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Abstract. Various models and languages for describing and manipulating hierar- 
chically structured data have been proposed. Algebraic, calculus-based, and logic- 
programming oriented languages have all been considered. This article presents 
a general model for complex values (i.e., values with hierarchical structures), and 
languages for it based on the three paradigms. The algebraic language generalizes 
those presented in the literature; it is shown to be related to the functional style of 
programming advocated by Backus (1978). The notion of domain independence 
(from relational databases) is defined, and syntactic restrictions (referred to as 
safety conditions) on calculus queries are formulated to guarantee domain inde- 
pendence. The main results are: The domain-independent calculus, the safe cal- 
culus, the algebra, and the logic-programming oriented language have equivalent 
expressive power. In particular, recursive queries, such as the transitive closure, 
can be expressed in each of the languages. For this result, the algebra needs the 
powerset operation. A more restricted version of safety is presented, such that 
the restricted safe calculus is equivalent to the algebra without the powerset. The 
results are extended to the case where arbitrary functions and predicates are used 
in the languages. 

Key Words. Database, query language, complex value, complex object, database 
model. 

1. Introduction 

The  first normal  fo rm restriction forces the componen t s  of  tuples in relat ional  
databases  to be  a tomic (Codd, 1970). It  is widely recognized that  this restr ict ion 
imposes  unacceptab le  constraints on the use of  da tabase  technology in a variety of  
appl icat ion domains  such as engineering,  compu te r  aided design, or  office systems 
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(Makinouchi, 1977; Kobayashi, 1980; Macleod, 1981). Many models that incorporate 
more semantics into databases have been introduced and studied (Abiteboul et 
al., 1994; Hull, 1986). In the mid-1980's, a variety of models generalized the 
relational model by allowing hierarchically structured data; these are the nested 
relation and complex value models (Schek and Scholl, 1986; Korth et al., 1988; 
Abiteboul and Bidoit, 1986; Abiteboul and Beeri, 1988). 1 Towards the end of the 
decade, the emphasis shifted to semantic and, particularly, to object-oriented models 
that incorporate some of the features of the complex value models. (An extension of 
our model with object-oriented features can be found in Abiteboul and Kanellakis, 
1989.) 

A variety of languages were proposed for these models, encompassing all 
known paradigms of query languages: algebraic, calculus-based, logic-programming 
oriented, and SOL-extensions. The variety of features and operations found in those 
languages is quite confusing. It seems that we still do not have a commonly agreed 
upon approach to the design of query languages, or even to the generalization of 
known paradigms to new models. One of our goals in this article is to improve our 
understanding of this issue. 

1.1 Overview of the Results 

We present and compare query languages for the model of complex values. Complex 
values are obtained from atomic values using set and tuple constructors. No restric- 
tions are placed on the order of application of the constructors, nor on the depth 
of the constructed values (except that a database scheme fixes the depth of values 
in the corresponding instances). This model lacks features such as object identity 
and behavior modeling. Nevertheless we believe that, since complex structures are 
an important component of object-oriented and semantic models, languages that 
allow one to access such structures are important and worthy of study. We consider 
a calculus-based language (cf., Jacobs, 1982; Hull, 1986; Korth, 1988), an algebra, 
and a logic-programming language (cf., Kuper and Vardi, 1984; Beeri et al., 1987; 
Kuper, 1987; Abiteboul and Grumbach, 1988). 

Our main results concerning these languages are: 

• The classical equivalence between the domain-independent calculus and the 
algebra is valid in our model as well. 

• Domain independence is a semantic, undecidable, property. Therefore, we 
consider syntactic restrictions that guarantee domain independence. Syn- 
tactically restricted formulas are called safe in this article. Our next result 
is that the algebra and the safe calculus are equivalent. This implies, in 

1. In the original report (Abiteboul and Beeri, 1988), we used the term "complex object" instead of complex 
value. Since then, this term has been associated more and more with the object-oriented paradigm, so we 
decided not to use it. Note that, in particular, our complex values have no identity. 
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particular, that this syntactic restriction "captures" the semantic notion of 
domain independence. 

To make the algebra equivalent to the calculus, we had to include in it 
a powerset operation that generates all subsets of a given set. This is an 
expensive operation, as its output size is exponential in the size of its input. 
It allows one to express queries that cannot be computed in PTIME ill the 
size of the database. It is, therefore, interesting to characterize the power of 
the algebra without the powerset operation. We present a restricted notion 
of safety, and we prove that the calculus, thus restricted, corresponds to the 
algebra without powerset, thereby characterizing the power of many algebras 
found in the literature. 

It is well-known that even simple recursive queries (e.g., transitive closure) 
cannot be expressed using relational calculus (Aho and Ullman, 1979). This 
does not hold for our languages: the algebra, the safe (or domain-independent) 
calculus, and a language for complex values based on recursive rules are 
equivalent. This is similar to the use of the powerset in the algebra or the 
unrestricted use of the calculus. Expressing recursive queries using powerset 
leads to resource-consuming computations, which is another indication that 
the powerset should not be included. 

In addition to the technical results described above, we have also tried to address 
the issue of generalizing linguistic paradigms to new models. We believe that our 
approach to this issue is also a contribution (although it is not a theorem), and we 
describe it briefly. 

If one is interested in generalizing the relational model to allow more structure 
to be represented, then there are several directions to follow: First, one may allow 
arbitrary atomic domains, with arbitrary collections of functions and predicates. 
That is, database users are allowed to define their own types, and use them in the 
database. (Additionally, one can add features such as object identity and behavior, 
but these are not considered here.) Second, one may generalize the notion of a 
tuple, by allowing type constructors to be used in the construction of tuple elements. 
These may include tuple, set, list, and array; additionally, the orthogonality principle 
implies that one should be able to use these constructors in any order. An important 
advantage of this approach is that at least some of the structure can be defined 
in terms of constructors that are part of the data model; hence, storage structures 
and access paths for them, and optimization strategies for queries, can be built into 
the database system, enabling efficient organization and optimization of accesses. 
Nevertheless, since not all users' needs can be anticipated, or captured by a given 
set of constructors, it is important to consider both directions. 

The bulk of this article is concerned with the second approach. The basic idea 
is to view the classical language paradigms as linguistic frameworks that can accept 
arbitrary type systems as parameters. The complex value model generalizes the 
relational model by allowing set and tuple constructors to be recursively applied. A 
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type constructor is associated with operations and predicates specific to it. These 
typically include constructors and selectors. For example, for tuples (or records) 
one has tuple construction as a constructor, and selection by attributes as selectors. 
For sets, the membership predicate plays the role of a selector. Often, additional 
useful operations and predicates are included. Our approach is to consider such a 
collection of operations and predicates to be given for each type constructor. Each 
of the classical languages is then extended by adding these operations and predicates. 
This approach emphasizes orthogonality, rather than notions like minimality of a 
set of operations. Although our model is based on the set and tuple constructors, 
the approach applies to other constructors as well. Hence, the model and the 
languages could easily be generalized to include such constructors. Furthermore, 
the languages are designed so that no assumption is made on the underlying atomic 
type, and functions and predicates of these types can be freely used. Thus, the 
first direction above is also taken care of. The main results of the article apply 
in this general setting (with some restrictions, see Section 8). This generalizes, for 
example, the results of Klug (1982) and Ozsoyoglu and Ozsoyloglu (1983). 

Our approach works smoothly for the calculus-based and logic-programming 
paradigms. For the algebra, more effort is needed. A complex value language 
has to include operations to allow one to describe quite complicated restructuring 
of complex values, and also to manipulate collections of such elements, combine 
them in various ways, or apply restructuring functions to possibly deeply nested 
components. It turns out that the classical relational algebra is specifically tailored 
for the relational model, and cannot be used without change for the more general 
model. Thus, although we have some of its operations without change, some (in 
particular those that deal with restructuring) had to be generalized, and a couple 
of operations were added. 2 Our generalization emphasizes the view of the algebra 
as a functional language, in which higher-order operations generalize some of the 
classical operations. Our generalized algebra fits the paradigm above, namely, it 
can be viewed as a framework that can accept various type systems. 

Another issue that had to be considered has to do with the dual nature of the 
set constructor in our model. On one hand, sets are used to organize the database; 
we traditionally view a database as a vector of named sets of values. The classical 
algebra operations are tailored for the manipulation of such collections. But, the 
set constructor can also be used in the construction of elements, so there is a need 
for set operations for the manipulation of elements that contain set components. 
Our approach is to allow the use of the algebraic operations on any sets. Thus, the 
algebra is a recursive language in that algebraic operations can be nested. Nesting 
of operations in queries allows one to deal in a straightforward manner with the 
nesting of database values. 

2. O n e  of  these,  the powerset, was added  for a different  reason,  as expla ined  above.  
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1.2 Comparison with Previous and Related Work 

Our model generalizes the non-first-normal-form relational models (Makinouchi, 
1977; Jaeschke and Schek, 1982; Fischer and Thomas, 1983; Schek and Scholl, 1986; 
Abiteboul and Bidoit, 1986; Korth et al., 1988). The original proposal to generalize 
the relational model to allow entries in relations to be sets is often attributed to 
Makinouchi (1977). The data structure in the "nested relation model" (Jaeschke 
and Schek, 1982; Fischer and Thomas, 1983) is slightly more restrictive than the 
one we use here, although the difference is mostly cosmetic. On the other hand, 
the data structure in the V-relation model (Abiteboul and Bidoit, 1986) or in the 
Partition Normal Form nested relation model (Korth et al., 1988) is much more 
restrictive. (This is illustrated by a simple cardinality argument given in Section 2.) 

The values we deal with can also be seen as values resulting in semantic 
database modeling (Hammer and McLeod, 1981; Hull and Yap, 1984; Abiteboul 
and Hull, 1988) from the use of aggregation (tuple constructors) and classification 
(set constructors), only sets of homogeneous values are considered. In that respect, 
the data structure that we study is strictly weaker than those considered in Hull and 
Yap (1984) and Abiteboul and Hull (1986, 1988), but we believe that our results 
can be extended easily if heterogeneous sets are allowed. The expressive power of 
languages for a model that allows heterogeneous sets was considered in Hull and 
Su (1991). 

Our types can be described by trees. Unlike those in Kuper and Vardi (1984), 
cycles are not allowed in type definitions; equivalently, we disallow recursive type 
definitions so that one cannot, for example, define lists in terms of pair and variant 
constructions. However, note that, even in a model with objects and object identity 
(i.e., models where cycles are allowed) a query result is defined by an expression 
that is applied to each object in a set, and contains conditions that must be satisfied 
by the object and other objects and values that are reachable from it by attribute 
applications. The objects and values reachable from an object form a (virtual) tree. 
Thus, our languages can be applied to such models as well. 

Equivalence results of algebraic and calculus-based languages have been reported 
(Kuper and Vardi, 1984; Ozsoyoglu et al., 1987; Ozsoyoglu and Ozsoyoglu, 1983). 
The equivalence of relational algebra and calculus with aggregates was considered 
by Klug (1982), and extended by Ozsoyoglu and Ozsoyoglu (1983) to relations with 
set-valued attributes. A comparison was proposed by Korth et al. (1988) for a 
non-first-normal-form relational model. However, they chose to restrict their work 
to the case where the nest and unnest operators commute, and their equivalence 
proof uses unnest to reduce the problem to the case of flat relations, and nest to 
restore the original relations. They do not introduce any algebraic operators that 
can access set-valued components of tuples. Since nest and unnest in general do 
not commute, there is a need for such operations in the algebra, and a need for a 
direct proof. An equivalence result for a different and, in a sense, more general 
model, in which objects have identities and cycles are allowed, was given in Kuper 
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and Vardi (1984). Our characterizations of syntactic safety, and the comparison to 
recursive languages are new. The equivalence results obtained in the presence of 
interpreted functions and predicates are also new. 

A model slightly less general than ours was presented in Dalhaus and Makowski 
(1985). They allowed nested structures in which internal nodes are sets, and the 
leaves are relations. They extended the results of Chandra and Harel (1980) 
concerning completeness of query languages to this model. Their techniques can 
be extended to our model; however, completeness of languages in the sense of 
Chandra and Harel (1980) is not treated here. 

Our main technical results were included in the previous, unpublished, version 
of this article (Abiteboul and Beeri, 1988). Since then, much work has been done 
on languages for complex values, and many results that extend and complement 
those presented here have been obtained (some of this work is mentioned in the 
following text). The languages that we present are strictly more powerful than the 
relational calculus, not only in allowing one to query complex values, but even in 
that mappings from relations to relations which cannot be expressed in the relational 
calculus, can be defined in them. This is a consequence of the ability to manipulate 
richer structures in intermediate results, and the ability to use thepowerset operation 
to create such structures. In particular, one can exhibit a hierarchy of languages, 
based on restrictions on the types of intermediate results and show that the calculus 
can express all elementary time (or space) queries (Hull and Su, 1991; Kuper and 
Vardi, 1993). Exact complexity characterizations are obtained with fixpoint, which 
is no longer redundant when the level of set nesting is bounded (Grumbach and 
Vianu, 1991). 

The algebra proposed in the earlier models did not incorporate powerset and 
could not express this operation. When considering mappings from relations to 
relations, the algebra without powerset does not provide more expressive power 
than relational algebra (or calculus), so queries in this language can be evaluated in 
PTIME. This was first demonstrated for the V-relation model (Abiteboul and Bidoit, 
1986), and is not surprising for that particular model. More interestingly, the same 
result also holds for the model we consider here (Paredaens and Van Gucht, 1988). 

It has been argued that queries in practical languages should not require more 
than PTIME. Thus, the unrestricted calculus, equivalently the algebra with powerset, 
is too powerful. This emphasizes the significance of our result that the strictly safe 
calculus is equivalent to the algebra withoutpowerset. Additionally, some restrictions 
on the calculus guaranteeing PTIME bound and closely related to our strict safety, 
are exhibited in Grumbach and Vianu (1991). 

In this article, we also study a rule-based language. In the rule-based paradigm, 
nesting can be expressed in many ways. Indeed, a main difference between various 
proposals of logic programming with a set construct is in their approach to nesting: 
grouping in /~79/~ (Beeri et al., 1987), data functions in COL (Abiteboul and 
Grumbach, 1988), and a form of universal quantification (Kuper, 1987). In Kuper 
(1988), equivalence of various rule-based languages was proved. In Gyssens and Van 
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Gucht (1988), it was shown that various programming primitives are interchangeable: 
powerset, fixpoint, various iterators. 

As already mentioned, this article emphasizes a general approach to extending 
existing languages to new models. This has consequences, in particular for the 
algebra. Algebras described in the literature of the 80's have a wide variety of 
operations and differ quite a lot in how the restructuring problem is tackled. Our 
algebra is simpler than the one in the previous version (Abiteboul and Beeri, 
1988), and we believe that it provides a good understanding of which operations 
are essential for a general algebra. The emphasis is on composition and a few 
selected higher-order operations. Both our approach and the language are related 
to recent research on query languages for bulk types that uses category-theoretic 
and type-theoretic frameworks and, in particular, to the notion of monads (Wadler, 
1990; Trinder, 1991). It has been shown that a monadic algebra, if restricted to 
the set and tuple constructors, is equivalent to our algebra without the powerset 
(Breazu-Tannen, 1992). Conservativeness results for the monadic languages were 
presented by Wong (1993), who showed (in the spirit of Paredaens and Van Gucht, 
1988) that, for relational input and output, the monadic languages have precisely 
the expressive power of the classical relational languages. 

The powerset operation is quite powerful (Hull and Su, 1991). In Section 9, we 
show that the algebra with powerset can express transitive closure. However, it does 
so in a seemingly very inefficient way. Computations of transitive closure using the 
algebra with powerset are inherently exponential space--if algebra expressions are 
evaluated in a "naive manner" (Suciu and Paredaens, 1994). This seems to indicate 
that adding powerset is not the right way to obtain additional expressive power. 
However, recent optimization techniques for the algebra with powerset (Abiteboul 
and Hillebrand, 1994) indicate that this issue is not yet settled. Another direction 
is the study of alternative mechanisms that increase the expressive power, yet are 
more amenable to efficient programming, such as various fixpoint extensions of the 
languages (Abiteboul et al., 1994). 

While we consider extensions of classical paradigms, such as the relational 
calculus and algebra, the monad-based approach considers another important com- 
putational paradigm, namely the /i-calculus, and shows that interesting and well- 
designed query languages can be obtained from it by adding a few bulk-type specific 
operations (Breazu-Tannen et al., 1992; Wong, 1993). These include the monadic 
algebra mentioned above, and comprehensions that can be viewed as a pure form 
of generalized SQL (the only paradigm not considered here). Finally, a recent work 
(Hillebrand et al., 1993) also consider the .R-calculus as a query language, but with 
an emphasis on the complexity of query evaluation. 

1.3 Organization 

The article is organized as follows. In Section 2, we present the data model, 
and in Section 3 we define databases, functions, and queries. The calculus is 
introduced in Section 4, and the algebra in Section 5. Section 6 deals with the 
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equivalence between the algebra and the domain-independent  calculus• In Section 
7, we introduce syntactic safety restrictions on the calculus, and compare the power 
of the resulting languages to the algebra with and without the powerset. In Section 
8, arbitrary functions and predicates are introduced into both the algebra and the 
calculus• Section 9 deals with recursive queries• A summary is presented in Section 
10. 

2. Complex Types and Values 

In the relational model, instances are sets of tuples. That  is, the basic constructors 
are the set and the tuple constructors and, in the construction of a type (i.e., a 
relation schema), each is used precisely once: first the tuple constructor, then the 
set constructor. In the nested relational model, each of the two constructors can 
be used more than once, but they must alternate in any given type. We extend 
the model further by removing the last restriction, and requiring only that the set 
constructor be the last one used. 

We assume the existence of a set of d o m a i n  n a m e s  f f l ,  D 2 ,  • • • and of an infinite 
set of n a m e s ,  also called attr ibutes ,  A 1 ,  A 2 ,  . . .  Types are structure definitions, that 
use domain names, set and tuple constructors, and attributes. 

Assume that the domain names are associated with d o m a i n s  D1 ,  D 2 ,  . . .  T h e  

nature of the elements of the domains is irrelevant in this article. We frequently omit  
the domains in type and value definitions. In examples, we use integers. Naturally, 
collections of domains are also equipped with operations. For now, we disregard 
such domain-specific functions, and consider only the functions that operate  on 
tuples and sets (the basic building blocks of our model). Domain-specific functions 
are treated in Section 8. 

The elements of the domains are called a t o m i c  values. Complex values are 
constructed from them using the constructors. A type is associated with each value, 
in the obvious way; each value is an i n s tance  of a type. 3 Formally, types and va lues  

are defined as follows: 

1. If D is a domain name, then D is an a t o m i c  type. For each a in D, a is a 
value of this type. 

2. If T1, • • •, Tn  are types, a n d A 1 , . . .  , A n  are distinct attributes, then [A 1 : r l ,  
• . .  , A n : T n ]  is a tup le  type. If vl,  . . .  , vn  are values of types T1, . . .  , 
Tn ,  respectively, then [A1 :vl,  . . .  , A n  :vn] is a value of the type. We also 
include T[] as a type. The only value of this type is [ ], the empty tuple. 

3. The statement "v is of type T" in this article always assumes a given assignment of domains to domain 
names. 
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3. If T is a type, then { T} is a set type. Any finite set of values of type T is a 
value of type {T}. 

Types and values can be viewed as trees. In a type tree, leaves are labeled 
by their atomic types and, in a value tree, leaves are labeled by values. Internal 
nodes are labeled in both cases by constructors. Since a tuple constructor includes 
a sequence of attributes, the edges outgoing from a tuple node are labeled by 
attributes. A type is tuple, or set, respectively, according to the constructor at the 
root of its tree, and is atomic if its tree consists of a single node. Note that each 
type imposes a fixed structure on the corresponding values. 

The tuple types, as we defined them, are actually record types, as each component 
has an attribute label. We also allow unlabeled tuples, assuming that an unlabeled 
n-tuple has (implicitly) the labels 1, . . .  , n. These labels should not be confused 
with the integers used in examples as domain elements. 

We also assume that an unlabeled tuple of length 1 is the same as the element 
in it. That is, we identify [v] and v. Because attributes serve as selectors (i.e., as 
functions used to select components of tuples), this assumption implies that the 
function 1 is the identity function, defined on each domain. This assumption is 
commensurate with definitions of tuples in the literature, and simplifies some of 
our arguments in the sequel. 4 

Let T be a type, different from T[], using domain names D1, . . .  , Dk, and 
let domains D1, . . .  , Dk be given. The set of all values of type T that contain 
only values from Di in the leaves of type Di, denoted DOM(T,  D1, . . .  , Dk),  can 
alternatively be defined as follows: 

1. Replace in the definition tree of T each leaf labeled Di by Di. 

2. Replace the labels of internal nodes as follows: Each tuple constructor is 
replaced by a labeled cross-product operator (i.e., a cross product that gives 
an attribute name to each component), and set constructor is replaced by a 
finite powerset operator. 

3. Evaluate the tree. 

Note that, for T[], the set of values is {[]}, independently of the domains. 

Variations. The principal variation of the above structure is the nested relation which 
is at the core of the nested relation model. A nested relations type is a complex 
value set type in which the set and tuple constructions alternate. For instance, 

T1 = { [ A , B , C : { [ D , E : { [ E G ] } ] } ] } ,  and 
= {[A,B,C:{[e:{[F, C l } ] } ] }  

4. However, for readability, we actually use later the notation id for the identity function. 
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are types of nested relations whereas 

and 
EA, B,C : { { EF, C] } }1} 

are not. (For the first, observe two adjacent tuple constructions; and two set 
constructions for the second.) 

The restriction imposed on the structure of nested relations is mostly cosmetics. 
A more fundamental limitation was considered in Abiteboul and Bidoit (1986), 
which describes the data structure and the language used in the Verso system. As 
in nested relations, set and tuple constructors must alternate. Further, a relation 
is defined recursively to be a set of tuples, such that each component may itself 
be a relation, but at least one of  them must be atomic. The  type T1 above would be 
acceptable for a Verso relation, whereas type T2 would not, since the intermediate 
set construction contains tuples with no atomic attribute. 

A further assumption is that, in a Verso instance, for each set of tuples the 
atomic attributes form a key. This implies that the cardinality of each set in a Verso 
instance is bounded by a polynomial in the number of atomic elements occurring 
in the instance. This bound certainly does not apply for a nested relation of type 

{[B 

which is essentially a set of sets. 

3. Databases and Queries 

A database scheme is a pair ~ = <[D1,... ,Ok], [Rl: r l , . .  " ' en :  Znl >, where 

T1, • •., Tn are set types, involving only the domain names D1, • •., Dk. A n  instance 

of ~ is a structure DB = ([D1, . . . ,  Dk], JR1, . . . ,  Rn]), where the Di's are 

domains and each Ri is a value of D O M ( T i ,  D1, . . . ,  Dk). We also refer to DB 
as the database type, and to DB as the database value; each of the Ri's is called a 
relation. 

A query of signature DB ~ T (with T of set type) is a partial function from 

instances of DB to instances of T. DB and T are the input and output types of the 

query. When DB is obvious from the context, we may refer to T as the type of 
the query. We assume that the domain names used in T are among those in DB. 
The assumption that T is a set type follows the accepted convention in database 
systems and models that a query returns a set of values. The result of applying a 
query q to a database instance DB is denoted q (DB). 

A query language is a notation for expressing queries, coupled with a mechanism 
for assigning meaning to the expressions (i.e., for associating queries with expres- 
sions). In this article, we are concerned with the three well-known paradigms of 
query languages: calculus, algebra, and rule-based deduction. 
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In general, the value q (DB), where q is a query, may depend on D1, • . . ,  Dk, 
as well as on the relations. 5 We say that a query q is domain independent if, for 
any database structure, changing the domains (but keeping them large enough to 
contain all atomic entries appearing in the database relations, or the query) does not 
change the result of the query (Fagin, 1982). It is well known that the expressions of 
relational algebra (assuming complement is not used) define domain-independent 
queries. The same holds for our algebra. Calculus formulas do not necessarily 
define domain-independent queries. Domain independence is a semantic property, 
defined in terms of structures, and known to be undecidable, even for the classical 
relational calculus (DiPaola, 1969; Vardi, 1981). The same holds for our calculus, 
since it contains the relational calculus. For relational calculus, there are syntactic 
restrictions that guarantee domain independence, yet do not limit its expressive 
power (Ullman, 1982; Van Gelder and Topor, 1987). We also consider syntactic 
restrictions, and prove a similar result. 

An important class of operations on complex values that is almost absent from 
the relational model, is one that performs restructuring (i.e., changing the structure 
of each member of a set). Such restructuring can be defined by a function to be 
applied to each member of the set. (The relational projection operation is a restricted 
special case.) We call queries in which a function is applied to each element of a 
set restructuring filters. The issue of expressing such filters must be addressed in 
each complex query language. The relational selection illustrates another type of 
filter, a predicative filter, where a predicate is applied to each element of a set. The 
elements for which its value is true are unchanged in the output; the others are 
ignored. 

In the relational model the only elements are (flat) tuples, hence restructuring 
is limited to adding or deleting fields of tuples. In our model, the elements in a 
set may be of a particular type, and the result after restructuring may be of a quite 
different type. Thus, to be able to express interesting queries, we need to be able to 
express functions of possibly complex input and output types. When presenting the 
languages, we place special emphasis on explaining the mechanisms for expressing 
such functions. Since this is quite a rich class of functions, it seems that a relatively 
powerful functional language may be needed, possibly based on some version of 
the h-calculus. Such an approach was illustrated in Breazu-Tannen et al. (1992). 
In all the languages we consider, the functions can be expressed without resorting 
to such a formalism, thus preserving the traditional database approach. 

4. A Complex Values Calculus 

In this section, we present calculus-based query languages. One language is presented 
in Section 4.1. Variations on the language are considered in Section 4.2. 

5. Because of that, domain names have to appear in the signature of queries. 
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4.1 The Calculus 

The calculus is a many-sorted calculus. The sorts are the types, as defined in 
Section 2. The domain names are the atomic types, and the non-atomic types are 
constructed from them, using the tuple and set constructors. 

As is customary in many-sorted calculi, each constant and each variable is 
associated with a sort (i.e., a type), and functions and predicates are associated 
with signatures. For a k-ary predicate, the signature is a k-tuple of types and, for 
a k-ary function, it is a k + l  tuple of types. Actually, the functions and predicates 
that form the query language are generic, that is, they are families of functions 
and predicates indexed by types. Types of constants and variables, and signatures 
of functions and predicates, are usually omitted when they are irrelevant or can be 
inferred from the context. 

The terms of the language are defined, as usual, as the smallest set that contains 
the atomic constants and variables, and is closed under the application of functions. 
The functions of the language are: the tuple and set constructors and the attributes 
(considered as unary functions on tuple values). As just mentioned, these are actually 
parametrized families of functions. For each attribute A1, • • -, An and types T1, • •., 
Tn, we have the n-ary const ructor  []Ai:T1,...,A~:T~. The term obtained by applying 
it to n terms tl, . . . ,  tn, where each ti is of type Ti, respectively, is []Ai:T1 ..... A,~:T,~ 
(tl, . . . ,  tn). As is customary in the database literature, we denote it [A1 : t l ,  . . . ,  
An: tn] .  When the types are irrelevant or known, we denote the constructor by 
[ ]A1 ..... A,~ and, when we refer to the generic constructor, the attributes are omit ted 
as well. Similarly, for each n and each type T, we have the constructor {}~.  Here  
also, following standard notation, the term obtained by applying this constructor to 
n terms t l ,  . . . ,  tn of type T, is denoted {tl,  . . . ,  tn} ,  and the indexes are omitted. 
Thus, the two constructors not only have a type parameter ,  but are variadic as well. 
For the case that n = 0, we obtain the empty tuple [ ] and, for each type T, the 
emptyset { } or ~ for that type. Finally, if t is a term of a tuple type that has A as 
a component,  then t. A is a term. (The notation should have been A (t), since A is 
viewed as a unary function. We use instead the notation customary in the database 
area.) 

Since we have atomic constants, constructors, and selectors in the language, we 
can construct ground terms that denote non-atomic constants (e.g., [B:5, C:O] or 
{2,6,7}. For convenience, we also use standard abbreviations such as t.[A,B,C] for 
[t.A, t.B, t.C]. 

Predicates applied to terms (with the pro.per type restrictions) yield atomic 
formulas. The set of predicates includes R1, R2, . . . ,  the names of the database 
relations. It also includes the three binary predicates = (equality), 6 E (membership)  

6. To distinguish between equality in the formulas of the language, and equality in the metalanguage (e.g., 
for expressing the syntactic equality of formulas), we use ~ for the first, and ~ for the latter throughout 
this article. 
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and C (set containment). Finally, formulas are obtained from atomic formulas by 
applications of the connectives A, V, -7, and the quantifiers V, 3. It follows that 
each database scheme 

~ =  ( [ D 1 , . . . , D k ] , [ R 1  " T 1 , . . . , R n ' T n ] )  

defines a language in which only the domain names D1, . . . ,  Dk are used in type 
expressions, and only the predicates R1, . . . ,  Rn are used as relation names. 

We now consider the semantics of the language. An interpretation is any database 
that is an instance of the scheme, as defined in Section 3 (i.e., is a mapping that 
assigns domains D1, • •., D k t o  the names D1, • •., Dk, and sets of values R1, . •., 
Rn of appropriate types to R1, . . . ,  Rn). The domains for the non-atomic types in 
a given interpretation are defined as in Section 2, namely, the domain of a tuple 
type is the (labeled) cross product of the domains of the component types, and 
the domain of a set type is obtained by applying a finitary powerset operation to 
the domain of the element type. Note that this differs from the usual definition of 
interpretations for many-sorted calculi, where the domains for all the sorts can be 
arbitrary. We treat the tuple and set type constructors as having a fixed predefined 
meaning. Hence, the domains for non-atomic types are determined by those of 
the atomic types. Furthermore, the tuple and set constructors are also interpreted 
as the functions that map elements to the tuple or set constructed from them, 
and attributes are interpreted as selectors over tuples, so these functions also are 
interpreted in a fixed way. The built-in predicates = ,  C, and C are also given 
their standard interpretation. From now on, we identify scheme and instance with 
language and interpretation, respectively. 

Let DB be an instance of DB. Let T be any type that uses only domain names 
from D. The choice of the interpretation DB implicitly assigns a range to each 
variable t of type T, namely DOM(T, D1, . •., Dk), as defined in Section 3. Thus, 
an interpretation assigns a meaning to the quantifiers, and truth values for formulas 
can be defined in the standard way. A truth value is associated with a formula when 
each of its free variables is assigned a value from its domain. Note that although 
the Dj 's  are used only in the definitions of the types, the truth value of a formula 

depends not only on the values assigned to the Ri's, but also on the domains assigned 
to the Dj's, since the domains determine the ranges for the variables. This is the 
standard approach. 

A formula defines a query on databases, as follows. A c-query q is an ex- 
pression {xl, . . . ,  x,r~ IV}, where Xl, . . . ,  xn are the free variables 7 of qo. The 
list of free variables is called the target list of the c-query. Let  the types of xl ,  
• . . ,  xn be T1, . . . ,  Tn. Then c-query q expresses a mapping from instances of 

7. Since all the free variables are included in the target list it suffices, in principle, to write the formula only. 

But this notation can be extended by adding attributes to name the components.  
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to instances of {[T1, . . . ,  Tn]}, as follows: given DB, q (DB) is defined by: 8 

q (DB) = { [Vl , . . . ,  vn]lvi of type Ti, DB ~ qo (Vl, . . . ,  Vn) }. 
We can identify a c-query with the formula in it, and write go (DB) instead of q (DB). 

In the following example, we illustrate the expressive power of the calculus. In 
particular, we show how composition of queries can be expressed in the calculus, 
and how to express restructuring filters, that is, queries that transform each element 
in a set to a value of another type. 

Example 4.1 Consider the schema 

(R • { [ A "  ~3,A' • D ] } , 3 "  { [ B "  D,B '  • { D } ] } )  

(or (R :  { [A,A'] }, S: {[B,B': { } ]} > when the domain is omitted for brevity). 
The queries are: 

1. The union of R and a set of two constant tuples: 

{ r [R(r )  V r = [A:3, A ' :5 ]  V r = [A:0, A ' :0 ]  }. 

2. Select from 3 the tuples where the first component is a member of the second 
component: 

{s 13(s) A s.B E s.B' }. 
3. The (classical) cross product of R and S: 

{ t l 3  r,s (R(r) AS(s) A t.[A,A'] = r. IA,A'] A t.[B,B'] = s.[B,B'])}, 

where t is of type Tt = [A,A', B,B' : { } ]. 
4. The join of R and S, on A = B. We express this query as a composition of 

the cross product, which we have expressed above, with a selection. Denote 
the formula describing the cross product by qo3. We first write a c-query 
expressing a selection on predicate Rt, of type { Tt }: 

{t lRt  (t) A t.A = t.n}. 

Now, we replace Rt (t) in this query by ~3 (t): 

{t I qo3 (t) A t.A = t.n }, 

i.e., 

8. Since tuples are legal types, we could, in principle, restrict attention to formulas with one free variable. 

By our convention on one-component  tuples, the definition could then be written as q (DB) = {v ] v of type 

T, DB ~ qO(v)). 
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{t[ B r,s (R(r) AS (s) A t. [A,A'] = r.[A,A'] A t. [B, Bt] = s.[B,B']) 

A t.A = t .B)} .  

5. Unnest 3 (i.e., produce a set of flat tuples), each of which contains the first 

component of a tuple of S, and one of the elements of the second component. 
(This is a slight generalization of the classical unnest.): 

{t[3 s (30) A t.B----s.B A t.C E s.B')}, 

where t is of type [B,C]. Note that the last two conjuncts of the formula 
can be viewed as a formula ~b(s, t), with two free variables, that expresses a 
relation on the domains of s and domain of t. By prefixing with 3 s 3 (s), 
we have transformed it into a restructuring filter on S. (Note that this filter 
creates from each tuple of 3 a set of tuples, and the result is their union. 
This is why ~b expresses a relation, not a function.) 

6. The powerset of the relation .R: 

{tit ~R}, 

. 
with t of the same type as R. 

The collection of subsets of the second component of tuples of S, which do 
not contain the values 2, 4, or 5: 

{t] 3 s ( 3 ( s )  A t C s . B ' A 2 ~ t A 4 ~ t A S ~ t ) } .  

Here also, the last part of the formula expresses a relation between s to t, 
and composing with the existential quantifier produces the required filter. 

[] 

In summary, the example shows how to compose queries by "connecting" the 
output of one query to the input of another. The technique is generally applicable. 

It is based on the fact that any subformula of the form R (t) can always be replaced 
by a formula g) (t). Another technique illustrated in the example is how to combine 
a formula with two free variables, representing a relation, with another to create a 
restructuring filter query. This also is a generally applicable technique. These two 
techniques will be considered again when we prove the equivalence of the calculus 
and the algebra of the next section. 

Recall the definition of domain independence from the previous section. All 
the queries above are domain independent. The following is a simple example of 
a query that is not domain independent: 

{tl 3 r (.R (r) A t.B ¢rA) }  
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where t is of type [B, C]. In the following, we use the term domain-independent calculus, 
meaning the calculus restricted to domain-independent formulas and queries. 

4.2 Discussion and Variations 

It is illuminating to compare the calculus with relational calculus, as presented 
by Ullman (1982). The latter is also a many-sorted language since, in practice, a 
relational database is defined over a set of domains. However, we have lifted the 
restriction on the use of the tuple and set constructors, so we have a richer type 
system. We note that relational calculus has two equivalent versions, one that uses 
individual variables (the domain calculus), and one that uses tuple variables (the 
tuple calculus). Because we allow variables of each type, our calculus generalizes 
both. We also note that the additional types we allow are not arbitrary, but have fixed 
meanings. Variables with a type that contain one set constructor are second-order; 
because we allow any number  of set constructions in a type, our calculus is a J-order, 
whereas relational calculus is first-order. In both calculi, however, only finite sets 
are considered in the semantics. 

With a type system, type-specific functions and predicates are normally included. 
Our  calculus also differs from the relational calculus in allowing unrestricted use 
of the functions and predicates associated with the tuple and set type constructors. 
We have chosen a rather small set of functions and predicates: A constructor and 
a selector for tuples, a constructor for sets, and the membership predicate as a 
selector for sets (there is no functional selector for sets). We have added, for 
convenience (especially in the formulation of safety), a comparator  of sets (i.e., C).  
It is redundant: y C z can be expressed by V x (x C y ~ x C z) .  

Is the set of functions and predicates we have added the only possible set, or 
the best one? We now consider other possibilities. 

We first note that, although our set of functions and predicates is small, it is 
not minimal. We have noted that C is redundant. The tuple and set constructors 
can also be removed. For example, the term [B:5, C:8]  can be viewed as an 
abbreviation for the use of a variable x (of the appropriate type), "anded" with 
x.B = 5 A x.C = 8; and the finite enumerated set {5,8} can be represented by a 
variable z, "anded" with the formula y E z ~ y = 5 V y = 8. (The empty tuple 
is simply represented by a variable of type T[] since [ ] is the only instance of that 

type.) 
The reasons why the constructors are redundant are actually quite simple. First, 

the definitions of the types and their domains use the constructors, and the fact that 
variables are typed determines for each variable a range of values of a specific form. 
Second, the calculus with selectors allows one to construct formulas that describe 
relationships between values. Thus, instead of writing a value as an explicit term, 
obtained by applying a constructor to some arguments, one can represent it by a 
variable, and describe its relationship with its arguments. This is precisely how we 
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eliminated the tuple constructor above. For sets, the membership predicate serves 
as a selector for this purpose. 

We now consider the other direction, namely the inclusion of additional functions 
and predicates, and possibly other features, in the language. Here we present several 
such extensions, and we show that they all can be considered as abbreviations; hence, 
their use does not augment the expressive power of the language. 

It is natural to consider additional operations on sets, such as union and 
intersection. In general, the inclusion of additional operations in a language makes 
it easier to express queries. For example, using difference, the last query in Example 
4.1 can be expressed as 

{ t [ 3  s ( S (s) A t C (s.B'-- {2 ,4 ,5}) )} .  

It is easy to show that these can be defined in our language. For example, the 
union of sets $1 and $2 can be represented by a variable x "anded" with 'v' y (y 
E x  ~---~y E S1Vy  E $2). As a matter of fact, in Section 6, we prove much more: 
The calculus can express each of the algebraic operations introduced in Section 5. 
Therefore,  we can augment the calculus by introducing in it all algebra operations 
without changing its expressive power. 

Another  useful feature is to augment the class of terms by allowing the definition 
of set terms using the classical mathematical notation of set comprehension: {x I ~ }  
where ~ is a formula with only free variable x. Note that a comprehension is a 
query; thus, we are adding a subquery facility to the language. Set terms have been 
in use in mathematics for a long time. The idea of using set terms in a calculus for 
complex values seems to have been presented by Klug (1982). A similar notation 
for functional languages was proposed by Peyton-Jones (1987). Comprehensions as 
a query notation have been shown to be closely related to monad-based bulk types; 
for a recent survey, see Buneman et al. (1994). 

The expression {x179 } can be replaced by a new variable y "anded" with Vx (x 
E y ~ gO. As an example, consider the query on a standard suppliers-and-parts 
database asking for suppliers supplying all parts: 

{x[  {y[ 3p(part(p) A p . p n o = y }  = 
{y [ 3 sp (supply (sp) A sp.snum = x A sp.pnum = y } }. 

This query can be written in our calculus as well, by using auxiliary variables, 9 but 
its formulation is more difficult to write and understand. Note that, if this kind of 
terms is allowed, the definitions of terms and formulas become mutually dependent. 
(However, set comprehension also can be viewed as a macro facility with no effect 
on the formal definition of the language.) 

In summary, given a type system of interest that is represented as a set of 
constructors, there is, in general, quite a lot of flexibility in the choice of functions 

9. This is related to known techniques for subquery elimination. 
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and predicates that go with it in a language. For a practical language, considerations 
such as orthogonality and ease of use play a major role in the design. But we are 
not concerned here with languages for use in practice. Our choice of functions and 
predicates was motivated by the following considerations. Extending the calculus with 
additional features would probably load the proof of equivalence with the algebra 
with many additional details, having to do with the additional features, without 
bringing more light. (Of course, if we added to the calculus all the operations of 
the algebra, then the proof might become trivial.) On the other hand, we have 
opted against a minimal language, without the constructors, since we felt that this 
would also make the proof too involved, and hide some of its structure. 

5. A Complex Values Algebra 

The framework for the algebra is essentially the same as for the calculus, namely, 
that of many-sorted universes where the sorts are the types. An essential difference is 
that there are no predicates. The database relations are simply named sets of values 
of appropriate types (i.e., constants); a database instance is an environment that 
assigns values to these names. 1° The predicates = ,  C, and C are handled as binary 
boolean-valued functions, as are any predicates defined for the base types. The 
algebra is a functional language, and a query is an expression in this language to be 
evaluated in the given database. Although the functional viewpoint is not emphasized 
in the literature, the relational algebra is also a functional language. But, while most 
functional languages are based on the use of variables and lambda abstraction, the 
relational algebra uses a different paradigm--it is based on a small set of operations 
(i.e., given functions) that encapsulate useful iterations over relations, and that can 
be composed to express queries (Backus, 1978, presented a seminal paper on this 
paradigm of functional programming). Our algebra generalizes this approach. It 
uses several of the relational algebra operations, such as union, intersection, and 
difference, since they are generic with respect to the types of the elements in the 
sets. Other operations have to be generalized. 

- The major issue that we need to consider is how to perform restructuring of 
complex values, including the manipulation of deeply nested components. The 
classical projection is the primary means (with cross product) for restructuring in 
relational algebra. It is sufficient, since restructuring in the relational model can 
only map fiat record structures to fiat record structures. Obviously, we need a more 
general mechanism. We address this issue as follows: We introduce an operation 
for restructuring, which is actually an operation scheme. To use it, one needs to 
supply it with a function parameter. Given such a parameter, the operation takes a 
set as input, and produces as output the set of its elements, each restructured by the 

10. For additional details on the difference in viewpoint between the calculus and the algebra, see Beeri 
and Milo (1992). 
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given function. In functional language terminology, the operation is a higher-order 
function. The use of function parameters in this fashion allows us to deal with 
substructures of complex, recursively defined, values. This approach, first used by 
Schek and Scholl (1986) for projection, leads to a compact yet powerful notation. It 
implies that the algebra has expressions to denote restructuring functions, which are 
not necessarily queries. Higher-order functions are commonly used in functional 
languages; their use in the algebra indicates clearly that it is a functional language. 
Given the idea of a function parameter, it is straightforward to allow also the use 
of functions and predicates of the base type as parameters. This is considered in 
Section 8. 

We first present and explain the meaning of the operations. Then we explain 
the overall structure of the algebra, define queries and functions and state some of 
their properties, and present examples to illustrate the expressive power and the 
programming style of the algebra. Finally, we consider, as we did for the calculus, 
issues of redundancy and possible variations. 

5.1 Operations 

We start by listing the operations, and explaining their semantics. All operations 
have set input and output types. In the discussion below, we make general remarks 
about the possible types of each operation but, aside from that, we do not consider 
the issue of type checking or inference. 

Set operations: U, f-q, and \ are binary operations. Their arguments must be of the 
same set type, and they produce a result of the same type. 

Cross product: If, for i E [1..n], Ri is of type {Ti}, then cross[z I ..... An] ( R 1 , . . . ,  Rn) 
is of type { [A1 : T1, • •., A~ : T~] }. The value is the set of n-tuples that have the 
Ai component from Ri ll Note that, whereas in the classical relational algebra the 
product of two sets of tuples of lengths m and n is a set of tuples of length m -l- n, 
our operation produces a set of pairs of tuples. We show later how to express the 
classical product. Our definition allows us to take the cross product of any sets, 
even if they are not sets of tuples. 

Powerset: 12 If R is of type {T}, then powerset (R) is the collection of all subsets of 
R. This is a new operation that does not exist in the relational algebra. Its role will 
be clarified in the sequel. 

Set-collapse: This operation is simply an extended union operation. The argument 
must be a set of sets, and the result is the union of the member sets. 

11. We also allow the use of cross, which creates unlabeled tuples. It follows from our convention regarding 
one-component tuples, that cross (R) is equal to R. 

12. Thepowerset was added, not because a need for it was felt in the algebra itself, but rather to make the 
algebra as expressive as the calculus. This is considered in the sequel. 
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set-collapse (R) = U R = {x I 3 y (x • y, y • R ) }. 

This is also a new operation. 

Select: The classical relational select is a predicative filter, but the set of predicates 
that can be used in it is restricted. We extend it by allowing the use of arbitrary 
boolean-valued functions (from the set of functions defined below). Thus, this 
operator is also a higher-order operation. We use the notation 13 o-(p  ) for this 
operation; p is the predicate (i.e., a boolean-valued function). Given a set R, and 
a predicate p that is applicable to values of the type of the element type of R, 
o- (p )  (R) is the set containing all the elements of R that satisfy p. Our notation 
was chosen to show clearly that an instance of select is obtained from a general 
scheme by supplying a function argument. The predicates as defined below are 
constructed by using = ,  E, and C as comparators, and by using arbitrary functions 
as comparands. 

Replace: This is the main tool for performing restructuring of complex values, 
which may include the application of functions to substructures of the values. It is a 
higher-order operation, with a function parameter that describes the restructuring. 
I f f  is a function from the set of functions defined below, then 14 /9 ( f )  is a replace 
operation. If R is a set value, compatible with f in the sense defined below, then: 

p ( f )  ( R ) =  {f(r) l r E R  } 

This operation appears under various names in functional languages; for example, 
apply-to-all in FP (Backus, 1978), map in many others. It embodies the idea of set 
construction expressed by the replacement axiom of set theory. 

Why is it justified to consider this operation an algebraic operation? Let a 
relation R of type {[A,B,C]} be given, and assume we want to project it on the 
A,B-components, written as R [A,B ], or 7rA,B (R). In addition to the value argument 
R, this expression has attribute parameters that determine the structure (i.e., type) 
of the result. It is a simple conceptual step to regard the projection list as a function 
that transforms each member of R to the desired format. More precisely, each of 
the attributes is regarded as a unary function; the attributes are combined to the 
restructuring function [A,B] by using the tuple constructor. In our algebra, this 
would be written as p ( [A,B ] ) (R) (Section 5.2). Thus, replace is a generalization 
of the classical project. 

Another example of a restructuring operation is the extend operation (Grey, 
1984). Given a relation, it allows the addition of a component to each tuple. The 

13. Occasionally we use explicitly select, for readability. 

14. Occasionally, we use explicitly replace. 



VLDB Journal 4 (3) Abitebouh Languages for Manipulation of Complex Values 747 

name of the new component, and the expression defining the function used to 
compute it are specified in the operation. This function is applied to each tuple to 
produce the value of the new attribute for that tuple. Obviously, both project and 
extend are special cases of the general concept of applying some function to each 
element of a set. The replace operation has the additional advantage of generalizing 
to our more general type system (and to others, e.g., see Breazu-Tannen et al., 
1992) with no change. 

5.2 Queries and Functions 

Before presenting the definitions, we briefly explain the overall structure of the 
algebra. Both queries and functions are obtained from the same building blocks. 
As a matter of fact, the queries are a subclass of the functions. In contrast to 
the calculus, and to the A-calculus, the algebra does not use variables. The basic 
building blocks are base functions, with constants as a special case. Constants can 
be viewed as 0-ary functions, or as k-ary functions that ignore their input, for any k. 
For example, 5 is a constant; R, a name of a database relation, is a constant; if A 
is an attribute name, then it is a unary base function; set construction is a variadic 
base function. More complex functions are obtained by combining functions, for 
example by composition, or by applying one of the higher-order functions to a 
(regular) function. In the definitions below, we emphasize the arities of functions 
(i.e., whether a function is 0-ary, unary, binary, and so on), since this, with the input 
and output types, determines if functions can be combined (e.g., by composition). 
As an example, consider 7rA,B (R). In our algebra, each of A, B is a unary base 
function; hence [A,B] is a function. Note that there is no explicit notation for 
the input of this function, as, for example, in the A-calculus. The structure of the 
function tells us its arity and type: It is a unary function that accepts any tuple that 
has at least the attributes A and B as input, and its output is a tuple with the two 
attributes A and B. Then p ( [A,B ] > is also a function whose input is any set of 

such tuples. Finally, p<[A,B])(R)is a query. 

Whereas functions definable in the algebra can have any arity, queries have arity 
0 (i.e., they are constants). This seems to contradict our description of queries as 
functions (Section 3). There is, however, no contradiction. In any given database, 
A and p ( [A,B ] ) are unary functions whose input types are a tuple containing an 

A component and a set of tuples with A,B components, respectively, and R, {5} 
are constants. The latter two are queries. When we consider the queries over all 
databases, they are functions, with the databases as input. In the discussion above 
and the definitions below, the meaning of each construct is given in one (arbitrary) 
database. 

We now define the class of function expressions and their meanings. The 
definition has two parts: a class of base functions, and constructions used to construct 
more complex functions expressions. The base functions are: Each constant c, and 
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each database relation name R are functions (of each arity and input type). Rather 
than using a special function notation, we abuse the notation, and use c and R, 
respectively. Additionally, each attribute A is a function expression. We also use 
/d, denoting the identity funct ion)  5 The set constructor { } is a variadic function 
expression. (An alternative equivalent formulation with fixed arity functions is to 
use 0 as a constant, and insert as a binary operation that takes a set and an element 
and returns a new set.) The algebraic operations, except select and replace are also 
function expressions. Finally, we have the binary boolean-valued = ,  C, and C,  and 
also the boolean connectives V, /k, and 9.  The meanings of all these functions in 
any given database are obvious. 

We now describe how new functions can be constructed. One obvious constructor 
is composition, denoted o. Another is the application of a higher-order function. 
Recall that replace and select are not functions, but rather function constructors. If 
f is a unary function, then p ( f )  is a function, and if p is a unary boolean-valued 
function then cr (p  > is a function. Both are unary functions, with set type input 
and output. We emphasize that p (f> is not obtained by using composition• It is 
an application of a higher-order function to a function, which produces another  
function. Of course, such functions can be composed with other functions, as, 
for example, in p (g> of. Incidentally, note that this is in general different from 
p(gof>. 

Although expressions may denote functions of arbitrary arity, only unary functions 
can be used as parameters for replace; in this article these are called replace 
specifications. Similarly, unary predicates are selection specifications. 

The reader may have noticed that the tuple constructor has not been mentioned 
so far. This is related to one issue that we still need to consider. For unary functions, o 
is sufficient for expression compositions. But, we also have non-unary functions, and 
we need a notation for composition for them as well. In the A-calculus, composition 
of non-binary functions can be expressed by appropriate use of variables, as, for 
example, in Ax. h (f(x), g(x)). In our language there are no variables, so this 
approach cannot be used. The solution used in functional languages of this style 
is to use the tuple constructor not as a value constructor (as we used it in the 
calculus), but as a function constructor. I f f l ,  . . . ,  fn are unary functions, then [fl, 
• . . ,  fn] is a unary function whose meaning is defined by If1, --- ,  fn] (x) = [[1 (x), . . . ,  
fn (x)]. Thus, the function above can be written as h o [,g]. Since our model uses 
labeled cross products, we use labeled tuple construction as a function constructor, 
that is, we allow the formation of expressions like [A1 = f l ,  . - . ,  An = f~]. Note 
that the Ai's here are not functions but labels. The semantics is given by [A1 = f l ,  
• . . ,  An = fn] (x) = [A1 :fl (x), . . . ,  An :fn (x)]. Note that this implies that every 
function is unary, where its input is possibly a tuple type. Nevertheless, we often 

15. In the calculus,/d is obviously redundant:  a t e rm/d  (t) can always be replaced by t. In the algebra, this 

function turns out  to be useful, as we illustrate here. 
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refer to operations such as U or ~ as binary. 
Although our notation is standard in both mathematics and functional languages, 

it is cumbersome in many cases, and quite different, for example, from the notation 
used in relational algebra. Therefore, we adopt a notation that uses application in 
place of composition, and introduce a few additional simplifications. We describe 
the notation using examples. A, A o B, crossA,BO [C,D)], p ( 5 ) o R are all function 
expressions, with o explicitly used. In the second expression, B must be a tuple 
type with an A-component and, in the last expression, C and D must be set-valued. 
That is, type compatibility of functions and arguments must be enforced. In the last 
expression, it is clearly seen that the constant R is used as a 0-dry function. However, 
we use the notation p ( 5 )  (R), which is closer to the classical relational algebra 
style. Similarly, we use crossA,B ([C,D)]) in place of crossA,Bo [C,D)]. While the 
difference here is not much, the application notation allows us to use infix notation 
for binary operations, for example to use A C B rather than C o [A,B ] in selection 
conditions. Consider the expression [C = A, D = B]. It expresses projection on 
two attributes, followed by renaming. The similarity to the structure of target lists 
in relational languages is quite evident. Applying this expression to [A :a, B:b, 
C:c], we obtain [C:a, D:b]. When the new attribute and the function name are 
the same, an even more compact notation can be used: Instead of [A = A ,  . . .  ], 
we simply write [ A , . . .  ]. Thus, the expression p ( [A,B] ) (R), denotes the classical 

projection of R on the attributes A and B. Finally, instead of A o f  or A (f), we use 
dot notation: f.A. 

Although we use the "application-oriented" notation in the sequel, one should 
not conclude that it is superior to the composition-based notation. As a matter of fact, 
if the algebra is used for internal representation of queries (that are phrased by the 
users in a more user-friendly notation) then the composition-based notation reflects 
faithfully the tree or graph notation often used to depict internal representations. 
For a discussion of the algebra using this notation, see Beeri (1993). 

We conclude the discussion with some simple observations. First, composing 
on the left or on the right with id is redundant: f = id o f = f o id. Similarly, c 
and c o A are equivalent, so composing any function with c or R (on the left) is 
redundant. Although only certain simple constants have been listed above, additional 
expressions that are actually complex constants can be obtained: {c} \ {c} gives 
the emptyset, any fixed tuple can be obtained by applying the tuple constructor 
to appropriate constants. Since p ( [ ] )  (E) is {[l}, when E is nonempty, and 
otherwise, we can test a set for emptiness. 16 In p ( {id} ) (2), the replace operation 
adds one additional level of set nesting to the relation. Note the use o f / d  here as 
a means for handling the implicit input. As another example involving id, p (RU 
id ) (S), when S is a set of sets, adds the contents of R to each of S's elements. 

16. Furthermore, we could use { } and { [ ] ), the two values of type { [ ] }, as representing the two truth 
values (Breazu-Tannen et al., 1992). 
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(The use of id here is needed; R U is an higher-order function, hence, it is illegal.) 
We now define the class of algebraic query expressions, or a-queries. The base 

queries are: each set constant {c} and each relation name R is an a-query. The 
class of a-queries is the least class of 0-ary expressions that contains these, and is 
closed under application of the operations listed in the previous subsection. That 
is, if Q1, . . - ,  Qm are a-queries, and op is an m-ary operation, then op (Q1, . - . ,  
Qm) is also an a-query. 17 In "operation" we include any instance of replace or select 
obtained by applying them to replace or select specifications, respectively. That is, 
if p ( f )  is a replace operation, and E and f are compatible, then /9 ( f )  (E) is an 
a-query and, similarly for cr ( p )  (E). 

Although we have higher-order operations, our definition disallows higher-order 
queries; each query expression must have a value type. Thus, while R U R ~ is a 
valid a-query, R U is not. 

The definitions of functions and a-queries are now (almost) complete. We still 
need to discuss the compatibility of p ( f )  with E, which allows one to form the 
query p ( f )  (E). This will be considered below. We first present a few examples of 
a-queries, starting with those presented for the calculus in Example 4.1. 

Example 5.1 Recall the schema ( 2 :  { [A,A']}, S: { [B,B': {} ]}  ) of Example 4.1. 
The queries are: 

1. The union of R and a set of two constant tuples: 

RU {[A:3,  A ' :5I ,  [A:0, A ' : 0 ] } .  

2. Select from S the tuples where the first component is a member of the second 
component: 

(B B') (5). 

3. The (classical) cross product of R and S: 

t9 ( [C.A, C.A', D.B, D.B'] ) ( (cross[c,D] (2, 5)). 

4. The join of R and S, on A = B. This is easily expressed as a composition: 

o- (A = B ) (p < [C.A, C.A', D.B, D.B'] ) ( (cross[c,D] (2, 5 ) ) )  

5. Unnest  S, that is, produce a set of flat tuples, each of which contains the 
first component of a tuple of S, and one of the elements of the second 
component: 

17. As for functions, application here represents composition, that is, the class of queries is closed under 
composition on the left with operations. 
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set-collapse ( p ( cross[B,C] ( {B }, B') ) (3)). 

. 

7. 

In this expression, the replace transforms each tuple of 3 into a set of pairs. 
(Note that cross operates on sets, hence we need to transform B to {B }.) 
The first component is called B and its value is the B-value of the given 
tuple. The second component, called C, has a value that is a member of the 
set B' in the original tuple. This has the effect of pushing B into B', and 
making each element of B' a pair. The set-collapse is needed to remove the 
extra set brackets from the result. 
The powerset of the relation R: powerset (R). 
The collection of subsets of the second component of tuples of S, which do 
not contain the values 2,4, or 5: 

set-collapse ( p (powerset (B'-- {2,4,5}) ) (5)). [] 

The next examples illustrate complex queries and, in particular, the use of 
functions in replace and select expressions for the manipulation of deeply nested 
components of complex values. 

Example 5. 2 
1. Recall the relation S: {[B,B': {}]} of Example 4.1. The relation of type 

{[B': {}]}, obtained by adding the value of the B component to the B' 
component and deleting the B component, is given by: 

p( 'u {B} 

2. We present a more complex query, in which a construction by stages is 
helpful. Let R: { [A,B: { { [C,D] } } ] } be a scheme. The query is to add a 
third attribute E, with the value 5, to each of the tuples in each member of 
B and to eliminate the A-component. The replace operation for a set X of 
type {[C,D]} is 

t91-~ p ( [ C = C , D = D , E  = 5]>. 

Or, using our abbreviations, 

p ,  = p < [ C , D , e  = 5]>. 

Now, for Y of type {{[C,D]}}, we want to perform this restructuring on 
each set member of Y, so we can use 

/92 = p ( t9 ([C, D, E = 5]> (id)). 



752 

The use of t he /d  function here is redundant, because it represents a com- 
position. The simpler expression is: 

p2 = p < p ( [ C , o , e  = 51> > 

Since the B component of R has this type, this is a valid replace specification. 
To obtain a replace for R, we have to add one more level: 

P3 = replace ( p ( p ([C, D, E = 5]> ) (/3)) (R). 

Now suppose that, instead of 5, we want to use the A-component. This is 
done using: 

P3 = replace ( p ( p ( [C,D,E = A ] >  > (B) > (R). 

In this last expression, C,D apply to tuples at the inner level, where such 
attributes indeed exist. A is also used at the inner replace, but its meaning 
is the A of the outer level tuples. In the inner replace specification, [C,D,E 
= A ] ,  A has no meaning in the strict context of the type {[C,D]}. In this 
expression, A is essentially free. It remains free on the next level, and it 
becomes bound (i.e., is given a meaning) only in the larger context of the 
complete query. [] 

The last issue we consider is the binding of attribute names, illustrated in the last 
example. It is relevant to the definition of queries. By the definitions of a-queries 
and functions, if Q is a query, and g is a replace specification, then p <A ) (Q) and 
p <A > (g) are also a query and a replace specification, respectively. So far, we have 
mentioned only type compatibility, namely that the output types of Q and g should 
be set types. However, assume the element type in the result of Q is not a tuple, or 
it is a tuple, but does not containA. In either case, what is the meaning of the query? 
On the other hand, no such problem exists for g; i r a  is not bound now, presumably 
it will be bound when the expression p <A ) (g) is embedded in a larger expression. 
Thus, it is important for the definition of well-formed queries to give the binding 
rules for attributes. This is determined by the relationship of name occurrences to 
scopes, as illustrated in the following: suppose we have p ( p ( A )  (S), > (R), where 

both S and R are tuple types that contain A. Does A refer to the A component of 
or to that of R? 

For each function expression, we divide the set of attributes that are used in it 
as functions 18 to bound and free. The definition uses induction on the structure of 

18. Note: In [A 1 ~ f l  ~ • • • , An ~fn], the attributesA 1 , . • • ~ A n are not used as functions! 
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function expressions. In the expression A, A is free. The other basic functions do 
not include attributes. A function obtained by composition has the form f ( f l ,  • • •, 
fk), where f is a basic function or an algebraic operation, and the fi 's are functional 
expressions. The free and bound attributes of each of the fi remain free and bound, 
respectively, in this expression. I f f  does not contain attributes, then we know all the 
free and bound attributes of the expression. There are two cases to consider when 
f contains attributes: Either f is an attribute, so the expression has the form f l .A  
(i.e., A (fl)). For this expression to be legal, f l  must have a tuple type with an A 
component. Hence, .,4 is bound in this expression. The second case is the application 
of p ( f )  to g, to obtain t9 ( f )  ~g). (Selection is treated similarly.) The bound and 
free attributes of g remain bound and flee, respectively, in this expression, and the 
bound attributes o f f  also remain bound. The free attributes o f f  remain flee, except 
that, if g is a set of tuples of type T, and A is an attribute of T, and A was free 
in f, then it now becomes bound. The two cases can be summarized as follows: 
when a function/operation is applied to an argument (equivalently, composed on 
the left), and a free attribute in it is meaningful in the argument, that attribute 
becomes bound. The last case to consider is function construction by application 
of one of the two higher-order operations. Let f be a function expression, and let 
p ( f )  be a function expression constructed from it. Then the bound/free attributes 
in f remain bound/free in this expression. 

In summary, binding attributes to their meaning is done from the inside out; 
an attribute is bound in the smallest subexpression where a meaning for it exists. 
Note that, in some cases, the user's intention may be different. For example, in the 
expression p ( p ( . . .  A . . .  ) (5)) (R), if both relations contain A, the user might 

want to refer to theA-component of R. To do that, it is necessary first to rename the 
attribute A in S to a new attribute (see below how to rename), then construct the 
required expression. Similar problems may arise in the use of the identity function, 
and solving them may complicate the expression of queries. 

Now we summarize the conditions in terms of bound and free attributes on 
the construction of replace specifications and a-queries. There is no restriction on 
replace specifications. But, an expression p ( f )  (Q) is a query only if it contains no 
free attribute names. 

From the examples and the discussion above it follows that in an a-query 
t9 ( f )  (Q), if f contains a replace operation (i.e., the query has a nested replace), 
then this nested replace may contain free attributes. Such attributes necessarily are 
given meaning in the context of (the type of) Q, since they cannot remain free. This 
was illustrated in Example 5.2. Is it possible to characterize the attributes that thus 
can be used in a nested replace? The answer was presented in Schek and Scholl 
(1986). Let T be the tree representing some set type, and let x be a node in its tree, 
which is also of a set type. An attribute A can be used in a replace specification on 
x if it appears either in the type of x or somewhere else in T. In the second case, 
we must have that, given a value VT of type T, and a node (i.e., a value) vx of type 
x in it, A can be interpreted as denoting a unique node of VT relative for this given 
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vx. In both cases, A plays essentially the same role as a constant, relative to a value 
vx. The set is those attributes in the nodes that can be reached from v by going 
up, and possibly also sideways and down, without crossing a set constructor on the 
way down. If x has a tuple of tuples type, then it also includes those attributes 
reachable from v by going down, again without crossing a set constructor. This is 
captured in the following definition. 

Let T be a type. We associate a set of dynamic constants with each subtype 74 
of T, relative to T, as follows. The set dyny (74) is the smallest set of attributes 
that satisfies the following conditions. 

• If 74 is a tuple type, 74 = [A1 : T1, • •., An : Tn], then dynT (74) = dynT (T1) 
. . . .  dynT (Tn) and, for each i, Ai is in dynT (74"); 

• If 7 4 is a set type 74 = {T1}, then dynT(74) C dynT(T1). 

For the relation R of Example 5.2, the dynamic constants of the inner tuple 
node inside B are C, D, B, A. These are the attributes that can be used in a replace 
specification for this node in an a-query on R. 

We have illustrated bottom-up construction of queries. The next example 
illustrates top-down construction of an a-query, containing replace specifications 
with dynamic constants. 

Example 5.3 Consider the relation scheme R: { [A: { }, B:  { [C, D: { }, E l } l }. We 
want to restructure the elements of R, by leaving only B, itself transformed by 
dropping the C component from each of its tuples, and leaving in the D component 
only those elements that are in A. Furthermore, we want to delete from B those 
tuples in which the new D component does not contain 0 and the value in the E 
component. 

We start with B as a replace specification for R. This is transformed to p ( [D, 
E] ) (B). Next, we replace D with o- ( id E A ) (D), to obtain the replace specification 
p ( [or (id C A ) (D), E l ) (B). We now add a selection on the condition {0, E} C 
D, and apply the resulting expression as a replace specification to R to obtain: 

p ( cr( {O, E} _C D ) (p ( [cr ( id C A ) (D), EI ) (B) ) ) (R). [] 

To conclude, we state some properties of a-queries and function expressions. 

Proposition 5.1 Every a-query is also a function expression. 

Proof." It is easy to see that the base queries are functions. The claim follows, since 
the query constructions are all also function constructions. [] 

Note that there are 0-ary functions that syntactically are not queries. We claim 
that every constant function is equivalent to a query. We do not prove this directly, 
as it follows from the algebra-calculus ecl~ivalen ~ that we prove in the sequel. 

An a-query containing relation names R1, • •., Rn defines a function on databases, 
in which these relation names are treated as variables. We can compose a-queries, 



VLDB Journal 4 (3) Abiteboul: Languages for Manipulation of Complex Values 755 

by replacing a relation name in a query by another query. Similarly, if a replace 
specification contains relation names, we may replace some of them by replace 
specifications of the same types. 

Proposition 5.2 
(i) The class of aLqueries is closed under composition. That is, if E is an a-query 

that contains R, and E ~ is another a-query whose output type is the type of 

R,  then the expression obtained from E by replacing an occurrence of R in 
it by E ~ is an a-query. 

(ii) The class of replace specifications is closed under replacement of relation 
names by replace specifications. That is, if f contains R, and g is another 
replace specification of the same output type as R, then the expression 
obtained by replacing an occurrence of R in f by g is a replace specification. 

Proof." 
(i) The proof uses induction on the structure of E, for each fixed E I. The case 

that deserves attention is when E = p ( f )  (Q), and an occurrence of R in f 
is replaced by E/. For this case, we use (ii). 

(ii) This is proved in a similar manner. Details are left to the reader. Note 
that the closure of replace specifications under composition is part of their 
definition. [] 

Note that "closure under composition" was included in the definitions of func- 
tions. However, there it referred to closure in one given database. Here, it refers to 
functions and queries viewed as functions on databases, which is a different notion. 

We conclude this subsection with the following observation. 

Theorem 5.3 The algebra is a domain-independent language. 

Proof." The proof is by easy induction on the construction of queries. Note that we 
use difference, which preserves domain independence. The claim would be false, 
had we used complement (w.r.t. a suitable product of the domain with itself). [] 

5.3 Variations 

We now make some observations about the expressive power of the algebra. In 
particular, we consider additional operations that can be expressed in it. We also 
consider whether certain operations can be removed, or restricted, without changing 
the expressive power. Naturally, we are most interested in what can be done using 
replace with nested expressions, since it is the nesting of structures in the model 
and of expressions in the language, that distinguishes our model and language from 
the relational analogs. 

What kinds of restructuring can we perform on a relation? We can increase 
the level of nesting by adding set or tuple constructors: using the set constructor, 
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we can transform each element into a singleton set; using the tuple constructor, 
we can transform each element into a single-component tuple, with any attribute 
as a label 19 In the other direction, that of decreasing the level of nesting, we have 
several cases to consider. First, if we have a set of sets of T-values, we can use 
set-collapse to transform it into a set of T-values. In the special case that each of 
the sets is a singleton, this has the same effect as the operation the, used in the 
query language of 02 (Bancilhon et al., 1989). Similarly, given a tuple, we can 
select one of its components, drop the others, and leave this component without 
the tuple constructor. For example, if we have R: { [A: T, . . .  ]}, then p ( A )  (R) 
has the type {T}. Another related operation is the following: if we have a set of 
tuples, where one of the components is a tuple, we can transform it into a set of 
fiat tuples. For example, if we have R:  { [A, B: [C, D]]  }, then p ( [A, C, D] ) (R) has 
the type { [A, C, D] }. This derived operation is called tuple-collapse. It is an analog 
of set-collapse. Using this operation, it is easy to obtain the classical cross product 
of two sets of tuples: we perform a cross, followed by a tuple-collapse. From that 
we obtain the various joins by composing with selections. 

Assume we have R : { [ A , . . .  ] }. We can change the name of the first component 

to A' by p ( [ A '  = A , . . . ] >  (2). Similarly, we can change any attribute in a 
substructure by using nested replace. These expressions can be quite cumbersome, 
since one has to repeat all the attributes that need not be changed. Since renaming 
is a useful operation, it is useful, in practice, to add an operation rename for this 
purpose. We use the notation renameA~A, (R) for changing the attribute A to A'  
uniformly in R. 

From the previous discussion, it follows that we can express all the relational 
algebra operations. Let us now consider the nested relational model. 

Two well known operations of that model are the nest and unnest (Jaeschke 
and Schek, 1982). Assume we have the scheme R:  { [A,B,C] }. Nesting on the 
attribute C is accomplished as follows. First, we delete from each tuple of R the 
C-component, and extend it with a copy of R: 

R1 = p ( [A,B,D = renameA~A,,B~B,  ( 2 ) ] )  (2). 

The first two attributes in the copy of R are renamed to prevent ambiguity in the 
expression below. Now, we perform a selection on the embedded copies, so that 
in a tuple [a,b,d] the d component will contain only the tuples that have a and b 
in the first two positions. Then we project the resulting d on its C attribute. This 
is accomplished by 

= p < [A,8, p < [C] > <A = A'A S = S' > (m))] > 

19. When no label is desired, this is an identity transformation. 
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These two expressions can, of course, be collected into a single algebraic expression. 
As a matter of fact, the projection and selection can be pushed inside, so the final 
expression is 

p ( [A,B,D = p ( [C] )  (o" (A = A t A B  = B t ) (renameA__,A,,B~B, ( R ) ) ) ] )  (R). 

This expression is a good description of how this nest is often computed in practice. 
For unnest, consider the relation S:{[A,B,C: { [ D ] } ] } .  Unnesting on C is 

accomplished by 

set-collapse (p ( p ( [A,B,D l ) (C) ) (R) ). 

We have shown that all the operations of relational or nested relational algebra 
can be expressed in our algebra. The reason why some of these are not basic but 
rather derived operations, and that some of the expressions are non-trivial, is that 
we have un-bundled the set and the tuple constructors, and our operations and 
basic functions treat each one separately. In the relational and nested algebras, the 
operations deal with the type constructor set-of-tuple. 

Many algebras for nested relations in the literature do not include a facility 
such as replace nesting (i.e., for applying algebraic operations to substructures), 
like the one we have presented, following Schek and Scholl (1986). Is this facility 
essential? We argue informally that, theoretically, it is not. First, we show that 
nested replace, that is, a replace within another replace, can be eliminated. Consider 
R: { [A,B,C: { [D,E] } l }, and a query p ( [ . . . ,  p ( f )  (C) ] )  (R). An equivalent way 
to express it is as follows. Extend R with an attribute C ~ that is a copy of C, then 
unnest on C ~, calling the new attributes, say, J ,  E ~. Then perform a replace where 
the function f is applied to D I, E ~. Then nest the result, and project C out. Note 
that, since we have kept all the original attributes in the unnest, the subsequent nest 
reconstructs the original relation (except that the copy C ~ of C has been replaced 
by p ( f )  (C'), as required). 

We still have that, inside a replace, all algebraic operations, except a replace, 
can be used. Consider the relation R:{  [A,B: { },C: { } ] }, and a query p ( [ . . . ,  
op (B,C)]) (R), where op is an algebraic binary operation. We consider cross as a 
concrete example. An equivalent expression is obtained thus: project the relation 
on B, and perform set-collapse, to have the union of the B-values. Do the same for 
the C-values. Now perform cross on the results, and extend each tuple of R with 
the result. Call the new attribute D. The problem is that the D-value in a tuple 
contains, in addition to the pairs in cross (B,C), many other pairs. But a simple 
selection eliminates these extra pairs. Similar arguments apply to other operations. 

In summary, we could define our algebra so that in the construction of replace 
specifications, algebraic operations cannot be used. The analogy to the calculus 
would then be complete. However, in eliminating nesting, we are forced to express 
functions that can be expressed naturally with nesting, in a very complicated manner. 
In a practical language for a model with nested structures, nesting is an extremely 
useful tool. 
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In Abiteboul and Bidoit (1986), the language contains operators that are defined 
recursively on Verso relations. For example, assume that E and F are two instances 
of 

{[A,B,C: { [D,E: { [F,G ] } ]} ]}. 

Recall that, by definition of Verso instances, {A,B } and {D } are keys at their 
respective levels. We can define union of instances of type ([F,G] }, with which 
we can define the union of two instances I, J of type { [D,E: { [EG ] } ] }: 

I U J  = {u 13. CI, w El, u.D =v.D =w.D, u.E = v . E U  w.E}. 

More generally, one can define recursively union of Verso instances. 
In this operation, it seems that adding levels of nesting to the relations makes 

the expressions more complicated (in the algebra presented here). We conjecture 
that no single expression of our algebra can express the Verso union (and some of 
their other operations) for arbitrary relations. 

6. Equivalence of Calculus and Algebra 

In this section, we prove that the well-known equivalence holds for our model as 
well: the algebra and the domain-independent calculus have the same expressive 
power. As we have seen, for each of the two language paradigms, there is a variety 
of possible dialects. The details of the proof vary with the choice of a dialect for 
each paradigm. We present the proof for the languages presented in Sections 4.1 
and 5.1, respectively. 

Theorem 6.1 The algebra and the domain-independent calculus are equivalent. That 
is, for each a-query there is an equivalent domain-independent c-query and, for 
each domain-independent c-query, there is an equivalent a-query. 

6.1 From Calculus to Algebra 

We follow the lines of the classical proof (Ullman, 1982). The modifications have 
to do mainly with the richer structure of terms. We first prove that, for each type, 
there is an a-query that, when applied to a database, generates the set of values of 
that type that can be constructed from atomic values that appear in the database or 
in the query. Given that, we show how to construct for each c-query an a-query that 
generates the same answer on a database in which the domains are the so-called 
active domains. The claim then follows. 

Given a database instance DB = ([D1, . . . ,  Dk], JR1, . . . ,  Rn] ), denote by 
adom (DB, Di) the set of elements of D i that appear in DB (including those that 
appear as components of complex values) 2° and by adorn (DB) the vector of sets 

20. adom stands for active domain. 
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adom(DB, O l )  , . . . ,  adorn (DB, £)k). These are the atomic values that appear in 
the database. A given query q may include constants that do not appear in the 
database. Hence, we extend the notation and use adom (DB, q, L)i), adorn (DB, q) 
to denote the appropriate set, or vector of sets, of atomic values that appear in the 
database or in the query. In the discussion below, we assume q is given. We also 

h 

assume that the database schema DB is fixed. 

Claim 6.2 For each domain name D occurring in ~ ,  there is an a-query, denoted 
Fb, such that, for every database DB, Fb (DB ) =adom (DB, D). 

Proof." For each Ri, we construct an a-query F i ,  such that Fi (DB) is the set of 
elements of D, the domain in the database for D, that appear in Ri. Then F b  _= 
F1 U . . .  U Fn. The a-query Fi is constructed by applying the following recursive 
procedure: 

* I f R i  is a set of atoms of t ypeD,  t h e n F i  --= Ri. I f R i  is of atoms from 
another atomic domain, then Fi ~ 1~. 

• If Ri is of type { {T}} ,  for any T, then apply the procedure to set-collapse 
(ki). 

• If Ri is of a tuple type { [A1 : r l ,  . . . ,  Am :Tin]}, then apply the procedure 

to each of the expressions p (Aj )  (Ri). Then take the union of the a-queries 
that were generated. 

Note that, in the last two cases the procedure is applied to. simpler types; hence 
termination is guaranteed. Also note that, if D is not used in Ri, or in an expression 
generated in the last two cases, the procedure can be terminated immediately, and 
the value returned is 0. [] 

Since, for each finite set of constants, there is an a-query that returns it on every 
database, we can add the constants of the given query to the a-queries of the claim. 

Corollary 6.3 For each query q, and for each domain name D, there is an a-query 
Fb,q, such that Fb, q (DB) =adom (DB, q, D). [] 

Recall from Section 2 that, for a type T and a vector of sets b = D1, . . . ,  
Dk of atomic values corresponding to the domain names D1, • •., Die, DOM(T, D) 
is the set of values of type T that can be constructed from the atomic values in 
D. In particular, DOM(T, adorn (DB, q)) is the set of values of type T that can be 
constructed from atomic values that appear in DB or in q. 

Claim 6.4 For every type T, there is an a-query FT,q, such that, for every database 
DB, FT,q (DB) = DOM(T, adom(DB, q) ). 

Proof." We prove the claim using induction on the structure of types. 

Basis: If T is an atomic type, D, then FT,q ~ Fb, q. 

Induction: There are two cases to consider. 
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• If r = { S  }, then FT,q ~ powerset (FS,q). 
• If T = [A1 : T1, • •., An : Tn], then FT,q ~ c r o s s [ A  x , . . . , A s ]  (FTi,q, • • ", F T . , q ) "  

[] 

Note the use of the powerset operation in this proof. This is the only place in 
the translation from calculus to algebra where this operation is used, and it was 
included specifically for this part of the proof to work. 

We have now finished the first stage in the proof, namely showing that the 
active domain of each type can be expressed by an a-query. It follows that for each 
variable x, there is an a-query, which we denote by E q that computes the set of X '  

values, constructed from atomic values that appear in the database or in q that this 
variable can take on. Indeed, this query is simply FT,q, where T is the type of x. 

We now state and prove the main claim of this subsection, from which this 
part of the theorem follows. For a given c-query, as above, and for a database DB, 
denote by DBq the database that has the same relations as DB, but in which the 

domain for Di is adorn (DB, q, Di). That is, the database relations are preserved, but 
the domains are the smallest domains that contain the values used in the database 
or in the query. From the results above, we have that, for each variable x of type 
T, and for each database DB, 

Eqx (DB ) ---- DOM (T, adom (DB, q ) ) ---- Eqx (DBq). 

That is, the a-query Eq z computes on DBq precisely the set of values on which 
the variable x ranges in this database, namely the domain of the type of x in this 
database. 

We next show that the algebra is as expressive as the domain-independent 
calculus. 

Proposition 6.5 Let q be a domain-independent c-query. Then there is an a-query 
Eq, such that, for every database DB, 

Eq (DB) = Eq (DBq) = q (DBq) = q (DB). 

Proof." It suffices to show that, for some Eq, Eq (DBq) = q (DBq) (for q (DB) = 
q (DBq) since q is domain independent, and Eq (DB) = Eq (DBq) since the algebra 
is domain independent). 

Let qo be the formula in q. The proof is by induction on the structure of ~. As 
explained in Section 4, one can associate a c-query with every formula, and with 
any number of variables, including 0. We refer to the c-queries that correspond to 
subformulas of ~p as subqueries of q. We construct a-queries for all subqueries of 
qo, using structural induction. 

Let us consider the structure of atomic formulas. They may be of the forms 
Ri (t), or tlO t2, where t, tl, t2 are terms, and 0 is one of the comparators = ,  
E, and C. We note that, for each term, there is a set of values that it can take 
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on in the database DBq. Before we can deal with the atomic formulas, we need 
to show the existence of a-queries that compute this set of values for each term. 
We already know that such a-queries exist for variables, and they surely exist for 
constants. The existence for arbitrary terms therefore can be proved by induction 
on the structure of terms. However, we actually need to prove a slightly stronger 
claim. If we consider an atomic formula as a query, then the target list of this 
query is not the term or terms in the formula, but rather the list of variables in the 
term(s). When the answer is computed, whenever the term(s) satisfy the formula, 
the assignment to the variables is output, rather than the value of the term(s). 
Hence, what we really need is to construct an a-query that computes the set of 
possible assignments for the variables in the term, and for each of them the value 
of the term(s). Then, when we find that the formula is satisfied by an assignment, 
we can use the assignment for the output. 

Claim 6.6 

(i) Let t be a term in q with I variables Xl, . . . ,  xt (l may be 0); then there is an 
a-query Gt q such that Gt q (DBq) is a set of (l + 1)-tuples, the first l of which 
are all combinations of values from Eq~ (DBq), i = 1, . . . ,  l (i.e., possible 
assignments to the variables in the database DBq), and the last component 
in each tuple is the value of t for the assignment represented by the first 1 
components. 

(ii) Let  tl, t2 be two terms in q, with l variables Xl, • •., xt (l may be 0); then 
q q (DBq) is a set of (l + 2)-tuples, there is an a-query Gtl,t 2 such that Gtl,t 2 

the first l of which represent assignments to the variables as above, and the 
last two are the values of the two terms for the assignments. 

Proof." 

(i) The proof uses induction on the structure of terms. If t is a variable x, then 
we have Eq~, that computes the domain for x in DBq. To obtain Gq~, we take 

p ( [1 = id, 2 = id]} (Eq z). 

If t is a constant ¢, then l = 0 and Gt q is simply {c }. Note that this works for 
non-atomic constants and relation names as well, so if t contains no variables, 
the construction for t is complete. 

If t contains variables, and is not a simple variable, then it is obtained by 
applying a function to some terms. We consider each of the functions that 
can be applied. The first case is that t = t l .A,  where tl is of a tuple type on 
which A is defined. By induction hypothesis, we have Gtqx . The I variables 
of t are those of tl. Hence, 

Gt q _ = p ( [ 1 , . . . , l , l +  1 = ( l +  1).Al)(Gtq~). 
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The  second case is when t = [ ]Aa,...,A,~ (t l ,  • •. ,  tn), or using our  al ternat ive 
notat ion,  t = [A1 : t l ,  • •. ,  A n  :tn]. H e r e  the set of  variables of  t is the union 
of the sets of  variables of  the ti's. Hence,  

Gt  q ~ p ( [ 1 ,  . . . ,  l, 1 -1- 1 = [a  1 = 1 + 1 , . . . , A n  = 1 + n ] )  (H~), 

where  

H~ _= permute  (l'oin on c o m m o n  variables (cross (Etql, . . ., Etq ))). 

In this expression, each Etq~ computes  tuples of  length li-q- 1, of  which the 
first li are variables values. In the cross product ,  a variable tha t  appea r s  in 
m o r e  than one  ti has m o r e  than one c o m p o n e n t  cor responding  to it. The  
join contains a selection that  forces, for  each variable,  all its values to be  the 
same,  fol lowed by a project ion that  leaves just one copy of  the value. T h e  
cross product  also has one posit ion for  each of the terms. Af te r  the join, 
the permute  21 moves  these to the posit ions l + 1 , . . . ,  l + n; then  the tuple  
constructor  in the final replace collects them into a tuple,  as required.  

T h e  last case is that  t is obta ined  by applicat ion of  the set  constructor .  T h e  
construct ion of Gt  q for this casd is similar, and is omit ted.  

(ii) This  case is t rea ted  essentially as in the appl icat ion of  a const ructor  in the 
previous case. Given Gtq~, for  i = 1,2, we pe r fo rm  a natura l  join on the 
c o m m o n  attributes, and move  the two te rms  to the last two positions. [] 

We now consider  a tomic  formulas.  The  first case is a fo rmula  R (t). Assume  t 
has l variables.  We want  to construct  an a-query equivalent  to {Xl, • •., xt I R (t) }. 
We have, by the construct ion above,  an algebraic expression Gt  q that  computes  all 
possible values in the database  for [xl ,  • . . ,  xz, t]. T h e  requi red  a-query  is 

p ( [ 1 ,  . . . , I ] ) ( o ' ( ( l +  1) C R ) ( G t q ) ) .  

Note  that, for the case l = 0, the selection outputs  an answer  of  type {[1 :]},  that  
is, a set  of  tuples of  arity one. The  result  of  the replace is then e i ther  { [ ]}  if t is 
in R, or  ~, otherwise.  

The  o ther  case for  a tomic formulas  is tlO t2, where  /9 is one  of  = ,  C, or  C .  
T h e  a-query  is 

p ( [ 1 , . . . , l ] } ( o ( ( l - ] -  1) 0 ( l - -1-2)}  q (Gtl , t2)) .  

21. Of course, for any given t, instead of doing this permutation, we could use the proper column numbers 
in the final replace. 
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The remark above about the case l = 0 holds here also. For example, if the 
query is R (x.A), then the formula is p ( 1 ) (or ( 2E R ) (p ( [1: id, 2 :A] ) (Eq~))) 

and, if the formula is a C R (for some element a), then the formula is p ( [ ] )  

(or ( 1 C R ) ( { [a] } ) ). It is easy to see that, when a subformula ¢ of qo is atomic, 
if E¢ denotes the formula we have constructed for it, then 

E¢ (DBq) = • (DBq). 

Now we consider induction on the structure of formulas. It suffices to consider 
the cases where a formula is obtained from simpler formulas by applying A, ~,  or 
3. The proof is essentially as in Ullman (1982). We use natural join for A. For 
negation, we take the complement with respect to the cross product of the Eqx's, 
for those x's that appear as free variables in the formula being negated. 22 Finally, 
we use projection for the existential quantifier. 

For each of the three cases, we assume by induction hypothesis that the a-queries 
equivalent to the c-queries that correspond to the subformulas of the given formula 
are given, and we prove that such an a-query also exists for the formula. The 
only nontrivial step is the association of projection with the existential quantifier. 
However, for the active-domain database DBq, the range of an existentially quantified 
variable x is Eq x (DBq), and it follows that projection indeed has the same effect as 
the existential quantifier. 

When the construction described above terminates, we have for the given formula 
qp (x) an a-query, E~o, such that E~ (DBq) = qp (DBq). This is the required Eq. 
This concludes the proof of the proposition, and one direction of the equivalence 
theorem. [] 

The following observations are of interest. If T = {S } is a set type, the set 
of possible values of type T is the powerset of the set of values of type S. Hence, 
we need the powerset in the algebra to construct the domains for non-atomic types 
and variables, and this is the only place it is used in the proof. It is an expensive 
operator that does not seem to be really necessary in a query language. It could 
be dispensed with if another approach to computing the domains is found. This 
issue is considered in the sequel. 

Note also that nesting of operations in replace operations is not used in the main 
part of the proof. Essentially, the operations of the relational algebra combined 
with rather weak restructuring facilities, and with the powerset and set-collapse are 
sufficient to provide the algebra with expressive power comparable to that of the 
calculus. This is another demonstration that nesting is not crucial for obtaining the 
required expressive power. But, the idea here is different from that used in Section 
5. There, we showed that given a description of a query as a function on databases, 
we can express the function in another, although rather convoluted, way that does 

22. If there are no free variables, we take the complement, with respect to { [ ] ). 
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not require nesting. By "expressing a query as a function," we mean that the query 
actually describes how the components of the answer are computed from those of 
the input. The alternative formulation simulates this "procedural" approach. In 
the calculus, this procedural component is much weaker. The existence of typed 
variables allows one to specify the form of the result without using the input in any 
way; the actual result is then related to the input by a set of conditions. Therefore, 
the algebraic simulation constructs the domains of certain types, including the type 
of the result, then simulates the conditions that restrict the domains, until only 
the result is left. Quite obviously, although this proves the equivalence with the 
calculus, it is not the direction to go in designing practical languages. 

6.2 From Algebra To Calculus 

Although we could, in principle, assume that no algebraic operations are used 
inside replace, we deal in the proof with both a-queries and with arbitrary replace 
specifications. This is because the proof is a good illustration of the operations. 

It suffices to prove the following. 

Proposition 6. 7 
(q) For every a-query E, there is an equivalent (domain-independent) c-query 

qE, with a single free variable in its formula. 

(r-s) For every replace specification f, there is a formula ~bf (u,v) that represents 
it. That is, u and v have the types o f f s  input and output, and ~bff (u,v) holds 
iffv = f(u). Also, for each select specification (i.e., unary predicate) p, there 
is a formula ~bp (u) that represents it, that is, u has the type o fp ' s  input, and 
~bp (u) holds iffp (u = TRUE.  

Proof." (Remark: (q) is the claim we need, (r-s) is needed for the induction step of 
the proof.) The claims are proved simultaneously, using induction on the structure 
of algebraic expressions. Note that functions can be k-ary, for any k, whereas replace 
and select specifications are unary. However, a specification is either a unary base 
function, or it is obtained from simpler functions in one of the ways described 
in Section 5. As shown below, the simpler functions are then unary. Hence, an 
inductive proof works. 

Bas~: 
(q) 

(r-s) 

The a-queries {c} and 2 are represented by the c-queries { x l x = c  }, and 

{ x I R (x) }, respectively. 

The replace specifications c, R, are represented by the formulas v = c and V 
y (v E v ~ y C R), respectively. (Note that since these functions ignore their 
input, the variable u is missing. To view them as unary, add u = u to them.) 
This representation works for non-atomic constants as well, and also for [ ] 
and ~. The function A is also present in the calculus. Its corresponding 
formula is v = u.A. As for id, it is represented by v = u. The set constructor 
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can be unary but, since it is variadic, we treat it in the induction. We have two 
unary algebraic operations among the base replace specifications: Set-collapse 
is represented by V x (x E v ~ 3 y (y E u A x E y)); powerset is represented by 
V x (x E v ~ x C_ u). All the other base functions are not unary. As remarked 
in Section 5, they are actually unary functions with tuple inputs. However, 
consider t.J, for example. It expects a two-component tuple. Obviously, as 
a replace specification, we can use U o [1,2] rather than just U. Hence, all 
non-unary base functions can be treated in the induction part, and need not 
be considered now. 

Induction: 

(q) We consider each of the operations. For most of them, the construction is 
essentially the same as in the classical proof. We assume that E1 and E2 are 
a-queries, and ~E1 and ~E2 are the formulas in the corresponding c-queries, 
each with a single free variable. 23 The a-query E is constructed from E1 and 
E2 by applying 24 an operation: E ~- O (El, E2). We show how to construct 

~E from ~E1, ~ E 2 .  

• Set operations: E = EiO E2, where 0 is one of U, fq, \ .  We change 
the two given formulas, if necessary, so that they have the same free 
variable. Then, 

* i f E = E 1 U E 2 ,  then (~E ~ q0E1 V ~E2" 

* if E ~ Elf3 E2, then ~E ~ C/gEl A ¢~tgE2. 

* if  E _~ E l \  E2, then ~E ~ ~Ex A ~ E 2 "  

• Cross product: E ~ cross[A1,A2] (El, E2). We change the two given 
formulas so that their free variables are different. Then 

~E ~ 3 X l3X  2 ((PE1 (Xl) A(PE2 (X2) A x = [A 1 :x1, A 2 :x2] ) .  

• Powerset: E ~powerse t  (El). The formula qgEx has a single free variable 
of type T, say Xl. Let x be a new variable of type { T }. Then 

~ E  ------ Y xl  (xl E x ~ ~ E  (x0) .  

(Note: we could write instead x C {xl [ ~E (xl)}, and then use the 
reduction described in Section 4.) 

• Set-collapse: E _= set-collapse (El), where 99Ex has a single free variable 
of a set type. Then ~ z  ~ ~ X1 (OPEl (Xl) A x ~ Xl). 

• Select: E ~ cr ( p ) (El). Assume that ffJp (u) represents p. Then 

23. Since we have tuple types, there is no real distinction between one or more variables; it is more conve- 
nient to present the proof for a single variable. 

24. Recall that this is actually composition. 
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(r-s) 

~ _-- ~ ,  (~) A% (x). 

• Replace: E ~ p (f> (El).  Let ~bi (u,v) be the formula that represents 
the function f. Then 

~ _-- 3 u (~E1 (u) A ~  i (u,v)). 

Next, we consider replace and select specifications. 

Replace specifications can be obtained by using composition, tuple construc- 
tion, or an application of one of the two higher-order operations. Select 
specifications can be obtained only by using composition. Assume that f, f l ,  
• . . ,  fm are unary function expressions, represented by ~2y, ~byl, . . . ,  ~bYm, 
that p is a unary predicate, represented by ~bp. 

First, consider tuple construction. For the result to be unary, each of the 
participating functions must be unary. The function [A1 = f l ,  • • . ,  A m  = 
fro] is represented by 

3 v l . . .  3 vm ( * / ,  (uu, ~i) A . . .  A ¢Sm (" Vm) A ~ = [Zl : ~1, . . . ,  Am:  v M ) .  

Next, we consider application of one of the two higher-order operations. 

• Replace: Given the  formula for f, the formula for p (f> is 

V x (x E v ~ 3 y (y ¢ u A',w.f (x, y)))  

• Select: The formula for cr (p  > is 

V x ( x e ~ x e .  A% (x)) 

Finally, consider composition. We treat both kinds of specifications together, 
since they are both unary functions. Since composition is associative, we may assume 
that when it is used to construct a new function, it has the form g o f, where g is 
either base or obtained by tuple construction or higher-order application, and f is 
an arbitrary unary function. The function g is not necessarily unary. 25 We consider 
how to represent the result of "applying" g to (i.e., composing it on the left with) 
f. We consider the possible cases of g. 

Base functions: 
• The attributes, the identity: The function f .A ( =  A o f)  is represented by 3 

x ( ~ y  (u,x) A v = x . A ) .  The function id is represented by u = u. 

25. As already explained, when it is not, we can view it as a unary function, composed with the result of a 
tuple construction. It is convenient to deal with it as a k-ary function directly. 
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• Set constructor: { f l , . . . ,  fro} is represented by: 

3 v l . . .  3 vm (¢I1 (u, ~1) A . . .  A CSm (u, ~m) A ~ = {~,  . . . ,  vm}). 

Algebraic operations: 
• Set operations: We show only the union. Intersection and difference are 

treated similarly. The function f l u  f2 is represented by: 

3 V13 V 2 (~fl  (u'vl) A~)f2 (u, '1,.'2) A V x ( x  E u <-----)(x ~ viM x ~ v2))). 

• Cross: This is treated similarly to the union: For example, the function 
cross[A:,A2] (f lf2)  is represented by 

3 ~13 v2 (~/: (U, Vl) A~S2 (u, v2) A v = [A: :~:,A2 :v@. 

• Powerset: The function powerset (jr) is represented by 

3 vl (~b/(u, vl) A'v' y~y 6 v ~---~ y C_ Vl)). 

This extends in the obvious way the treatment of this operation as a base 
function. 

• Set-collapse: The function set-collapse (f) is represented by 

3 vl (ffs/(u, vl)  AV x(x  E v ~ 3 y ( y  6 VlAX 6y ) ) ) .  

This also is the obvious extension of the treatment of this operation as a 
base function. 

• Select: The function ~r ( p )  (f) is represented by 

"~'S (u, vl) AV x (x 6 v ~ x E vl A ~bp (x))} 

• Replace: The function t9 ( f )  (fl) is represented by 

V 1 (ff3fl (U, Vl) AV x (x  ~ v ~ 3 y ( y  E Vl A ~.3f (y,x)))). 

Boolean functions: We illustrate only two cases. 
• Membership: The function f l  E f2 is represented by 

3 v~3 v2 (~Psl (u, vl) A~py2 (u, v2) A v l ~  v2)). 

• Negation: -, p is represented by ~2p .  (Representing the boolean connectives 
in the calculus is easy, since they are built-in.) 
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The fact that all the calculus formulas obtained in the (q) part are domain inde- 
pendent, follows immediately from their equivalence to a-queries. This concludes 
the proof of the proposition, and also of the equivalence of the algebra and the 
domain-independent calculus. [] 

7. Syntactic Safety and Powerset 

Domain independence is a semantic concept that is undecidable even for the 
relational model (DiPaola, 1969; Vardi, 1981). In this section, we present syntactic 
restrictions on formulas that guarantee domain independence. The formulas that 
are thereby restricted are called safe. In contrast to domain independence, these 
restrictions are easily checked. Furthermore, although not every domain-independent 
formula is safe, we show that the domain-independent calculus, the safe calculus, and 
the algebra are equivalent. In particular, for every domain-independent formula, 
there is an equivalent safe formula. Finally, we show that, by strengthening the 
restrictions, one obtains a calculus that is equivalent to the algebra withoutpowerset. 

7.1 Safety 

The accepted approach to making a formula safe is to require that each variable 
is attached to a range formula. The simplest forms of range formulas are R (x), 
where R is a name of one of the database values, and certain boolean combinations 
thereof. These are the forms used in the relational model. However, since we 
allow nested structures, other possibilities exist. Consider, for example, the scheme 
R:  {[A,B : ( [ . . . ] } , C ] } .  We may want to use a variable x whose range is the set of 
tuples occurring in B-sets in tuples of R. To restrict the range of x to this collection, 
we need first to have a variable, say y, that is range restricted to R. Then we can 
range restrict x by x E y.B. 

In the following, we define range formulas, range restricted variables, and safe 
formulas. 

Let o~ be a formula, and assume a partial ordering on its variables is given. 
We assume that the free and bound variables are distinct. We say that variable x is 
(range) restricted in oz, relative to the given ordering, if the type of x is the empty 
tuple type, or one of the following holds. 

Basis: o~ is one of 

(B1) R (x), 

(B2) x E t, 
(B3) x = t, 

(B4) x C t, 

where t is a term that may contain constants or variables that precede x in the 
ordering. Recall that the functions that can be used to construct terms are tuple 
and set constructors, and attribute application. 
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(B5) V y (V C x ~ ~ (y)), where all variables that are used in ~ (including y) 
precede x in the ordering. Note the similarity to the construction used for 
powerset in the translation from algebra to calculus. This is equivalent to x 

G {Y [ 

Closure: c~ is constructed from subformulas, such that one of the following holds: 

(CL1) 

(CL2) 

(CL3) 

(etA) 

o~ is a conjunct of two formulas, and x is restricted in at least one of them. 

o~ is a disjunct of two formulas, and one of the following holds: either x is 
free in it, in which case it must appear and be restricted in both disjuncts, 
or x is bound in it, in which case it appears in precisely one of the disjuncts, 
and is restricted in the disjunct where it appears. 

o~ is obtained from a formula in which x is restricted by adding an existential 
quantifier (on x, or on another variable). 

(x = ~fl ,  where fl is a formula in which x is both bound and restricted. 

A formula is safe relative to a given partial ordering, if all the variables are restricted 
in it. (This includes those in a subformula of the form (B5).) It is safe if there is 
an ordering, such that it is safe relative to it. 

The rules above define the notion of "range restricted" for both free and bound 
variables. Clearly, the empty tuple type needs no range restriction: its only value 
is [], anyhow. The five base cases are formulas where x is directly restricted in 
ce, either because it is required to be in some database relation, or because it is 
required to be equal to/a member offa subset of a value obtained from constants 
and variables that precede x, by the construction and decomposition functions of 
the calculus, or (in (BS)) because it is required to be a subset of the result of a 
query expressed by a formula, where all the variables in that formula precede x. 26 
Note that if the term t in (B2) -- (B4) contains variables, then the range restriction 
o fx  depends on these variables, in the sense that it restricts x only if these variables 
are properly restricted. If oz is safe, then these variables have their own range 
restrictions, and further, their restricting formulas do not depend on x directly, or 
even indirectly through other variables. This is guaranteed by the assumption that 
the range restriction for a variable depends only on variables that precede it in the 
ordering. A similar remark applies to (B5). 

We will call the formulas in (B1) -- (B5), and formulas obtained from them by 
using A and V, rangeforrnulas. 

We have included in our definition enough constructions so that it is possible 
to simulate the algebra in the resulting calculus. Additional forms of safety can, 
of course, be added, and all that is needed (given our proof of equivalence to the 
domain-independent calculus) is to show that they preserve domain independence. 

26. (B5) is a more powerful construction than (B2) - (B4); its role is clarified in Section 7.3. 
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Note that we use only the existential quantifier in the closure rules. Indeed, if 
x is free and restricted in a formula, it is not necessarily restricted when a universal 
quantifier on x is appended. Since we have negation, there is no loss of generality 
in formulating a closure rule only for the existential case. In particular, we will have 
later formulas of the form V x (qa (x) ~ ~) ,  where x is restricted in qa. This can be 
taken as a short notation for 9 3  x ( g ) ( x  ) A ~ b ) ,  in which x is indeed restricted. 27 
We can also view this form as a derived restriction rule for universal quantification. 
The universal quantifier in (B5) is used not for constructing a formula f rom a 
subformula, but rather to create a new atomic range restriction. To avoid confusion 
resulting from the use of V in this construction, we use the equivalent notation x 
c_ {y I ~p¢v)}. 

We refer to the calculus, restricted to safe formulas, as the safe calculus. 

Theorem 7.1 The safe calculus and the algebra are equivalent. That  is, for each 
c-query with a safe formula there is an equivalent a-query and, for each a-query, 
there is an equivalent c-query with a safe formula. 

Corollary 7.2 The safe calculus is equivalent to the domain-independent  calculus. 

One direction of Theorem 7.1 follows from the following proposition: 

Proposition 7.3 The safe calculus is 

Proof  • We say that a formula, or a 
if, for every database, changing the 
it still contains the elements of the 
not change the result of the query. 

domain independent. 

query, is domain independent in some variable 
domain of this variable only, but requiring that 
type of that variable in the active domain, does 
Thus, a formula is domain independent if it is 

domain independent in each of its variables. 
Now, assume given a formula that is safe with respect to a given ordering of 

the variables, xl ,  • •., xn. We prove, that it is domain independent in each of Xl, 
• . . ,  xn. This is proved using induction on the number  of variables; that is, we prove 
that it is domain independent in each of xl ,  • •.,  xi, for i ---- 1, . . . ,  n. For a given 
number  of variables, we use induction on the structure of the formula. 

For the first variable, Xl, we have only (B1) -- (B4) as the base cases. Further, 
the terms in the last three cases must be ground. It is immediate that these formulas 
define domain-independent  queries. It is also easy. to see that domain independence 
for xl is preserved under the four closure rules. 

Now assume the claim was proved for i variables, and consider xi+l.  Consider 
one of the base formulas (B1) -- (B5) for xi+l.  Here  again, the formula of (B1) is 
domain independent. In (B5), the formula qa (y) does not contain x and, further, it 

27. The quantifiers in 3 x (~ (x) A ~ ,  Vx (99 (x) ~ ~)) occur often in safe formulas. They are custom- 
arily called bounded quantifiers, and the formulas are often written as (3 x q9 (x)) ~3 and (V x qD (x)) ~3, 
respectively. 
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contains only variables that precede it in the ordering. By the induction assumption, 
the domains for these variables can be restricted to the active domain. It follows 
that this subformula is domain independent for xi+l (i.e., it can only be assigned 
values from its active domain). Similarly, in (B2) -- (B4), the terms may only contain 
variables that precede xi+l, so the same reasoning applies. To finish the claim, we 
use induction on the closure rules. [] 

It follows from Proposition 7.3 that, for every safe c-query, there is an equivalent 
a-query. To finish the proof of the Theorem, we just need to show a translation 
from the algebra to the safe calculus. Thus, a direct translation from the safe 
calculus to the algebra is not necessary. Nevertheless, there are good reasons to 
present such a direct translation. First, such a translation constructs a-queries for the 
domains of variables that do not need to construct the active domain of the database. 
Rather, these queries use the range formulas for each variable. This translation, 
therefore, may provide some insight for practical translation of calculus-based query 
formalisms. Second, we can show precisely where the powerset operation is used 
in this translation. Hence, we can derive a version of the calculus that is equivalent 
to the algebra without powerset. The translation is presented in the Appendix. 

7.2 From Algebra to Calculus 

We prove the following 

Proposition 7.4 

(q) For every a-query E, there is an equivalent safe c-query qE. 
(r-s) For every replace specification f, there is a formula ~bi (u,v) that represents 

it, in which all variables, except possibly u, are restricted (relative to some 
ordering such that u is first and v is last). Similarly, for each select specification 
p, there is a formula that represents it, such that all variables, except possibly 
u are restricted in it (relative to some ordering such that u is first). 

Proof." We follow the translation of the algebra to the calculus in the previous section, 
and we show that the formulas constructed there satisfy Proposition 7.4. We just 
need to check that the constructed formulas are safe (for the first part), or that all 
the variables except possibly u are restricted (for the second part). 

(q): The base a-queries are {c}, R. The corresponding c-queries are defined by 

x = c and R (z),  which are safe (by (B1), (B3)). For the induction, assume 
that E is obtained from El ,  E2 by applying some operation, and that the 
corresponding c-queries g)El, 99E2 are safe. We note that the variables that 
are bound and restricted in these formulas remain bound and restricted in 
the formulas that we construct from them. We need to consider only what 
happens to the free variables, and also whether the new variables, if any, are 
restricted. In each case, the ordering of the variables is such that the new 
variables, if any, are last. 
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r-s) 

If 0 is one of the set operations of union, intersection and difference, then the 

c-queries for E l0  E2 are g)E~ (x) 0q0E2 (x), where 0is  V, A, A~,  respectively. 
Safety follows from (CL2) for disjunction, and from (CL1) and (CL4) for 
the two cases of conjunction. 

For cross[Aa,A2], the translation is 

3 XI3X 2 (~E1 (Xl) /~qOE2 (X2) /~ X = [A 1 :x1, A 2 :x2] ). 

In this formula, Xl and x2 are obviously restricted, and remain restricted when 
the quantifiers are applied by (CL3). Since x follows all other variables, x is 
also restricted (by (B3)), so the formula is safe. For powerset, the formula 
is V Xl (xl 6 x ---+ 99E (Xl)), or x C_ {xl I qo (Xl)}. All variables (except x) 
are known to be restricted, and x is restricted by (B5). For set-collapse, the 
formula is 3 Xl (qOE1 (Xl) A x E x 0 .  It is clearly safe (by (B2) and (CL3)). 

We are left with select and replace. These are more complex, since they contain 
function parameters. Consider the replace. Let the a-query be p ( f )  (El). 
Let ~b/(u,v) be the formula that represents the function f. Then cpE = 3 
u (qoE1 (u) A~bf (u,v)). We note that, by induction hypothesis, qOE1 restricts 
u, and all variables in ~b/, except possibly u, are restricted. Hence (by (CL1)), 
this formula is safe. Select is treated similarly. 

The formulas for the replace specifications c, R, A, id are u = u A v = c, u 
= u AVy(y E v ~ ,  R(y), v = u.A, and u = u, respectively. In the first and 
third, v is restricted by (B2). The second can be rewritten to the form v C 
{y [ R ((y)} AV z (R (z) ~ z E v). Now, v is restricted (by (B5)), and z by the 
derived closure rule for universal quantification. Set-collapse is represented by 
V x ( x  E v ~ 3 y ( y  E u A x  Cy)); denoting this formula by qo, it is equivalent 
to v C {x I 3 y (y C u A x C y}) A79, in which v is restricted by (B5). It is 
easy to see that both y and x are restricted (the order is u,y,x,v). Hence, this 
formula satisfies the claim. Powerset is represented by V x (x C v ~ x C u), 
and this can be similarly converted to a formula that satisfies the claim. 

For specifications obtained by composition, we have the same situation as 
above, namely that we need to check only what happens to free or new 
variables. Checking that all variables except possibly u are restricted is, in 
most cases, straightforward, so we only illustrate some cases. 

If A is an attribute, then the formula for f . A  is 3 x(~bf (u,x) A v = x . A ) .  
We have that v is restricted (by (B3)), and we already know that all other 
variables, except possibly u are restricted. 

For powerset, the translation for powerset(f) is 3 vl (~S (U, Vl) AV y(y 6 v 
y C_ vl)). As above, the second part can be rewritten as V y (y C Vl 

y E v) A v C_ {z I z C Vl}. The last conjunct restricts v whereas, in the 
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previous conjunct, y is bound by a bounded quantifier; hence it is restricted. 
We already know that vl is restricted. 

For the replace, we have a similar construction: The formula for p ( f )  ((fl) 
is 3 Vl (~fl  (U, Vl) AV y (y C v ~ 3 z (z G V 1 A ~ f  (z, y)))). Rewriting as in 
the previous case, we obtain 

3 1' 1 (~,)fl (U, Vl) A V y ( 3  z(z e vl A ~ f  (z,y)) ---~ y e v) 
A v C {s I 3 z (z 6 vl A !by (z,s))}. 

Since vl is restricted, the last part restricts v (by (B5)), whereas z is restricted 
in the part before last; hence, so is y, since it is bound by a bounded quantifier. 
All the other variables are restricted by induction hypothesis. 

The cases of other base functions, algebraic operations, and the boolean 
functions are similar, or simpler, and are left to the reader. 

Next, we consider construction. Given the formula for f, the formula for 
p ( f )  is 

V x (x c v 3 y 0' ¢ u (x, y))) 

We do the same transformation as in previous cases: We "and" the formula 
with v C {y [y E u A~21 (x,y)}. This restricts v and, after we eliminate the 
existential quantifier and the implication, we have that the other variables 
are restricted as well. The select is treated similarly. [] 

7.3 Strictly Safe Calculus 

The powerset operator of the algebra is unique among the algebraic operations 
in that one may argue that it is not directly useful for expressing real-life queries 
and, additionally, it may cause exponential cost, since it increases the size of its 
argument exponentially. It is of interest, therefore, to consider the algebra without 
the powerset. We have seen in the previous section that it is used in the proof of 
equivalence to the domain-independent calculus only in one place, in the construction 
of a-queries for the domains. Now that we have the notion of safety, and we have 
other constructions of a-queries for the domains, we can possibly do without this 
operator. 

When we consider the equivalence proof of the algebra and the safe calculus, we 
observe the following: In the translation from the domain-independent calculus to 
the algebra (given in the Appendix), we used thepowerset only for the translation of 
(B4) and (B5). Only in these two forms is there a use of the subset predicate. Thus, 
we conclude that, if we remove the powerset from the algebra, we need to remove 
(B4) and (B5) from the safety definition. In the other direction, the translation 
from the algebra to the calculus, the situation is a bit more complex. We have 



774 

indeed used (B5) only in the translation of the powerset in the (q) part. Similarly, 
we used (B4) for the translation ofpowerset in the (rLs) part. However, (B5) is used 
in some of the other translations (e.g., in translating R and p ( f )  (/1)). We observe, 
though, that in these cases the relevant part of the formula has the form v = {y 
Icp}. We claimed safety for this formula by breaking it into two components, one 
of which has the form suitable for (B5). The same holds for the other cases where 
(B5) is used. What we offer to do now, instead, is to replace (B5) by a weaker 
condition: 

(B5') x = {Y [ ~} .  

This is weaker than (B5): it does not increase the size of its input. It allows us 
to translate all the cases where (B5) was used in (r-s), except the translations of 
powerset. Note, in particular, the translation of p ( f ) ( /1 ) :  3 Vl (~byl (u, vl) A v 
= {y [ 3 z (z ¢ Vl A ~f (z,y)))). This simply states that v is obtained from v 1 by 
applying f to each of its elements, which is just what is needed. Note the similarity 
to the replacement axiom of set theory. 

We call the safe calculus, without (B4), and with (B5) replaced by (B5'), the 
strictly safe calculus. We now have: 

Theorem 7.5 The strictly safe calculus and the algebra withoutpowerset are equivalent. 

Proof." We have already considered the translation from the algebra to the calculus, 
and have argued that, if the algebra does not containpowerset, then it can be carried 
out, provided we have (B5') among the clauses defining range restrictions. We need 
only to consider the other direction and, particularly since we have removed (B4) 
and (B5), we do not need the powerset in the algebra. However, now we cannot 
use the claim that this calculus is included in the domain-independent calculus to 
complete the proof, as we did in the beginning of the section. Rather, we need to 
transform the translation from the safe calculus to the algebra given in the Appendix, 
so that the translation for (B5') does not use powerset. That is easy: For x = {y 
[ ~} ,  we have an a-query that returns a set of y values. Applying nest we have an 
a-query that returns a set of pairs of the form {[v, {y [ qo}]}. So far, these are the 
steps as performed in the proof in the Appendix. The last step there is to apply 
a powerset and, since we are dealing with x = {y I qo (y) rather than with x C {y 
I g)(Y), we simply do not need to apply powerset to the second component. [] 

8. Interpreted Functions and Predicates 

In this section, we consider the use of arbitrary interpreted functions and predicates 
in our query languages. In a practical language, we need to use predefined built-in 
functions (like sum, average), and predicates (like even), or let a user use his/her 
own. We call such functions and predicates interpreted, since their interpretations 
(including the interpretation of their input and output domains) are fixed. This is in 
contrast to the use of function symbols in Logic Programming, where the functions 
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are assigned a meaning in the Herbrand Universe, hence are not interpreted. 28 
The inclusion of arbitrary function and predicate symbols in the languages is easy. 
The calculus is a paradigm that allows the use of any function or predicate name. 
In the algebra, operations like replace and select were defined explicitly so that any 
unary function or predicate parameter of the appropriate type can be used. Thus, 
we can add arbitrary functions and predicates to the collection of base functions, 
and there is no need to change any of the other definitions. 29 

We do have a problem, however, with domain independence and related notions, 
since even defining the notion of domain independence in the presence of interpreted 
functions is difficult. We consider one approach to this issue and, in particular, 
show the equivalence of the enhanced algebra with a suitably restricted version of 
the enhanced calculus (provided of course, that the same predicates and functions 
are included in both languages). 

Assume that a s e t  ~fn of functions, and a set ~ p r  of predicates are given. 
Functions in ~ f n  and predicates in Z3pr are typed. Furthermore, the domain names 
used in those types are associated with fixed domains. These will serve in both the 
algebra and the calculus. We assume that: 

(*) for each function f in Z~fn , f - 1  is also in z~kfn. 

Note that when a function is not 1-1, its inverse is set-valued; since we have 
sets in the model, this is not a problem. Our assumption implies that for each x, 
the set f - 1  (x) is finite. This is a reasonable assumption. For instance, consider 
the difference function over the integers which does not satisfy this property (e.g., 
f - z  (0) contains the pairs [1,1], . . . ,  [n,n] ...). We prohibit such functions, since 
they may cause problems as in following query: 

{x[ 3z3y(R(y) A y=z- -x )} .  

We cannot expect to compute the answer to this query in finite time. Such a query 
will not be considered domain independent under the definitions below. (We briefly 
consider an extension which allows the difference function in certain contexts, as 
follows.) 

To extendthe calculus, we introduce terms of the form f ( t l ,  . . . ,  tn), where f E z~fn, 
and allow their use in formulas. We also extend the set of formulas by adding 
atomic formulas of the form p (tl, • •., tn), for p E ~pr .  In both cases, we assume 
that the ti's have the correct types. Examples of c-queries are 

28. Note that we use the predicates of equality and membership in our languages, and that these are inter- 
preted, since they have fixed meanings. 

29. Note, however, that aggregates may require the use of bags rather than sets for producing correct results. 
The problem can be addressed either by including bag as a type constructor (see e.g., Libkin and Wong, 
1993a, 1993b, 1994) or using, for example, Klug's approach (1982). We do not consider the issue further in 

this article. 
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{x I 3y( 0,) A x.A = y A  Ax.B = c o = t  (y.B))}, 
{x I S (x) A x.a _> 5 A even (x.B)}. 

To extend the algebra, we allow any predicate in ~ p r  to be used in a select operation. 
We also allow using functions from ~ I n  in replace-specifications. For instance, the 
following are a-queries, expressing the same queries as the c-queries above: 

replace ( [A, count (B)]) (R), 

se l ec t (B  > 5 A even(B))  (S). 

We need to reconsider the definitions of a database scheme and instance. In a 
database scheme, some of the domain names are now attached to fixed domains 
(e.g., we may use the name int in the scheme, and its interpretation is fixed to be 
the integers). In addition, the sets ~p r ,  , ~ fn  are included in the scheme, with their 
fixed interpretations. A database instance is constrained in that the interpretations 
for some of the domains are fixed as described in the scheme. It also "contains" 
the interpreted functions and predicates. We denote such a database structure by 
D B I  = ([D1, . . . ,  Dk], R,  I ) ,  where k is the vector of relations, and I is the 
interpretation of the fixed domains and of the additional functions and predicates. 

Now consider domain independence. Given a query, it is not enough to consider 
for the active domain the values that appear in the database or in the query; it 
must be closed under applications of functions and their inverses. For example, 
if the database contains 1, and the functions include + ,  then queries can ask 
for each of the integers; hence, the domain should contain all integers. On the 
other hand, having infinite sets included in the active domain seems to defeat our 
intention in the definition of domain independence. To have a useful notion of 
domain independence, we present now a restricted (semantic) notion of domain 
independence. The intuition behind the following definition is that, in any given 
algebraic expression, there is a bound on the number of times functions (and their 
inverses) are applied. 

Given a database DBI,  and a set of constants C, let ATOM (R, C) be the set 
of atomic values of any atomic type that appear in k and C and, for any value 
x, let ATOM (x) be the set of atomic values that appear in x. The n-closure of 
ATOM (R, C), denoted close n (R,C), is defined as follows: 

• close ° (R,C) = ATOM (.R,C) 

• close n+l (R,C) = 

close n (R,C) U U {ATOM(I ( f ) (X l , . . . ,  x/)) I f E ~ f n ,  
'V' i = 1, . . . ,  l, ATOM (xi) C close n (R, C)} 
tO {ATOM (x) I 3 X l , . . . ,  x i -1 ,  Xl+l, • •., xl 
ATOM (f(xl, • •., x i -1 ,  x, Xi+l, . . .)) E close n (R,C)} 

Thus, if we have the natural numbers with succ and succ -1 ,  and we are initially 
given the numbers 1 and 8, then two closure steps generate the set {0, 1, 2, 3, 6, 
7 , 8 , 9 ,  10}. 
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We now want to define a query q to be n-depth domain independent if it 
depends only on the values of the n-closure of ATOM (R,Cq), where Cq is the set of 
constants used in the query and this set is finite. That implies that we should be able 
to evaluate the query on any database where the interpretations of the interpreted 
domains agree with their fixed interpretations on this closure, but may be quite 
different outside it. Necessarily, the interpreted functions and predicates must be 
given an interpretation on those new domains. All that we can require is that these 
interpretations agree with the fixed interpretations on the given closure. Thus, to 
make this notion of n-depth domain independence precise, we have to relax our 
restriction on the interpretations of the functions and predicates in ~ y n  U ~pr  
and their domains. Formally, for n-depth independence, we are allowed to use 
any domains that include close s (R,Cq), and such that the computation of the 
n-closure in these domains gives the same results as in the original domains. The 
last requirement ensures, in particular, that if we apply an inverse function to any 
elements in close i-1 (R,Cq), we obtain only elements that are in close i (R,Cq), for 
all i = 1 , . . . ,  n, even though the functions may have arbitrary behavior outside this 
set. Assuming this relaxation, a query is n-depth domain independent if q (DBI) = 
q (DBf) ,  for any DBI ~ that agrees with DBI on close n (R,Cq), as described above. 
A query is bounded-depth domain independent if it is n-depth domain independent 
for some n. 

Theorem 8.1 Let Aim and Apt be given. The following are equivalent, for a query 
q: 

(a) q is expressible by 
(b) q is expressible by 

Proof." We first show how 

an a-query, 
a bounded-depth domain-independent c-query. 

to associate a depth with each a-query. For a-queries 
and replace specifications that contain no functions, the depth is 0. For a re- 
place specification that is constructed using tuple construction, set construction, and 
attribute selection, the depth is the maximum of the depths of the argument replace 
specifications. The same holds when a function or operator is applied to replace 
specifications, except in the case of applying a replace. Assume we have constructed 
the replace specification f = p ( g l )  (g2), and let the depths of gl and g2 be nl and 
n2, respectively; then the depth of f is nl-+- n2. Finally, if the depth o f g  is n, a n d f  
E Ayn,  then the depth off(g)  is n + 1. For queries, the depth of op (Q1, • .., Qm) 
is the maximum of the depths of the Qi's, except when op is replace. For p ( f )  (E), 
the depth is the sum of the depths of f and E. 

It is easy to see that if the depth of an a-query E is n, then it is n-depth domain 
independent. Further, we can use the construction of Section 6 to construct an 
equivalent c-query, which will also be n-depth independent. The only extensions to 
the constructions are in the treatment of replace specifications: in a select, 0 may be 
any of the predicates in Z2kpr , not just one of the three built-in predicates E, = ,  C,  
and we may apply a function from ,~Xfn to replace specifications, in addition to 
being able to apply algebraic operations. For example, if we have the formula Cg 
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for the replace specification g, then the formula for f(g) is 3 Vl (/~g (U, Vl) A v = 
f(vl)). The details are left to the reader. 

In the opposite direction, assume we have an n-depth domain-independent 
c-query. We translate it into an a-query following the construction of Section 6, 
with the following extension. Having constructed a-queries for the sets of atomic 
values of each atomic type that appear in the database or the query (the atomic 
part of the active domain), we need to perform n closure steps before we construct 
domains for non-atomic types. That is, given a-queries for close ° (R,Cq), we need to 
generate a-queries for close n (R,Cq). Given an a-query, say E, representing a subset 
S of domain of a function f, the a-query p ( f )  (E) represents the set {f(x) I x E 
S } (i.e., a forward closure step). Similarly, since inverse functions are represented 
as functions as well, we can perform a backward closure step. (This is where (*) 
is used.) Cross, powerset, projection, set-coUapse and U can be used to create sets of 
more complex types, or to decompose elements of sets into components, as needed 
to allow us to apply the functions, and to collect the new atomic elements. 

In the original construction, only the predicates E, = ,  C were used. Clearly, 
there is no problem in using any of the predicates in ~pr  as well. Finally, interpreted 
functions may be used in the construction of terms. Incorporating this fact into the 
proof creates no problem either. It is easy to see that, if the given query is n-depth 
domain independent, this translation generates an equivalent a-query. [] 

We can also generalize the notions of range formulas and safety, by adding the 
following clause: 

(Func) x = f ( s l , . . . ,  sk) (where the sl precedes x in the ordering). 

An immediate consequence of this extension is the following. 

Fact If a formula is safe, then it is bounded-depth domain independent. 

Consider now the translation of the algebra to the safe calculus presented in 
Section 6, augmented as described above. It is easy to see that the claim that all 
variables in e l  (u,v), except possibly u, are restricted remains valid. For the case 
where an interpreted function is applied we use (Func) above. Thus, we have, 

Theorem 8.2 
(I) The extended safe calculus, with ~Xfn and ~pr ,  is equivalent to the extended 

algebra, with ~ffn and ~pr.  
(11) The extended strictly safe calculus, with ~yn  and ~xpr, is equivalent to the 

extended algebra, with ~ f n  and ~pr  and without the powerset. [] 

The restrictions that we impose are quite brutal. For instance, one could allow 
functions such as integer difference in a limited manner. For instance, consider the 
query: 

{x I 3y, z(RO,,z) A x = y  - z)} 
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o r  

{x I 3y, z(R(y,z) A y = x - - z ) } .  

Although the difference has no inverse, one may argue that such constructions are 
very "safe" and should be allowed. This clearly can be done (Beeri and Milo, 1992). 

9. Recursive Queries 

In this section, we show that the domain-independent calculus (hence, also the 
algebra) permits the specification of queries that require a fixpoint in relational 
calculus. In particular, we show that it has the same power as a language based on 
recursive rules. Our presentation is brief. 

The transitive closure of a binary relation cannot be expressed using relational 
calculus (Aho and Ullman, 1979). We present an example that shows that this 
operation corresponds to a safe calculus query in the world of complex values. 

Example 9.1 Consider the relational schema R: {[A,B]}, where A and B have the 
same type. The transitive closure of R can be computed in the following way: 

• A first formula ~bl is used to obtain the set R1 of tuples [A,B] built using 
values in R (the variable x is of type [A,B]) : 

~Jl (xx) -~ 3 y,z(R(y) AR(z) A (xl.A =y.A V Xl.Z =y.B) 
A (Xl.B =z .A V Xl.B = z.B)). 

• A formula ~22 gives the set R2 of subsets of R1 (i.e., the powerset of R1). 
~b2 (x) ~ x C {xl [ ~bl (x0} where x is of type {[A,B]}. 

• Formula ~3 gives the set Ra of elements in R2 containing R: 
~,3 (x) ~ ~,2 (x) AV  z (~ (z) ~ ~ C x). 

• Formula ff3 4 gives the set R4 of elements in R3 that are transitively closed: 
~4(x) ~ ~3(x) AV ~v(u ~ x A v  Cx A u.B=v.A ~ [~A, v.B] 

x). 
• Finally, the transitive closure of R is obtained by intersecting the elements 

of R4: 
q ~ {x'[Vx(~b4(x) ~ x '  Cx)}. 

We could extend the calculus with a fixpoint operator as in the language fixpoint 
(Chandra and Harel, 1980). However, the technique used in the previous example 
can be generalized to demonstrate that this would result in no gain of expressivity; 
that is, complex-value-fixpoint is no more expressive than (complex value) calculus. 

In the same spirit of introducing recursion, we now present a simple language, 
based on recursive rules. We handle negation using the concept of "layers" (e.g., 
Naqvi, 1986; Beeri et al., 1987; Abiteboul and Grumbach, 1988; Apt et al., 1988; 
Van Gelder, 1988). 
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Given a database scheme, the relation names in it, R1, • . . ,  Rr~, are called base 

relations. The language uses names of additional relations, called derived relations. 
The language is based on the calculus. Thus, we define atomic formulas as before, 
except that derived relation names may be used as well. However, it is important to 
note that derived predicates also have a given signature. The language is typed. The 
signature for a predicate specifies the element type so, in particular, all elements 
have the same form. A literal is an atomic formula or a negated atomic formula. 
A rule is an expression of the form 

P ( t )  +--- L 1 ,  . . . , L n ,  

where P is a derived predicate, and each L i  is a literal. A rule is interpreted as 
the formula 

V x l . . .  V xm (L1 A . . .  A L n  -+ P(t)) ,  

where Xl, • •., Xm are all the variables appearing in it. A recursive query is a pair 
( 79, Q ) where 79 is a finite set of rules, and Q is a derived relation. 

Rules, programs and queries also need to be domain independent. For an 
extended discussion see Van Gelder and Topor (1987). For our purposes, the 
following should suffice. As in Section 7, let us consider an ordering on the 
variables appearing in a rule. We say that a variable is restricted in the body 
(relative to the ordering), if it follows rules ( B 1 ) -  (B4), (eL1) ,  and (CL4) of 
Section 7. The body is safe if, for some ordering of its variables, all its variables 
are restricted. A rule is safe if each variable that appears in the head also appears 
in the body, and the body is safe. We will assume henceforth that rules are safe. 

We assume familiarity with the semantics of programs without negation. Negation 
poses difficulties: it is not always possible to assign a meaning to a program with 
negation. This subject has received considerable attention in recent years. We 
consider stratification (as suggested in Chandra and Harel, 1980; Naqvi, 1986; Apt 
et al., 1988; Van Gelder, 1988). 

A stratification of a program ~ is a partition ~1 ,  • • •, 7)n of the program (i.e., 
of the set of rules) such that the following hold: 

1. All the rules defining a derived relation are contained in a single stratum. 
The facts defining the base relations are all in ~1- 

2. If the rule P(x)  ~ . . . ,  Q (y), . . .  is in P i ,  then the rules defining q are in 
some 7Pj, for j < i. 

3. If the rule P(x)  +-- . . .  ~ Q (y), . . .  is in 7~i, then the rules defining q are 
in 7Jj, for some j < i. 

Each element of the partition is called a stratum. 

A program is stratified, if there is a stratification for it. Note that a stratification 
for a program induces a partition for the predicates appearing in it, in which a 
predicate p is associated with the stratum where the rules defining it appear. 
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The semantics for stratified programs is a simple extension of the semantics 
of programs without negation: one first computes the fixpoint of the rules of the 
first stratum, applied to the database, then the fixpoint of the rules of the second 
stratum, applied to the result of the first stage, and so on. It is known that the 
final result is independent of the specific layering chosen for the program (Apt, 
1988). The semantics of stratified recursive queries is defined in the obvious way: 
compute the extensions of all derived relations; the result is the extension of the 
selected derived relation. 

Example 9.2 The database value R is of type {[A,B:{[C,C']}]} ,  and the query 

defines a derived relation T, which contains the tuples of R, with the B-component 
replaced by its transitive closure. Let us assume that we have a ternary predicate 
ins, where ins (z,x,y) is interpreted as "z is obtained by inserting x into y." We show 
later how to express it in the language. 

rl :  S(x,y)  ~ R(x,y)  

r2: S (x,z) ~ S (x,y), u C y, v C y, u.B = v.A, ins(z, [u.A,v.B l,y ), 
A I  

r3: s ix, z)  (x,z), z 

r4: 

The first two rules compute in S pairs corresponding to pairs from R, such that 
the second component of a pair contains the corresponding component from the 
pair in R and, possibly, additional elements derived by transitivity. Obviously, for 
each pair [x,y ] of R, there is a pair [x,z ] in S, such that z is the transitive closure 
of y, but there are other tuples as well. To answer the query, we need to select for 

each x the unique tuple (x,z) of S where z is maximal. 3° The third rule puts into ~/ 
tuples (x,z) such that z is not maximal for that x. The last rule then selects those 
that are maximal, using negation. 

We now show, for a given type T, the program that defines ins for sets of type 
{T}  (the variables are all of type { T } ) :  

super (z,x,y ) +-- x E z, y C z 
not-min-super (z,x,y ) ~-- super(z,x,y), super (z~,x,y ), z I C_ z 
ins (z,x,y ) ~ super (z,x,y ), ~ not-min-super (z,x,y ) 

Note that the program is type specific only through its dependence on the types of 
the variables. The same program computes ins for another type T', if we assume 
that the variables are of that type. Note also that the above program is not safe. To 
make it safe, one would have to use derived relations to range restrict the various 
variables. [] 

30. We assume, for simplicity, that the first column of R is a key. It is easy to change the rules for the case 
when this does not hold. 
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We note that, although we used C in the example as a built-in predicate, it 
can be expressed using membership and stratified negation. Also, a union predicate 
can be defined, by a program similar to that used for ins. 

Our main result is the following: 

Theorem 9.1 A query is expressible as a (safe) stratified recursive query, if and only 
if it is expressible in the safe calculus. 

Proof." (sketch) From recursive queries to safe calculus: First consider a positive pro- 
gram (i.e., a program without negation). We assume given base relation schemes. 
We also use variables whose type is the type of the cross product of all the relations, 
both base and derived. Obviously, we can express in the calculus the requirement 
that the value for such a variable is a cross product of its projections corresponding 
to the individual relations. We can also restrict such a variable such that each 
atomic component of its elements is an atomic value that appears in the database 
or in the given program. (This corresponds to ~1 in Example 9.1.) Note that this 
guarantees that the variable is restricted and, consequently, the safety of our query 
is also guaranteed. Now, the body of a safe rule is a safe query, and the head of the 
rule can be obtained by "projection." If we have several rules defining a predicate, 
we can combine them using or. Thus, for a product variable v, we can express 
the requirement that the components of v corresponding to the base relations are 
equal to the corresponding database relations, and each component corresponding 
to a derived relation satisfies the corresponding rules of the program. That  is, we 
can express the requirement that v contains the least fixpoint of the program. This 
construction actually can be carried out for the relational calculus as well. The 
difficulty is to force the value to be precisely the least fixpoint. Assume qo (v) is 
the formula described so far. For the rest, we mimic the last steps of Example 9.1, 
where we showed how to select the smallest set in a collection of sets. 

For a general stratified program, we do a similar construction for each stratum. 
That  is, after all the strata up to and including 79i have been "applied," we treat 
all the derived relations of those strata as base relations in the construction for the 
next stratum. After we have a formula defining the values of all derived relations, 
it is easy to select the values for the query. 

From safe calculus to recursive queries: Given a c-query, we transform it as described 
in Section 7, so that each subquery has an associated range restriction for its free 
variables. (As assumed there, we eliminate first all universal quantifiers.) Now, we 
construct the recursive program using induction on the structure of the query. Each 
subquery is treated together with its associated range restriction, which guarantees 
safety of the rules, and we use a (new) derived predicate for each subquery. 
Conjunction, of course, poses no problem; disjunction is modeled by having one 
rule for each disjunct. Negation leads one step up the stratification hierarchy, and 
the existential quantifier is simulated by projection (i.e., if qo (xl , .  • .) = 3 x ~ (x, 
xz • • .), then we have a rule P~o (Xl, . • .) +-  PC (x, Xl , .  • .). [] 
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We note that this claim is not true for a non-typed language. If we allow 
relations to be heterogeneous, then we could write the following simple rule: 

too-large ({x}) ~ too-large (x) 

Adding an appropriate exit rule, we have a program that computes an infinite 
relation, without using an external function. This program cannot be simulated in 
the algebra or the calculus. 

To conclude this section, we consider interpreted functions and predicates into 
the rule-based language. A similar problem has been independently studied by 
Chen (1988), where aggregate functions are introduced in a language resembling 
that of Abiteboul and Grumbach (1988). The use of interpreted functions leads to 
the following two problems: 

• Interpreted functions may introduce new values in the database, after which 
the finiteness of the results of the application of programs is not guaranteed 
any more. 

• Programs with interpreted functions, like programs with negation, may not 
have a unique minimal model. 

The second problem arises, for example, when aggregates are applied to sets; 
only when the set is fully computed, it makes sense to apply the function. As for 
negation, stratification provides a solution to the second problem. It turns out that it 
can also provide a solution to the first problem. Indeed, an appropriate stratification 
of programs with interpreted functions (and predicates) leads to a language that has 
exactly the power of the algebra or the safe calculus. The stratification is defined 
as above, with the additional following constraint: 

if P(. .)  ~-- Q 0 - "  "('")" • • is in 79i, and f (an interpreted function) is 
used in the rule, then the rules defining q are in some 79j, j < i. 

The condition could be relaxed. For instance, in the rule S (x,f(x)) ~ R (x,f(x)), the 
presence of R and S in the same stratum would not cause any problem, since the rule 
uses R positively, and does not introduce new values. Intuitively, the stratification 
should be restrictive enough to guarantee that, if a function is applied, the result 
should be in a new stratum. 

To complete the informal description of the language, we need to extend the 
notion of safety as follows: if the body contains y = f ( x ) ,  and x is range restricted 
and precedes y, then y also is considered to be range restricted. 

Theorem 9.2 Let ~ I  and ~ p  be given. A query is expressible as a layered recursive 
program, using functions and predicates from these sets, if and only if it is expressible 
as a bounded depth safe c-query with the same functions and predicates. 

As we have noted, the stratification condition can be relaxed. But it cannot be 
dropped. For example, the rule R (f(x)) ~-- R (x) applies f an unbounded number 
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of times; hence, it cannot be expressed in the calculus. That is, although the rule 
is a calculus formula, it is not safe, and there is no safe formula that expresses this 
query. 

10. Conclusions 

In this article, we present an approach to the generalization of query language 
paradigms to models that allow more structure than the relational model. We have 
considered calculus-based, algebraic, and logic-programming-based paradigms. We 
have generalized each of the paradigms to the complex value model, and have 
considered the validity of the relationships known to hold between these paradigms 
in the relational setting. We have found that the equivalence of the algebra with 
the domain-independent calculus and a safe calculus holds, but the distinction 
between the calculus/algebra and a language that allows recursion no longer holds. 
Both these results depend on the inclusion of a powerset operation in the algebra, 
or equivalently on the unrestricted use of the calculus. Therefore, we also have 
considered the algebra without this operation, and presented a restricted version 
of the calculus equivalent to this algebra. We believe that this is the fight algebra 
for complex values; indeed the monadic algebra of Breazu-Tannen et al. (1992) is 
essentially our algebra without the powerset, and they present arguments to support 
this claim. 

Our algebra is based on the following principles: The use of type-specific 
operations given with type constructors, and of user-supplied functions on base 
types, as the main ingredients of restructuring functions; the use of composition 
as a major tool in the construction of both queries and restructuring functions; 
the use of a small number of higher-order operations to generate set functions 
from element functions; the use of the tuple constructor as a function constructor. 
The concept of composition exists also in the relational model, in the form of 
the closure requirement for query expressions. The more complex structure of 
values, and particularly the possibility to recursively use the set constructor, require 
the inclusion of higher-order operations. We believe that this is the approach that 
should be taken to the design of generalized algebras. Our emphasis on composition 
brings to mind category theory, where composition is a central concept. It turns 
out that the semantic domain for the algebra is indeed a category, that replace is 
a functor in it, and set-collapse and single (the construction of singleton sets) are 
natural transformations and, furthermore, they satisfy the axioms of a monad. With 
the empty set and union, we have a ringad. (For definitions and related work see, 
e.g., Wadler, 1990; Breazu-Tannen et al., 1992; Trinder, 1991). 

In addition to the general framework and specific results described above, it 
is of interest to consider which of those languages, if any, is best for practical 
use. In this context, it is important to note that we have not considered SQL 
extensions in this article. Most implemented systems actually use languages based 
on this paradigm (see e.g., Cluet et al., 1990). Comprehensions (considered in 
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Wadler, 1990; Trinder, 1991) can be viewed as a pure form of generalized SQL. 
We conjecture that language paradigms based on comprehensions or similar ideas 
are more suitable for user-interfaces, whereas the algebra may be more suitable as 
an internal-representation language. However, these issues are outside the scope 
of this article and deserve further study. 
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Appendix: From Calculus to Algebra 

We now show that, for each safe c-query, there is an equivalent a-query. We follow 
the translation of the calculus to the algebra presented in the previous section, with 
one major difference. Recall that the translation there is based on a-queries for 
the domains of the variables, which are constructed from a-queries for the active 
domains of the database. Since variables are now range restricted, we use a-queries 
that express these range restrictions as the domain expressions for variables. Thus, 
whereas the a-query constructed in the previous section for a given c-query q is 
equivalent to it (in the general case) only on DBq, the a-query we construct below 
will be equivalent to q on all databases. 

This raises a technical problem. In general, range formulas are associated with 
a query as a whole, or with only some of its subqueries, rather than with each of 
its subqueries. To prove our claims by induction on the structure of formulas, we 
need to associate, with each subformula, range restrictions for the variables that 
are free in it. Therefore,  we show that every safe formula can be converted to an 
equivalent safe formula that satisfies this requirement, and we prove the claim for 
such formulas. 

The transformation works as follows: First, we push the existential quantifiers 
to the outside as much as possible. Recall that 3 commutes with A, V (assuming 
variables do occur bound in a subformula, and also free outside it), but not with 9 .  
Thus, after the transformation, the formula o~ and each of its negated subformulas 
start with a (possibly empty) string of existential quantifiers, and there are no other 
quantifiers. This transformation leaves all variables restricted, so the formula is still 
safe. For a variable x that appears in the formula, we have the following cases: if 
x appears only in a negated subformula, it cannot be free there, since it would not 
be restricted otherwise in o~. Hence, it is bound there by a quantifier 3 x. If x is 
free there, then it must also appear  outside that subformula, so either it is bound 
in some enclosing negated subformula, or it is bound in the prefix of ce, or it is 
free in o~. 

Think of o~ as a tree, where the leaves are atomic formulas, and the internal 
nodes are labeled by one of A, V, 9 ,  3 x, B5. 31 Each internal node corresponds 
to a subformula of o~. The nodes just below the existential quantifier prefixes of 
ol and its negated subformulas are distinguished in the following sense: for each x 
there is precisely one such node, denoted nz, such that all occurrences of x (except 
for the one in 3 x, if x is bound) occur below that node, and either the associated 
prefix contains 3 x, or x is free in o~ and the node is just below the prefix of ol. Our  
transformation will associate a range formula for x with nz, and each of the nodes 
below it corresponding to subformulas that contain x. We work on one variable at 

31. The last case corresponds to a range formula of the form X C {y ] ~0 }. This is not an atomic formula; 
it has ~ as a subformula. 
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a time, starting from the one that is last in the order. We first describe the process 
for the case that x is this last variable, then describe briefly the changes needed for 
the other variables. 

Going from nz down, we mark each internal node by x i  if x is free in the 
corresponding subformula. Clearly, nx is marked with x i .  Now, since x is restricted 
in ct, there are atomic subformulas that are range restrictions for x, according to 
(B1) -- (B5). But some of those, namely those that appear in the scope of negation, 
do not contribute to making x restricted in ct. For example, in S(x) A ~  R(x), the 
subformula R (x) by itself is a range formula for x, but it is not the subformula that 
restricts x in the whole formula. Going from nx down, we replace in certain nodes 
the mark xf  by xr, to signify that x is restricted in the subformula corresponding to 
that node (when it is considered by itself). Thus, when finished, we have unmarked 
nodes (x does not appear at all), nodes marked by x f  (x is flee, but not restricted), 
and nodes marked xr (x is free and has a range restriction). 

This marking process is done as follows: The node nz is marked by xr, since 
x must be restricted in the corresponding subformula. Given a marked node, we 
compute the mark(s) for its child(ren) as follows: First, if a node has the mark x f ,  
the marks of its descendants are not changed. Thus, we need only describe the 
"inheritance" rules for marks of the form xr. For a node labeled V, x occurs and 
is restricted in both its two children. Thus, each child inherits the mark xr. For a 
node labeled A, we have a similar case, except that x may be free in a child and 
not restricted in the corresponding subformula. (Recall that if x is restricted in ~, 
it is also restricted in 99/k ~ ,  regardless of the structure of ~b.) Each child that has 
x free and restricted in the corresponding subformula inherits xr; there is at least 
one such child. (In the example above, S (x) would be marked by xr, but --1 R (x) 
would not; similarly in S (x) /k x < 3, only S (x) would be marked by xr.) A child 
that has x free but not restricted remains marked by xy. Finally, if a node is labeled 
-~, then in the corresponding subformula x cannot be restricted. Such a node may 
have the mark xy, or no mark and, in either case, this is not changed. Finally, since 
the marking process stops at negations, and quantifiers occur only below negations, 
we do not need to consider quantifiers. 

When the marking process terminates, there must be range formulas for x 
that are marked by x~ (otherwise the given formula is not safe). These are the 
"useful" range formulas. In the next stage, we push these range formulas upward, 
and also sideways into subformulas that are marked by xf .  We stop when we 
reach nx. Before we begin, conjunctions and disjunctions of range formulas are 
merged, in the sense that from now on such a conjunction/disjunction is considered 
as an indivisible subformula. As we proceed, we continue to merge range formulas 
whenever possible. 

Denote a range formula for x by r (x). We use the following steps: 

* A subformula (r(x) /k~)  /k~b (where ~ does not contain a range formula 
forx)  is transformed to r(x) A (qJ A ~bl), where cp ~ is r(x) Aqo, if ~ contains 
x free, and is just cp otherwise; ~b' is r(x) A ~  if ~b contains x (is marked 
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xf), and is just f t  otherwise. If the subformula has the form (r(x) A ~ )  A 
(rl(x) Aft), then we merge range formulas: let rn(x) = r(x) A rl(x), then 
we obtain r"(x) A (r'(x) Aqo) A r'(x) Aft2). (When the second conjunct has 
only t(x) ,  a simpler form is obtained.) 

• A subformula (r(x) ALp) V (rt(x) Aft), is transformed to (r(x) V rl(x)) A 
(r(x) /k~)  V (rl(x) Aft). Note that, i f x  appears in a disjunction, and is 
restricted there, then it must be restricted in both disjuncts. 

Note that we do not treat negation. As already stated, there are no "useful" 
range restrictions for a variable x inside a negated subformula, unless it is bound 
there, in which case nz is below the quantifier prefix of that subformula. For 
essentially the same reason, we never have to go through an existential/quantifier. 
Indeed, for each x, nz is below the quantifier prefix of o~, so we never have to go 
through that prefix. Other quantifier prefixes always occur just below negations; 
hence, for such a prefix, either nx is below it, or else it occurs under nz in a negated 
formula and has no range restriction for x. Finally, we note that, for the current 
case, x is the last variable in the ordering, x is not used in a range restriction for 
another variable of the form (B5); hence, we do not need to go through such a 
formula either. 

To finish our transformation, we need to describe how a range restriction r (x) 
that is associated with a subformula ft  that is marked xf, is pushed down to its 
subformulas. We have the following cases: 

• A formula r(x) A (ftl0ft2) is transformed to r(x) A (r(x) A~i ) 0 (r(x) 
Aft2) where 0 is A or V. Clearly, if, say, f t l  does not contain x, then r is 
pushed in only to ft2. 

• A formula r (x) A = f t  is transformed to r (x) A= (r (x) Aft  ). 

• A formula r(x) A3 y ( ~  (y)) is transformed to r(x) A3 y(r(x) Aqo (y)). 

Here  again, we do not need to push down through a formula of the form (B5), since 
x is not used there. We may need to push down through an existential quantifier. 

The result of the transformation can be viewed as follows: Each subtree of the 
formula that contains only range formulas for x is now considered indivisible; its 
inner structure is of no further concern to us. Every other subformula below nx, 
whether atomic or not, is now "anded" with a range formula for x (unless it does 
not contain x).  It is convenient to carry this structure to the following stages. For 
example, a subformula r (x) A (So V ft ) will be considered as a disjunction. But 
note that, when we perform the transformation for y, it may appear in r (x), since 
the range restriction for x uses it, or in ~ or ft. We consider y as appearing in the 
subformula if any of these three cases occurs. Further, and most important, when 
we associate a range f o r m u l a / ( y )  for y with the subformula, we transform it to 
r(x) A / ( y )  A (~  V f t ) .  That is, we collect all range formulas associated with a 
node of the tree. This is more economical than pushing the range formulas for y 
separately into each of them. 
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When the transformation above is applied to the next variables, there are some 
differences. First, when we mark nodes by Yr, going down from ny, we may have 
to go into a subformula ~ appearing in a range restriction of the form x C {z 
[ ~ (z)}. Another new case is that we may have a restriction z C_ {y I qo (y) }. 
Since y precedes z in the ordering, when we treat y, we have already performed the 
transformation for z (possibly creating many occurrences of this range formula). 
Anyway, we start the transformation for y in ~, since ny occurs there, and we do 
not need to consider (for y) anything outside this subformula. 

Second, when going up, we may have to push a range formula out of a subformula 
of the form (B5). For example, in 3 z . . .  A x C {y [ R (z) A y C z }, we can push 

(z) outside, to obtain 3 z . . .  A R (z) A x C_ {y [ R (z) A y C z }. Finally, when 
pushing down, we may have to push through a subformula of the form (B5). We 
use the equivalence of r (x )  A z C {y [ ~ }  and r (x )  A z C {y [ r (x )  Acp}. 

Call a conjunction A ri (xi) of range formulas closed if, for each i, if ri uses ~a 
variable y, then for some j, y = xj. Since a range formula for a variable can only use 
variables that precede it, a closed conjunction can be ordered such that each conjunct 
uses only variables from preceding conjuncts. This implies, in particular, that at 
least the first conjunct has one of the forms (B1) -- (B4) (or Boolean combinations 
thereof), and it uses no variables. 

When the transformation terminates, we have a formula where each subformula 
is either a closed conjunction of range formulas, or the conjunction of some formula 

and a closed conjunction that contains range formulas for the free variables of 
~. We now prove that it can be translated to an a-query, using induction on the 
number of variables in it. 

First, we claim that given a closed conjunction of range formulas A ri (xi), i = 
1 , . . .  n, we construct an equivalent a-query. This query produces a set of n-tuples. 
Recall that it is not a cross product. For each value of xl,  there is a set of values 
of x2; for each pair of values for xl,  x~ there is a set of values for x3, and so on. 
That  such an a-query exists is proved by induction on the number of variables in 
the conjunction. (Thus, the proof uses double induction on the number of variables 
in the formula, and for a given number, on the number of variables in the range 
formulas.) The basis is the construction for the first variable, and we use the fact 
that its range restriction uses no variables. It has one of the forms (B1) -- (B4), or 
combinations thereof that use only A and V. Since the combinations can be taken 
care of by fq and U, respectively, we consider only the basic forms (and similarly 
for the other variables). For (B1), the a-query is R. For the other three cases, since 
t is a constant, the a-queries are t, {t }, and powerset (t), respectively. Note that the 
last case, since we are dealing with the first variable, is not a real use of powerset; 
since t is a constant set, its powerset is just another constant set. But, when used 
for variables that do depend on previous variables, it is a real use of powerset. 

If the formula has just one variable, then this part is finished, and we skip 
to the second part of the proof. If there are more variables in the given closed 
conjunction, let the next one be xi. We have three cases. For a restriction of the 
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form (B1), the domain of xi is independent of those of the other variables, its 
construction is as above, and we take its cross product with the a-query for the 
preceding variables. For restrictions of the form ( B 2 ) -  (B4), we use the same 
proof as in Claim 6.6, where it is proved that if a term t contains variables x l ,  • •.,  
xl, then one can construct an a-query that produces an (l --b 1)-relation, where the 
first l columns contain values for the l variables, and the last column contains the 
corresponding value for t. (In our case, l = i -- 1.) All we need to do is to apply 
some operator to the last column, in a replace operation, according to the form of 
the range restriction for xi. For (B2) we use set-collapse, for (B3) the a-query we 
have is the one we need and, for (B4), we use powerset (and this is a real use of 
this operator). 

The last case to consider is (B5), namely xi C {y [ qo (y)}. However, qo does 
not contain xi, so it has a smaller number of variables than the formula we are 
considering. By induction hypothesis, there is an a-query for qo. We have to keep 
in mind that ~ may contain other free variables except y. Let us first illustrate the 
construction by an example. Assume the query is 3 v (R (v) A x C {y [ y C v }). 

After the transformation, the range formula for x will have the form x C {y [ R (v) 
A y C v }). The formula g) contains the free variables v,y so that the type of its 
result, which is also the type of the result of the corresponding a-query, is a set of 
pairs, of (v,y)-values. We need to transform it to have a set of y-values for each 
possible v-value, since each x-value must be included in one of these y-sets. Thus, 
we need to simulate a nest operator. We have seen how to do that in Section 5. 
Thus, we can obtain an a-query that will return a set of pairs of the form {[v, {y 
[ ~ (v,y)}]}. Since x is supposed to be a subset of one of the sets in the second 
column, we apply powerset to this column (i.e., using powerset inside a replace). 
Note that the domain expression for x also has a position for the parameter  v. If 
we project out the first column, we lose the connection of each set in the second 
column to a v-value. To translate the full query, we have R for the R (v) part, we 
join it with the a-query we obtained for the range formula for x (and the variable v 
that it depends upon) on the common v-column and, finally, we perform projection 
for the existential quantifier. 

In the general case, if the free variables in 79, in addition toy  are Vl, • •., vj, then 
the a-query produces a set of (j -t- 1)-tuples, and we perform nesting on the last one, 
then apply powerset to it. These free variables must, however, appear somewhere 
else in our formula, and by the effect of the transformation, the subformula we 
are dealing with has the form A rj ( v j )  /k x C {y I qo }, where each of the free 
variables of g) except y appears among the vj's. Therefore, we join the result of 
this range formula for xi with the a-queries for the domain of these variables (using 
appropriate equalities). 

Given these a-queries, for the closed conjunctions of range formulas that appear 
in the given formula, we proceed to construct the a-query for the given formula 
using induction on its structure. For A ri (xi)  Aqo, where cp is atomic, we use the 
same construction as in the preceding section, except that we use the a-query of 
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the closed conjunction as the domain expression. For A, 9 ,  3, we use the same 
constructions as there, namely join, complement,  and projection. Note that we treat  
r(x) A (qo A ~b) as a single construction, as we do V, 9 ,  3. Thus, when we have a 
negated subformula, since there is a closed conjunction of range formulas attached 
to it that contains all the variables that are free in it, we can use complement.  Finally, 
note that we now also have V, which was not treated in the previous section. It is 
translated to union. (Each free variable that appears in one disjunct also appears  
in the other, because of safety.) 


