the only place it is used in the proof. It is an expensive
operator that does not seem to be really necessary in a query language. It could
be dispensed with if another approach to computing the domains is found. This
issue is considered in the sequel.

Note also that nesting of operations in replace operations is not used in the main
part of the proof. Essentially, the operations of the relational algebra combined
with rather weak restructuring facilities, and with the powerset and set-collapse are
sufficient to provide the algebra with expressive power comparable to that of the
calculus. This is another demonstration that nesting is not crucial for obtaining the
required expressive power. But, the idea here is different from that used in Section
5. There, we showed that given a description of a query as a function on databases,
we can express the function in another, although rather convoluted, way that does

22. If there are no free variables, we take the complement, with respect to { []).

764

not require nesting. By "expressing a query as a function," we mean that the query
actually describes how the components of the answer are computed from those of
the input. The alternative formulation simulates this "procedural" approach. In
the calculus, this procedural component is much weaker. The existence of typed
variables allows one to specify the form of the result without using the input in any
way; the actual result is then related to the input by a set of conditions. Therefore,
the algebraic simulation constructs the domains of certain types, including the type
of the result, then simulates the conditions that restrict the domains, until only
the result is left. Quite obviously, although this proves the equivalence with the
calculus, it is not the direction to go in designing practical languages.

6.2 From Algebra To Calculus

Although we could, in principle, assume that no algebraic operations are used
inside replace, we deal in the proof with both a-queries and with arbitrary replace
specifications. This is because the proof is a good illustration of the operations.

It suffices to prove the following.

Proposition 6. 7
(q) For every a-query E, there is an equivalent (domain-independent) c-query

qE, with a single free variable in its formula.

(r-s) For every replace specification f, there is a formula ~bf (u,v) that represents
it. That is, u and v have the types o f f s input and output, and ~bff (u,v) holds
iffv = f(u). Also, for each select specification (i.e., unary predicate) p, there
is a formula ~bp (u) that represents it, that is, u has the type o fp ' s input, and
~bp (u) holds iffp (u = TRUE.

Proof." (Remark: (q) is the claim we need, (r-s) is needed for the induction step of
the proof.) The claims are proved simultaneously, using induction on the structure
of algebraic expressions. Note that functions can be k-ary, for any k, whereas replace
and select specifications are unary. However, a specification is either a unary base
function, or it is obtained from simpler functions in one of the ways described
in Section 5. As shown below, the simpler functions are then unary. Hence, an
inductive proof works.

Bas~:
(q)

(r-s)

The a-queries {c} and 2 are represented by the c-queries { x l x = c }, and

{ x I R (x) }, respectively.

The replace specifications c, R, are represented by the formulas v = c and V
y (v E v ~ y C R), respectively. (Note that since these functions ignore their
input, the variable u is missing. To view them as unary, add u = u to them.)
This representation works for non-atomic constants as well, and also for []
and ~. The function A is also present in the calculus. Its corresponding
formula is v = u.A. As for id, it is represented by v = u. The set constructor

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 765

can be unary but, since it is variadic, we treat it in the induction. We have two
unary algebraic operations among the base replace specifications: Set-collapse
is represented by V x (x E v ~ 3 y (y E u A x E y)); powerset is represented by
V x (x E v ~ x C_ u). All the other base functions are not unary. As remarked
in Section 5, they are actually unary functions with tuple inputs. However,
consider t.J, for example. It expects a two-component tuple. Obviously, as
a replace specification, we can use U o [1,2] rather than just U. Hence, all
non-unary base functions can be treated in the induction part, and need not
be considered now.

Induction:

(q) We consider each of the operations. For most of them, the construction is
essentially the same as in the classical proof. We assume that E1 and E2 are
a-queries, and ~E1 and ~E2 are the formulas in the corresponding c-queries,
each with a single free variable. 23 The a-query E is constructed from E1 and
E2 by applying 24 an operation: E ~- O (El, E2). We show how to construct

~E from ~E1, ~ E 2 .

• Set operations: E = EiO E2, where 0 is one of U, fq, \ . We change
the two given formulas, if necessary, so that they have the same free
variable. Then,

* i f E = E 1 U E 2 , then (~E ~ q0E1 V ~E2"

* if E ~ Elf3 E2, then ~E ~ C/gEl A ¢~tgE2.

* if E _~ E l \ E2, then ~E ~ ~Ex A ~ E 2 "

• Cross product: E ~ cross[A1,A2] (El, E2). We change the two given
formulas so that their free variables are different. Then

~E ~ 3 X l3X 2 ((PE1 (Xl) A(PE2 (X2) A x = [A 1 :x1, A 2 :x2]) .

• Powerset: E ~powerse t (El). The formula qgEx has a single free variable
of type T, say Xl. Let x be a new variable of type { T }. Then

~ E ------ Y xl (xl E x ~ ~ E (x0) .

(Note: we could write instead x C {xl [~E (xl)}, and then use the
reduction described in Section 4.)

• Set-collapse: E _= set-collapse (El), where 99Ex has a single free variable
of a set type. Then ~ z ~ ~ X1 (OPEl (Xl) A x ~ Xl).

• Select: E ~ cr (p) (El). Assume that ffJp (u) represents p. Then

23. Since we have tuple types, there is no real distinction between one or more variables; it is more conve-
nient to present the proof for a single variable.

24. Recall that this is actually composition.

766

(r-s)

~ _-- ~ , (~) A% (x).

• Replace: E ~ p (f> (El). Let ~bi (u,v) be the formula that represents
the function f. Then

~ _-- 3 u (~E1 (u) A ~ i (u,v)).

Next, we consider replace and select specifications.

Replace specifications can be obtained by using composition, tuple construc-
tion, or an application of one of the two higher-order operations. Select
specifications can be obtained only by using composition. Assume that f, f l ,
• . . , fm are unary function expressions, represented by ~2y, ~byl, . . . , ~bYm,
that p is a unary predicate, represented by ~bp.

First, consider tuple construction. For the result to be unary, each of the
participating functions must be unary. The function [A1 = f l , • • . , A m =
fro] is represented by

3 v l . . . 3 vm (* / , (uu, ~i) A . . . A ¢Sm (" Vm) A ~ = [Zl : ~1, . . . , Am: v M) .

Next, we consider application of one of the two higher-order operations.

• Replace: Given the formula for f, the formula for p (f> is

V x (x E v ~ 3 y (y ¢ u A',w.f (x, y)))

• Select: The formula for cr (p > is

V x (x e ~ x e . A% (x))

Finally, consider composition. We treat both kinds of specifications together,
since they are both unary functions. Since composition is associative, we may assume
that when it is used to construct a new function, it has the form g o f, where g is
either base or obtained by tuple construction or higher-order application, and f is
an arbitrary unary function. The function g is not necessarily unary. 25 We consider
how to represent the result of "applying" g to (i.e., composing it on the left with)
f. We consider the possible cases of g.

Base functions:
• The attributes, the identity: The function f .A (= A o f) is represented by 3

x (~ y (u,x) A v = x . A) . The function id is represented by u = u.

25. As already explained, when it is not, we can view it as a unary function, composed with the result of a
tuple construction. It is convenient to deal with it as a k-ary function directly.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 767

• Set constructor: { f l , . . . , fro} is represented by:

3 v l . . . 3 vm (¢I1 (u, ~1) A . . . A CSm (u, ~m) A ~ = {~, . . . , vm}).

Algebraic operations:
• Set operations: We show only the union. Intersection and difference are

treated similarly. The function f l u f2 is represented by:

3 V13 V 2 (~fl (u'vl) A~)f2 (u, '1,.'2) A V x (x E u <-----)(x ~ viM x ~ v2))).

• Cross: This is treated similarly to the union: For example, the function
cross[A:,A2] (f lf2) is represented by

3 ~13 v2 (~/: (U, Vl) A~S2 (u, v2) A v = [A: :~:,A2 :v@.

• Powerset: The function powerset (jr) is represented by

3 vl (~b/(u, vl) A'v' y~y 6 v ~---~ y C_ Vl)).

This extends in the obvious way the treatment of this operation as a base
function.

• Set-collapse: The function set-collapse (f) is represented by

3 vl (ffs/(u, vl) AV x(x E v ~ 3 y (y 6 VlAX 6y))) .

This also is the obvious extension of the treatment of this operation as a
base function.

• Select: The function ~r (p) (f) is represented by

"~'S (u, vl) AV x (x 6 v ~ x E vl A ~bp (x))}

• Replace: The function t9 (f) (fl) is represented by

V 1 (ff3fl (U, Vl) AV x (x ~ v ~ 3 y (y E Vl A ~.3f (y,x)))).

Boolean functions: We illustrate only two cases.
• Membership: The function f l E f2 is represented by

3 v~3 v2 (~Psl (u, vl) A~py2 (u, v2) A v l ~ v2)).

• Negation: -, p is represented by ~2p . (Representing the boolean connectives
in the calculus is easy, since they are built-in.)

768

The fact that all the calculus formulas obtained in the (q) part are domain inde-
pendent, follows immediately from their equivalence to a-queries. This concludes
the proof of the proposition, and also of the equivalence of the algebra and the
domain-independent calculus. []

7. Syntactic Safety and Powerset

Domain independence is a semantic concept that is undecidable even for the
relational model (DiPaola, 1969; Vardi, 1981). In this section, we present syntactic
restrictions on formulas that guarantee domain independence. The formulas that
are thereby restricted are called safe. In contrast to domain independence, these
restrictions are easily checked. Furthermore, although not every domain-independent
formula is safe, we show that the domain-independent calculus, the safe calculus, and
the algebra are equivalent. In particular, for every domain-independent formula,
there is an equivalent safe formula. Finally, we show that, by strengthening the
restrictions, one obtains a calculus that is equivalent to the algebra withoutpowerset.

7.1 Safety

The accepted approach to making a formula safe is to require that each variable
is attached to a range formula. The simplest forms of range formulas are R (x),
where R is a name of one of the database values, and certain boolean combinations
thereof. These are the forms used in the relational model. However, since we
allow nested structures, other possibilities exist. Consider, for example, the scheme
R: {[A,B : ([. . .] } , C] } . We may want to use a variable x whose range is the set of
tuples occurring in B-sets in tuples of R. To restrict the range of x to this collection,
we need first to have a variable, say y, that is range restricted to R. Then we can
range restrict x by x E y.B.

In the following, we define range formulas, range restricted variables, and safe
formulas.

Let o~ be a formula, and assume a partial ordering on its variables is given.
We assume that the free and bound variables are distinct. We say that variable x is
(range) restricted in oz, relative to the given ordering, if the type of x is the empty
tuple type, or one of the following holds.

Basis: o~ is one of

(B1) R (x),

(B2) x E t,
(B3) x = t,

(B4) x C t,

where t is a term that may contain constants or variables that precede x in the
ordering. Recall that the functions that can be used to construct terms are tuple
and set constructors, and attribute application.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 769

(B5) V y (V C x ~ ~ (y)), where all variables that are used in ~ (including y)
precede x in the ordering. Note the similarity to the construction used for
powerset in the translation from algebra to calculus. This is equivalent to x

G {Y [

Closure: c~ is constructed from subformulas, such that one of the following holds:

(CL1)

(CL2)

(CL3)

(etA)

o~ is a conjunct of two formulas, and x is restricted in at least one of them.

o~ is a disjunct of two formulas, and one of the following holds: either x is
free in it, in which case it must appear and be restricted in both disjuncts,
or x is bound in it, in which case it appears in precisely one of the disjuncts,
and is restricted in the disjunct where it appears.

o~ is obtained from a formula in which x is restricted by adding an existential
quantifier (on x, or on another variable).

(x = ~fl , where fl is a formula in which x is both bound and restricted.

A formula is safe relative to a given partial ordering, if all the variables are restricted
in it. (This includes those in a subformula of the form (B5).) It is safe if there is
an ordering, such that it is safe relative to it.

The rules above define the notion of "range restricted" for both free and bound
variables. Clearly, the empty tuple type needs no range restriction: its only value
is [], anyhow. The five base cases are formulas where x is directly restricted in
ce, either because it is required to be in some database relation, or because it is
required to be equal to/a member offa subset of a value obtained from constants
and variables that precede x, by the construction and decomposition functions of
the calculus, or (in (BS)) because it is required to be a subset of the result of a
query expressed by a formula, where all the variables in that formula precede x. 26
Note that if the term t in (B2) -- (B4) contains variables, then the range restriction
o fx depends on these variables, in the sense that it restricts x only if these variables
are properly restricted. If oz is safe, then these variables have their own range
restrictions, and further, their restricting formulas do not depend on x directly, or
even indirectly through other variables. This is guaranteed by the assumption that
the range restriction for a variable depends only on variables that precede it in the
ordering. A similar remark applies to (B5).

We will call the formulas in (B1) -- (B5), and formulas obtained from them by
using A and V, rangeforrnulas.

We have included in our definition enough constructions so that it is possible
to simulate the algebra in the resulting calculus. Additional forms of safety can,
of course, be added, and all that is needed (given our proof of equivalence to the
domain-independent calculus) is to show that they preserve domain independence.

26. (B5) is a more powerful construction than (B2) - (B4); its role is clarified in Section 7.3.

770

Note that we use only the existential quantifier in the closure rules. Indeed, if
x is free and restricted in a formula, it is not necessarily restricted when a universal
quantifier on x is appended. Since we have negation, there is no loss of generality
in formulating a closure rule only for the existential case. In particular, we will have
later formulas of the form V x (qa (x) ~ ~) , where x is restricted in qa. This can be
taken as a short notation for 9 3 x (g) (x) A ~ b) , in which x is indeed restricted. 27
We can also view this form as a derived restriction rule for universal quantification.
The universal quantifier in (B5) is used not for constructing a formula f rom a
subformula, but rather to create a new atomic range restriction. To avoid confusion
resulting from the use of V in this construction, we use the equivalent notation x
c_ {y I ~p¢v)}.

We refer to the calculus, restricted to safe formulas, as the safe calculus.

Theorem 7.1 The safe calculus and the algebra are equivalent. That is, for each
c-query with a safe formula there is an equivalent a-query and, for each a-query,
there is an equivalent c-query with a safe formula.

Corollary 7.2 The safe calculus is equivalent to the domain-independent calculus.

One direction of Theorem 7.1 follows from the following proposition:

Proposition 7.3 The safe calculus is

Proof • We say that a formula, or a
if, for every database, changing the
it still contains the elements of the
not change the result of the query.

domain independent.

query, is domain independent in some variable
domain of this variable only, but requiring that
type of that variable in the active domain, does
Thus, a formula is domain independent if it is

domain independent in each of its variables.
Now, assume given a formula that is safe with respect to a given ordering of

the variables, xl , • •., xn. We prove, that it is domain independent in each of Xl,
• . . , xn. This is proved using induction on the number of variables; that is, we prove
that it is domain independent in each of xl , • •., xi, for i ---- 1, . . . , n. For a given
number of variables, we use induction on the structure of the formula.

For the first variable, Xl, we have only (B1) -- (B4) as the base cases. Further,
the terms in the last three cases must be ground. It is immediate that these formulas
define domain-independent queries. It is also easy. to see that domain independence
for xl is preserved under the four closure rules.

Now assume the claim was proved for i variables, and consider xi+l. Consider
one of the base formulas (B1) -- (B5) for xi+l. Here again, the formula of (B1) is
domain independent. In (B5), the formula qa (y) does not contain x and, further, it

27. The quantifiers in 3 x (~ (x) A ~ , Vx (99 (x) ~ ~)) occur often in safe formulas. They are custom-
arily called bounded quantifiers, and the formulas are often written as (3 x q9 (x)) ~3 and (V x qD (x)) ~3,
respectively.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 771

contains only variables that precede it in the ordering. By the induction assumption,
the domains for these variables can be restricted to the active domain. It follows
that this subformula is domain independent for xi+l (i.e., it can only be assigned
values from its active domain). Similarly, in (B2) -- (B4), the terms may only contain
variables that precede xi+l, so the same reasoning applies. To finish the claim, we
use induction on the closure rules. []

It follows from Proposition 7.3 that, for every safe c-query, there is an equivalent
a-query. To finish the proof of the Theorem, we just need to show a translation
from the algebra to the safe calculus. Thus, a direct translation from the safe
calculus to the algebra is not necessary. Nevertheless, there are good reasons to
present such a direct translation. First, such a translation constructs a-queries for the
domains of variables that do not need to construct the active domain of the database.
Rather, these queries use the range formulas for each variable. This translation,
therefore, may provide some insight for practical translation of calculus-based query
formalisms. Second, we can show precisely where the powerset operation is used
in this translation. Hence, we can derive a version of the calculus that is equivalent
to the algebra without powerset. The translation is presented in the Appendix.

7.2 From Algebra to Calculus

We prove the following

Proposition 7.4

(q) For every a-query E, there is an equivalent safe c-query qE.
(r-s) For every replace specification f, there is a formula ~bi (u,v) that represents

it, in which all variables, except possibly u, are restricted (relative to some
ordering such that u is first and v is last). Similarly, for each select specification
p, there is a formula that represents it, such that all variables, except possibly
u are restricted in it (relative to some ordering such that u is first).

Proof." We follow the translation of the algebra to the calculus in the previous section,
and we show that the formulas constructed there satisfy Proposition 7.4. We just
need to check that the constructed formulas are safe (for the first part), or that all
the variables except possibly u are restricted (for the second part).

(q): The base a-queries are {c}, R. The corresponding c-queries are defined by

x = c and R (z), which are safe (by (B1), (B3)). For the induction, assume
that E is obtained from El , E2 by applying some operation, and that the
corresponding c-queries g)El, 99E2 are safe. We note that the variables that
are bound and restricted in these formulas remain bound and restricted in
the formulas that we construct from them. We need to consider only what
happens to the free variables, and also whether the new variables, if any, are
restricted. In each case, the ordering of the variables is such that the new
variables, if any, are last.

772

r-s)

If 0 is one of the set operations of union, intersection and difference, then the

c-queries for E l0 E2 are g)E~ (x) 0q0E2 (x), where 0is V, A, A~, respectively.
Safety follows from (CL2) for disjunction, and from (CL1) and (CL4) for
the two cases of conjunction.

For cross[Aa,A2], the translation is

3 XI3X 2 (~E1 (Xl) /~qOE2 (X2) /~ X = [A 1 :x1, A 2 :x2]).

In this formula, Xl and x2 are obviously restricted, and remain restricted when
the quantifiers are applied by (CL3). Since x follows all other variables, x is
also restricted (by (B3)), so the formula is safe. For powerset, the formula
is V Xl (xl 6 x ---+ 99E (Xl)), or x C_ {xl I qo (Xl)}. All variables (except x)
are known to be restricted, and x is restricted by (B5). For set-collapse, the
formula is 3 Xl (qOE1 (Xl) A x E x 0 . It is clearly safe (by (B2) and (CL3)).

We are left with select and replace. These are more complex, since they contain
function parameters. Consider the replace. Let the a-query be p (f) (El).
Let ~b/(u,v) be the formula that represents the function f. Then cpE = 3
u (qoE1 (u) A~bf (u,v)). We note that, by induction hypothesis, qOE1 restricts
u, and all variables in ~b/, except possibly u, are restricted. Hence (by (CL1)),
this formula is safe. Select is treated similarly.

The formulas for the replace specifications c, R, A, id are u = u A v = c, u
= u AVy(y E v ~ , R(y), v = u.A, and u = u, respectively. In the first and
third, v is restricted by (B2). The second can be rewritten to the form v C
{y [R ((y)} AV z (R (z) ~ z E v). Now, v is restricted (by (B5)), and z by the
derived closure rule for universal quantification. Set-collapse is represented by
V x (x E v ~ 3 y (y E u A x Cy)); denoting this formula by qo, it is equivalent
to v C {x I 3 y (y C u A x C y}) A79, in which v is restricted by (B5). It is
easy to see that both y and x are restricted (the order is u,y,x,v). Hence, this
formula satisfies the claim. Powerset is represented by V x (x C v ~ x C u),
and this can be similarly converted to a formula that satisfies the claim.

For specifications obtained by composition, we have the same situation as
above, namely that we need to check only what happens to free or new
variables. Checking that all variables except possibly u are restricted is, in
most cases, straightforward, so we only illustrate some cases.

If A is an attribute, then the formula for f . A is 3 x(~bf (u,x) A v = x . A) .
We have that v is restricted (by (B3)), and we already know that all other
variables, except possibly u are restricted.

For powerset, the translation for powerset(f) is 3 vl (~S (U, Vl) AV y(y 6 v
y C_ vl)). As above, the second part can be rewritten as V y (y C Vl

y E v) A v C_ {z I z C Vl}. The last conjunct restricts v whereas, in the

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 773

previous conjunct, y is bound by a bounded quantifier; hence it is restricted.
We already know that vl is restricted.

For the replace, we have a similar construction: The formula for p (f) ((fl)
is 3 Vl (~fl (U, Vl) AV y (y C v ~ 3 z (z G V 1 A ~ f (z, y)))). Rewriting as in
the previous case, we obtain

3 1' 1 (~,)fl (U, Vl) A V y (3 z(z e vl A ~ f (z,y)) ---~ y e v)
A v C {s I 3 z (z 6 vl A !by (z,s))}.

Since vl is restricted, the last part restricts v (by (B5)), whereas z is restricted
in the part before last; hence, so is y, since it is bound by a bounded quantifier.
All the other variables are restricted by induction hypothesis.

The cases of other base functions, algebraic operations, and the boolean
functions are similar, or simpler, and are left to the reader.

Next, we consider construction. Given the formula for f, the formula for
p (f) is

V x (x c v 3 y 0' ¢ u (x, y)))

We do the same transformation as in previous cases: We "and" the formula
with v C {y [y E u A~21 (x,y)}. This restricts v and, after we eliminate the
existential quantifier and the implication, we have that the other variables
are restricted as well. The select is treated similarly. []

7.3 Strictly Safe Calculus

The powerset operator of the algebra is unique among the algebraic operations
in that one may argue that it is not directly useful for expressing real-life queries
and, additionally, it may cause exponential cost, since it increases the size of its
argument exponentially. It is of interest, therefore, to consider the algebra without
the powerset. We have seen in the previous section that it is used in the proof of
equivalence to the domain-independent calculus only in one place, in the construction
of a-queries for the domains. Now that we have the notion of safety, and we have
other constructions of a-queries for the domains, we can possibly do without this
operator.

When we consider the equivalence proof of the algebra and the safe calculus, we
observe the following: In the translation from the domain-independent calculus to
the algebra (given in the Appendix), we used thepowerset only for the translation of
(B4) and (B5). Only in these two forms is there a use of the subset predicate. Thus,
we conclude that, if we remove the powerset from the algebra, we need to remove
(B4) and (B5) from the safety definition. In the other direction, the translation
from the algebra to the calculus, the situation is a bit more complex. We have

774

indeed used (B5) only in the translation of the powerset in the (q) part. Similarly,
we used (B4) for the translation ofpowerset in the (rLs) part. However, (B5) is used
in some of the other translations (e.g., in translating R and p (f) (/1)). We observe,
though, that in these cases the relevant part of the formula has the form v = {y
Icp}. We claimed safety for this formula by breaking it into two components, one
of which has the form suitable for (B5). The same holds for the other cases where
(B5) is used. What we offer to do now, instead, is to replace (B5) by a weaker
condition:

(B5') x = {Y [~} .

This is weaker than (B5): it does not increase the size of its input. It allows us
to translate all the cases where (B5) was used in (r-s), except the translations of
powerset. Note, in particular, the translation of p (f) (/1) : 3 Vl (~byl (u, vl) A v
= {y [3 z (z ¢ Vl A ~f (z,y)))). This simply states that v is obtained from v 1 by
applying f to each of its elements, which is just what is needed. Note the similarity
to the replacement axiom of set theory.

We call the safe calculus, without (B4), and with (B5) replaced by (B5'), the
strictly safe calculus. We now have:

Theorem 7.5 The strictly safe calculus and the algebra withoutpowerset are equivalent.

Proof." We have already considered the translation from the algebra to the calculus,
and have argued that, if the algebra does not containpowerset, then it can be carried
out, provided we have (B5') among the clauses defining range restrictions. We need
only to consider the other direction and, particularly since we have removed (B4)
and (B5), we do not need the powerset in the algebra. However, now we cannot
use the claim that this calculus is included in the domain-independent calculus to
complete the proof, as we did in the beginning of the section. Rather, we need to
transform the translation from the safe calculus to the algebra given in the Appendix,
so that the translation for (B5') does not use powerset. That is easy: For x = {y
[~} , we have an a-query that returns a set of y values. Applying nest we have an
a-query that returns a set of pairs of the form {[v, {y [qo}]}. So far, these are the
steps as performed in the proof in the Appendix. The last step there is to apply
a powerset and, since we are dealing with x = {y I qo (y) rather than with x C {y
I g)(Y), we simply do not need to apply powerset to the second component. []

8. Interpreted Functions and Predicates

In this section, we consider the use of arbitrary interpreted functions and predicates
in our query languages. In a practical language, we need to use predefined built-in
functions (like sum, average), and predicates (like even), or let a user use his/her
own. We call such functions and predicates interpreted, since their interpretations
(including the interpretation of their input and output domains) are fixed. This is in
contrast to the use of function symbols in Logic Programming, where the functions

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 775

are assigned a meaning in the Herbrand Universe, hence are not interpreted. 28
The inclusion of arbitrary function and predicate symbols in the languages is easy.
The calculus is a paradigm that allows the use of any function or predicate name.
In the algebra, operations like replace and select were defined explicitly so that any
unary function or predicate parameter of the appropriate type can be used. Thus,
we can add arbitrary functions and predicates to the collection of base functions,
and there is no need to change any of the other definitions. 29

We do have a problem, however, with domain independence and related notions,
since even defining the notion of domain independence in the presence of interpreted
functions is difficult. We consider one approach to this issue and, in particular,
show the equivalence of the enhanced algebra with a suitably restricted version of
the enhanced calculus (provided of course, that the same predicates and functions
are included in both languages).

Assume that a s e t ~fn of functions, and a set ~ p r of predicates are given.
Functions in ~ f n and predicates in Z3pr are typed. Furthermore, the domain names
used in those types are associated with fixed domains. These will serve in both the
algebra and the calculus. We assume that:

(*) for each function f in Z~fn , f - 1 is also in z~kfn.

Note that when a function is not 1-1, its inverse is set-valued; since we have
sets in the model, this is not a problem. Our assumption implies that for each x,
the set f - 1 (x) is finite. This is a reasonable assumption. For instance, consider
the difference function over the integers which does not satisfy this property (e.g.,
f - z (0) contains the pairs [1,1], . . . , [n,n] ...). We prohibit such functions, since
they may cause problems as in following query:

{x[3z3y(R(y) A y=z- -x)} .

We cannot expect to compute the answer to this query in finite time. Such a query
will not be considered domain independent under the definitions below. (We briefly
consider an extension which allows the difference function in certain contexts, as
follows.)

To extendthe calculus, we introduce terms of the form f (t l , . . . , tn), where f E z~fn,
and allow their use in formulas. We also extend the set of formulas by adding
atomic formulas of the form p (tl, • •., tn), for p E ~pr . In both cases, we assume
that the ti's have the correct types. Examples of c-queries are

28. Note that we use the predicates of equality and membership in our languages, and that these are inter-
preted, since they have fixed meanings.

29. Note, however, that aggregates may require the use of bags rather than sets for producing correct results.
The problem can be addressed either by including bag as a type constructor (see e.g., Libkin and Wong,
1993a, 1993b, 1994) or using, for example, Klug's approach (1982). We do not consider the issue further in

this article.

776

{x I 3y(0,) A x.A = y A Ax.B = c o = t (y.B))},
{x I S (x) A x.a _> 5 A even (x.B)}.

To extend the algebra, we allow any predicate in ~ p r to be used in a select operation.
We also allow using functions from ~ I n in replace-specifications. For instance, the
following are a-queries, expressing the same queries as the c-queries above:

replace ([A, count (B)]) (R),

se l ec t (B > 5 A even(B)) (S).

We need to reconsider the definitions of a database scheme and instance. In a
database scheme, some of the domain names are now attached to fixed domains
(e.g., we may use the name int in the scheme, and its interpretation is fixed to be
the integers). In addition, the sets ~p r , , ~ fn are included in the scheme, with their
fixed interpretations. A database instance is constrained in that the interpretations
for some of the domains are fixed as described in the scheme. It also "contains"
the interpreted functions and predicates. We denote such a database structure by
D B I = ([D1, . . . , Dk], R, I) , where k is the vector of relations, and I is the
interpretation of the fixed domains and of the additional functions and predicates.

Now consider domain independence. Given a query, it is not enough to consider
for the active domain the values that appear in the database or in the query; it
must be closed under applications of functions and their inverses. For example,
if the database contains 1, and the functions include + , then queries can ask
for each of the integers; hence, the domain should contain all integers. On the
other hand, having infinite sets included in the active domain seems to defeat our
intention in the definition of domain independence. To have a useful notion of
domain independence, we present now a restricted (semantic) notion of domain
independence. The intuition behind the following definition is that, in any given
algebraic expression, there is a bound on the number of times functions (and their
inverses) are applied.

Given a database DBI, and a set of constants C, let ATOM (R, C) be the set
of atomic values of any atomic type that appear in k and C and, for any value
x, let ATOM (x) be the set of atomic values that appear in x. The n-closure of
ATOM (R, C), denoted close n (R,C), is defined as follows:

• close ° (R,C) = ATOM (.R,C)

• close n+l (R,C) =

close n (R,C) U U {ATOM(I (f) (X l , . . . , x/)) I f E ~ f n ,
'V' i = 1, . . . , l, ATOM (xi) C close n (R, C)}
tO {ATOM (x) I 3 X l , . . . , x i -1 , Xl+l, • •., xl
ATOM (f(xl, • •., x i -1 , x, Xi+l, . . .)) E close n (R,C)}

Thus, if we have the natural numbers with succ and succ -1 , and we are initially
given the numbers 1 and 8, then two closure steps generate the set {0, 1, 2, 3, 6,
7 , 8 , 9 , 10}.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 777

We now want to define a query q to be n-depth domain independent if it
depends only on the values of the n-closure of ATOM (R,Cq), where Cq is the set of
constants used in the query and this set is finite. That implies that we should be able
to evaluate the query on any database where the interpretations of the interpreted
domains agree with their fixed interpretations on this closure, but may be quite
different outside it. Necessarily, the interpreted functions and predicates must be
given an interpretation on those new domains. All that we can require is that these
interpretations agree with the fixed interpretations on the given closure. Thus, to
make this notion of n-depth domain independence precise, we have to relax our
restriction on the interpretations of the functions and predicates in ~ y n U ~pr
and their domains. Formally, for n-depth independence, we are allowed to use
any domains that include close s (R,Cq), and such that the computation of the
n-closure in these domains gives the same results as in the original domains. The
last requirement ensures, in particular, that if we apply an inverse function to any
elements in close i-1 (R,Cq), we obtain only elements that are in close i (R,Cq), for
all i = 1 , . . . , n, even though the functions may have arbitrary behavior outside this
set. Assuming this relaxation, a query is n-depth domain independent if q (DBI) =
q (DBf) , for any DBI ~ that agrees with DBI on close n (R,Cq), as described above.
A query is bounded-depth domain independent if it is n-depth domain independent
for some n.

Theorem 8.1 Let Aim and Apt be given. The following are equivalent, for a query
q:

(a) q is expressible by
(b) q is expressible by

Proof." We first show how

an a-query,
a bounded-depth domain-independent c-query.

to associate a depth with each a-query. For a-queries
and replace specifications that contain no functions, the depth is 0. For a re-
place specification that is constructed using tuple construction, set construction, and
attribute selection, the depth is the maximum of the depths of the argument replace
specifications. The same holds when a function or operator is applied to replace
specifications, except in the case of applying a replace. Assume we have constructed
the replace specification f = p (g l) (g2), and let the depths of gl and g2 be nl and
n2, respectively; then the depth of f is nl-+- n2. Finally, if the depth o f g is n, a n d f
E Ayn, then the depth off(g) is n + 1. For queries, the depth of op (Q1, • .., Qm)
is the maximum of the depths of the Qi's, except when op is replace. For p (f) (E),
the depth is the sum of the depths of f and E.

It is easy to see that if the depth of an a-query E is n, then it is n-depth domain
independent. Further, we can use the construction of Section 6 to construct an
equivalent c-query, which will also be n-depth independent. The only extensions to
the constructions are in the treatment of replace specifications: in a select, 0 may be
any of the predicates in Z2kpr , not just one of the three built-in predicates E, = , C,
and we may apply a function from ,~Xfn to replace specifications, in addition to
being able to apply algebraic operations. For example, if we have the formula Cg

778

for the replace specification g, then the formula for f(g) is 3 Vl (/~g (U, Vl) A v =
f(vl)). The details are left to the reader.

In the opposite direction, assume we have an n-depth domain-independent
c-query. We translate it into an a-query following the construction of Section 6,
with the following extension. Having constructed a-queries for the sets of atomic
values of each atomic type that appear in the database or the query (the atomic
part of the active domain), we need to perform n closure steps before we construct
domains for non-atomic types. That is, given a-queries for close ° (R,Cq), we need to
generate a-queries for close n (R,Cq). Given an a-query, say E, representing a subset
S of domain of a function f, the a-query p (f) (E) represents the set {f(x) I x E
S } (i.e., a forward closure step). Similarly, since inverse functions are represented
as functions as well, we can perform a backward closure step. (This is where (*)
is used.) Cross, powerset, projection, set-coUapse and U can be used to create sets of
more complex types, or to decompose elements of sets into components, as needed
to allow us to apply the functions, and to collect the new atomic elements.

In the original construction, only the predicates E, = , C were used. Clearly,
there is no problem in using any of the predicates in ~pr as well. Finally, interpreted
functions may be used in the construction of terms. Incorporating this fact into the
proof creates no problem either. It is easy to see that, if the given query is n-depth
domain independent, this translation generates an equivalent a-query. []

We can also generalize the notions of range formulas and safety, by adding the
following clause:

(Func) x = f (s l , . . . , sk) (where the sl precedes x in the ordering).

An immediate consequence of this extension is the following.

Fact If a formula is safe, then it is bounded-depth domain independent.

Consider now the translation of the algebra to the safe calculus presented in
Section 6, augmented as described above. It is easy to see that the claim that all
variables in e l (u,v), except possibly u, are restricted remains valid. For the case
where an interpreted function is applied we use (Func) above. Thus, we have,

Theorem 8.2
(I) The extended safe calculus, with ~Xfn and ~pr , is equivalent to the extended

algebra, with ~ffn and ~pr.
(11) The extended strictly safe calculus, with ~yn and ~xpr, is equivalent to the

extended algebra, with ~ f n and ~pr and without the powerset. []

The restrictions that we impose are quite brutal. For instance, one could allow
functions such as integer difference in a limited manner. For instance, consider the
query:

{x I 3y, z(RO,,z) A x = y - z)}

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 779

o r

{x I 3y, z(R(y,z) A y = x - - z) } .

Although the difference has no inverse, one may argue that such constructions are
very "safe" and should be allowed. This clearly can be done (Beeri and Milo, 1992).

9. Recursive Queries

In this section, we show that the domain-independent calculus (hence, also the
algebra) permits the specification of queries that require a fixpoint in relational
calculus. In particular, we show that it has the same power as a language based on
recursive rules. Our presentation is brief.

The transitive closure of a binary relation cannot be expressed using relational
calculus (Aho and Ullman, 1979). We present an example that shows that this
operation corresponds to a safe calculus query in the world of complex values.

Example 9.1 Consider the relational schema R: {[A,B]}, where A and B have the
same type. The transitive closure of R can be computed in the following way:

• A first formula ~bl is used to obtain the set R1 of tuples [A,B] built using
values in R (the variable x is of type [A,B]) :

~Jl (xx) -~ 3 y,z(R(y) AR(z) A (xl.A =y.A V Xl.Z =y.B)
A (Xl.B =z .A V Xl.B = z.B)).

• A formula ~22 gives the set R2 of subsets of R1 (i.e., the powerset of R1).
~b2 (x) ~ x C {xl [~bl (x0} where x is of type {[A,B]}.

• Formula ~3 gives the set Ra of elements in R2 containing R:
~,3 (x) ~ ~,2 (x) AV z (~ (z) ~ ~ C x).

• Formula ff3 4 gives the set R4 of elements in R3 that are transitively closed:
~4(x) ~ ~3(x) AV ~v(u ~ x A v Cx A u.B=v.A ~ [~A, v.B]

x).
• Finally, the transitive closure of R is obtained by intersecting the elements

of R4:
q ~ {x'[Vx(~b4(x) ~ x ' Cx)}.

We could extend the calculus with a fixpoint operator as in the language fixpoint
(Chandra and Harel, 1980). However, the technique used in the previous example
can be generalized to demonstrate that this would result in no gain of expressivity;
that is, complex-value-fixpoint is no more expressive than (complex value) calculus.

In the same spirit of introducing recursion, we now present a simple language,
based on recursive rules. We handle negation using the concept of "layers" (e.g.,
Naqvi, 1986; Beeri et al., 1987; Abiteboul and Grumbach, 1988; Apt et al., 1988;
Van Gelder, 1988).

780

Given a database scheme, the relation names in it, R1, • . . , Rr~, are called base

relations. The language uses names of additional relations, called derived relations.
The language is based on the calculus. Thus, we define atomic formulas as before,
except that derived relation names may be used as well. However, it is important to
note that derived predicates also have a given signature. The language is typed. The
signature for a predicate specifies the element type so, in particular, all elements
have the same form. A literal is an atomic formula or a negated atomic formula.
A rule is an expression of the form

P (t) +--- L 1 , . . . , L n ,

where P is a derived predicate, and each L i is a literal. A rule is interpreted as
the formula

V x l . . . V xm (L1 A . . . A L n -+ P(t)) ,

where Xl, • •., Xm are all the variables appearing in it. A recursive query is a pair
(79, Q) where 79 is a finite set of rules, and Q is a derived relation.

Rules, programs and queries also need to be domain independent. For an
extended discussion see Van Gelder and Topor (1987). For our purposes, the
following should suffice. As in Section 7, let us consider an ordering on the
variables appearing in a rule. We say that a variable is restricted in the body
(relative to the ordering), if it follows rules (B 1) - (B4), (eL1) , and (CL4) of
Section 7. The body is safe if, for some ordering of its variables, all its variables
are restricted. A rule is safe if each variable that appears in the head also appears
in the body, and the body is safe. We will assume henceforth that rules are safe.

We assume familiarity with the semantics of programs without negation. Negation
poses difficulties: it is not always possible to assign a meaning to a program with
negation. This subject has received considerable attention in recent years. We
consider stratification (as suggested in Chandra and Harel, 1980; Naqvi, 1986; Apt
et al., 1988; Van Gelder, 1988).

A stratification of a program ~ is a partition ~1 , • • •, 7)n of the program (i.e.,
of the set of rules) such that the following hold:

1. All the rules defining a derived relation are contained in a single stratum.
The facts defining the base relations are all in ~1-

2. If the rule P(x) ~ . . . , Q (y), . . . is in P i , then the rules defining q are in
some 7Pj, for j < i.

3. If the rule P(x) +-- . . . ~ Q (y), . . . is in 7~i, then the rules defining q are
in 7Jj, for some j < i.

Each element of the partition is called a stratum.

A program is stratified, if there is a stratification for it. Note that a stratification
for a program induces a partition for the predicates appearing in it, in which a
predicate p is associated with the stratum where the rules defining it appear.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 781

The semantics for stratified programs is a simple extension of the semantics
of programs without negation: one first computes the fixpoint of the rules of the
first stratum, applied to the database, then the fixpoint of the rules of the second
stratum, applied to the result of the first stage, and so on. It is known that the
final result is independent of the specific layering chosen for the program (Apt,
1988). The semantics of stratified recursive queries is defined in the obvious way:
compute the extensions of all derived relations; the result is the extension of the
selected derived relation.

Example 9.2 The database value R is of type {[A,B:{[C,C']}]} , and the query

defines a derived relation T, which contains the tuples of R, with the B-component
replaced by its transitive closure. Let us assume that we have a ternary predicate
ins, where ins (z,x,y) is interpreted as "z is obtained by inserting x into y." We show
later how to express it in the language.

rl : S(x,y) ~ R(x,y)

r2: S (x,z) ~ S (x,y), u C y, v C y, u.B = v.A, ins(z, [u.A,v.B l,y),
A I

r3: s ix, z) (x,z), z

r4:

The first two rules compute in S pairs corresponding to pairs from R, such that
the second component of a pair contains the corresponding component from the
pair in R and, possibly, additional elements derived by transitivity. Obviously, for
each pair [x,y] of R, there is a pair [x,z] in S, such that z is the transitive closure
of y, but there are other tuples as well. To answer the query, we need to select for

each x the unique tuple (x,z) of S where z is maximal. 3° The third rule puts into ~/
tuples (x,z) such that z is not maximal for that x. The last rule then selects those
that are maximal, using negation.

We now show, for a given type T, the program that defines ins for sets of type
{T} (the variables are all of type { T }) :

super (z,x,y) +-- x E z, y C z
not-min-super (z,x,y) ~-- super(z,x,y), super (z~,x,y), z I C_ z
ins (z,x,y) ~ super (z,x,y), ~ not-min-super (z,x,y)

Note that the program is type specific only through its dependence on the types of
the variables. The same program computes ins for another type T', if we assume
that the variables are of that type. Note also that the above program is not safe. To
make it safe, one would have to use derived relations to range restrict the various
variables. []

30. We assume, for simplicity, that the first column of R is a key. It is easy to change the rules for the case
when this does not hold.

782

We note that, although we used C in the example as a built-in predicate, it
can be expressed using membership and stratified negation. Also, a union predicate
can be defined, by a program similar to that used for ins.

Our main result is the following:

Theorem 9.1 A query is expressible as a (safe) stratified recursive query, if and only
if it is expressible in the safe calculus.

Proof." (sketch) From recursive queries to safe calculus: First consider a positive pro-
gram (i.e., a program without negation). We assume given base relation schemes.
We also use variables whose type is the type of the cross product of all the relations,
both base and derived. Obviously, we can express in the calculus the requirement
that the value for such a variable is a cross product of its projections corresponding
to the individual relations. We can also restrict such a variable such that each
atomic component of its elements is an atomic value that appears in the database
or in the given program. (This corresponds to ~1 in Example 9.1.) Note that this
guarantees that the variable is restricted and, consequently, the safety of our query
is also guaranteed. Now, the body of a safe rule is a safe query, and the head of the
rule can be obtained by "projection." If we have several rules defining a predicate,
we can combine them using or. Thus, for a product variable v, we can express
the requirement that the components of v corresponding to the base relations are
equal to the corresponding database relations, and each component corresponding
to a derived relation satisfies the corresponding rules of the program. That is, we
can express the requirement that v contains the least fixpoint of the program. This
construction actually can be carried out for the relational calculus as well. The
difficulty is to force the value to be precisely the least fixpoint. Assume qo (v) is
the formula described so far. For the rest, we mimic the last steps of Example 9.1,
where we showed how to select the smallest set in a collection of sets.

For a general stratified program, we do a similar construction for each stratum.
That is, after all the strata up to and including 79i have been "applied," we treat
all the derived relations of those strata as base relations in the construction for the
next stratum. After we have a formula defining the values of all derived relations,
it is easy to select the values for the query.

From safe calculus to recursive queries: Given a c-query, we transform it as described
in Section 7, so that each subquery has an associated range restriction for its free
variables. (As assumed there, we eliminate first all universal quantifiers.) Now, we
construct the recursive program using induction on the structure of the query. Each
subquery is treated together with its associated range restriction, which guarantees
safety of the rules, and we use a (new) derived predicate for each subquery.
Conjunction, of course, poses no problem; disjunction is modeled by having one
rule for each disjunct. Negation leads one step up the stratification hierarchy, and
the existential quantifier is simulated by projection (i.e., if qo (xl , . • .) = 3 x ~ (x,
xz • • .), then we have a rule P~o (Xl, . • .) +- PC (x, Xl , . • .). []

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 783

We note that this claim is not true for a non-typed language. If we allow
relations to be heterogeneous, then we could write the following simple rule:

too-large ({x}) ~ too-large (x)

Adding an appropriate exit rule, we have a program that computes an infinite
relation, without using an external function. This program cannot be simulated in
the algebra or the calculus.

To conclude this section, we consider interpreted functions and predicates into
the rule-based language. A similar problem has been independently studied by
Chen (1988), where aggregate functions are introduced in a language resembling
that of Abiteboul and Grumbach (1988). The use of interpreted functions leads to
the following two problems:

• Interpreted functions may introduce new values in the database, after which
the finiteness of the results of the application of programs is not guaranteed
any more.

• Programs with interpreted functions, like programs with negation, may not
have a unique minimal model.

The second problem arises, for example, when aggregates are applied to sets;
only when the set is fully computed, it makes sense to apply the function. As for
negation, stratification provides a solution to the second problem. It turns out that it
can also provide a solution to the first problem. Indeed, an appropriate stratification
of programs with interpreted functions (and predicates) leads to a language that has
exactly the power of the algebra or the safe calculus. The stratification is defined
as above, with the additional following constraint:

if P(. .) ~-- Q 0 - " "('")" • • is in 79i, and f (an interpreted function) is
used in the rule, then the rules defining q are in some 79j, j < i.

The condition could be relaxed. For instance, in the rule S (x,f(x)) ~ R (x,f(x)), the
presence of R and S in the same stratum would not cause any problem, since the rule
uses R positively, and does not introduce new values. Intuitively, the stratification
should be restrictive enough to guarantee that, if a function is applied, the result
should be in a new stratum.

To complete the informal description of the language, we need to extend the
notion of safety as follows: if the body contains y = f (x) , and x is range restricted
and precedes y, then y also is considered to be range restricted.

Theorem 9.2 Let ~ I and ~ p be given. A query is expressible as a layered recursive
program, using functions and predicates from these sets, if and only if it is expressible
as a bounded depth safe c-query with the same functions and predicates.

As we have noted, the stratification condition can be relaxed. But it cannot be
dropped. For example, the rule R (f(x)) ~-- R (x) applies f an unbounded number

784

of times; hence, it cannot be expressed in the calculus. That is, although the rule
is a calculus formula, it is not safe, and there is no safe formula that expresses this
query.

10. Conclusions

In this article, we present an approach to the generalization of query language
paradigms to models that allow more structure than the relational model. We have
considered calculus-based, algebraic, and logic-programming-based paradigms. We
have generalized each of the paradigms to the complex value model, and have
considered the validity of the relationships known to hold between these paradigms
in the relational setting. We have found that the equivalence of the algebra with
the domain-independent calculus and a safe calculus holds, but the distinction
between the calculus/algebra and a language that allows recursion no longer holds.
Both these results depend on the inclusion of a powerset operation in the algebra,
or equivalently on the unrestricted use of the calculus. Therefore, we also have
considered the algebra without this operation, and presented a restricted version
of the calculus equivalent to this algebra. We believe that this is the fight algebra
for complex values; indeed the monadic algebra of Breazu-Tannen et al. (1992) is
essentially our algebra without the powerset, and they present arguments to support
this claim.

Our algebra is based on the following principles: The use of type-specific
operations given with type constructors, and of user-supplied functions on base
types, as the main ingredients of restructuring functions; the use of composition
as a major tool in the construction of both queries and restructuring functions;
the use of a small number of higher-order operations to generate set functions
from element functions; the use of the tuple constructor as a function constructor.
The concept of composition exists also in the relational model, in the form of
the closure requirement for query expressions. The more complex structure of
values, and particularly the possibility to recursively use the set constructor, require
the inclusion of higher-order operations. We believe that this is the approach that
should be taken to the design of generalized algebras. Our emphasis on composition
brings to mind category theory, where composition is a central concept. It turns
out that the semantic domain for the algebra is indeed a category, that replace is
a functor in it, and set-collapse and single (the construction of singleton sets) are
natural transformations and, furthermore, they satisfy the axioms of a monad. With
the empty set and union, we have a ringad. (For definitions and related work see,
e.g., Wadler, 1990; Breazu-Tannen et al., 1992; Trinder, 1991).

In addition to the general framework and specific results described above, it
is of interest to consider which of those languages, if any, is best for practical
use. In this context, it is important to note that we have not considered SQL
extensions in this article. Most implemented systems actually use languages based
on this paradigm (see e.g., Cluet et al., 1990). Comprehensions (considered in

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 785

Wadler, 1990; Trinder, 1991) can be viewed as a pure form of generalized SQL.
We conjecture that language paradigms based on comprehensions or similar ideas
are more suitable for user-interfaces, whereas the algebra may be more suitable as
an internal-representation language. However, these issues are outside the scope
of this article and deserve further study.

Acknowledgments

This research was supported by Grant 2545 from the National Council for Research
and Development of Israel; by a PRC-BDA grant from the Ministry of Research of
France; and by the Association Franco-Israelienne pour la Recherche Scientifique
et Technologique. Our main technical results have been included in an INRIA
Technical Report (Abiteboul and Beeri, 1988, extensively revised in 1992). The
major changes were an emphasis on the approach to extending existing languages
to new models, a cleaner and simpler algebra, and simpler and better structured
proofs of the major results. The current version is a minor improvement on the
1992 version.

References

Abiteboul, S. and Bidoit, N. Non first normal form relations: An algebra allowing
data restructuring JCSS, 1986.

Abiteboul, S. and Beeri, C. On the power of languages for the manipulation of
complex objects. INRIA TR 846, Rocquencourt, France, 1988.

Abiteboul, S. and Grumbach, S. A logical approach to the manipulation of complex
objects. Proceedings of the EDBT, Venice, Italy, 1988.

Abiteboul, S. and Hillebrand, G. Space usage in functional query languages. Pro-
ceedings of the International Conference on Database Theory, Prague, 1994.

Abiteboul, S. and Hull, R. Object restructuring in semantic database models. Pro-
ceedings of the ICDT, Rome, 1986.

Abiteboul, S. and Hull, R. IFO: A formal semantic database model. TODS,
12(4):525-565, 1988.

Abiteboul, S., Hull, R., and Vianu, V. Foundations of Databases, Reading, MA:
Addison-Wesley, 1994.

Abiteboul, S. and Kanellakis, EC. Object identity as a query language primitive.
Proceedings of the ACM Sigmod, Portland, OR, 1989.

Aho, A.V. and Ullman, J.D. Universality of data retrieval languages. Proceedings of
POPL, San Antonio, TX, 1979.

Apt, K., Blair, H., and Walker, A. Toward a theory of declarative knowledge. In:
Minker, J., ed. Foundations of Deductive Databases and Logic Programming. San
Francisco: Morgan Kaufmann, 1988.

Backus, J. Can programming be liberated from the von Neuman style? A functional
style of programming and its algebra of programs. 1977 Turing Award Lecture.
CACM 21:8, 1978.

786

Bancilhon, E, Cluet, S., and Delobel, C. Query languages for object-oriented data-
base systems: The 02 proposal. Proceedings of the Second lntemational Workshop
on Data Base Programming Languages, Roscoff, France, 1989.

Beeri, C. Bulk types and their query languages. Proceedings oftheNATOASISummer
School on OODB's, Turkey, 1993.

Beeri, C. and Milo, T. Functional and predicative database programming. Proceedings
of the Eleventh PODS, San Diego, CA, 1992.

Beeri, C., Naqvi, S., Ramakrishnan, R., Shmueli, O., and Tsur, S. Sets and negation
in a logic database language. Proceedings of the Sixth PODS, San Diego, CA,
1987.

Beeri, C., Naqvi, S., Shmueli, O., and Tsur, S. ??????? and negation in a logic
database language. Journal of Logic Programming, 1987?

Breazu-Tannen, V., Buneman, P., and Wong, L. Naturally embedded query languages.
To appear, ICDT, 1992.

Buneman, E, Libkin, L., Suciu, D., Tannen, V., and Wong, L. Comprehensions
syntax. SigmodRecord, 23(1):87-96, March 1994.

Chen, L. Extension of datalog with aggregation functions. Proceedings of the IV
journees bases de Donnees Avancees, Rocquencourt, France, 1988.

Chandra, A.K. and Harel, D. Computable queries for relational database systems.
JCSS, 21(2):156-178, 1980.

Cluet, S., Delobel, C., Lecluse, C., and Richard, P. RELOOP, an algebra based
query language for an object-oriented database system. Data and Knowledge
Engineering~ 5:333-352, 1990.

Codd, E.E A relational model for large shared data banks. CACM, 13(6), 1970.
Dalhaus E. and J. Makowski. Computable directory queries. Manuscript, the Tech-

nion, Haife, August, 1985.
DiPaola, R.A. The recursive unsolvability of the decision problem for a class of

definite formulas. Journal of the Association of Computing Machinery, 16(2):324-
327, 1969.

Fagin, R. Horn clauses and database dependencies. JACM, 29(4):952-985, 1982.
Fischer, E and Thomas, S. Operators for non-first-normal-form relations. Proceed-

ings of the Seventh COMPSAC, Chicago, 1983.
Grey, P. Logic Algebra and Databases, Ellis Norwood Series on Computers and their

Applications, 1984.
Grumbach, S. and Vianu, V. Tractable query languages for complex object databases,

Proceedings of the ACM PODS, Denver, CO, 1991.
Gyssens, M. and Van Gucht, D. The powerset algebra as a result of adding pro-

gramming constructs to the nested relational algebra. Proceedings of theACM
SIGMOD, Chicago, IL, 1988.

Hammer, M. and McLeod, D. Data description with SDM: A semantic database
model. TODS, 6(3):351-386, 1981.

Hillebrand, G., Kanellakis, E, and Mairson, H. Database query languages embedded
in the typed lambda calculus. Proceedings of the LICS, Montreal, Canada, 1993.

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 787

Hillebrand, G., Kanellakis, E, and Mairson, H. Database query languages embedded
in the typed lambda calculus. Proceedings of the LICS, Montreal, Canada, 1993.

Hull, R. A survey of theoretical research on typed complex database objects. Un-
published manuscript, USC, 1986.

Hull, R. and Su, J. On the expressive power of database queries with intermediate
types. JCSS, 43:219-267, 1991.

Hull, R. and Yap, C. The format model: A theory of database organization. JACM,
31:3, 1984.

Jacobs, B. On database logic. JACM, 29:2, 1982.
Jaeschke, B. and Schek, H.-J. Remarks on the algebra of non first normal form

relations. Proceedings of the First PODS, Los Angeles, 1982.
Klug, A. Equivalence of relational algebra and calculus query languages having

aggregate functions. JACM, 29:3, 1982.
Kobayashi, I. An overview of database management technology. TR CS-4-1, Sanno

College, Kanagawa 259-11, Japan, 1980.
Korth, H.E, Roth, M.A., and Silberschatz, A. Extended algebra and calculus for

notNF relational databases. TODS, 13(4):389-417, 1988.
Kuper, G.M. Logic programming with sets. Proceedings of the Sixth PODS, San

Diego, CA, 1987.
Kuper, G.M. On the expressive power of logic programming languages with sets.

Proceedings of the ACM PODS, Austin, TX, 1988.
Kuper, G.M. and Vardi, M.Y. A new approach to database logic. Proceedings of the

Third PODS, Waterloo, Ontario, Canada, 1984.
Kuper, G. and Vardi, M.Y. On the complexity of queries in the logical data model.

Theoretical Computer Science, 116:33-58, 1993.
Libkin, L. and Wong, L. Some properties of query languages for bags. Proceedings

of the DBPL, New York, NY, 1993a.
Libkin, L. and Wong, L. Aggregate functions, conservative extension, and linear

orders. Proceedings of the ACM PODS, Washington, DC, 1993b.
Libkin, L. and Wong, L. New techniques for studying set languages, bags languages,

and aggregate functions. Proceedings of the ACM PODS, Minneapolis, MN, 1994.
Macleod, I.A. A database management system for document retrieval applications.

Information Systems, 6:(2):131-137, 1981.
Makinouchi, A. A consideration on normal form of not-necessarily normalized

relations in the relational model. Proceedings of the Third VLDB, , 1977.
Naqvi, S.A. A logic for negation in database systems. Proceedings of the Foundations

of Deductive Databases and Logic Programming, 1986.
Ozsoyoglu, G. and Ozsoyoglu, Z. An extension of relational algebra for summary ta-

bles. Proceedings of the Second International (LBL) Conference on Statistical Data-
base Management, 1983.

Ozsoyoglu, G, Ozsoyoglu, Z., and Matos, V. Extending relational algebra and
relational calculus with set-valued attributes and aggregate functions. TODS,
12(4):566-592, 1987.

788

Paredaens, J. and Van Gucht, D. Possibilities and limitations of using fiat operators
in nested algebra expressions. Proceedings of the ACM PODS, Austin, TX, 1988.

Peyton-Jones, S.L. The Implementation of Functional Programming Languages. En-
glewood Cliffs, NJ: Prentice Hall, 1987.

Schek H.-J. and Scholl, M. An algebra for the relational model with relation-valued
attributes. Information Systems, 11(2):137-147, 1986.

Suciu, D. and Paredaens, J. Any algorithm in the complex algebra with power-
set needs exponential space to compute transitive closure. Proceedings of the
Thirteenth PODS, Minneapolis, MN, 1994.

Trinder, EW. Comprehensions: A query notation for DBPLs. Proceedings of the
ThirdDBPL Workshop, Napflion, Greece, 1991.

Ullman, J.D. Principles of Database Systems. Potomac, MD: Computer Science Press,
2nd ed., 1982.

Van Gelder, A. Negation as failure using tight derivations for general logic programs.
In: Minker, J., ed. Foundations of Deductive Databases and Logic Programming.
San Francisco: Morgan Kaufmann, 1988.

Van Gelder, A. and R. Topor. Safety and correct translation of relational calculus
queries. Proceedings of the Sixth PODS, 1987.

Vardi, M.Y. The decision problem for database dependencies, lnformationProcessing
Letter, 12(5):251-254, 1981.

Wadler, P. Comprehending monads. Proceedings of the Conference on Lisp and Func-
tionaI Programming, 1990.

Wong, L. Normal forms and conservative properties for query languages over col-
lection types. Proceedings of the Twelfth PODS, Washington, DC, 1993.

VLDB Journal 4 (3) Abitebouh Languages for Manipulation of Complex Values 789

Appendix: From Calculus to Algebra

We now show that, for each safe c-query, there is an equivalent a-query. We follow
the translation of the calculus to the algebra presented in the previous section, with
one major difference. Recall that the translation there is based on a-queries for
the domains of the variables, which are constructed from a-queries for the active
domains of the database. Since variables are now range restricted, we use a-queries
that express these range restrictions as the domain expressions for variables. Thus,
whereas the a-query constructed in the previous section for a given c-query q is
equivalent to it (in the general case) only on DBq, the a-query we construct below
will be equivalent to q on all databases.

This raises a technical problem. In general, range formulas are associated with
a query as a whole, or with only some of its subqueries, rather than with each of
its subqueries. To prove our claims by induction on the structure of formulas, we
need to associate, with each subformula, range restrictions for the variables that
are free in it. Therefore, we show that every safe formula can be converted to an
equivalent safe formula that satisfies this requirement, and we prove the claim for
such formulas.

The transformation works as follows: First, we push the existential quantifiers
to the outside as much as possible. Recall that 3 commutes with A, V (assuming
variables do occur bound in a subformula, and also free outside it), but not with 9 .
Thus, after the transformation, the formula o~ and each of its negated subformulas
start with a (possibly empty) string of existential quantifiers, and there are no other
quantifiers. This transformation leaves all variables restricted, so the formula is still
safe. For a variable x that appears in the formula, we have the following cases: if
x appears only in a negated subformula, it cannot be free there, since it would not
be restricted otherwise in o~. Hence, it is bound there by a quantifier 3 x. If x is
free there, then it must also appear outside that subformula, so either it is bound
in some enclosing negated subformula, or it is bound in the prefix of ce, or it is
free in o~.

Think of o~ as a tree, where the leaves are atomic formulas, and the internal
nodes are labeled by one of A, V, 9 , 3 x, B5. 31 Each internal node corresponds
to a subformula of o~. The nodes just below the existential quantifier prefixes of
ol and its negated subformulas are distinguished in the following sense: for each x
there is precisely one such node, denoted nz, such that all occurrences of x (except
for the one in 3 x, if x is bound) occur below that node, and either the associated
prefix contains 3 x, or x is free in o~ and the node is just below the prefix of ol. Our
transformation will associate a range formula for x with nz, and each of the nodes
below it corresponding to subformulas that contain x. We work on one variable at

31. The last case corresponds to a range formula of the form X C {y] ~0 }. This is not an atomic formula;
it has ~ as a subformula.

790

a time, starting from the one that is last in the order. We first describe the process
for the case that x is this last variable, then describe briefly the changes needed for
the other variables.

Going from nz down, we mark each internal node by x i if x is free in the
corresponding subformula. Clearly, nx is marked with x i . Now, since x is restricted
in ct, there are atomic subformulas that are range restrictions for x, according to
(B1) -- (B5). But some of those, namely those that appear in the scope of negation,
do not contribute to making x restricted in ct. For example, in S(x) A ~ R(x), the
subformula R (x) by itself is a range formula for x, but it is not the subformula that
restricts x in the whole formula. Going from nx down, we replace in certain nodes
the mark xf by xr, to signify that x is restricted in the subformula corresponding to
that node (when it is considered by itself). Thus, when finished, we have unmarked
nodes (x does not appear at all), nodes marked by x f (x is flee, but not restricted),
and nodes marked xr (x is free and has a range restriction).

This marking process is done as follows: The node nz is marked by xr, since
x must be restricted in the corresponding subformula. Given a marked node, we
compute the mark(s) for its child(ren) as follows: First, if a node has the mark x f ,
the marks of its descendants are not changed. Thus, we need only describe the
"inheritance" rules for marks of the form xr. For a node labeled V, x occurs and
is restricted in both its two children. Thus, each child inherits the mark xr. For a
node labeled A, we have a similar case, except that x may be free in a child and
not restricted in the corresponding subformula. (Recall that if x is restricted in ~,
it is also restricted in 99/k ~ , regardless of the structure of ~b.) Each child that has
x free and restricted in the corresponding subformula inherits xr; there is at least
one such child. (In the example above, S (x) would be marked by xr, but --1 R (x)
would not; similarly in S (x) /k x < 3, only S (x) would be marked by xr.) A child
that has x free but not restricted remains marked by xy. Finally, if a node is labeled
-~, then in the corresponding subformula x cannot be restricted. Such a node may
have the mark xy, or no mark and, in either case, this is not changed. Finally, since
the marking process stops at negations, and quantifiers occur only below negations,
we do not need to consider quantifiers.

When the marking process terminates, there must be range formulas for x
that are marked by x~ (otherwise the given formula is not safe). These are the
"useful" range formulas. In the next stage, we push these range formulas upward,
and also sideways into subformulas that are marked by xf . We stop when we
reach nx. Before we begin, conjunctions and disjunctions of range formulas are
merged, in the sense that from now on such a conjunction/disjunction is considered
as an indivisible subformula. As we proceed, we continue to merge range formulas
whenever possible.

Denote a range formula for x by r (x). We use the following steps:

* A subformula (r(x) /k~) /k~b (where ~ does not contain a range formula
forx) is transformed to r(x) A (qJ A ~bl), where cp ~ is r(x) Aqo, if ~ contains
x free, and is just cp otherwise; ~b' is r(x) A ~ if ~b contains x (is marked

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 791

xf), and is just f t otherwise. If the subformula has the form (r(x) A ~) A
(rl(x) Aft), then we merge range formulas: let rn(x) = r(x) A rl(x), then
we obtain r"(x) A (r'(x) Aqo) A r'(x) Aft2). (When the second conjunct has
only t(x) , a simpler form is obtained.)

• A subformula (r(x) ALp) V (rt(x) Aft), is transformed to (r(x) V rl(x)) A
(r(x) /k~) V (rl(x) Aft). Note that, i f x appears in a disjunction, and is
restricted there, then it must be restricted in both disjuncts.

Note that we do not treat negation. As already stated, there are no "useful"
range restrictions for a variable x inside a negated subformula, unless it is bound
there, in which case nz is below the quantifier prefix of that subformula. For
essentially the same reason, we never have to go through an existential/quantifier.
Indeed, for each x, nz is below the quantifier prefix of o~, so we never have to go
through that prefix. Other quantifier prefixes always occur just below negations;
hence, for such a prefix, either nx is below it, or else it occurs under nz in a negated
formula and has no range restriction for x. Finally, we note that, for the current
case, x is the last variable in the ordering, x is not used in a range restriction for
another variable of the form (B5); hence, we do not need to go through such a
formula either.

To finish our transformation, we need to describe how a range restriction r (x)
that is associated with a subformula ft that is marked xf, is pushed down to its
subformulas. We have the following cases:

• A formula r(x) A (ftl0ft2) is transformed to r(x) A (r(x) A~i) 0 (r(x)
Aft2) where 0 is A or V. Clearly, if, say, f t l does not contain x, then r is
pushed in only to ft2.

• A formula r (x) A = f t is transformed to r (x) A= (r (x) Aft).

• A formula r(x) A3 y (~ (y)) is transformed to r(x) A3 y(r(x) Aqo (y)).

Here again, we do not need to push down through a formula of the form (B5), since
x is not used there. We may need to push down through an existential quantifier.

The result of the transformation can be viewed as follows: Each subtree of the
formula that contains only range formulas for x is now considered indivisible; its
inner structure is of no further concern to us. Every other subformula below nx,
whether atomic or not, is now "anded" with a range formula for x (unless it does
not contain x). It is convenient to carry this structure to the following stages. For
example, a subformula r (x) A (So V ft) will be considered as a disjunction. But
note that, when we perform the transformation for y, it may appear in r (x), since
the range restriction for x uses it, or in ~ or ft. We consider y as appearing in the
subformula if any of these three cases occurs. Further, and most important, when
we associate a range f o r m u l a / (y) for y with the subformula, we transform it to
r(x) A / (y) A (~ V f t) . That is, we collect all range formulas associated with a
node of the tree. This is more economical than pushing the range formulas for y
separately into each of them.

792

When the transformation above is applied to the next variables, there are some
differences. First, when we mark nodes by Yr, going down from ny, we may have
to go into a subformula ~ appearing in a range restriction of the form x C {z
[~ (z)}. Another new case is that we may have a restriction z C_ {y I qo (y) }.
Since y precedes z in the ordering, when we treat y, we have already performed the
transformation for z (possibly creating many occurrences of this range formula).
Anyway, we start the transformation for y in ~, since ny occurs there, and we do
not need to consider (for y) anything outside this subformula.

Second, when going up, we may have to push a range formula out of a subformula
of the form (B5). For example, in 3 z . . . A x C {y [R (z) A y C z }, we can push

(z) outside, to obtain 3 z . . . A R (z) A x C_ {y [R (z) A y C z }. Finally, when
pushing down, we may have to push through a subformula of the form (B5). We
use the equivalence of r (x) A z C {y [~ } and r (x) A z C {y [r (x) Acp}.

Call a conjunction A ri (xi) of range formulas closed if, for each i, if ri uses ~a
variable y, then for some j, y = xj. Since a range formula for a variable can only use
variables that precede it, a closed conjunction can be ordered such that each conjunct
uses only variables from preceding conjuncts. This implies, in particular, that at
least the first conjunct has one of the forms (B1) -- (B4) (or Boolean combinations
thereof), and it uses no variables.

When the transformation terminates, we have a formula where each subformula
is either a closed conjunction of range formulas, or the conjunction of some formula

and a closed conjunction that contains range formulas for the free variables of
~. We now prove that it can be translated to an a-query, using induction on the
number of variables in it.

First, we claim that given a closed conjunction of range formulas A ri (xi), i =
1 , . . . n, we construct an equivalent a-query. This query produces a set of n-tuples.
Recall that it is not a cross product. For each value of xl, there is a set of values
of x2; for each pair of values for xl, x~ there is a set of values for x3, and so on.
That such an a-query exists is proved by induction on the number of variables in
the conjunction. (Thus, the proof uses double induction on the number of variables
in the formula, and for a given number, on the number of variables in the range
formulas.) The basis is the construction for the first variable, and we use the fact
that its range restriction uses no variables. It has one of the forms (B1) -- (B4), or
combinations thereof that use only A and V. Since the combinations can be taken
care of by fq and U, respectively, we consider only the basic forms (and similarly
for the other variables). For (B1), the a-query is R. For the other three cases, since
t is a constant, the a-queries are t, {t }, and powerset (t), respectively. Note that the
last case, since we are dealing with the first variable, is not a real use of powerset;
since t is a constant set, its powerset is just another constant set. But, when used
for variables that do depend on previous variables, it is a real use of powerset.

If the formula has just one variable, then this part is finished, and we skip
to the second part of the proof. If there are more variables in the given closed
conjunction, let the next one be xi. We have three cases. For a restriction of the

VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 793

form (B1), the domain of xi is independent of those of the other variables, its
construction is as above, and we take its cross product with the a-query for the
preceding variables. For restrictions of the form (B 2) - (B4), we use the same
proof as in Claim 6.6, where it is proved that if a term t contains variables x l , • •.,
xl, then one can construct an a-query that produces an (l --b 1)-relation, where the
first l columns contain values for the l variables, and the last column contains the
corresponding value for t. (In our case, l = i -- 1.) All we need to do is to apply
some operator to the last column, in a replace operation, according to the form of
the range restriction for xi. For (B2) we use set-collapse, for (B3) the a-query we
have is the one we need and, for (B4), we use powerset (and this is a real use of
this operator).

The last case to consider is (B5), namely xi C {y [qo (y)}. However, qo does
not contain xi, so it has a smaller number of variables than the formula we are
considering. By induction hypothesis, there is an a-query for qo. We have to keep
in mind that ~ may contain other free variables except y. Let us first illustrate the
construction by an example. Assume the query is 3 v (R (v) A x C {y [y C v }).

After the transformation, the range formula for x will have the form x C {y [R (v)
A y C v }). The formula g) contains the free variables v,y so that the type of its
result, which is also the type of the result of the corresponding a-query, is a set of
pairs, of (v,y)-values. We need to transform it to have a set of y-values for each
possible v-value, since each x-value must be included in one of these y-sets. Thus,
we need to simulate a nest operator. We have seen how to do that in Section 5.
Thus, we can obtain an a-query that will return a set of pairs of the form {[v, {y
[~ (v,y)}]}. Since x is supposed to be a subset of one of the sets in the second
column, we apply powerset to this column (i.e., using powerset inside a replace).
Note that the domain expression for x also has a position for the parameter v. If
we project out the first column, we lose the connection of each set in the second
column to a v-value. To translate the full query, we have R for the R (v) part, we
join it with the a-query we obtained for the range formula for x (and the variable v
that it depends upon) on the common v-column and, finally, we perform projection
for the existential quantifier.

In the general case, if the free variables in 79, in addition toy are Vl, • •., vj, then
the a-query produces a set of (j -t- 1)-tuples, and we perform nesting on the last one,
then apply powerset to it. These free variables must, however, appear somewhere
else in our formula, and by the effect of the transformation, the subformula we
are dealing with has the form A rj (v j) /k x C {y I qo }, where each of the free
variables of g) except y appears among the vj's. Therefore, we join the result of
this range formula for xi with the a-queries for the domain of these variables (using
appropriate equalities).

Given these a-queries, for the closed conjunctions of range formulas that appear
in the given formula, we proceed to construct the a-query for the given formula
using induction on its structure. For A ri (xi) Aqo, where cp is atomic, we use the
same construction as in the preceding section, except that we use the a-query of

794

the closed conjunction as the domain expression. For A, 9 , 3, we use the same
constructions as there, namely join, complement, and projection. Note that we treat
r(x) A (qo A ~b) as a single construction, as we do V, 9 , 3. Thus, when we have a
negated subformula, since there is a closed conjunction of range formulas attached
to it that contains all the variables that are free in it, we can use complement. Finally,
note that we now also have V, which was not treated in the previous section. It is
translated to union. (Each free variable that appears in one disjunct also appears
in the other, because of safety.)

