
Description Logics for Semantic Query
Optimization in Object-Oriented
Database Systems

DOMENICO BENEVENTANO and SONIA BERGAMASCHI
Università di Modena e Reggio Emilia and CSITE–CNR
and
CLAUDIO SARTORI
Università di Bologna and CSITE–CNR

Semantic query optimization uses semantic knowledge (i.e., integrity constraints) to transform a
query into an equivalent one that may be answered more efficiently. This article proposes a general
method for semantic query optimization in the framework of Object-Oriented Database Systems.
The method is effective for a large class of queries, including conjunctive recursive queries ex-
pressed with regular path expressions and is based on three ingredients. The first is a Description
Logic, ODLRE, providing a type system capable of expressing: class descriptions, queries, views, in-
tegrity constraint rules and inference techniques, such as incoherence detection and subsumption
computation. The second is a semantic expansion function for queries, which incorporates restric-
tions logically implied by the query and the schema (classes + rules) in one query. The third is an
optimal rewriting method of a query with respect to the schema classes that rewrites a query into
an equivalent one, by determining more specialized classes to be accessed and by reducing the num-
ber of factors. We implemented the method in a tool providing an ODMG-compliant interface that
allows a full interaction with OQL queries, wrapping underlying Description Logic representation
and techniques to the user.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—query lan-
guages; H.2.4 [Database Management]: Systems—object-oriented databases; query processing

General Terms: Algorithms, Management, Languages, Theory

Additional Key Words and Phrases: Semantic query optimization, query rewriting method,
integrity constraints rules, semantic expansion of a query, description logics, subsumption

This research was partially funded by the Italian M.U.R.S.T. ex. 40% “INTERDATA” and “D2I”
projects.
Authors’ addresses: D. Beneventano and S. Bergamaschi, D11, Via Vignolese 905, I-41100
Modena, Italy; email: {domenico.beneventano;sonia.bergamaschi}@unimo.it; C. Sartori. DEIS,
Viale Risorgimento 2, I-40136 Bologna, Italy; email: csartori@deis.unibo.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0362-5915/03/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003, Pages 1–50.

2 • D. Beneventano et al.

1. INTRODUCTION AND MOTIVATION

The purpose of semantic query optimization is that of transforming a query into
an equivalent one, which may be answered more efficiently. The transformed
query is equivalent to the original one if it gives the same answer for every
legal database state.

The notion of semantic query optimization for relational databases was in-
troduced in the early 80’s by King [1981]; Hammer and Zdonik [1980] inde-
pendently developed very similar optimization methods. The key idea in King
[1981], as well as in Hammer and Zdonik [1980], is that integrity constraints
may not only be utilized to enforce consistency of a database, but may also
optimize user queries.

Following Hammer and Zdonik [1980] and King [1981], the method for se-
mantic query optimization that we propose uses integrity constraints, declara-
tively expressed as part of the schema, and is effective for a large class of queries,
including conjunctive recursive queries in the framework of Object-Oriented
Database Systems. The method includes the different query transformation
criteria proposed in the literature [Hammer and Zdonik 1980; King 1981]:

—Incoherence detection. If the query is incoherent with respect to the database
schema and the integrity constraints, then a null answer can be immediately
returned without accessing the database;

—Factor Removal. Removal of implied factors (both restriction and join) from
the query;

—Factor Introduction. Introduction of a factor implied by the query; it may
prove useful to produce an alternative evaluation plan in further physical
query optimization activities.

The main new achievements are the following:

—it applies to Object, Object-Relational and Relational DBMS;
—it extends the ODMG standard to support declarative integrity constraints

and regular path expressions;
—a conjunctive query is rewritten in an optimal form, by determining more

specialized classes to be accessed and by minimizing the number of factors;
—a significant set of recursive (conjunctive) queries is supported.

The method is based on three ingredients. The first is a Description Logics, ODLRE

(Object Description Language with Regular Expressions) which extends the one
developed in Bergamaschi and Nebel [1994] and is capable of expressing class
descriptions, queries, views and integrity constraints rules as types. The notion
of database schema is thus generalized by introducing integrity constraint rules
and views in the schema. ODLRE provides the core theoretical framework in terms
of Description Logics (DL) inference techniques, incoherence detection and sub-
sumption computation, to develop a theory of semantic query optimization. The
second one is a semantic expansion function [Shenoy and Özsoyoglu 1987, 1989],
which incorporates restrictions logically implied by a type and the schema
(classes + rules) into the type itself. The third ingredient is a rewriting method

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 3

ODLRE

schema

ODLRE

expanded schema

Type unnesting and
elimination of

generic type conjunctions

ODLRE

canonical schema

Semantic
Expansion
of a type

apply rule

ODL-ODMG
schema

Fig. 1. Schema compilation process.

which produces an equivalent query, by determining more specialized classes
to be accessed and by detecting/removing (if necessary) redundant factors.

The chosen strategy for semantic query optimization is the following: We
compile the database schema (classes+views+integrity constraints rules),
thereby creating an enriched schema, that is, expanded schema; the database
schema is provided in ODL-ODMG and the expanded schema is expressed in
ODLRE. The compilation process (see Figure 1) is based on the generation of a
semantic expansion of the schema types. Semantic expansion is based on the
iteration of this simple transformation: if a type implies the antecedent of an
integrity constraint rule (which is a type) then the consequent of that rule
(which is a type too) can be conjuncted. Logical implications between types
are evaluated by means of subsumption computation; intuitively, subsumption
evaluates implicit is a relationships between types based on their descriptions
(see Brachman and Schmolze [1985] for a general description of subsumption
and Bergamaschi and Nebel [1994] for the subsumption algorithm used in this
article).

At run time (see Figure 2), we add the query Q to be optimized, expressed
in OQL-ODMG, to the compiled schema and reactivate the compilation process
for Q , thus obtaining a semantic expansion of Q . If the query is found to be
incoherent, a null answer can be immediately returned without accessing the
database. If it is coherent, the expanded query contains more specialized classes
to be accessed and, thus, possibly the query is moved down within the classes
generalization hierarchy, obtaining an immediate optimization result. Then,
the redundant factors (i.e., the factors that can be removed from the query

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

4 • D. Beneventano et al.

ODLRE

expanded schema

query Q
(in OQL)

Q Factorization

factorized Q

optimized Q

Factor elimination
find

redundant
factor

Q Compilation

expanded Q

Fig. 2. Query Optimization Process

without affecting the result for any database state) are detected and removed
(if necessary) from the query.

The above-mentioned optimization method has been partially implemented1

in the ODB-QOptimizer tool [Beneventano et al. 1997], available on Inter-
net at the address www.dbgroup.unimo.it/ODB-Tools.html. ODB-QOptimizer
supports an ODMG [Cattell 1994] compliant user interface. Schemata and
queries are provided in ODL-ODMG and OQL-ODMG languages respectively.
The translation of the schema and queries into the Description Logic ODLRE is
performed by the system and is completely transparent to the user.2

In order to declaratively express integrity constraints and to formulate re-
cursive queries, we extend ODMG as described in the following:

Integrity constraint rules. In an ODL schema, integrity constraints are hid-
den in methods, that is, in the behavioral part of database schema. Our ex-
tension to ODL enables the definition, in a declarative style, of a subset of
integrity constraints represented as if-then rules. At the schema design level,
this choice enables the consistency and redundancy check of the schema as
shown in Beneventano et al. [1998]. At the query optimization level, this choice
makes further semantic knowledge available to drive the semantic query op-
timization process. The proposed extension follows the ODMG standard: the
antecedent and the consequent of an if-then rule are expressed in a restricted
OQL syntax (see Section 2.2).

Regular path expressions. OQL path expressions have been extended to
regular path expressions universally quantified (proposed for query languages
in the framework of semistructured data [Abiteboul et al. 1997; Abiteboul and
Vianu 1997; Calvanese et al. 1999; Fernandez and Suciu 1998]) in order to
express recursive conjunctive queries in a direct and simple way.

1The present version supports schema compilation and semantic expansion; it rewrites the seman-
tically expanded query in OQL but does not perform redundant factors elimination.
2ODMG is considered in its 93 version. In the following ODL-ODMG and OQL-ODMG will be
referenced by ODL and OQL, respectively.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 5

The expressiveness of a query language such as OQL makes it impossible
to provide a DL, which is able to translate any possible query and to allow de-
cidable reasoning activities (i.e., incoherence and subsumption). In addition, it
has been proven that increasing expressiveness of decidable DL quickly leads
to computational intractability (see, e.g., Donini et al. [1991]). For example,
we proved in Beneventano et al. [1998] that for a DL allowing the expres-
sion of both cyclic views/conjunctive recursive queries and comparisons be-
tween path expressions, the subsumption computation becomes undecidable.
We thus developed a DL, ODLRE, where the reasoning activities are in most
real cases tractable and identify the subset of OQL which can be translated
into ODLRE.

In other words, following Buchheit et al. [1994], we separate an OQL query
into a clean part (that can be mapped into an ODLRE type) and a dirty part, which
exceeds ODLRE expressiveness. The clean part of a query contains comparison
predicates between a regular path expression and a complex value (for the
syntax see Section 2.2).

Our semantic optimization method will be applied only over the clean part
and thus it is intrinsically incomplete with respect to a generic OQL query. An-
other source of incompleteness is the semantic expansion algorithm introduced
in the paper that is sound but not complete. The incompleteness of the method
is not a strict restriction, as optimization can be useful even if it does not find
the optimum solution. On the other hand, when the costs for optimization com-
putation are not negligible, it is necessary to seek a trade-off between the cost
savings due to optimization and the optimization cost. Our experimental re-
sults show that our cost to compute a semantic expansion of a query is always
negligible with respect to the cost savings (see www.dbgroup.unimo.it/ODB-
Tools.html).

Let’s refer to the classification proposed by Chakravarthy et al. [1990] as
a general framework to introduce our approach: “There are several aspects to
semantic query optimization: the type of database under consideration and the
type of integrity constraints allowed; the generation of semantically equivalent
queries and their correctness; filtering of useless information; the integration
of semantic query optimization with conventional query optimization and how
to limit the generation process to promising candidate queries.”

—Database and integrity constraints under consideration. The target databases
are OODBs supporting complex object data models [Abiteboul and Kanellakis
1989; Lecluse and Richard 1989], Object-Relational databases and Relational
databases. We restrict integrity rules to those that can be expressed by logical
implications between ODLRE types, thus we can efficiently compute a semantic
expansion of a query with our subsumption algorithm [Bergamaschi and
Nebel 1994].

—Generation of semantically equivalent queries and their correctness. The de-
vised semantic expansion algorithm is correct and, for a given query, gives
rise to a class of queries, which are semantically equivalent to it. The cor-
rectness of this function is based on the formal semantics of ODLRE types and
reasoning activities.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

6 • D. Beneventano et al.

—Limiting the generation process to “promising” candidate queries and filter-
ing of useless information. The semantic expansion algorithm, following the
usual logic-based approach, does not consider heuristics to guide or limit the
addition of factors during the query transformation. In this way, the task
of choosing the beneficial transformations is delayed until all the possible
transformations have been considered: as many factors as possible are gen-
erated, the redundancy testing for factors and the incoherence detection can
be conducted to a maximum degree [Shenoy and Özsoyoglu 1987, 1989]. The
resulting query, that is, expanded query, usually refers to more specialized
classes with respect to the original. Moreover, we provide techniques to check
and eliminate (if necessary) redundant factors.

—Integration with conventional query optimization. The proposed method is
general and independent from any specific cost model and storage details
and thus it is suitable for an easy integration, on the top of a traditional
query optimizer.

Original contributions of this paper with respect to previous proposals in liter-
ature (see Section 6 for a more detailed account) are the following:

—We “move down” a query in the class generalization hierarchy, exploiting
integrity constraint rules. Thus we go beyond automatic classification of a
query with respect to views/queries as previously proposed in the DL liter-
ature [Beck et al. 1989; Beneventano and Bergamaschi 1997; Borgida et al.
1989; Buchheit et al. 1994]. Furthermore, our objective is also different from
that of maximal rewriting of conjunctive queries with regard to a set of given
views [Beeri et al. 1997; Calvanese et al. 1999]. Considering that our method
is based on a DL kernel, it also performs automatic classification of a query,
but we observe that this technique can be seen as a semantic query optimiza-
tion only if we assume that views are materialized.

—By means of semantic expansion, we address and solve the problem of finding
a more specialized rewriting of a query in terms of the schema classes. It is
an effective query optimization, since many OODBs maintain the extent for
a class, that is, the oids of all objects in the most specialized class.

—We address and solve the problem of finding an optimal query rewriting
method minimizing the number of its factors, thus, usually, minimizing the
number of classes to be accessed to solve a query. For queries whose seman-
tic expansion does not involve any recursive rule, we provide a very simple
method to independently eliminate all redundant factors.

—Our method is applicable to conjunctive recursive queries and in the presence
of cyclic schemata; in the case of the restricted form of recursion, that is,
linear recursion, we prove that a linear recursive query can be expressed
with transitive closure and thus we extend the result of Jagadish et al. [1987]
in relational environment.

This work follows the track commenced in Bergamaschi and Sartori [1992] in
applying DLs to databases and extends previous works of the authors with
regard to the proposed DL [Bergamaschi and Nebel 1994; Beneventano and

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 7

Bergamaschi 1997] and to the semantic query optimization method introduced
in Beneventano et al. [1996, 1997] as follows:

—by providing ODLRE which extends the Description Logic introduced in
Bergamaschi and Nebel [1994] with integrity constraint rules and regular
path expressions;

—by extending the set of queries for which the method is applicable to conjunc-
tive recursive queries including path expressions;

—by providing a correct algorithm for semantic expansion computation;
—by addressing the problem of finding an optimal query rewriting method.

The outline of the article is the following: In this section, we introduce a
roadmap to the technical part to help the reader navigate through the com-
plex and different formalizations introduced in the article. Section 2 introduces
our approach to semantic query optimization, presenting the extensions intro-
duced in ODMG syntax and then, with reference to a running example used
throughout the article, its effectiveness, main achievements and limitations.
Section 3 deals with the data model, describing syntax and semantics of ODLRE.
Section 4 introduces the formal definitions of: Incoherence, Subsumption, Se-
mantic Expansion of a type and the Semantic Expansion algorithm. Section 5
presents our query rewriting method. Finally, Sections 6 and 7 discuss related
works and present our conclusions.

1.1 Roadmap of the Technical Part

The roadmap of the three technical sections of the article (from Section 3 to 5)
aims at explaining the meaning and the sequence of formalizations and algo-
rithms that make up our semantic query optimization method. This description
is intended especially for the reader who is not interested in going into the var-
ious formal methods.

The three technical sections of the article deal, respectively, with the three
ingredients mentioned in the beginning. In Section 3, we introduce the ODLRE

description logic, illustrate its type constructors and provide its formal seman-
tics. In particular, we describe regular path expressions, which are an essential
part of object query languages. Then, we introduce the rule schema, which is
our specific extension to represent if-then rules in an object schema and the dis-
tinction of the instances of the schema into possible (i.e., in accordance with the
type definitions) and legal (i.e., possible and in accordance with the rules). This
section is dedicated to the reader interested in understanding the semantics of
the supported language.

Section 4 provides the definitions for subsumption between types, incoher-
ence of a type and semantic expansion of a type being the core instrument for
our activity. Usually, DL algorithms do not explicitly take rules into account,
and therefore we eliminate them by transforming the schema with a seman-
tic expansion of types into an expanded schema. This is an iterative process,
based on subsumption, triggered by a rule that is applicable to some type and
ends when every rule has been incorporated into a type, changing its defini-
tion. Section 4.1 implements the above mentioned concepts by providing the

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

8 • D. Beneventano et al.

semantic expansion algorithm. In particular, in order to simplify it and to ex-
ploit the subsumption and incoherence algorithms already available for ODL

Description Logic introduced in Bergamaschi and Nebel [1994], it proves use-
ful to transform the schema into a canonical form. A canonical schema is a
schema where types are canonical, that is, unnested, conjunctions of types are
eliminated (whenever possible) and each name description contains the con-
junction of primitive names (without description) and a single canonical type
description. The semantic expansion algorithm produces the expanded schema,
which is a conservative extension of the original schema. The section is com-
pleted with the proofs.

Section 5 describes our optimal query rewriting method, which gives an
equivalent query rewritten on the basis of more specialized classes of the schema.
Considering that a query can be expressed as a virtual ODLRE type, it can be ex-
panded by the semantic expansion algorithm. The expanded query is a “redun-
dant” rewriting of the query in terms of more specific classes and base types. An
expanded query, in fact, is the conjunction of many, possibly redundant factors,
due both to the semantic expansion process and to the adopted canonical form;
furthermore, it includes references to virtual names. Then, to obtain the optimal
rewriting, we must remove redundancies and references to virtual names.

The first step is to check the coherence of the expanded query; in the case of
incoherence, a null answer can be returned, giving an immediate optimization
result. If the query is coherent we rewrite the expanded query as a conjunc-
tion of factors, expressed in terms of more specialized classes and base types.
The factorization is obtained by deriving a proper finite automaton from the
query, where each factor is a path type whose path is a union-free regular path
expression.

The second step is to find out which factors of the query are redundant and
thus, if necessary, can be eliminated from the query. The detection of redundant
factors is based on very general criteria, based merely on logical properties. To
provide a simple method to independently eliminate redundant factors we need
to check the absence of recursive rules in the semantic expansion of the query:
the check is done by introducing rule graphs to formally define recursive rules
in our context and by using subsumption. The elimination of redundant factors
generates an optimized form of the query that is semantically equivalent to the
original one and, hopefully, less expensive, which can be easily translated into
an OQL query with path expression extensions.

2. SEMANTIC QUERY OPTIMIZATION: EXPLAINING THE METHOD
BY EXAMPLES

In order to illustrate our method we introduce herein the Company Domain
example and the ODL extensions; the OQL extensions and the main query
optimization achievements.

2.1 The Company Domain and the ODL Extensions

The Company Domain describes (a part of) the organizational structure of a
company. Departments have a name and a category (from 1 to 7), employ a set

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 9

of employees and have at least one employee with an administrative function.
Employees are described by a name, a qualification (from 1 to 10), a salary
(from 10 to 100), a level composed of a class and a parameter (from 1 to 5), work
in a department, have an employee as head and a set of skills. Managers are
employees having a qualification from 8 to 10, a manager as head and direct
a department. Core Business Departments (CB Department) are departments
having a high category (from 5 to 7) and a manager as administrator. Medium
qualification employees (Mdl Employee) are exactly those employees having a
medium qualification (from 5 to 10). Clerks are exactly those employees with
a qualification between 7 to 10 who have a clerk as head. A manager having a
qualification greater or equal to 9 must direct a CB Department. Departments
that employ only employees having a qualification greater or equal to 5 are
CB Departments. Employees with a salary greater or equal to 60 and a head
with a qualification greater or equal to 7 are managers. Managers directing
departments with a category greater or equal to 4 and a salary greater or equal
to 50 have a qualification equal to 10.

In Table I, the Company Domain schema in extended ODL syntax is given.
The extensions introduced into ODL to represent integrity constraints are:
value ranges, virtual classes (i.e., views) and integrity if-then rules (i.e., rulei− j
in Table I). A schema may thus contain usual primitive classes (interface),
virtual classes (view) and complex value types (relation). From an extensional
point of view, this means that, for example, we have to explicitly fill the in-
terface Employee, while every object that is entered as an employee having a
qualification from 5 to 10 is automatically entered in the view Mdl Employee.
Moreover, from an intensional point of view, views enable subsumption rela-
tions (i.e., specialization relations implicitly hidden in class descriptions) to be
computed. Cyclic views are allowed in the schema, as in the case of Clerk. Fur-
thermore, a schema may contain integrity rules (rules r 1 to r 4 in Table I) (For
the extended ODL syntax, see Appendix A).

2.2 The Target Query Language: OQL Extensions and Limitations

In general, query languages in complex object environment are made of two
components: one for selecting objects and one for producing the actual answer
by navigating the aggregation hierarchy of the selected objects. We will consider
the first component of the language. The clean part of a query (see Table II,
column 2) is a generalization of a generic OQL query, where CleanCondition
restricts/extends OQL conditions.

In Table II, multipath is a path including at least a multivalued attribute,
rpe is a regular path expression, CleanSet is a ClassName or a (select X from
ClassName X where CleanCondition).

OQL has been extended with the capacity of expressing a regular path expres-
sion (rpe). A regular path expression is defined by: composition, (represented
by dot notation “.” and already present in OQL), Kleene closure, represented
by “*”, union, represented by “+” (see Hopcroft and Ullman [1979]).

In particular, we include the Kleene closure in our OQL extension, since our
focus is on expressing and generalizing the transitive closure of an attribute

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

10 • D. Beneventano et al.

Table I. The Company Domain Schema in Extended ODL Syntax

relation Level ()

{ attribute string class;

attribute range 1 to 5 parameter; };

interface Department ()

{ attribute string dname;

attribute range 1 to 7 category;

attribute set<Employee> employs;

attribute Employee administrator; };

interface Employee ()

{ attribute string name;

attribute range 1 to 10 qualification;

attribute range 10 to 100 salary;

attribute Level level;

attribute Employee head;

attribute Department worksin;

attribute set<string> skill; };

interface Manager: Employee ()

{ attribute range 8 to 10 qualification;

attribute Manager head;

attribute Department directs; };

interface CB Department: Department ()

{ attribute range 5 to 7 category;

attribute Manager administrator; };

view Mdl Employee: Employee ()

{ attribute range 5 to 10 qualification; };

view Clerk: Employee ()

{ attribute range 7 to 10 qualification;

attribute Clerk head; };

rule r 1 forall X in Manager: X.qualification >= 9

then X.directs in CB Department;

rule r 2 forall X in Department: forall Y in X.employs : Y.qualification >= 5

then X in CB Department;

rule r 3 forall X in Employee: X.salary >= 60 and X.head.qualification>=7

then X in Manager;

rule r 4 forall X in Manager: X.directs.category >= 4 and X.salary>=50

then X.qualification = 10;

in a query formulation, as introduced for OODBs query languages in Bertino
et al. [1992]. In Bertino et al. [1992], the transitive closure of an attribute a is
expressed by means of the ρ operator, which has the following behavior: given
an object o, instance of a class C, and a property a of o, o.ρ(a) defines a set of
objects that are either values of the property a of o, or values of property a of

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 11

Table II. Clean Query & OQL Condition vs. Clean Condition

select *

from ClassName

where CleanCondition

OQL Condition (CC) CleanCondition

query θ query path θ value

query <and|or|not> query CC and CC

query in query path in CleanSet

<forall|exists> X in query : query <forall|exists> X in multipath : CC(X)

query <intersect|forall|exists> query CleanSet intersect CleanSet

<forall> X in rpe : CC(X)

Table III. Query Q1 in Extended OQL

select *

from Employee

where salary >=80

and forall X in head.(head)* : X.qualification >= 7

some object o′, which is a value of property a of object o, etc. Objects in this set
are both cyclic and acyclic objects and are implicitly bound to class C, which
is the domain of property a. This form of recursion, which corresponds to the
notion of linear recursion, makes it possible to express most of the recursive
queries encountered in real applications [Bertino et al. 1992; Florescu et al.
1998].

We propose denoting in OQL the transitive closure of an attribute a by (a)*;
as in general a rpe identifies a set of objects, it will be used in a quantified
expression as follows:

forall X in rpe : CC(X)

In this way, we can express conjunctive recursive queries as the following:
“select the names of the employees with a salary greater or equal to 80 and
having a head, at each level, with a qualification greater or equal to 7” (see
Table III).

If we express the closure of a multivalued attribute (or, in general, of a path
with a multivalued attribute) we obtain a set of objects at each level and thus
the CC(X) condition must be quantified, as shown in the following example:

select *
from Employee (Q2)
where forall X in (worksin.employs)* :

exists Y in X :Y.qualification >= 7

The above Q1 and Q2 queries are clean and thus are optimized by our method.
What is left out in our optimization method are recursive queries that can be

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

12 • D. Beneventano et al.

expressed by means of rpe with existential quantification:

exists X in rpe : CC(X).

2.3 Main Query Optimization Contributions

Hereafter, the main semantic query optimization achievements are pointed
out and explained by means of some examples related to the Company Do-
main. Achievements 1–3 and 5 are obtained by exploiting semantic expan-
sion and DL inference techniques; achievement 4 is obtained on the expanded
query by exploiting our optimal rewriting method. Finally, at point 6, the lim-
itations of the method related to the expressiveness of the supported query
language are sketched. All the query transformations performed below (ex-
cept redundant factors elimination) can be directly obtained by using the
ODB-QOptimizer available on Internet at the address www.dbgroup.unimo.it/
ODB-Tools.html.

1. Incoherence Detection. If the semantic expansion of a query is found to
be incoherent, a null answer can be immediately returned without accessing
the database.

As a simple example of incoherence detection, let’s introduce the query “se-
lect the core business departments (CB Department) with an administrator of
qualification 4”:

select *
from CB Department (Q3)
where administrator.qualification = 4

The query is found to be incoherent by ODB-QOptimizer. In fact, the set of
employees filling the administrator attribute must belong to the Manager class
having a qualification value in the [8–10] range, thus not including the qual-
ification value “4.” The result, in terms of query optimization, is that a null
answer can be immediately returned without accessing the database.

By means of integrity rules, less intuitive incoherencies may be detected, as
in the following example:

select *
from Department (Q4)
where forall X in employs : X.qualification = 6
and category = 4

The above query is found to be incoherent, by the definition of CB Department
and enforcement of rule r 2. In fact, a Department employing only employees
with qualification greater than 5 is a CB Department, but a CB Department must
be of category between 5 and 7.

2. Query Classification with respect to Classes (not only Views). The
semantic expansion of a query contains a more specialized class of the
class-inheritance hierarchy rooted at the query and more specialized classes
rooted at its subqueries. The substitution in the query of the explicitly given

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 13

classes with more specialized ones is an effective query optimization, despite
any specific cost model, as many OODBMs maintain the extent for a class,
that is, the oids of all objects in those classes. As an example of automatic
query classification (by subsumption computation) with respect to views, let’s
introduce the query Q5 “select the employees having a qualification greater or
equal to 6”:

select *
from Employee (Q5)
where qualification >= 6

By classifying the above query into the classes taxonomy returns the
Mdl Employee view as the only immediate subsumer and the Manager class as
the only immediate subsumee. Using this result, all instances of Manager are re-
turned and only the instances of Mdl Employee that are not instances of Manager
are checked against the query-condition (“qualification greater or equal to 6”)
and included in the answer-set. If Mdl Employee is a materialized view, an in-
teresting query optimization result is thus obtained.

Automatic query classification has been previously proposed in the DL lit-
erature [Beck et al. 1989; Borgida et al. 1989; Beneventano and Bergamaschi
1997; Buchheit et al. 1994]; it can be considered a semantic query optimization
technique only in the presence of materialized views. In this article, we go
beyond this technique since we can “move down” queries with respect to
class-inheritance hierarchy by exploiting integrity constraint rules. As an
example of classification with respect to primitive classes, let’s introduce
the query “select the departments employing only managers and with an
administrator of qualification equal to 10”:

select *
from Department
where forall X in employs : X in Manager (Q6)
and administrator in (select T

from Employee as T
where T.qualification=10)

After the application of rule r 2, Q6 is transformed as follows:

select *
from CB Department
where forall X in employs : X in Manager (Q6) optimized
and administrator in (select T

from Manager as T
where T.qualification=10)

This example shows an effective query optimization, resulting from the sub-
stitution of the classes mentioned in the query with their specializations. In
fact, by replacing Department with CB Department and Employee with Manager
we reduce the number of classes to be accessed to process the query, since we
eliminate the need to access the Department and Employee classes.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

14 • D. Beneventano et al.

3. Index Introduction. The semantic expansion of a query expands it with
factors logically implied by the query and by the schema (classes + integrity
constraints rules). Some of these factors may be useful to produce an alterna-
tive evaluation plan in physical query optimization. In the relational litera-
ture [Shenoy and Özsoyoglu 1987; Siegel et al. 1992], this problem is generally
addressed as index introduction, that is, the introduction of a factor including
an indexed attribute. More generally speaking, in object-oriented database sys-
tems, access support relations are introduced as a means for optimizing query
processing; the idea is that of keeping separate structures to redundantly store
those object references that are frequently traversed by path expression in
queries [Kemper and Moerkotte 1990].

A simple example of index introduction is given in the following query:

select *
from Manager
where directs in CB Department
and salary > 60

Rule r 4, together with the definition of CB Department, enables the addition
of factor qualification = 10 to the query: if qualification is an indexed at-
tribute, this factor may be useful in physical query optimization.

4. Query Rewriting Method (Detecting Redundant Factors). Semantic ex-
pansion is the basis of a further optimization activity since it enables the de-
tection of the redundant factors of a query, namely the factors logically implied
by the query. In this way, we obtain a further and general query optimiza-
tion, as, by eliminating factors, we reduce the number of classes, on a class-
composition hierarchy rooted at the query, to be accessed. In the relational
literature [Shenoy and Özsoyoglu 1987; Siegel et al. 1992], this problem is
generally addressed as constraint removal, that is, removal of implied restric-
tions from the query. As we will illustrate hereafter, this activity must be per-
formed on a semantic expansion of a query to be conducted to a maximum
degree.

As an example of redundant factors, let’s consider the following query:

select *
from Manager (Q7)
where qualification = 10
and directs.category >= 4

By rule r 1, since the second factor is implied by the first one, it can be elim-
inated from the query, avoiding the access to the CB Department class. On the
other hand, the following example shows how semantic expansion is useful to
detect further redundant factors and thus eliminate expensive factors in terms
of access.T

select *
from Manager (Q8)
where salary = 100
and directs.category >= 4

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 15

Table IV. Query Q1 Optimized (in OQL)

select *

from Manager

where salary >=80

In this case, the factor directs.category >= 4 is not redundant with re-
spect to the rest of the query; however, semantic expansion adds the factor
qualification = 10 (by applying rule r 4) to the query, thus the query can
be transformed after the expansion as follows, avoiding access to the class
CB Department:

select *
from Manager (Q8) optimized
where salary = 100
and qualification = 10

5. Recursive Queries Optimization (Factor Removal). All the above op-
timization achievements can be obtained for conjunctive recursive queries
too. Let’s refer, as an example, to queries including a path expression
with Kleene closure. With reference to query Q1, by applying rule r 3,
the query is transformed as shown in Table IV, where the original target
class Employee is substituted with its specialization Manager and thus the
factor head.(head)*.qualification >= 7 is eliminated from the query (as
it is included in Manager description). Moreover, classifying query Q1 into
the classes taxonomy returns the cyclic view Clerk as the only immediate
subsumer.

6. Limitations. Only the clean part of an OQL query is transformed by
our method. Let’s introduce, as an example, the following query: “select em-
ployees having a qualification greater than or equal to 6 and working as
administrators”:

select *
from Employee as E (Q9)
where qualification >= 6
and E=worksin.administrator

The dirty part of the above query (E=worksin.administrator) exploits self ref-
erence and equality path as usual in OODBs query languages: it only selects the
employees who play the administrator role in the department where they work.
This apparently simple factor is ignored since a DL allowing cyclic concepts and
comparisons between path expressions leads to undecidability of subsumption
computation [Beneventano et al. 1998]. Note that, in this case, even if we are
able to perform subsumption computation only over the clean part of a query,
we obtain an optimization result, since the above query is subsumed by the
Mdl Employee view.

The next two queries show cases where, by limiting the analysis to the clean
part, subsumption and incoherencies are not detected.

select *
from Employee

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

16 • D. Beneventano et al.

where worksin in CB Department (Q10)
and qualification=

worksin.administrator.qualification

This query is intuitively subsumed by the view Mdl Employee, whose range of
qualification includes the qualification of the administrator of a CB Department.
On the other hand, subsumption is triggered by the predicate qualification=
worksin.administrator.qualification, that is not included in the clean part,
and thus ignored by our method. Similarly, the following incoherent query is
not detected.

select *
from Manager (Q11)
where qualification=worksin.category

A further restriction in the expressiveness of clean queries is the existential
quantification of rpe. For example, consider the existential reformulation of
query Q1 “select the names of employees with a salary greater or equal to 80
and having at least a head with a qualification greater or equal to 7”:

select *
from Employee
where salary >=80
and exists X in head.(head)* : X.qualification >= 7

The factor exists X in head.(head)* : X.qualification >= 7 is not in-
cluded in the clean part of the query and is thus ignored by our method.
To deal with this kind of query in a Description Logics setting a disjunc-
tion operator, not included in our DL, would be necessary. As shown in a
recent work [Calvanese et al. 1999], the computation of subsumption is de-
cidable in a DL including these features. Nevertheless, the integration of
these features in a context of semantic query optimization and its implemen-
tation in a system are such a complex problem to require a new research
effort.

3. THE ODLRE DESCRIPTION LOGICS

ODLRE is an extension of the ODL (Object Description Language),3 introduced
in Bergamaschi and Nebel [1994], used in Beneventano and Bergamaschi [1997]
and is in the tradition of complex object data models [Abiteboul and Kanellakis
1989; Lecluse and Richard 1989]. ODLRE, as its ancestor ODL, provides a system
of base types: string, Boolean, integer, real; the type constructors tuple, set4 and
class allow the construction of complex value types and class types. Class types
(also briefly called classes) denote sets of objects with an identity and a value,
while value-types denote sets of complex, finitely nested values without object
identity. Additionally, an intersection operator can be used to create intersec-
tions of previously introduced types allowing simple and multiple inheritance.

3Not to be confused with ODL-ODMG.
4ODLRE extends the set type with both existentially and universally quantified set.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 17

Finally, types can be given names. Named types come in two flavours: a named
type may be primitive, which means that the user must specify the member-
ship of an element in the interpretation of the name, or virtual, in which case
its interpretation is computed.

The main extension to ODL introduced in ODLRE are regular path expressions
and integrity constraints.

Path expressions, which are essentially sequences of attributes, represent
the central ingredient of O–O query languages to navigate through the ag-
gregation hierarchies of classes and types of a schema [Bertino et al. 1992;
den Bussche and Vossen 1993; Kifer et al. 1992]. Moreover, as introduced
in Coburn and Weddel [1991], path expressions are useful to express in-
tegrity constraints. DLs with regular expressions, which can be seen as a
form of fixpoints to model recursive concepts, have been studied by Baader
[1991]. Recently, path expressions have been extended to regular expressions
in the framework of semistructured data, both for query languages schema
[Abiteboul et al. 1997; Abiteboul and Vianu 1997; Calvanese et al. 1999;
Fernandez and Suciu 1998] and integrity path constraints [Abiteboul and Vianu
1997].

Integrity constraints are represented as if-then rules, where the antecedent
and consequent are both ODLRE types.

3.1 Values and Objects

We assume the union of the integers, the strings, the booleans, and the reals as
the setD of base values. To build complex values, we further assume two disjoint
countable sets of symbols A and O, respectively called the attributes (denoted
by a, a1, a2, . . .), and the object identifiers (denoted by o, o1, o2, . . .), both disjoint
from D. The set V of all values over O is defined as the smallest set containing
D and O, such that, if v1, . . . , vp are values, then the set {v1, . . . , vp} is a value,
and a partial function t: A → {v1, . . . , vp} is a value. Function t is the usual
tuple value; the standard notation [a1: v1, . . . , ap: vp] will be henceforth used. A
total value function δ from O to V assigns values to object identifiers.

3.2 Paths

Let’s consider the finite alphabet 0 = A ∪ {4, ∀, ∃}. The symbol 4 is introduced
to navigate through class types; ∀ and ∃ are introduced to navigate through set
types, by a universal and existential quantification, respectively. A word w of
0 is either the symbol ε, or a dot-separated sequence of elements e1.e2. · · · .en,
where ei ∈ 0 (i = 1, . . . , n), n > 0. ε denotes the unique word of length 0.

Let’s recall the definition of regular expression [Hopcroft and Ullman 1979].
The regular expressions over 0 and the sets of words, that is, the languages that
they denote, are defined recursively as follows:

(1) ∅ is a regular expression and denotes the empty set.
(2) ε is a regular expression and denotes the set {ε}.
(3) Every symbol e of 0 is a regular expression and denotes the set {e}.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

18 • D. Beneventano et al.

(4) If h, k are regular expressions denoting the languages H, K , respectively,
then
—the concatenation (h.k),
—the union (h+k),
—the Kleene closure ((h)∗)
are regular expressions denoting the languages: HK = {w1.w2 | w1 ∈ H,
w2 ∈ K }, H ∪ K and (H)∗ = ⋃n≥0 Hn, where Hn = {w1.w2 . . .wn | n ≥
0 and wi ∈ H for 1 ≤ i ≤ n}, respectively.

A path, denoted by p, is a regular path expression. With L(p) we indicate the
language denoted by p. For instance, p = head.(head)∗ of query Q1 describes
the infinite set of words L(p) = {head, head.head, head.head.head, . . .}.
3.3 Types and Schemata

Suppose that B is a countable set of base-type designators (denoted by
B, B1, B2, . . .) that contains D, and let IB be the (fixed) standard interpre-
tation function from B to 2D such that for all d ∈ B: IB[d] = {d }. Here-
after we will adopt as base-type system: B = {Int, String, Bool, Real, i1.. j1,
i2.. j2, . . . , d1, d2, . . .}, where the dk ’s denote all the elements of Int ∪ String ∪
Bool∪ Real and the ik .. jk ’s denote all possible ranges of integers (ik can be
−∞ to denote the minimum element of Int and jk can be +∞ to denote the
maximum element of Int).

Supposing that N is a countable set of type names (denoted by N , N1, N2, . . .),
such that A, B, and N are pairwise disjoint. S(A, B, N) denotes the set of all
finite type descriptions (denoted by S, S1, S2, . . .), also briefly called types, over
given A, B, N, obtained according to the following abstract syntax rule, where
ai 6= aj for i 6= j and p is a path:

S → > | ⊥ | B | N | S1 u S2

| ∀{S} | ∃{S} | [a1 : S1, . . . , ak : Sk] | 4S
| (p : S)

> denotes the top type, ⊥ denotes the empty type, ∀{} and [] denote the usual
type constructors of set and record (tuple), respectively. The ∃{S} construct is
an existential set specification, where at least one element of the set must be
of type S. The construct u stands for intersection, whereas 4 is an object set
forming constructor. The type (p: S) is called path type.

Given a set of type descriptions S(A, B, N), a database schema over S(A, B, N)
is a couple 6 = (σ, R) where
—σ is a total function σ : N → S(A, B, N), which associates type names to de-

scriptions. σ is divided into two functions: σP , which introduces the descrip-
tion of primitive type names (P), whose extensions must be explicitly provided
by the user; and σV , which introduces the description of virtual type names
(V), whose extensions can be recursively computed from the extension of the
types occurring in their description.

—R, called rule schema, is a subset of the cartesian product S(A, B, N) ×
S(A, B, N). An element R = (Sa, Sc) of R expresses a rule where Sa is the
antecedent and Sc the consequent.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 19

Table V. Part of the Company Domain Schema in ODLRE Syntax

σP


σP (Level) = [class: String, parameter: 1..5]
σP (Employee) = 4[name: String,

qualification: 1..10, salary: 10..100, level: Level,
head: Employee, worksin: Department, skill: ∀{String}]

σP (Manager) = Employee u 4[qualification: 8..10, head: Manager,
directs: Department]

σV

{
σV (Mdl Employee) = Employee u 4[qualification: 5..10]
σV (Clerk) = Employee u 4[qualification: 7..10, head: Clerk]

R
{

R3 = (Employee u 4[salary: 60..∞] u (4.head.4 .qualification: 7..∞), Manager)

Table VI. Query Q1 in ODLRE Syntax

σV (Q1) = Employee u 4[salary: 80..∞] u (4.head.(4.head)∗.4 .qualification: 7..∞)

Part of the schema of the Company Domain example of Table I is translated
into the database ODLRE schema specified in Table V. A query has the semantics
of a virtual type name and may include references to other virtual classes in its
description: query Q1 in ODLRE syntax is presented in Table VI.

Notice how the intersection operator (u) constructs a type that satisfies all
the constraints of its operand types. In particular, it can be used to express
inheritance in a name description. Formally, N1 inherits directly from N2, iff
σ (N1) = S1 u · · · u Sn, n > 0, and N2 = Si for some i, 1 ≤ i ≤ n.

Notice that the 4 operator allows the distinction of object types from value
types. Class descriptions are preceded by 4 (as in the case of Employee), while
descriptions without 4 are related to relation names (as in the case of Level).
For instance, when we define a new specialized class, its differential attributes
must be preceded by 4, as for Manager. Notice also that the 4 symbol is used
both as a path element and as a class constructor. The overloading matches the
intuition that (4.salary: 60..∞) is semantically equivalent to4[salary : 60..∞]
(see the definition of interpretation function below).

Cyclic type names are permitted, in fact, since a type name may appear in
type descriptions, we can have circular references, that is, type names which
make direct or indirect references to themselves. Moreover, also cyclic rules
are permitted, as a type name may appear both in the antecedent and in the
consequent of a rule.

Formally, cyclic type names are recognized by means of the notion of depen-
dence: N1 depends on N2, written N1 ↪→ N2, where N1, N2 ∈ N, if:

— N2 is contained in the expression defining N1, σ (N1), or
—there exists a rule R = (Sa, Sc) such that N1 is contained in Sa and N2 is

contained in Sc.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

20 • D. Beneventano et al.

Table VII. Objects of a Company Domain Possible Instance

O = {o1, o2, o3, o4, o5, o6}

δ(o1) = [dname: “Administration”, category : 5, employs: {o3, o4, o5}, administrator: o5]
δ(o2) = [dname: “Development”, category: 6, employs: {o6}, administrator: o6]
δ(o3) = [name: “Robert”, qualification: 8, salary: 43, head: o5, worksin: o1, skill: { “prg”}]
δ(o4) = [name: “Mark”, qualification: 4, salary: 32, head: o5, worksin: o1, skill: { “wp”}]
δ(o5) = [name: “Franz”, qualification: 8, salary: 43, head: o5, worksin: o1, skill: { “prg”}]
δ(o6) = [name: “Andy”, qualification: 9, salary: 67, head: o6, worksin: o2,

skill: { “wp”, “prg”}]

The transitive closure of ↪→ is denoted by
+
↪→. We say that N ∈ N is cyclic, iff

N
+
↪→ N .

3.4 Interpretations and Database Instances

In the following, we will write S instead of S(A, B, N) when the components are
obvious from the context.

Let IB be the (fixed) standard interpretation function from B to 2D. For
a given object assignment δ, each type expression S is mapped into a set of
values (its interpretation). An interpretation function is a function I from S to
2V satisfying the following equations:

I[>] = V
I[⊥] = ∅
I[B] = IB[B]

I[∀{S}] = {M | M ⊆ I[S]}
I[∃{S}] = {M | M ∩ I[S] 6= ∅}

I[[a1 : S1, . . . , ap : Sp]] = {[a1: v1, . . . , aq : vq]| p ≤ q, vi ∈ I[Si], 0 ≤ i ≤ p,
vj ∈ V(O), p+ 1 ≤ j ≤ q}

I[S1 u S2] = I[S1] ∩ I[S2]
I[4S] = {o ∈ O|δ(o) ∈ I[S]}

I[(p: S)] =
⋂
I[(wi: S)] for all words wi ∈ L(p)

where I[(wi: S)] is inductively defined as follows:

I[(ε: S)] = I[S]
I[(a.w: S)] = I[[a: (w: S)]]
I[(4.w: S)] = I[4(w: S)]
I[(∀.w: S)] = I[∀{(w: S)}]
I[(∃.w: S)] = I[∃{(w: S)}]

Table VII shows some examples of objects, with reference to the type descrip-
tions of Table V.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 21

Table VIII. Examples of Type Interpretations

I[(4.employs.∃.4 .skill.∀: “wp”)] = {o1}
I[(4.employs.∀.4 .skill.∃: “wp”)] = {o2}
I[(4.employs.∃.4 .skill.∃: “wp”)] = {o1, o2}
I[(4.head.4 .qualification: 8)] = {o3, o4, o5}
I[((4.head)∗.4 .qualification: 8)] = {o3, o5}

Note that the interpretation of tuples implies an open world semantics for
tuple types similar to that adopted by Cardelli [1984]:

[name: “Mark”, salary: 32] ∈ I[[salary: Int]] = I[(salary: Int)]

Table VIII shows some examples of path type interpretations, with reference
to the objects of Table VII.

A database schema defines a set of possible interpretations that are derived
from type interpretations by adding the constraints of name definitions and
integrity rules. A name definition relates the interpretation of the name to
that of its associated type description, while a rule states an inclusion relation
between the Sa and Sc type interpretations.

Definition 1 (Possible Instance). Given a database schema 6 = (σ, R) over
S, a set of object identifiersO, and a domain δ overO, an interpretation function
I of S over δ is a possible instance of 6 iff the set O is finite and

(1) I[P] ⊆ I[σP (P)], if P ∈ P.
(2) I[V] = I[σV (V)], if V ∈ V.
(3) I[Sa] ⊆ I[Sc], if R = (Sa, Sc) ∈ R.

From the above illustrated definition, we can see that the interpretation of a
primitive type name is included in the interpretation of its description, while
the interpretation of a virtual type is the interpretation of its description. In
other words, the interpretation of a primitive type name must be provided by
the user, according to the given description, while the interpretation of a vir-
tual type name is computed from its definition and from the interpretation of
primitive type names, thus corresponding to a view in a database context. Fur-
thermore, rules are inclusion statements, with the usual semantics as in Donini
et al. [1993] and Calvanese et al. [1998].

3.5 Legal Database Instances

From the definition of Possible Instance of a database schema the rule (N , S)
is consequently equivalent to σP (N) = S; the pair of rules (N , S) and (S, N)
is equivalent to σV (N) = S. Nevertheless, we introduce σP and σV for a “deep”
semantic motivation: we need to uniquely define the extension of a cyclic virtual
class. The interpretation of a cyclic virtual name N is different if N is introduced
in the schema with a σV (N) = S definition, or, by means of the pair of rules
(N , S) and (S, N). Let’s explain the difference by considering the objects of
Table VII and the following assigned interpretation of the classes Department

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

22 • D. Beneventano et al.

and Employee:

I[Department] = { o1, o2 }, I[Employee] = { o3, o4, o5, o6 }
The instance of the acyclic virtual class Mdl Employee can be uniquely com-
puted as I[Mdl Employee] = {o3, o5, o6} (o4 does not satisfy the qualification
value range). On the other hand, we may have many possible instances for
the cyclic virtual class Clerk: I[Clerk] = {o3, o5, o6}, or I[Clerk] = {o3, o5}, or
I[Clerk] = {o6}, or I[Clerk] = {}, either introducing Clerk by rules or by a σV
definition.

In order to express definitions as σV (N) = S where S is a “function” of
N , that is, N appears in S, we need to adopt a fixed point semantics, either
least fixed point (lfp) or greatest fixed point (gfp). Descriptive semantics is the
standard first-order semantics and interprets statements just restricting the
set of possible models, with no definitional import; hence, it can be suitably
adopted for rules interpretations. Taking our example again, if the class Clerk
is introduced by rules, the four interpretations above are all possible.

Between lfp and gfp we select gfp, since it corresponds to the semantics of
the transitive closure of an attribute.5 Adopting gfp-semantics, in the above
example, we have:

I[Clerk] = I[Employee u ((4.head)∗.4 .qualification: 7..10)] = {o3, o5, o6}
Let’s introduce the notion of legal instance of a schema, which makes it possible
to interpret cyclic virtual names defined by σV under gfp-semantics and cyclic
virtual names defined in R under descriptive semantics.

Definition 2 (Legal Instance). Given a 6 = (σ, R) over S, let 9 be the set
of possible instances with identical O and δ such that for all I, I ′ ∈ 9: I[P] =
I ′[P] if P ∈ P. Further, let “

9v” be the relation over9 such that for all I, I ′ ∈ 9:
I

9v I ′ iff I[V] ⊆ I ′[V] for all V ∈ V. Then (9,
9v) forms a partial ordering. We

say that I is a legal instance of a database schema6 iff it is the greatest instance
of the set 9 with respect to

9v.

THEOREM 1. If I is a possible instance, then a legal instance I ′ exists such

that I
9v I ′.

PROOF. See Bergamaschi and Nebel [1994].

4. SUBSUMPTION, INCOHERENCE AND SEMANTIC EXPANSION OF A TYPE

Semantic expansion of a type enables us to incorporate possible restrictions
that are not present in the original type but that are logically implied by the
type and by the schema. Our method for the computation of a semantic expan-
sion of a type is based on two ingredients: iteration of the transformation “if a
type implies the antecedent of a rule, then the consequent of that rule can be
intersected to the type” [Shenoy and Özsoyoglu 1987, 1989]; evaluation of logi-
cal implications by means of subsumption computation between such expanded
types.

5An in-depth discussion of different semantics is given in Beneventano and Bergamaschi [1997].

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 23

Definition 3 (Subsumption). Given a schema 6 = (σ, R) over S, the sub-
sumption relation with respect to 6, written S v6 S′ for each pair of types
S, S′ ∈ S, is S v6 S′ iff I[S] ⊆ I[S′] for all legal instances I of 6.

It immediately follows that v6 is a preorder (i.e., transitive and reflexive
but antisymmetric) that induces an equivalence relation (6-equivalence) '6
on types: S '6 S′ iff S v6 S′ and S′ v6 S. For a type S, [S]6 denotes the
equivalence class with respect to the '6 relation.

Definition 4 (Incoherence). Given a schema 6 = (σ, R) over S, we say that
a type S is incoherent with respect to 6 iff S '6 ⊥. It is equivalent to say that
for all domains the extension of an incoherent type is always empty.

Given a database schema6 = (σ, R) over S, let 6σ = (σ, ∅) be the subschema
with no rules; the subsumption and equivalence relations with respect to the
subschema 6σ will be denoted by vσ and 'σ , respectively.

Of course, the subsumption (equivalence) relations with respect to the sub-
schema 6σ implies the subsumption (equivalence) relations with respect to the
schema 6 = (σ, R), as in 6 there are more formulas/rules. This is expressed in
Theorem 2.

THEOREM 2. Given a schema 6 = (σ, R) over S, for all S, S′ ∈ S we have
S v6 S′ if S vσS′.

Definition 5 (Applicable Rule). Given a schema 6 = (σ, R) over S, we say
that a rule R = (Sa, Sc) ∈ R is applicable to S ∈ S with respect to σ if SvσSa

and S 6vσSc. The set of rules applicable to S with respect to σ will be denoted
by 3σ (S).

On the basis of the applicable rule notion, we define the notion of semantic
expansion of a type. Intuitively, a semantic expansion of a type S is a type S′

equivalent to S so that no rule is applicable to S′ or to any type used in S′.

Definition 6 (Semantic Expansion). Let 6 = (σ, R) be a schema over S and
let S be a type in S. A type S′ ∈ [S]6 is a semantic expansion of S with respect
to 6 (for short S′ = EXP6(S)) iff S′vσS and 3σ (S′′) = ∅, for each S′′ ∈ S such
that a word w and S′vσ (w: S′′) exists.

Intuitively, from rule semantics it follows that, if a rule R = (Sa, Sc) is
applicable to S, then S u Sc'6 S. Thus, if R is applicable to S, we can trans-
form S into the equivalent type S u Sc. This transformation is the core of our
algorithm for the computation of a semantic expansion EXP6(S) which is an
iterative process applying rules to a type and terminating when no more rules
are applicable.

Note that EXP6(S) is not guaranteed to be the least element, that is, it is
possible that a type S′ '6 S exists such that S′ vσ EXP6(S). For example, in
the following schema

σP

{
σP (V1) = [a: Int]
σP (V2) = [a: Int]

R

{
R1 = (V1 u [a:−∞..0], V2)
R2 = (V1 u [a: 1..∞], V2)

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

24 • D. Beneventano et al.

a semantic expansion of V1 is V1 itself, that is, EXP6(V1) = V1, as no rule is
applicable to V1. But, since V1v6 V2, the type S′ = V1 u V2 is consequently
equivalent to V1 and is more specialized than EXP6(V1) = V1 with respect to
the subschema with no rules, that is, S′ vσ EXP6(V1).

More generally speaking, it is not guaranteed that a semantic expansion
exists, for an arbitrary DL. To give an intuition, let’s consider the rule R =
(S, (a: S)): it is easy to see that S is equivalent to S u (a.a · · ·a: S) for chains
of attributes of arbitrary length. In our DL such an infinite structure can be
described with a finite type description by using a path expression and then,
intuitively, EXP6(S) = ((a)∗: S). Furthermore, as we adopt the gfp-semantics,
EXP6(S) is expressed in an equivalent form, by the cyclic virtual name V ,
with σV (V) = S u [a: V]: this is the form computed by our semantic expansion
algorithm (see next section).

4.1 Algorithms

In Bergamaschi and Nebel [1994], a framework including algorithms for detect-
ing incoherence and computing subsumption between types of an ODL schema
without rules, adopting a gfp-semantics, has been introduced. In the stated
paper, it has been demonstrated that these problems are computationally in-
tractable from a purely theoretical point of view, but intractability does not very
often show up in practice. Furthermore, if algorithms on a simplified schema de-
scription (named canonical schema) are provided, both problems can be solved
in time polynomial in the size of the canonical schema.

In order to extend this framework to a schema with integrity rules and to
compute a semantic expansion of types, we proceed as follows:

(1) transform any path type into an equivalent ODL type and the overall
schema into a canonical schema; thus we can use the algorithm given
in Bergamaschi and Nebel [1994] to compute the subsumption relation vσ
in 6σ (see Section 4.1.1);

(2) provide an algorithm for semantic expansion computation (see
Section 4.1.2);

(3) compute subsumption relations v6 among types by using the semantic ex-
pansion of types and the subsumption relationvσ in 6σ (see Section 4.1.2).

4.1.1 Canonical Schema Generation. First of all, we show that, by adopting
gfp-semantics, any schema can be transformed into a (possibly cyclic) schema
without path types. We introduce the definition of conservative extension of a
schema which will be guaranteed for any schema transformation.

Definition 7 (Conservative Extension). A schema 62 = (σ2, R2) over
S(A, B, N2) is a conservative extension of a schema61 = (σ1, R1) over S(A, B, N1)
iff R2 = R1, N1 ⊆ N2 and for any legal instance I of 61 a legal instance I ′ of 62
exists and vice-versa such that I[N] = I ′[N] for all N ∈ N1.

Note that this means that for the names in N1, the incoherencies and sub-
sumptions computed with respect to 61 are the same as the ones computed with
respect to 62.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 25

Table IX. Query Q1 in ODLRE Without Path Types

σV (Q1) = E u 4[s: 80..∞] u 4[h: NQ1]
σV (NQ1) = 4[q: 7..∞] u 4[h: NQ1]

PROPOSITION 1. Any schema 61 over S(A, B, N1) can be effectively trans-
formed into a schema 62 over S(A, B, N2) without path types that is a con-
servative extension of 61.

PROOF SKETCH. The transformation rules are the following:

(ε: S) −→ S (1)
(a: S) −→ [a: S] (2)
(4: S) −→ 4S (3)
(∀: S) −→ ∀{S} (4)
(∃: S) −→ ∃{S} (5)

(p.p′: S) −→ (p: (p′: S)) (6)
((p)∗: S) −→ V ,

where V is a new virtual type name and
σV (V) = S u (p: V) is the extension of
the schema function to V

(7)

((p+ p′): S) −→ (p: S) u (p′: S) (8)

Note that 62 is distinguished from 61 by the additional virtual type names and
the additional values for σ introduced by the application of Rule 7. Transforma-
tions (1)–(6) and transformation (8) are obvious. Transformation (7) translates
a factor including Kleene closure of a path in a cyclic virtual type name; the
equivalence is implied by the gfp-semantics adopted in ODLRE and derives from
a result of Baader [1991]. The applicability of Baader’s results in our context is
proved in Beneventano [2002].

As an example, let’s consider query Q1. For the sake of simplicity, the exam-
ples refer to the schema and queries of Section 2.2, but the names are reduced
to the initials.

σV (Q1) = E u 4[s: 80..∞] u (4.h.(4.h)∗.4 .q: 7..∞).

First, applying rules from (2) to (6), we obtain:

σV (Q1) = E u 4[s: 80..∞] u 4[h: ((4.h)∗:4[q: 7..∞])︸ ︷︷ ︸
NQ1

],

then, a cyclic virtual type name NQ1 is introduced by applying rule (7):

σV (NQ1) = 4[q: 7..∞] u 4[h: NQ1].

A canonical schema is a schema where types are unnested, conjunctions of
types are eliminated, whenever possible6 and each class description contains

6Only type conjunctions involving an existentially quantified term cannot be eliminated.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

26 • D. Beneventano et al.

the conjunction of primitive names (without description) and a canonical type
description. Furthermore, see syntax below, virtual type names are introduced.
Obviously, in a canonical schema the comparison between types to determine
the applicability of a rule is greatly simplified. Formally:

Definition 8 (Canonical Schema). A canonical schema is a schema 6 =
(σ, R) where:

—for all P ∈ P, σP (P) = >, that is, primitive type names have no descriptions;
we will refer to these primitive names as atomic names, denoted by P ;

—for all V ∈ V, σV (V) = P1 u · · · u Pn u S (with n ≥ 0), where S is a canonical
type obtained according to the following abstract syntax rule:

S → V | B | > | ⊥ | [a1 : V1, . . . , ak : Vk] | ∀{V } | ∃{V1} u · · · u ∃{Vn}
u ∀{V } | 4V , with V ∈ V

where for the type ∃{V1}u· · ·u∃{Vn}u∀{V }we have that Vi vσV , ∀i, 1 ≤ i ≤ n.
—for all R = (Sa, Sc) ∈ R, Sa, Sc ∈ V, that is, antecedent and consequent of a

rule are virtual type names.

The main points of the transformation of a schema σ into a canonical schema
are:

(a) Each primitive type name P of the schema σ is transformed into a virtual
type name expressed as the conjunction of an atomic name, P , and its
original description, σ (P);

(b) Each rule R = (Sa, Sc) ∈ R, is transformed into a pair of virtual names
VRa and VRc, with σV (VRa) = Sa and σV (VRc) = Sc.
while (there is a virtual name V such that σV (V) is not in canonical form)
the canonical description of V with respect to σ is obtained by:

1. (name substitution). Substituting only the names of the types from which
V inherits with their descriptions;

2. (conjunction elimination). Applying suitable conjunction rules, the con-
junctions of types are eliminated (whenever possible);

3. (type renaming). Assigning a new virtual name V ′ to each new type S
obtained at Step (2), if a V ′′ with σV (V ′′) = S does not exist.

As an example of canonical schema, we consider the computation of the canon-
ical form of Employee and Manager (some attributes are omitted and all the
names are denoted with the initials):

σP (E) = 4[q: 1..10, s: 10..100, h: E]
σP (M) = E u 4[q: 8..10, d: D, h: M]

E and M are primitive class names thus they are transformed applying Step (a):

σV (E) = E u 4[q: 1..10, s: 10..100, h: E]
σV (M) = M u E u 4[q: 8..10, d: D, h: M]

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 27

Table X. Query Q1 in Canonical Form

σV (Q1) = E u 4V5 σV (V5) = [q: 7..10, s: 80..100, h: V6]
σV (V6) = E u 4V7 σV (V7) = [q: 7..10, s: 10..100, h: V6]

The canonical description of E is obtained simply by introducing a new virtual
name V1 (Step (3)):

σV (E) = E u 4V1
σV (V1) = [q: 1..10, s: 10..100, h: E]

As M inherits from E, it is transformed applying Step (1):

σV (M) = M u E u 4[q: 1..10, s: 10..100, h: E] u 4[q: 8..10, d: D, h: M]

then the conjunction of types are solved (Step (2))—for the attribute q, 1..10 u
8..10 = 8..10 and for the attribute h, E u M = M since M inherits from E:

σV (M) = M u E u 4[q: 8..10, s: 10..100, d: D, h: M]

and then a new virtual name V2 is introduced, obtaining the canonical descrip-
tion of M:

σV (M) = E u M u 4V2 σV (V2) = [q: 8..10, s: 10..100, d: D, h: M]

It can be easily proved that these transformations preserve type
interpretations.

PROPOSITION 2. Any schema 61 over S(A, B, N1) without path types can be
transformed into a canonical schema62 over S(A, B, N2) which is a conservative
extension of 61.

In the following, a canonical form of a schema 6 = (σ, R) over S(A, B, N) will
be denoted by 6 = (σ , R), over S(A, B, N), with N = P ∪ V. Note that: each
name N ∈ N is, in 6, a virtual name N ∈ V and to each type S in 6 we assign
in 6 a new virtual name. The canonical form of query Q1 is given in Table X.

4.1.2 Semantic Expansion Computation. Thanks to Propositions 1 and 2,
a semantic expansion of types of a schema 6 = (σ, R) can be computed with
respect to a canonical schema 6 = (σ , R) of 6. In the following, we introduce
a semantic expansion algorithm that, given a canonical schema 6 = (σ , R) as
input, computes a semantic expansion for each name of 6 on the basis of its set
of applicable rules (see Definition 5).

In order to formally define the correspondence between the input and output
of the semantic expansion algorithm, we introduce the concept of expanded
schema, that is, a schema where there are no rules applicable to any virtual
type names.

Definition 9 (Expanded Schema). A canonical schema 6 = (σ , R) over
S(A, B, P ∪V), is called expanded if 36(V) = ∅, ∀V ∈ V.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

28 • D. Beneventano et al.

Algorithm 1 (Semantic Expansion).

Input: A canonical schema 6 = (σ , R) over S(A, B, P ∪V).
Output: An expanded schema 6̃ = (σ̃ , R) over S(A, B, P ∪ Ṽ).

set. i = 0, Vi = V and σ i = σ

while. there is a name V ∈ Vi and a rule R = (VRa, VRc) such that R ∈ 36i (V),
where 6i = (σ i , R)

choose V and R
define. the σ i+1 over S(A, B, P ∪Vi+1) in the following way:

(1) assign to σ i+1
V (V) the canonical form of σ i

V (V) u σ i
V (VRc) obtained in the following

way: for any new type S, a new name V ′ is introduced in σ i+1, with σ i+1
V (V ′) = S if

there is no j , (0 ≤ j ≤ i) and V ′′ such that σ j
V (V ′′) = S.

(2) Vi+1 = Vi ∪ {V | V is a new name introduced in Step (1)}

set. σ̃ = σ i and Ṽ = Vi .

THEOREM 3. Given a canonical schema 6 = (σ , R) over S(A, B, P ∪ V)
as input, the output of algorithm 1 is an expanded schema 6̃ = (σ̃ , R) over
S(A, B, P ∪ Ṽ) which is a conservative extension of 6.

PROOF. See Appendix C.

Intuitively, for each V ∈ V of the schema 6, a semantic expansion EXP6(V)
is given by σ̃V (V) in the expanded schema 6̃. The formal specification of this
correspondence is more complex than the intuitive description given above,
since EXP6(V) must be expressed as a type of the schema 6.

COROLLARY 1. Given a canonical schema 6 = (σ , R) over S(A, B, P∪V) and
the extended schema 6̃ = (σ̃ , R) over S(A, B, P ∪ Ṽ) computed by Algorithm 1,
we denote with Vexp a copy of the names in V, that is, Vexp = {Vexp | V ∈ V}
and we define the union schema 6u = (σu, R) over S(A, B, P ∪ Vu) as follows:
Vu = V∪Vexp∪{V | V ∈ Ṽ\V} and σu(N) = σ (N), if N ∈ P∪V, σu(N) = σ̃ (N),
if N ∈ Vu \V. Then EXP6u (V) = Vexp, ∀V ∈ V.

PROOF SKETCH. As 6̃ is an extended schema then EXP6(Vexp) = Vexp. As 6̃
is a conservative extension of 6 (from Theorem 3), then [V]6 = [Vexp]6 and
consequently a semantic expansion of Vexp is a semantic expansion of V also.

Moreover, if we consider two expanded schemata 6̃′ = (σ̃ ′, R) and 6̃′′ =
(σ̃ ′′, R) computed by Algorithm 1 with different sequences of choices, then, for
each V ∈ V, σ̃ ′V (V) and σ̃ ′′V (V) are equivalent with respect to the subschema
without rules. The following corollary specifies this result more formally.

COROLLARY 2. Given a canonical schema 6 = (σ , R) over S(A, B, P∪V) and
the expanded schemata 6̃′ = (σ̃ ′, R) over S(A, B, P ∪ Ṽ′) and 6̃′′ = (σ̃ ′′, R) over
S(A, B, P∪ Ṽ′′) computed by Algorithm 1, for any legal instance I ′ of 6̃′∅ a legal
instance I ′′ of 6̃′′∅ exists such that I ′[N] = I ′′[N] for all N ∈ V.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 29

Table XI. Query Q1 Expanded Form

σ̃
V

(Q1) = E u M u 4V11, σ̃
V

(V11) = [q: 8..10, s: 80..100, d: D, h: V12]
σ̃
V

(V12) = E u M u 4V13, σ̃
V

(V13) = [q: 8..10, s: 10..100, d: D, h: V12]

PROOF SKETCH. Is an immediate consequence of the fact that 6̃′ and 6̃′′ are
two conservative extension of the same schema 6.

As an example of semantic expansion computation, let’s consider Q1 and its
semantic expansion by applying rule R3; the canonical form of the query is
given in Table X. For rule R3 the canonical form is:

σ V
(
VRa

3

) = E u 4V8 σ V (V8) = [q: 1..10, s: 60..100, h: V9]
σ V (V9) = E u 4V10 σ V (V10) = [q: 7..10, s: 60..100, h: E]

σ V
(
VRc

3

) = M

For i = 0, as R3 ∈ 36i (Q1) we assign to σ 1
V (Q1) the canonical form of

σ 0
V ((Q1)) u σ 0

V (VRc
3). Since σ 0

V (VRc
3) = M and σ 0

V (M) = E u M u 4V2, σ 0
V (V2) =

[q: 8..10, s: 10..100, d: D, h: M] we obtain

σ 1
V (Q1) = E u M u 4V11, σ 1

V (V11) = [q: 8..10, s: 80..100, d: D, h: V12]
σ 1

V (V12) = E u M u 4V13, σ 1
V (V13) = [q: 8..10, s: 10..100, d: D, h: V12]

No more rules are applicable to the names of this schema, then σ̃ = σ 1 is an
expanded schema and then σ̃ (Q1) is a semantic expansion of Q1.

The comparison between the query Q1 before (see Table X) and after (see
Table XI) semantic expansion computation, shows how we address and solve
the problem of finding a specialized rewriting of a query in terms of the schema
classes and base types. In fact:

—the target class of the query, E, is specialized in E u M
—the target class of the subquery V6 related to the h attribute, E, is specialized

in E u M (see σ̃V (V12))
—the q attribute: q: 7..10 (in σ V (V5)) is specialized in q: 8..10 (see σ̃V (V11))

Let’s summarize the method we developed to compute subsumption in a
schema with rules. Starting from a schema 6 = (σ, R) over S(A, B, N), we
obtain a canonical schema 6 = (σ , R), which is a conservative extension of 6,
and an expanded schema 6̃ = (σ̃ , R), which is a conservative extension of6. The
subsumption relations for the names in N with respect to the three schemata,
v6 , v6 and v

6̃
, are the same. On the basis of Theorem 2, we provide a sound

method to obtain the subsumption relation v
6̃

by computing the relation vσ̃
with the subsumption algorithm introduced in Bergamaschi and Nebel [1994].
Note that we compute vσ̃ since it is easy to prove that vσ̃ imply vσ but not
vice-versa.

5. OPTIMAL REWRITING OF A QUERY

The previous sections showed how to produce a specialized rewriting of a query
where the schema constraints are included in the query and the query is
rewritten with respect to more specialized classes and base types; here, we

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

30 • D. Beneventano et al.

will show a method to find out redundant/eliminable components of the spe-
cialized rewritten query in order to obtain an equivalent query, hopefully with
a lower execution cost.

According to our type system a query is a virtual name, thus we can com-
pute semantic expansion. First of all, we check the coherence of the expanded
query σ̃ (Q). If σ̃ (Q) is incoherent, we get an optimization result since a null
answer can be immediately returned without accessing the database. If σ̃ (Q)
is coherent, we apply our rewriting method.

The first step is to rewrite the query as a conjunction of factors, where a
factor is a path type (p: S), where p is a union-free regular path expression
and S is a primitive class or a base type. For this factorization, we exploit
the results of Baader [1991, 1996] and transform the factorization problem
into the problem of finding the languages accepted by a finite automaton (see
Theorem 4). Factorization of the query is computed with respect to the expanded
schema in order to exploit the specialization of factors with respect to schema
classes and base types. In particular, the specialization of a factor with a base
type produces a more selective predicate that may be useful at execution time,
either for indexed access or for the reduction of intermediate results.

The second step is to find out which factors of the query are redundant and
thus eliminable from the query. To provide a simple method to independently
eliminate redundant factors we need to check the absence of recursive rules
in the semantic expansion of the query: the check is done by introducing rule
graphs to formally define recursive rules in our context and using subsumption.
The elimination of redundant factors generates an optimized form of the query,
which is semantically equivalent to the original one. Our elimination criteria
are based only on logical properties, and are independent from any specific cost
model and storage details.

5.1 Factorization

As a query is a virtual name, we generally formalize the method with respect
to a virtual name V .

Definition 10 (Factor). Given a schema 6 = (σ, R) over S(A, B, N), a factor
of S is a path type (p: S) where S ∈ B∪P∪ {>,⊥} and p is a union-free regular
path expression. A factor will be denoted by f .

Definition 11 (Factorization). Given a schema6 = (σ, R) and a virtual type
name V , a finite set of factors F = { f1, f2, . . . , fn} of S is a factorization of V
with respect to 6 iff uF '6 V .

We consider only union-free regular path expressions in a factor in or-
der to simplify the elimination of redundant factors. For example, a type
[a1: [a2: Int], a3: [a2: Int]] can be expressed in two equivalent forms, say
(a1.a2: Int) u (a3.a2: Int) or ((a1 + a3).a2: Int); obviously the first form is more
suitable for the task of checking/eliminating redundant factors.

The factorization of a type can be computed, as shown in the following, by ap-
plying the results of Baader [1991, 1996]. Given a virtual name V of a schema

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 31

∆εεεε
Q1 ∆[s:80..∞] [s:80..∞] s 80..∞

∆

εεεε

∆[h:NQ1] [h:NQ1] h NQ1

εεεε

ε

εεεε

∆[q:7..∞]

[q:7..∞]

7..∞
E

∆

q

σV (Q1) = E u 4[s: 80..∞] u 4[h: NQ1]
σV (NQ1) = 4[q: 7..∞] u 4[h: NQ1]

L(Q1, E) = {ε}
L(Q1, 80..∞) = {4.s}
L(Q1, 7..∞) = {(4.h)∗.4 .q}

Fig. 3. Query Q1 Automata and languages.

6 = (σ, R), for each type S ∈ B∪P∪ {>,⊥} of σV (V), we define a finite au-
tomaton having V as initial state and S as final state, denoted as A(V , S).
A(V , S) defines a regular language, denoted by L(V , S), namely the set of all
words which are labels of paths from V to S. The formalization of the automa-
ton is presented in Appendix B; here we introduce an example by considering
Q1 of Table IX: Figure 3 shows σV (Q1), the three automata associated to Q1,
A(Q1, E),A(Q1, 80..∞) andA(Q1, 7..∞) (the final states are denoted with thick
ovals) and the related accepted languages.

The following proposition is a straightforward application to our context of
Proposition 19 of Baader [1996].

PROPOSITION 3. Given a schema 6 = (σ, R), let V be a virtual name and let
I be a legal instance of the subschema with no rules, 6σ = (σ, ∅). For any value
v ∈ V, v ∈ I[V] iff for all S ∈ B ∪ P ∪ {>,⊥} and for all words w ∈ L(V , S), we
have that v ∈ I[(w: S)].

PROOF. See Beneventano [2002].

The proposition can intuitively be understood as follows: the language
L(V , S) stands for the possibly infinite number of constraints of the form (w: S),
which the schema imposes on V . The more constraints are imposed, the smaller
I[V] is.

THEOREM 4. Given a schema 6 = (σ, R), for any virtual name V we have
that the set

F V
6
= {(p1: S), (p2: S), . . . , (pn: S) |S ∈ B ∪P ∪ {>,⊥}, L(V , S) 6= ∅,

p1 + p2 + · · · + pn is a regular expression describing L(V , S)}
is a factorization of V with respect to 6.

PROOF SKETCH. Regular languages can be described [Hopcroft and Ull-
man 1979] by regular expressions. Then, as an immediate consequence of
Proposition 3 and of the definition of path type interpretation (see Section 3.4),
any virtual name V can be expressed, with respect to the subschema with no

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

32 • D. Beneventano et al.

Table XII. Query Q1 Factorized Form

Q1'6 (ε: E) u (4.s: 80..∞) u ((4.h)∗.4 .q: 7..∞)

rules, by a conjunction of path types:

V'σu{(p: S) | S ∈ B ∪P ∪ {>,⊥}, L(V , S) 6= ∅,
p is a regular expression describing L(V , S)} (9)

A regular expression p can always be translated into a p1+ p2+· · ·+ pn where
n is finite and pi is a union-free regular expression, by applying the following
equivalence rules repeatedly, until either + is eliminated or it compares at the
outermost level:

(1) (p1 + p2 + · · · + pn).p0 = (p1.p0)+ (p2.p0)+ · · · + (pn.p0)
(2) p0.(p1 + p2 + · · · + pn) = (p0.p1)+ (p0.p2)+ · · · + (p0.pn)
(3) (p1 + p2 + · · · + pn)∗ = ((p1)∗.(p2)∗ · · · (pn)∗)∗

It follows immediately that any path type (p: S) of (9) can be expressed as a
conjunction of factors, that is, (p: S)'σ (p1: S) u (p2: S) u · · · u (pn: S), and then

F = {(p1: S), (p2: S), . . . , (pn: S) | S ∈ B ∪P ∪ {>,⊥}, L(V , S) 6= ∅,
p1 + p2 + · · · + pn is a regular expression describing L(V , S)}

is a factorization of V , as V 'σ uF and then V '6uF .

Thus, in the following, we consider a virtual name V (the query) and its
factorization with respect to 6, F V

6
as defined in Theorem 4. Such factoriza-

tion is unique up to regular path expression equivalence. Table XII shows the
factorization for Q1, obtained by the languages of Figure 3.

5.2 Specialization and Eliminability of Factors

We introduce the specialization property of a factor.

Definition 12 (Specialization). Given a schema 6 = (σ, R), a virtual name
V and its factorization F V

6
, a factor (p: S) ∈ F V

6
admits a specialization if another

factorization exists, say F′, of V which contains a factor (p′: S′) with (p′: S′) vσ
(p: S).

LEMMA 1. Given a schema6 = (σ, R), a virtual name V and its factorization
F V
6

, let F ′ of V such thatuF ′ is a semantic expansion of V . Then, for any factor
(p: S) ∈ F V

6
, a factor (p′: S′) in F ′ with (p′: S′) vσ (p: S) exists.

Let’s introduce the definitions of redundancy of a factor with respect to a set
of factors and of eliminability of a factor from a query.

Definition 13 (Redundancy). Given a schema6 = (σ, R) and a set of factors
F of S, a factor f ∈ F is redundant with respect to F iff it is implied by the
remaining factors, that is, iff uF \ { f } v6 f .

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 33

Intuitively, given a factorization F of V , a factor f of F is eliminable from V
if another factorization exists, say F′, of V that does not contain f . The formal
definition of eliminability is quite complex due to paths: if a factorization F ′ of
V does not contain (p: S), then it is possible, with F ′, to solve query V without
accessing S through p. Thus, first (p: S′) with SvσS′ must not be included in
F ′; second, as p denotes a set of words, F ′ must not include any path (w: S)
with w ∈ L(p).

Definition 14 (Eliminability). Given a schema 6 = (σ, R), a virtual name
V and its factorization F V

6
, a factor (p: S) ∈ F V

6
is eliminable from V iff a

factorization F ′ of V exists with respect to 6 such that, for all (p′: S′) ∈ F ′, if
L(p) ∩ L(p′) 6= ∅, then S 6vσ S′.

The following lemma states that redundancy is a sufficient condition for
eliminability.

LEMMA 2. Given a schema6 = (σ, R), a virtual name V and its factorization
F V
6

, then a factor f ∈ F V
6

is eliminable from V if the factor f is redundant with
respect to F V

6
.

It is easy to prove that opposite does not apply, that is, eliminability does
not imply redundancy, as shown in the example of query Q8 where the factor
directs.category >= 4 is eliminable but not redundant with respect to F Q8

6
.

On the other hand, as introduced in query Q8 and explained in the following,
the factor directs.category >= 4 is redundant with respect to a factorization,
which is a semantic expansion of Q8, that is, the redundancy check on a se-
mantic expansion can detect a greater number of eliminable factors.

To conclude, it is convenient to refer to a factorization that is a semantic
expansion for both specialization and eliminability of the factors of a query. In
order to compute this factorization, we introduce the P-reduction algorithm,
having the factorization F V

6
of V with respect to the expanded schema 6 as

input. 6 is a canonical schema and, therefore, F V
6

contains the factors of the
descriptions of primitive type names (i.e., a set of factors redundant with respect
to the primitive type names). Algorithm P-reduction, and thus the motivation
for its name, eliminates these redundant factors.

Algorithm 2 (P-reduction).

Input. A schema 6 = (σ, R), an expanded schema 6 = (σ , R) over S(A, B, P ∪ V),
which is a conservative extension of 6, a virtual name V ∈ V and its factorization F V

6
.

Output. 8(V), a factorization of V with respect to the schema 6.

(1) for each (p: P) ∈ F V
6

we consider the factor (w0
p: P), where w0

p is the shortest
word denoted by p; if (w0

p: P)vσ (p: P) then we replace (p: P) with (w0
p: P), oth-

erwise, we replace (p: P) with (p: P).
Let w0

p be the shortest word in L(p):

K1(V) = {(p′: P) | (p: P) ∈ F V
6

, P ∈ P,

p′ = w0
p if
(
w0

p: P
)vσ (p: P), p′ = p otherwise}

∪{(p: S) | (p: S) ∈ F V
6

, S 6∈ P
}

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

34 • D. Beneventano et al.

Table XIII. Query Q1 after
P-Reduction Algorithm

Q1'6 (ε: M) u (4s: 80..100)

Table XIV. Comparison Between Factorizations F V
6 and 8(V)

V F V
6 8(V)

Q1 {(ε: E), (s: 80..∞), ((h)∗.q: 7..∞)} {(ε: M), (s: 80..100)}
Q8 {(ε: M), (s: 100..100), (d.c: 4..∞)} {(ε: M), (s: 100..100), (d: CBD), (q: 10..10)}

(2) for each (p: P) ∈ K1(V) we eliminate from K1(V) the factors (p′: S′) such that
(p: P)vσ (p′: S′):

8(V) = K1(V) \ {(p′: S′) | ∃(p: P) ∈ K1(V), (p: P)vσ (p′: S′)}
To give a simple example, let’s consider a simplified version of the semantic
expansion of Q1 (we do not consider the attribute d: D of V13) introduced in
Table XI:

σ (Q1) = E u M u 4V11, σ (V11) = [q: 8..10, s: 80..100, h: V12]
σ (V12) = E u M u 4V13, σ (V13) = [q: 8..10, s: 10..100, h: V12]

we obtain:

F Q1

6
= {((4.h)∗: E), ((4.h)∗: M), (4.s: 80..100),

((4.h)∗.4 .q: 8..10), (4.h.(4.h)∗.4.s: 10..100)}
(1) For the factor ((4.h)∗: E): the shortest word in L((4.h)∗) is ε and (ε: E)vσ

((4.h)∗: E).
For the factor ((4.h)∗: M): the shortest word in L((4.h)∗) is ε and (ε: M)vσ
((4.h)∗: M).
Then:

K1(Q1) = {(ε: E), (ε: M), (4.s: 80..100),
((4.h)∗.4.q: 8..10), (4.h.(4.h)∗.4.s: 10..100)}

(2) Since (ε: E)vσ (4.h.(4.h)∗.4.s: 10..100), (ε: M)vσ ((4.h)∗.4.q: 8..10) and
(ε: M)vσ (ε: E)
we obtain 8(Q1) = {(ε: M), (4.s: 80..100)} (Q1 after P-reduction Algorithm
is shown in Table XIII).

THEOREM 5. Given a schema 6 = (σ, R) and an expanded schema 6 =
(σ , R), which is a conservative extension of 6, the set 8(V) computed by
Algorithm 2 is a factorization of V with respect to 6 and u{ f | f ∈ 8(V)}
is a semantic expansion of V .

PROOF. See Appendix C.

In order to point out the properties of 8(V) let’s compare it with the original
factorization F V

6
; in Table XIV we consider these factorizations for Q1 and Q8

(4.a is denoted by a).

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 35

In general, a factor (p: S) ∈ F V
6

is specialized/eliminated in 8(V):

Specialization. There is a factor (p′: S′) in 8(V) with (p′: S′) vσ (p: S).
For example, for Q1, the factors (ε: E) and (s: 80..∞) are specialized in (ε: M)

and (s: 80..100) respectively.
Note that a particular case of specialization is simplification, which occurs

when a factor is specialized in 8(V) with respect to the schema classes. For
example, for Q8, the factor (d.c: 4..∞) has been simplified in (d: CBD).

Elimination. A factor (p: S) is eliminated (and thus it has no correspon-
dence in 8(V)).

For example, for Q1, the factor ((4.h)∗.4 .q: 7..∞) has been eliminated, since
it is contained in the description of the primitive class M.

The final optimization step is redundancy check. For example, for Q1, 8(Q1)
is the result of our optimal rewriting method as it does not contain redundant
factors.

For Q8, the factors (d: CBD) and (q: 10..10) are redundant with respect
to 8(Q8), but cannot be eliminated together since (ε: M) u (s: 100..100) 6v6
(q: 10..10) u (d: CBD). This example shows the problem of the elimination of a
set of factors, since it may be the case that either f1 or f2 can be eliminated but
they cannot be eliminated together. Intuitively speaking, this happens when
recursive rules occur, that is, when the consequent of a rule R1 is subsumed by
the antecedent of a rule R2 and vice-versa. On the contrary, when the seman-
tic expansion of a name does not involve any recursive rule, the conjunction
of redundant factors is redundant too; in this case, it is possible to detect all
redundant factors by computing a linear number of subsumption relationships.
In order to formalize this case, let’s introduce the definition of rule graph.

Definition 15 (Rule Graph). Given a schema 6 = (σ, R), the rule graph
G6(R, E) is a labeled directed graph that has R ∈ R as nodes and the edges
E ∈ E, with E = (Ri, wi, j , R j) defined as follows: the label wi, j is a word of the
alphabet {e, e−1 | e ∈ A ∪ {4, ∀, ∃}}, Ri = (Sa

i , Sc
i), R j = (Sa

j , Sc
j), and there is

(p: S) in 8(Sc
i) and (p′: S′) in 8(Sa

j) such that one of the following conditions
holds:

(1) (p: S)vσ (p′: S′); in this case wi, j = ε.
(2) (w.p: S)vσ (p′: S′) for a word w = e1.e2 · · · en−1.en; in this case wi, j =

en.en−1 · · · e2.e1.
(3) (p: S)vσ (w.p′: S′) for a word w = e1.e2 · · · en−1.en; in this case wi, j = e−1

1 .

e−1
2 · · · e−1

n−1.e
−1
n .

An example of rule graph is given in Figure 4; in particular, we have:
(e: B) ∈ 8(Sc

4), (d.c.e: B) ∈ 8(Sa
2), with (w.e: B)vσ (d.c.e: B), where w = d.c,

then there is an edge from R4 to R2 with label c.d (case (2) of the definition);
(d.a: B) ∈ 8(Sc

3), (a: B) ∈ 8(Sa
4), with (d.a: B)vσ (w.a: B), where w = d, then there

is an edge from R3 to R4 with label d−1 (case (3) of the definition).

Definition 16 (Recursive Rule). Given a schema 6 = (σ, R), a rule R is re-
cursive if the graph G6(R, E) contains at least a cyclic path from R to R with

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

36 • D. Beneventano et al.

c-1R1

d.c

R2

R3
d-1

c.d

d-1

R4

R1 = ((a:B), (b:B))

R2 = ((c.d.b:B) u (d.c.e:B), (c.h:B))

R3 = ((h:B), (d.a:B))

R4 = ((a:B), (e:B))

Fig. 4. Example of Rule Graph.

label ε or of the form e1.e2 · · · en−1.en.e−1
n .e−1

n−1 · · · e−1
2 .e−1

1 . RR denotes the set of
recursive rules in R.

As a simple example of recursive rule, let’s consider R1 = ((a: 10..30)),
((b: 5..15)) and R2 = (b: 5..25), (a: 10..20); of course, both R1 and R2 are re-
cursive with label ε. A more complex example is shown in Figure 4, where R1 is
the unique recursive rule since there is a cyclic path with label d.c.c-1.d-1

from R1 to R1.

THEOREM 6. Given a schema 6 = (σ, R) over S, a name V and its factoriza-
tion 8(V), let f1, . . . , fn ∈ 8(V) be redundant factors with respect to 8(V). If
there is no recursive rule R = (Sa, Sc) and path p such that V v6 (p: Sa), then
8(V) \ { f1, . . . , fn} is a factorization of V .

PROOF. See Beneventano [2002].

Note that, the set RR can be computed on the schema 6 = (σ, R) at once, as
the schema is available. Having the set RR it is possible to easily check the con-
dition of Theorem 6. In fact, for a given virtual name V , by using Algorithm 1, we
can find all the rules R = (Sa, Sc) such that there is a path p with V v6 (p: Sa)
and verify if at least one of these rules belongs to RR .

Let’s show the method based on Theorem 6 by an example. Having the rules:

R1 = ((a: 10..30), (b: 5..15))
R2 = ((b: 5..25), (a: 10..20))
R3 = ((c: 10..30), (a: 10..40) u (d: 5..35)).

Of course, both R1 and R2 are recursive with label ε. Let’s consider the queries
Qa, Qb, Qc and their 8(Q):

(1) 8(Qa) = {(a: 10..40), (b: 5..45), (c: 10..20), (d: 5..35)}
In this case, the redundant factors are (a: 10..40) and (d: 5..35); since

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 37

there is no recursive rule R and a path p such that Q1 v6 (p: Sa),
8(Q1)\{(a: 10..40), (d: 5..35)} is a factorization of Qa.

(2) 8(Qb) = {(a: 10..20), (b: 5..15), (c: 10..40), (d: 5..45)}
In this case, the redundant factors are (a: 10..20) and (b: 5..15); since the
recursive rules R1 and the path ε exist such that Qb v6 (ε: Sa

1), Theorem 6
is not applicable and we must explicitly check the redundancy of (a: 10..20)u
(b: 5..15); since (c: 10..40) u (d: 5..45) 6v6 (a: 10..20) u (b: 5..15) the factors
(a: 10..20) and (b: 5..15) cannot be eliminated together.

(3) 8(Qc) = {(a: 10..20), (b: 5..15), (c: 10..20), (d: 5..35)}
In this case, the redundant factors are (a: 10..20), (b: 5..15) and (d: 5..35);
since the recursive rules R1 and the path ε exist such that Qc v6 (ε: Sa

1),
Theorem 6 is not applicable and we must explicitly check the redundancy of
(a: 10..20) u (b: 5..15) u (d: 5..35); since (c: 10..40) v6 (a: 10..20) u (b: 5..15) u
(d: 5..35) the factors can be eliminated together and thus (c: 10..20) is a
factorization of Qc.

We conclude by applying these results at the queries of running exam-
ple; first of all, the recursive rules are r 1, r 2, r 3 and r 4. In the case of
query Q8, as Q8 v6 (ε: Sa

1), we must explicitly check the redundancy of
(q: 10..10)u (4.d: CBD); since (ε: M) u (4.s: 100..100) 6v6 (4.q: 10..10) u (4.d: CBD),
the factors cannot be eliminated together.

5.3 Linear Cyclic Types

Our model allows the expression of recursive queries, that is, cyclic virtual
names. Theorem 4 is applicable to cyclic virtual names and states that any cyclic
virtual name under gfp-semantics can be rewritten as a factorization, and thus,
necessarily, with an acyclic description. Comparable results have been obtained
by other authors. In Baader [1991], it is shown that cyclic definitions under gfp-
semantics can be replaced by role definitions involving union, composition, and
transitive closure of roles. Bertino et al. [1992] introduced a restricted form of
recursion for OODB query languages, which corresponds to the notion of linear
recursion for logic queries; this is expressed by means of a transitive closure
operator. Also in relational environment, Jagadish et al. [1987] prove that the
class of the linear recursive queries can be expressed with transitive closure.

This result applies in our context too, that is, every linear recursive query
can be factorized in terms of transitive closure.

Formally speaking, given a canonical schema 6 = (σ , R), a cyclic virtual
name V is linear if σ V (V) includes exactly one occurrence of a cyclic virtual
name V1 such that V1

+
↪→V V , where

+
↪→V is the relation

+
↪→ with respect to the

set of virtual type names. For example, in the following schema

σ V (V1) = [a: V1, b: V2]
σ V (V2) = S u [c: V1]

the cyclic virtual name V1 is not linear since σ V (V1) includes V1 and V2,
with V1

+
↪→V V1 and V2

+
↪→V V1. The following schema includes only linear

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

38 • D. Beneventano et al.

cyclic names:

σ V (V0) = [a: V1, b: V2]
σ V (V1) = S u [c: V1]
σ V (V2) = S u [c: V2]

since V0 is not cyclic and V1 and V2 are cyclic but depend only on themselves.

PROPOSITION 4. Given a canonical schema 6 = (σ , R), and a virtual name
V , if V is either acyclic or linear, then V can be factorized in terms of transitive
closure, that is in every factor (p: S) ∈ F V

6
(defined in Theorem 4) p is obtained

with the following syntax rules

p′ → e | e ṗ′

p→ p′ | (p′)∗.

PROOF. See Appendix C.

6. RELATED WORK

Many research efforts have been devoted to semantic query optimization in the
area of relational and deductive databases [Hammer and Zdonik 1980; King
1981; Shenoy and Özsoyoglu 1987, 1989; Jarke et al. 1984; Siegel et al. 1992;
Chakravarthy et al. 1990] and in the area of OODBs [Hacid and Rigotti 1995;
Yoon et al. 1995; Yoon and Kerschberg 1993; Grant et al. 1997; Pang et al. 1991;
Sheu et al. 1989; Jeusfeld and Staudt 1993].

OODBs provide a richer type (class) system with respect to relational
databases and a subclass of integrity constraints can be directly represented
in the database schema. By exploiting these rich semantics, semantic query
optimization can be performed to a great extent. For this reason, we focus on
the related works in the area of OODBs, even if some basic techniques have
been introduced in the earlier works on relational and deductive databases.

The most followed approach for semantic query optimization in OODBs is
logic-based. Queries, rules, and integrity constraints allow a uniform represen-
tation in a logical formalism and deduction is used to produce equivalent query
forms. In Grant et al. [1997], Yoon and Kerschberg [1993], and Yoon et al. [1995],
the semantic query optimization techniques developed for deductive databases
are extended to object-oriented databases. In particular, in Grant et al. [1997]
the ODMG93 standard is used: the ODL object schema and the OQL query
are translated into a DATALOG representation and semantic query optimiza-
tion is performed in this representation and subsequently an OQL query is
obtained. In Yoon and Kerschberg [1993], a set of deductive rules based on an
object-oriented database schema or semantic knowledge about the domain of
the database is generated and the residue technique [Chakravarthy et al. 1990]
is used to optimize a query. In Yoon et al. [1995], the schema and integrity con-
straints are represented in the form of nonrecursive Horn clauses.

A logic-based approach is also followed in Jeusfeld and Staudt [1993], where
a deductive object base is defined as a special case of a deductive database with
integrity constraints. Object-oriented abstraction principles like object identity,

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 39

attribute typing and specialization become axioms of a first-order database the-
ory. By exploiting the axioms, some optimizations can be achieved, such as elim-
ination of class membership predicates and view maintenance optimization.

Another logic-based approach is presented in Sheu et al. [1989]. It intro-
duces a technique for predicate reordering in conjunctive recursive queries.
Optimization is obtained by deferring the evaluation of the most expensive
predicates. Reduction of the search space is also obtained by applying a sound
set of rewriting rules. Their object data model includes deduction laws and in-
tegrity constraints expressed in a first-order language. This work is in some
way complementary to ours, since it performs predicate reordering (which we
do not consider, being dependent from specific cost models), but does not deal
with hierarchy-based optimizations, which is one of our main achievements.

Generally speaking, with respect to the works above, our approach is dif-
ferent, as we extend the idea of semantic query expansion to OODBs (origi-
nally developed for relational databases) and we adopt a restricted first-order
logic, namely a DL, as reasoning environment. The choice of adopting a re-
stricted logic-based language to describe the schema, the integrity constraints
and the queries is motivated by decidability issues. In fact, it permits the
use of a decidable subsumption relation that helps to discover equivalences
and simplifications that cannot be computed in the full logic-based frame-
work, where this subsumption relation is undecidable in general [Shmueli
1993]. Furthermore, we deal with a less expressive query language, but we
devise an optimal rewriting algorithm that rewrites a query determining more
specialized classes to be accessed and minimizing the number of factors, en-
abling us to optimize a significant set of recursive queries, that is, conjunctive
queries.

DL has already been used to solve a particular aspect of semantic query opti-
mization: automatic classification of a query with respect to views/queries [Beck
et al. 1989; Borgida et al. 1989; Beneventano and Bergamaschi 1997; Buchheit
et al. 1994]. From a theoretical point of view, a query and a view both coin-
cide with the semantics of defined concepts (i.e., virtual type names) and the
problem is led back to subsumption computation. Since our method is based
on a DL kernel, it performs the automatic classification of a query too (see
Beneventano and Bergamaschi [1997]), but we observe that automatic classi-
fication is only useful if we assume that views are materialized. Our approach
goes further, since our model allows the representation of integrity constraints,
which we exploit to “move down” queries with respect to the database classes
hierarchy. In Hacid and Rigotti [1995], an attempt to combine resolution-based
reasoning [Yoon and Kerschberg 1993] and classification-based (i.e., DL-based)
reasoning in a common framework to perform complementary semantic query
optimizations is presented, but the investigation is only at a very preliminary
stage.

Some other works in OODBs do not follow a logic-based approach. One of
the most general works introducing semantic transformation rules in the con-
text of query processing in OODBs is Straube and Özsu [1990]. In this work, a
query processing methodology, completed with an object calculus and a closed
object algebra, is presented. Query processing issues such as query safety and

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

40 • D. Beneventano et al.

object calculus into object algebra translation are discussed in detail. The paper
contains a discussion of equivalence-preserving transformation rules for object
algebra expressions: algebraic rules create equivalent expressions based upon
pattern matching and textual substitution; semantic rules are similar, but they
are additionally dependent on the semantics of class definitions and inheritance
lattice of a database schema. The generation of the canonical form of a query
proposed in our article includes this kind of algebraic and semantic transforma-
tions and goes further, taking also integrity rules in the query transformation
into account.

Pang et al. [1991] present a method that performs semantic expansion of
a query and three semantic query optimization transformations (restriction
elimination, index and restriction introduction, class elimination). The class
of considered queries is a proper subset of our clean query class and the task
of choosing the beneficial transformations, as in our approach, is delayed un-
til all the possible transformations have been considered. The algorithm pre-
sented in Pang et al. [1991] classifies query predicates, on the basis of the
available integrity constraints, as imperative, optional and redundant, where
the optional predicates could be removed or otherwise, depending on their
profitability in terms of possible cost savings due to searchable indexes. In
our work, the redundant predicates are directly eliminated in the factoriza-
tion of the expanded query that is the starting point of the optimal rewrit-
ing of a query. Furthermore, the optional predicates (which we call redun-
dant) are found in the optimal rewriting. Note that, in Pang et al. [1991],
the removal of optional predicates does not consider the presence of recursive
rules that do not allow, as we proved, the independent elimination of optional
predicates.

Several papers have dealt with the problem of conjunctive query containment,
one of the aspects of semantic query optimization,7 useful in many contexts,
including information integration, view maintenance, and data warehousing.

Kolaitis and Vardi [1998] map the query containment problem with respect
to an acyclic schema to a constraint satisfaction problem and solve it for generic
conjunctive queries. Chan [1992] has investigated the containment and mini-
mization problem for a class of conjunctive queries in an object-oriented setting
but he considered some minimal schema information such as subclass rela-
tionship and disjointness of classes. Levy and Suciu [1997] propose a query
language for complex objects including conjunctive queries and aggregation
operators and provide an algorithm to decide containment for queries. In com-
parison with these papers, we deal with a less expressive query language, but
we are able to support (and thus to optimize) a significant set of conjunctive
recursive queries including path expressions. Moreover, in all the above papers,
the only considered integrity constraints are: attribute types and inheritance
relations between classes, whereas we also consider if-then integrity rules.

Florescu et al. [1998] give a semantic and syntactic notion for conjunc-
tive query containment, and provide decidability and complexity results. Their

7In particular, the already cited DL-based works on automatic classification of queries solve the
query containment problem as a subsumption computation problem.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 41

query language, STRUCTQLO, allows regular path expressions with path vari-
ables to be represented. A very interesting fragment of STRUCTQLO that captures
a class of frequently used recursive queries such as ‘‘a.*.b’’ where a, b are
constant labels and * matches any sequence of any label, is introduced and the
NP complete complexity of containment is proved. We share with the authors
the choice to limit the kind of recursive queries considered.

Calvanese et al. [1998] study the problem of checking whether a query q is
contained in a query q′ with respect to the constraints specified in a schema
S, where q and q′ are nonrecursive Datalog programs whose atoms are com-
plex expressions. Constraints are specified in the form of inclusions between
complex expressions, built by using intersection and difference of n-relations,
special forms of quantification, regular expressions over binary relations and
cardinality constraints. Their DL, DLRreg, is more expressive than ours, al-
lowing negation and cardinality constraints, but their objective is to provide
decidability and complexity results rather than algorithms. Moreover, a signif-
icant semantic difference with our work is in the definition of cyclic queries;
as we explained in Section 3.5, their way to define a query with a couple of in-
clusion statements is not suitable to uniquely determine the answer of a cyclic
query.

Several papers have dealt with the problem of maximal rewriting of conjunc-
tive queries with respect to a set of given views [Beeri et al. 1997; Calvanese
et al. 1999], which is relevant in many contexts, including query optimization
in information integration [Levy et al. 1996; Ullman 1997] and data warehous-
ing [Zhuge et al. 1995]. The objective of maximal rewriting is opposite to that
of optimal rewriting of a query as proposed in this paper. In fact, the maximal
rewriting gives a set of views that are equivalent or maximally contained in a
given query Q , whereas optimal rewriting gives an equivalent query rewritten
on the basis of more specialized classes of the schema. Therefore, the goal of
maximal rewriting is to obtain (usually) a subset of the query answer set in
terms of the available views while, ours is to obtain exactly the query answer
set, possibly with reduced execution costs. Optimal rewriting could be extended
to take materialized views in the semantic query optimization process into
account.

In Baader et al. [2000], the following rewriting problem is considered: “given
a terminology T (i.e., a set of concept definitions) and a concept description
C that does not contain concept names defined in T , can this description be
rewritten into a “related better” description E by using (some of) the names de-
fined in T ?” The authors first introduce a general framework for the rewriting
problem in Description Logics and then concentrate on the minimal rewriting
problem, where “better” means shorter and “related” means equivalent. Our op-
timal query rewriting method gives an equivalent query rewriting on the basis
of more specialized primitive classes of the schema. The method could be re-
formulated with respect to the general framework for the rewriting introduced
in Baader et al. [2000] taking the differences between the DLs proposed into
account: they are more expressive on one hand, allowing negation, disjunction
and cardinality constraints, less expressive on the other hand as we consider
cyclic definition.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

42 • D. Beneventano et al.

7. CONCLUSIONS AND FUTURE WORK

Semantic query optimization has never caught up in the commercial world
with reference to relational databases for many reasons. The most prominent
one is the fact that semantic query optimization was in many cases designed
for deductive databases [Chakravarthy et al. 1990; Hammer and Zdonik 1980;
Jarke et al. 1984] and due to this association, semantic query optimization
might not seem useful for relational database technology. Secondly, at the time
when semantic query optimization techniques were being developed, the rela-
tive CPU and I/O speeds were not as dramatically different as they are now.
Finally, it has been usually assumed that many integrity constraints have to
be defined for a given database if semantic query optimization is to be use-
ful there; otherwise, only few queries could be optimized semantically, but
many of the integrity constraints considered in early days of semantic query
optimization are not expressible in most commercial database systems even
today.

We believe that, with the more expressive object-relational and object data
models and the declarative expression of integrity constraints, semantic query
optimization techniques could provide an effective enhancement to the tradi-
tional query optimization. Thus, in this article, we have presented a general
semantic query optimization method in this framework. The method is effec-
tive for conjunctive recursive queries including path expressions and is imple-
mented in a tool providing an ODMG compliant interface, which permits full
interaction with OQL queries, adopting DL techniques and wrapping underly-
ing DL representation and techniques to the user.

We are currently extending our work in several directions. A first direction
concerns the investigation of the extensions of the method for semistructured
environments. In fact, in the context of semantic optimization, a major achieve-
ment of our work is the possibility of expressing queries and integrity con-
straints with regular path expressions. These aspects are even more impor-
tant when semistructured data sources are considered. Our method needs a
schema (classes and integrity constraints) that is missing in semistructured
environments, but many authors have acknowledged that querying semistruc-
tured data can greatly profit by some imposed or discovered schema [Buneman
1997; Buneman et al. 1997; Goldman and Widom 1997; Nestorov et al. 1997,
1998] and Abiteboul and Vianu [1997] introduce path constraints in semistruc-
tured data. The models proposed in semistructured environments subsume our
data model as they provide the union operator, which is fundamental in this
context. From a theoretical point of view our method can be extended in this
direction as, recently, Calvanese et al. [1999] proved that subsumption in a
DLs including these features is decidable. Nevertheless, the integration of new
modelling features in a context of semantic query optimization, its formal-
ization and implementation are complex problems requiring a new research
effort.

A second direction is the extension of semantic query optimization techniques
in the environment of integration of information from distributed heteroge-
neous sources: a first step in this direction is in Beneventano et al. [2001].

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 43

Further directions are: the extension of the optimal rewriting method that
we introduced taking not only classes into account but also materialized views
(this extension could be useful in the environments of information integration
and data warehousing); the capability of expressing other kinds of integrity con-
straints, for example primary keys; the integration of our method with physical
query optimization: the optimal form could be compared with other semanti-
cally equivalent forms, to select the best one on the basis of a specific physical
access cost model.

APPENDIXES

A. EXTENDED ODL SYNTAX

This section shows the extensions to the ODL-ODMG syntax that we pro-
pose. The reader is referred to Cattell [1994, Sect. 3.5], for the original ODL
syntax. The modified production rules are 〈definition〉 and 〈base type spec〉
(〈ODL definition〉 and 〈ODL base type spec〉 denote the original definitions).

〈definition〉 : := 〈ODL definition〉
| 〈view dcl〉 ;
| 〈rule dcl〉 ;

〈view dcl〉 : := view 〈identifier〉
[〈inheritance spec〉]
[〈type property list〉]

〈rule dcl〉 : := rule 〈identifier〉 〈rule pre〉 then 〈rule post〉
〈rule pre〉 : := forall 〈identifier〉 in 〈identifier〉 : 〈rule body list〉
〈rule post〉 : := 〈rule body list〉
〈rule body list〉 : := (〈rule body list〉)

| 〈rule body〉
| 〈rule body list〉 and 〈rule body〉
| 〈rule body list〉 and (〈rule body list〉)

〈rule body〉 : := 〈dotted name〉 〈rule const op〉 〈literal value〉
| 〈dotted name〉 in 〈dotted name〉
| forall 〈identifier〉 in 〈dotted name〉 :

〈rule body list〉
| exists 〈identifier〉 in 〈dotted name〉 :

〈rule body list〉
〈rule const op〉 : := = | ≥ | ≤ | > | <
〈dotted name〉 : := 〈identifier〉 | 〈identifier〉.〈dotted name〉

〈base type spec〉 : := 〈ODL base type spec〉 | 〈range type〉
〈range type〉 : := range 〈range specifier〉
〈range specifier〉 : := 〈const exp〉 . . 〈const exp〉

| 〈const exp〉 , +inf
| −inf , 〈const exp〉

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

44 • D. Beneventano et al.

B. MAPPING SCHEMATA TO FINITE AUTOMATA

Let 0 be a finite alphabet. A Nondeterministic Finite Automaton A =
(Q, 0, δ, q0, F) consists of a finite set of states Q, a finite alphabet 0, and a
finite set of transitions δ ⊆ Q× (0∪{ε})×Q, an initial state q0 and a set of final
states F [Hopcroft and Ullman 1979].

Given a virtual name V of a schema 6 = (σ, R) over S, we associate to V an
automaton A = (QV , 0V , δV , q0, F), with the following meaning:

—QV = {V } ∪ {S ∈ S | S is used in σV (V)} is the set of nodes;
—0V = {e ∈ A ∪ {4, ∀, ∃} | e is used in σV (V)} is the set of transition labels;
—q0 = V , is the initial state;
—F = {S}, where S ∈ B ∪P ∪ {>,⊥} is the final state

and the transitions between states δV are defined as follows:

〈V , ε, S〉 ∈ δV iff σV (V) = S
〈S u S′, ε, S〉〈S u S′, ε, S′〉 ∈ δV iff S u S′ ∈ QV

〈∀{S}, ∀, S〉 ∈ δV iff ∀{S}
〈∃{S}, ∃, S〉 ∈ δV iff ∃{S} ∈ QV

〈[. . . , ai : Si, . . .], ai, Si〉 ∈ δV iff [. . . , ai : Si, . . .] ∈ QV

〈(4S),4, S〉 ∈ δV iff (4S) ∈ QV

In particular, the primitive type names are final states of the automaton with
no outgoing transition.

In the following,A(V , S) will indicate the automaton associated to the name
V with S as final state.A(V , S) defines a regular language, denoted by L(V , S),
namely the set of all words which are labels of paths from N to S.

C. PROOFS

The following are the proofs of Theorems 3 and 5 and Proposition 4.

THEOREM 3. Given a canonical schema 6 = (σ , R) over S(A, B, P ∪ V) as
input, the output of Algorithm 1 is an expanded schema 6̃ = (σ̃ , R) over
S(A, B, P ∪ Ṽ) which is a conservative extension of 6.

PROOF SKETCH. The termination of Algorithm 1 is guaranteed by the following
facts:

—a rule cannot be applied more than once to the same name; in fact, when a rule
turns out to be applicable to a name, the consequent of the rule is conjuncted
with the name description: this makes the rule no more applicable to the
name;

—the rule set is finite;
—Step (1) of Algorithm 1 generates a finite set of names. In fact, given the input

canonical schema 6 = (σ , R) over S(A, B, P∪V), we can consider a canonical

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 45

schema 61 = (σ 1, R) over S(A, B, P ∪ V1) such that, for each X ⊆ 2V, there
is V ∈ V1 with σ V (V) equal to uVi∈ XσV (Vi). Note that the V1 set is finite.

The names generated by Step (1) are contained in V1 In addition, it is not
possible to generate two names for the same conjunction, in fact, at Step (i),
for any new type S, a new name V ′ is introduced in σ i+1, with σ i+1(V ′) = S
if there is no j , (0 ≤ j ≤ i) and V ′′ such that σ j (V ′′) = S. Then the Step (1)
of Algorithm 1 generates a finite set of names.

As the algorithm stops when 36(V) = ∅, ∀V ∈ V, the computed schema is
an expanded schema. The proof that the computed schema is a conservative
extension of 6 proceeds by induction: we assume that the claim applies for 6i

and prove it applies for 6i+1, i ≥ 0.
If R = (VRa, VRc) ∈ 36i (V) then V vσ i VRa and thus, from Theorem 2, it

follows that V v6i VRa; moreover, from rule semantics we have that VRa v6i

VRc then V v6i VRc and thus V '6i V u VRc. From virtual name semantics,
it follows immediately that σ i(V) '6i σ i(V) u VRc. Then, from Proposition 2,
it follows that the schema 6i+1 obtained from 6i by assigning to σ i+1(V) the
canonical form of σ i(V) u VRc is a conservative extension of 6i. Note that we
assign a new virtual name V ′ to each new type S if a V ′′ with σ i

V (V ′′) = S
does not exist (Step (3), page 26) . On the other hand, by applying the induction
hypothesis, each schema 6 j , with 0 ≤ j ≤ i, is a conservative extension of 6,
for this reason, if we assign a new virtual name V ′ to each new type S if there
is no j , (0 ≤ j ≤ i) and V ′′ such that σ j

V (V ′′) = S, then we can conclude that
the schema 6i+1 is still a conservative extension of 6.

THEOREM 5. Given a schema6 = (σ, R) and an expanded schema6 = (σ , R)
that is a conservative extension of 6, the set 8(V) computed by Algorithm 2 is a
factorization of V with respect to6 andu{ f | f ∈ 8(V)} is a semantic expansion
of V .

PROOF SKETCH. As 6 is a conservative extension of 6, it follows that, given
the factorization F V

6
of V with respect to 6, the set K ′1(V) = {(p: P) | (p: P̂) ∈

F V
6

, P̂ ∈ P} ∪ {(p: S) | (p: S) ∈ F V
6

, S 6∈ P} is a factorization of V with respect to
6 and u{ f | f ∈ K ′1(V)} is a semantic expansion of V .

Let wp be a word in L(p); of course, (p: P)vσ (wp: P), then (wp: P)vσ (p: P)
implies that (wp: P)'σ (p: P). Then, if (wp: P)vσ (p: P), in the set K ′1(V), we
can replace (p: P) by (wp: P), obtaining again a factorization of V with respect
to 6. Thus, the set K1(V) (where we consider the shortest word w0

p in L(p)) is a
factorization of V with respect to 6. Furthermore, u{ f | f ∈ K ′1(V)}'σ u{ f |
f ∈ K1(V)} and thusu{ f | f ∈ K1(V)} is a semantic expansion of V . Since the
set8(V) is obtained from K1(V) by eliminating redundant factors with respect
to the description of primitive type name, it follows that:

(1) 8(V) is a factorization of V with respect to 6.
(2) u{ f | f ∈ 8(V)}'σ u{ f | f ∈ K1(V)} and thus u{ f | f ∈ 8(V)} is a

semantic expansion of V .

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

46 • D. Beneventano et al.

PROPOSITION 4. Given a schema 6 = (σ, R), and a virtual name V , if V is
either acyclic or linear, then V can be factorized in terms of transitive closure,
that is in every factor (p: S) ∈ F V

6
(defined in theorem 4) p is obtained with the

following syntax rules

p′ → e | e ṗ′

p→ p′ | (p′)∗.

PROOF. Each automaton A(V , S) can be represented as an array of labels
li j , i, j = 1, . . . , n, where i, j indicate the states of the automaton and li, j is
the label of the edge from state j to state i. The array for the automaton of
a linear cyclic type can be sorted to be lower triangular, with the initial state,
associated to the type V itself, in the first row and the final state associated to
the last row, where the elements of the main diagonal are union-free. In fact,
the initial state allows a single incoming edge at the most, when V is recursive
on itself, the final state can have incoming edges from any of the other states;
in addition, from the hypothesis of linear cyclic, if there is a path from state i
to state j , then there cannot be any path from state j to state i, for i 6= j , and
there is one path at the most from a node to itself. For instance, the automaton
associated to type V0 (see Section 5.3) is described by the following array:

V0 V1 V2 S
V0 − − − −
V1 a c − −
V2 b − c
S − ε ε −

According to Perrin [1990], a rational expression defining the language ac-
cepted by an automaton can be computed solving the following system of
equations:

X i =
∑

1≤ j≤n

X j li j + ε j ,

where εi = ε for i = 1, 0 otherwise. To solve this system, one uses substitutions
in accordance with the following rule: the set ZY? is the unique solution of the
equation X = X Y + Z . The regular expression is given by the solution for X n.
From the shape of the array of labels it turns out that the solution can be built
by solving the X i for increasing i and, when the ith equation is reduced to the
form above, Y is a union-free literal (i.e., without Xj inside) and the variables
Xj contained in Z are such that j < i. For this reason, the solution will have
the form

∑
wk , where wk is a union-free word. Coming back to the example

above, the system of equations is the following:

V0 = ε

V1 = V0a+ V1c

V2 = V0b+ V2c

S = V1 + V2

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 47

The system above can be solved for V0, V1, V2, S in sequence, obtaining the
following solutions:

V0 = ε, V1 = ac?, V2 = bc?, S = ac? + bc?

and, from the solution for S, the factorization of V0 is the following:

V0 = [(ac? + bc?): S]

ACKNOWLEDGMENTS

We are very grateful to the anonymous referees for their helpful comments.
We are very grateful to Maurizio Vincini who was in charge of ODB-

QOptimizer project during his PhD studies in Information and Communica-
tion Technology at the University of Modena and Reggio Emilia and to the
undergraduate students: Alberto Corni, Ilario Benetti, Paolo Apparuti who con-
tributed to the project.

REFERENCES

ABITEBOUL, S. AND KANELLAKIS, P. 1989. Object identity as a query language primitive. In SIGMOD.
ACM, New York, 159–173.

ABITEBOUL, S., QUASS, D., MCHUGH, J., WIDOM, J., AND WIENER, J. 1997. The lorel query language
for semistructured data. J. Dig. Lib. 1, 1, 68–88.

ABITEBOUL, S. AND VIANU, V. 1997. Regular path queries with constraint. In Proceedings of the 16th
Annual ACM SIGACT-SIGMOD SIGART Principles of Database Systems (PODS ’99) (Tucson,
Az., May 12–14) ACM, New York.

BAADER, F. 1991. Augmenting concept languages by transitive closure of roles: An alternative
to terminological cycles. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence (Sydney, Australia). Morgan-Kaufmann, San Francisco, Calif.

BAADER, F. 1996. Using automata theory for characterizing the semantics of terminological cycles.
Ann. Math. Artif. Intel. 18, 2–4, 175–219.

BAADER, F., KÜSTERS, R., AND MOLITOR, R. 2000. Rewriting concepts using terminologies. In Proceed-
ings of the 7th International Conference on Knowledge Representation and Reasoning (KR2000),
A. Cohn, F. Giunchiglia, and B. Selman, Eds. Morgan-Kaufmann, San Francisco, Calif., 297–308.

BECK, H. W., GALA, S. K., AND NAVATHE, S. B. 1989. Classification as a query processing technique
in the CANDIDE data model. In Proceedings of the 5th International Conference on Data Engi-
neering. IEEE Computer Society, Los Angeles, Calif., 572–581.

BEERI, C., LEVY, A. Y., AND ROUSSET, M. 1997. Rewriting queries using views in description logics. In
Proceedings of the Sixteenth ACM SIG-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS ’97) (Tucson, Az., May 12–14). ACM, New York, 99–108.

BENEVENTANO, D. 2002. Description logics for semantic query optimization in object-oriented
database systems. Tech. rep., Dipartimento di Ingegneria dell’Informazione, Via Vignolese 905—
Modena. http://www.dbgroup.unimo.it/TechnicalReport/TechReport2002-1.pdf.

BENEVENTANO, D. AND BERGAMASCHI, S. 1997. Incoherence and subsumption for recursive views and
queries in object-oriented data models. Data Knowl. Eng. 21, 3 (Feb.), 217–252.

BENEVENTANO, D., BERGAMASCHI, S., LODI, S., AND SARTORI, C. 1998. Consistency checking in complex
object database schemata with integrity constraints. IEEE Trans. Knowl. Data Eng. 10, 576–598.

BENEVENTANO, D., BERGAMASCHI, S., AND MANDREOLI, F. 2001. Extensional Knowledge for semantic
query optimization in a mediator based system. In Proceedings of the International Workshop on
Foundations of Models for Information Integration (FMII-2001) (Viterbo, Italy, Sept.). Lecture
Notes in Computer Science. Springer-Verlag, Heidelberg, Germany.

BENEVENTANO, D., BERGAMASCHI, S., AND SARTORI, C. 1996. Semantic query optimization by sub-
sumption in OODB. In Flexible Query Answering Systems, H. Christiansen, H. L. Larsen, and

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

48 • D. Beneventano et al.

T. Andreasen, Eds. Datalogiske Skrifter—ISSN 0109-9799, vol. 62. Roskilde University, Roskilde,
Denmark.

BENEVENTANO, D., BERGAMASCHI, S., SARTORI, C., AND VINCINI, M. 1997. ODB-QOPTIMIZER: A tool
for semantic query optimization in oodb. In Proceedings of the International Conference on Data
Engineering. IEEE Computer Society, Los Angeles, Calif. http://sparc20.dsi.unimo.it.

BERGAMASCHI, S. AND NEBEL, B. 1994. Acquisition and validation of complex object database
schemata supporting multiple inheritance. J. Appl. Intel. 4, 185–203.

BERGAMASCHI, S. AND SARTORI, C. 1992. On taxonomic reasoning in conceptual design. ACM Trans.
Datab. Syst. 17, 3 (Sept.), 385–422.

BERTINO, E., NEGRI, M., PELAGATTI, G., AND SBATTELLA, L. 1992. Object-oriented query languages:
The notion and the issues. IEEE Trans. Knowl. Data Eng. 4, 3 (June), 223–236.

BORGIDA, A., BRACHMAN, R. J., MCGUINNESS, D. L., AND RESNICK, L. A. 1989. CLASSIC: A structural
data model for objects. In SIGMOD (Portland, Ore.). ACM, New York, 58–67.

BRACHMAN, R. J. AND SCHMOLZE, J. G. 1985. An overview of the KL-ONE knowledge representation
system. Cognit. Sci. 9, 2, 171–216.

BUCHHEIT, M., JEUSFELD, M. A., NUTT, W., AND STAUDT, M. 1994. Subsumption between queries to
object-oriented database. In Extending Database Technology. Springer, Heidelberg, Germany,
348–353.

BUNEMAN, P. 1997. Semistructured data. In Proceedings of the 16th Annual ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (Tucson, Az., May 12–14).
ACM, New York, 117–121.

BUNEMAN, P., DAVIDSON, S., FERNANDEZ, M., AND SUCIU, D. 1997. Adding structure to unstructured
data. In Database Theory—ICDT’97, 6th International Conference (Delphi, Greece), F. N. Afrati
and P. Kolaitis, Eds. Lecture Notes in Computer Science, vol. 1186. Springer-Verlag, Heidelberg,
Germany, 336–350.

CALVANESE, D., GIACOMO, G. D., AND LENZERINI, M. 1998. On the decidability of query containment
under constraints. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems (Seattle, Wash., June 1–8). ACM New York, 149–158.

CALVANESE, D., GIACOMO, G. D., LENZERINI, M., AND VARDI, M. Y. 1999. Rewriting of regular ex-
pressions and regular path queries. In Proceedings of the 18th Annual ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (Philadelphia, Pa., May 31–June 2). ACM
New York, 194–204.

CARDELLI, L. 1984. A semantics of multiple inheritance. In Semantics of Data Types. Lecture
Notes in Computer Science, vol. 173. Springer-Verlag, Heidelberg, Germany, 51–67.

CATTELL, R. G. G. 1994. The Object Database Standard: ODMG93. Morgan-Kaufmann, San Ma-
teo, CA.

CHAKRAVARTHY, U. S., GRANT, J., AND MINKER, J. 1990. Logic-based approach to semantic query
optimization. ACM Trans. Datab. Syst. 15, 2 (June), 162–207.

CHAN, E. P. F. 1992. Containment and minimization of positive conjunctive queries in OODB’s.
In Proceedings of the ACM Symposium on Principles of Database Systems. ACM, New York,
202–211.

COBURN, N. AND WEDDEL, G. E. 1991. Path constraints for graph-based data models: Towards a
unified theory of typing constraints, equations and functional dependencies. In Proceedings of
the 2nd International Conference on Deductive and Object-Oriented Databases. Springer-Verlag,
Heidelberg, Germany, 312–331.

DEN BUSSCHE, J. V. AND VOSSEN, G. 1993. An extension of path expressions to simplify navigation
in object-oriented queries. In Proceedings of the 3rd International Conference on Deductive and
Object-Oriented Databases (Phoenix, Az., Dec.). Lecture Notes in Computer Science, vol. 760.
Sringer-Verlag, New York, 267–282.

DONINI, F. M., LENZERINI, M., NARDI, D., AND NUTT, W. 1991. The complexity of concept languages. In
Proceedings of the 2nd International Conference on Principles of Knowledge Representation and
Reasoning (KR ’91). J. Allen, R. Fikes, and E. Sandewall, Eds. Morgan-Kaufmann, Cambridge,
Mass, 151–162.

DONINI, F. M., SCHAERF, A., AND BUCHHEIT, M. 1993. Decidable reasoning in terminological knowl-
edge representation systems. In Proceedings of the 13th International Joint Conference on Arti-
ficial Inteligence. Morgan-Kaufmann, San Francisco, Calif.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Description Logics for Semantic Query Optimization • 49

FERNANDEZ, M. F. AND SUCIU, D. 1998. Optimizing regular path expressions using graph schemas.
In Proceedings of the 14th International Conference on Data Engineering (Orlando, Fla., Feb.
23–27). IEEE Computer Society, Los Angeles, Calif., 14–23.

FLORESCU, D., LEVY, A. Y., AND SUCIU, D. 1998. Query containment for conjunctive queries with reg-
ular expressions. In Proceedings of the 17th Annual ACM SIGACT-SIGMOD-SIGART Principles
of Database Systems (PODS ’98) (Seattle, Wash., June 1–3). ACM, New York, pp. 139–148.

GOLDMAN, R. AND WIDOM, J. 1997. Dataguides: Enabling query formulation and optimization in
semistructured data. In VLDB’97, Proceedings of 23rd International Conference on Very Large
Data Bases (Athens, Greece, Aug. 25–29). M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, Eds. Morgan-Kaufmann, San Francisco, Calif., 436–445.

GRANT, J., GRYZ, J., MINKER, J., AND RASCHID, L. 1997. Semantic query optimization for object
databases. In Proceedings of the 13th International Conference on Data Engineering (ICDE’97).
IEEE, Washington - Brussels - Tokyo, 444–454.

HACID, M. AND RIGOTTI, C. 1995. Combining resolution and classification for semantic query opti-
mization in dood. In Proceedings of the International Conference on Deductive and Object-Oriented
Databases. Springer-Verlag, Heidelberg, Germany, 447–466.

HAMMER, M. M. AND ZDONIK, S. B. 1980. Knowledge based query processing. In Proceedings of the
6th International Conference on Very Large Databases. IEEE Computer Society, Los Angeles,
Calif., 137–147.

HOPCROFT, J. E. AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Boston, Mass.

JAGADISH, H. V., AGRAWAL, R., AND NESS, L. 1987. A study of transitive closure as a recursion
mechanism. In Proceedings of the 1987 Annual Conference for ACM SIGMOD (San Francisco,
Calif., May 27–29). ACM New York, pp. 331–344.

JARKE, M., CLIFFORD, J., AND VASSILIOU, Y. 1984. An optimizing prolog front-end to a relational query
system. In SIGMOD’84, Proceedings of Annual Meeting (Boston, Mass., June 18–21). B. Yormark,
Ed. ACM, New York, 296–306.

JEUSFELD, M. AND STAUDT, M. 1993. Query optimization in deductive object bases. In Query Pro-
cessing for Advanced Database System, Freytag, Maier, and Vossen, Eds. Morgan-Kaufmann
Publishers, Inc., San Francisco, Calif.

KEMPER, A. AND MOERKOTTE, G. 1990. Access support in object bases. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data (Atlantic City, N.J., May 23–25).
H. Garcia-Molina and H. V. Jagadish, Eds. ACM Press, New York, 510–517.

KIFER, M., KIM, W., AND SAGIV, Y. 1992. Querying object-oriented databases. In Proceedings of the
1992 Annual Conference for ACM SIGMOD (SIGMOD ’92). ACM, New York, 393–402.

KING, J. J. 1981. QUIST: a system for semantic query optimization in relational databases. In Pro-
ceedings of the 7th International Conference on Very Large Databases. IEEE Press, Los Angeles,
Calif., 510–517.

KOLAITIS, P. G. AND VARDI, M. Y. 1998. Conjunctive-query containment and constraint satisfaction.
In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (Seattle, Wash., June 1–3). ACM, New York, pp. 205–213.

LECLUSE, C. AND RICHARD, P. 1989. Modelling complex structures in object-oriented databases.
In Proceedings of the Symposium on Principles of Database Systems (Philadelphia, Pa). ACM,
New York, 362–369.

LEVY, A. Y., RAJARAMAN, A., AND ORDILLE, J. J. 1996. Querying heterogeneous information sources
using source descriptions. In VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases (Mumbai (Bombay), India, Sept. 3–6). T. M. Vijayaraman, A. P. Buchmann,
C. Mohan, and N. L. Sarda, Eds. Morgan-Kaufmann, San Francisco, Calif., 251–262.

LEVY, A. Y. AND SUCIU, D. 1997. Deciding containment for queries with complex objects (extended
abstract). In PODS ’97. Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (Tucson, Az., May 12–14). ACM, New York, 20–31.

NESTOROV, S., ABITEBOUL, S., AND MOTWANI, R. 1997. Inferring structure in semistructured data.
SIGMOD Record (ACM Special Interest Group on Management of Data) 26, 4, 39–43.

NESTOROV, S., ABITEBOUL, S., AND MOTWANI, R. 1998. Extracting schema from semistructured data.
In SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data
(Seattle, Wash., June 2–4). L. M. Haas and A. Tiwary, Eds. ACM, New York, 295–306.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

50 • D. Beneventano et al.

PANG, H. H., LU, H., AND OOI, B. C. 1991. An efficient semantic query optimization algorithm. In
Proceedings of the International Conference on Data Engineering. IEEE Computer Society, Los
Angeles, Calif., 326–335.

PERRIN, D. 1990. Finite automata. In Formal Models and Semantics, J. van Leeuwen, Ed. Elsevier,
Amsterdam, Holland, 14–19.

SHENOY, S. T. AND ÖZSOYOGLU, Z. M. 1987. A system for semantic query optimization. In Proceedings
of the 1987 Annual Conference for ACM SIGMOD (San Francisco, Calif., May 27–29). U. Dayal
and I. L. Traiger, Eds. ACM, New York, pp. 181–195.

SHENOY, S. T. AND ÖZSOYOGLU, Z. M. 1989. Design and implementation of a semantic query opti-
mizer. IEEE Trans. Knowl. Data. Eng. 1, 3, 344–361.

SHEU, P. C., KASHYAP, R. L., AND YOO, S. 1989. Query optimization in object-oriented knowledge
bases. Data Knowl. Eng. 3, 285–302.

SHMUELI, O. 1993. Equivalence of datalog queries is undecidable. J. Logic Prog. 15, 3 (Feb.), 231–
241.

SIEGEL, M., SCIORE, E., AND SALVETER, S. 1992. A method for automatic rule derivation to support
semantic query optimization. ACM Trans. Datab. Syst. 17, 4 (Dec.), 563–600.

STRAUBE, D. D. AND ÖZSU, T. 1990. Queries and query processing in object-oriented database sys-
tems. ACM Trans. Inf. Syst. 8, 4 (Oct.), 387–430.

SUN, W. AND CLEMENT, T. Y. 1994. Semantic query optimization for tree and chain queries. IEEE
Trans. Knowl. Data Eng. 6, 1 (Feb.), 136–151.

ULLMAN, J. D. 1997. Information integration using logical views. In Preceedings of Database
Theory—ICDT ’97, 6th International Conference (Delphi, Greece, Jan. 8–10). F. N. Afrati and
P. Kolaitis, Eds. Lecture Notes in Computer Science, vol. 1186. Springer-Verlag, Heidelberg,
Germany, 19–40.

YOON, J. P. AND KERSCHBERG, L. 1993. Semantic query optimization in deductive object-oriented
databases. In Proceedings of the 3rd International Conference on Deductive and Object-Oriented
Databases (DOOD’93) (Phoenix, Az., Dec. 6–8). S. Ceri, K. Tanaka, and S. Tsur, Eds. Lecture
Notes in Computer Science, vol. 760. Springer-Verlag, New York, pp. 169–182.

YOON, S.-C., SONG, I.-Y., AND PARK, E. K. 1995. Semantic query processing in object-oriented
databases using deductive approach. In CIKM ’95, Proceedings of the 1995 International Con-
ference on Information and Knowledge Management (Baltimore, Md., Nov. 28–Dec. 2). ACM,
New York, 150–157.

ZHUGE, Y., GARCIA-MOLINA, H., HAMMER, J., AND WIDOM, J. 1995. View maintenance in a ware-
housing environment. In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data (San Jose, Calif., May 22–25). M. J. Carey and D. A. Schneider, Eds. ACM,
New York, 316–327.

Received February 2000; revised December 2001; accepted August 2002

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

