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Abstract 

Lore (for Lightweight Object  Repository) is a DBMS de- 
signed specifically for managing semistructured information. 
implementing Lore has required rethinking all aspects of a 
DBMS, including storage management,  indexing, query pro- 
cessing and optimization, and user interfaces. This paper  
provides an overview of these aspects of the Lore system, as 
well as other novel features such as dynamic structural  sum- 
maries and seamless access to da ta  from external sources. 

1 Introduction 

Traditional database systems force all da ta  to adhere to an 
explicitly specified, rigid schema. For many new database 
applications there can be two significant drawbacks to this 
approach: 

• The da ta  may be irregular and thus not conform to a 
rigid schema. In relational systems, null values typ- 
ically are used when da ta  is irregular, a well-known 
headache. While complex types and inheritance in 
object-oriented databases clearly enable more flexibil- 
ity, it can still be difficult to design an appropriate  
object-oriented schema to accommodate irregular data. 

• It may be difficult to decide in advance on a single, 
correct schema. The structure of the da ta  may evolve 
rapidly, da ta  elements may change types, or da ta  not 
conforming to the previous structure may be added. 
These characteristics result in frequent schema modi- 
fications, another well-known headache in tradit ional 
database systems. 

Because of these limitations, many applications involving 
semistructured data [Abi97] are forgoing the use of a data-  
base management system, despite the fact that  many 
strengths of a DBMS (ad-hoc queries, efficient access, con- 
currency control, crash recovery, security, etc.) would be 
very useful to those applications. 

As a popular first example, consider da ta  stored on the 
World-Wide Web. At a typical Web site, da t a  is varied 
and irregular, and the overall s tructure of the site changes 
often. Today, very few Web sites store all of their avail- 
able information in a database system. It is clear, however, 
that  Web users could take advantage of database support ,  
e.g., by having the ability to pose queries involving da ta  
relationships (which usually are known by the site's cre- 
ators but  not made explicit). As a second example, con- 
sider information integrated from multiple, heterogeneous 
da ta  sources [Com91, LMRg0, SL90]. Considerable effort is 
typically spent to ensure that  the integrated da ta  is well- 
s tructured and conforms to a single, uniform schema. Ad- 
ditional effort is required if one or more of the information 
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031, and by equ ipment  g r an t s  f rom IBM and Dig i t a l  E q u i p m e n t  
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sources changes, or when new sources are added. Clearly, 
a database  system that  easily accommodates irregular da t a  
and changes in structure would greatly facilitate the rapid 
integration of heterogeneous databases. 

This paper  describes the implementation of the Lore sys- 
tem at Stanford University, designed specifically for manag- 
ing semistructured data.  The da ta  managed by Lore is not 
confined to a schema, and it may be irregular or incomplete. 
In general, Lore a t t empts  to take advantage of structure 
where it exists, but  also handles irregular da ta  as gracefully 
as possible. Lore (for Lightweight Object Repository 1) is fuUy 
functional and available to the public. 

Lore's da t a  model is a very simple, self-describing, nested 
object model called OEM (for Object Exchange Model), in- 
troduced originally in the Tsimmis project at  Stanford 
[PGMW95]. One of our first challenges was to design a 
query language for Lore that  allows users to easily retrieve 
and update  da ta  with no fixed, known structure. Lorel, for 
Lore Language, is an extension of OQL [Cat94, BDK92] tha t  
introduces extensive type coercion and powerful pa th  ex- 
pressions for effectively querying semistructured data.  OEM 
and Lord  are reviewed briefly in this paper; for details 
see [AQM+96]. 

Building a database system that  accommodates semi- 
s t ructured da ta  has required us to rethink nearly every as- 
pect of database  management.  While the overall architec- 
ture of the system is relatively traditional, this paper  high- 
fights a number of components that  we feel are particularly 
interesting and unique. 

First ,  query processing introduces a number of challenges. 
One obvious difficulty is the absence of a schema to guide 
the query processor. In addition, Lorel includes a powerful 
form of navigation based on path  expressions, which requires 
the use of au tomata  and graph traversal techniques inside 
the database  engine. The indexing of semistructured da ta  
and its use in query optimization is an interesting issue, 
particularly in the context of the automatic type coercion 
provided by Lorel. As will be seen, despite these challenges 
we are able to execute queries using query plans based pri- 
marily on familiar database operators. To accommodate 
semistructured da ta  at  the physical level (as well as support  
for mult imedia da ta  such as video, postscript,  gif, etc.) we 
impose no constraints on the size or structure of atomic or 
complex objects.  Meanwhile, however, the layout of objects 
on disk is tailored to facilitate browsing and the processing 
of pa th  expressions. 

Perhaps the most novel aspects of Lore are the use of 
DataGuides in place of a s tandard schema, and Lore's exter- 
nal data manager. A DataGuide is a "structural summary" 
of the current database that  is maintained dynamically and 
serves several functions normally served by a schema. For 
example, DataGuides are essential for users to explore the 
structure of the database and formulate queries. They also 
are impor tant  for the system, e.g., to store statistics and 

I Original ly ,  " l igh tweight"  referred bo th  to  the s imple  ob jec t  model  
used by Lore and  to  the  fact  t h a t  Lore was a l igh tweight  sy s t em sup- 
po r t i ng  s ingle-user ,  read-only  access.  As will be seen, Lore is evolv ing  
towards  a more  t r a d i t i o n a l  "heavyweight"  DBMS in i ts  funct ional i ty .  
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guide query optimization. Finally, because one of the moti- 
vations for using a DBMS designed for semistructured data 
is to easily integrate data from heterogeneous information 
sources (including the World-Wide Web), Lore includes an 
external data manager. This component enables Lore to 
bring in data from external sources dynamically as needed 
during query execution, without the user being aware of the 
distinction between local and external data. 

We have chosen to implement Lore from scratch, rather 
than building an extension to an existing DBMS to handle 
semistructured data. Building our own complete DBMS al- 
lows us full control over all components of the system, so 
that we can experiment easily with internal system aspects 
such as query optimization and object layout. In paral- 
lel, however, we are implementing our semistructured data 
model and query language on top of the 02 object oriented 
system [BDK92], in order to compare the implementation 
effort and performance against Lore. This paper focuses on 
Lore, although the O2 implementation is discussed briefly. 

1.1 Related Work 

A preliminary version of the language Lorel was introduced 
in [QRS+95]. Details of the syntax and semantics of the 
current version of Lorel can be found in [AQM+96]. A com- 
parison of Lorel against more conventional languages such 
as OQL [Cat94], XSQL [KKS92], and SQL [MS93] appears 
in [QRS+95]. Although the Lore system has been demon- 
strated [QWG+96], this is the first paper to describe imple- 
mentation aspects of Lore. 

The closest current system to Lore is UnQL [BDS95, 
BDHS96], which also is designed for managing semistruc- 
tured data and uses a data model similar to OEM. While 
the UnQL query language is more expressive than Lorel, we 
believe it is less user-friendly. Furthermore, UnQL work has 
focused primarily on aspects of the query language and its 
optimizations and, so far, less on system implementation. A 
much earlier system, Model 20~ [O'N87], was based on self- 
describing record structures. As will be seen, the data model 
used in Lore is more powerful in that it includes arbitrary 
object nesting, and Lore's query language is richer than the 
language of Model 204. Thus, query processing in Lore is 
significantly different than in Model 204, which concentrated 
on clever bit-mapped indexing structures. Furthermore, to 
the best of our knowledge, Model 204 did not include con- 
cepts analogous to our DataGuides or external data. 

There have been a number of other proposals that in- 
vent or extend query languages roughly along the lines of 
Lorel, or that integrate traditional databases with semistruc- 
tured text data. Most of this work operates on strongly- 
typed data, or in some cases is designed specifically for 
the World-Wide Web. Examples include [BK94, BCK+94, 
CACS94, CCM96, CM89, KS95, LSS96, MMM96, MW95, 
MW93, YA94]. For a more in-depth comparison of these 
languages and systems against Lore, see [AQM+96]. 

1.2 Outline of Paper 

Section 2 reviews the data model and query language used 
by Lore. Section 3 introduces the overall architecture and 
the individual components of the Lore system. Query and 
update processing, optimization, and indexing are consid- 
ered in Section 4. Section 5 covers Lore's external data 
manager and DataGuides. Section 6 describes the various 
interfaces to Lore for developers, users, and application pro- 
grams. Finally, Section 7 covers system status, describes 
how to obtain the Lore system, and discusses current and 
future work. 

2 Representing and Querying Semlstructured Data 

To set the stage for our discussion of the Lore system, we 
first introduce its data model and query language. For mo- 
tivation and further details see [AQM+96]. 

2.1 The Object Exchange Model 

The Object Exchange Model (OEM) [PGMW95] is designed 
for semistructured data. Data in this model can be thought 
of as a labeled directed graph. For example, the very small 
OEM database shown in Figure 1 contains (fictitious) infor- 
mation about the Stanford Database Group. The vertices 
in the graph are objects; each object has a unique object 
identifier (oid), such as &5. Atomic objects have no outgo- 
ing edges and contain a value from one of the basic atomic 
types such as integer, real, string, gif, java, audio, etc. 
All other objects may have outgoing edges and are called 
complex objects. Object &3 is complex and its subobjects 
are &8, &9~ RI0, and & l l .  Object &7 is atomic and has 
value "Clark". Names are special labels that serve as aliases 
for objects and as entry points into the database. In Fig- 
ure 1, DBGroup is a name that denotes object &l. Any 
object that cannot be accessed by a path from some name 
is considered to be deleted. 

In an OEM database, there is no notion of fixed schema. 
All the schematic information is included in the labels, which 
may change dynamically. Thus, an OEM database is self- 
describing, and there is no regularity imposed on the data. 
The model is designed to handle incompleteness of data, as 
well as structure and type heterogeneity as exhibited in the 
example database. Observe in Figure 1 that, for example: 
(i) members have zero, one, or more offices; (ii) an office is 
sometimes a string and sometimes a complex object; (iii) a 
room may be a string or an integer. 

For an OEM object X and a label l, the expression X.I 
denotes the set of all /-labeled subobjects of X. If X is an 
atomic object, or if l is not an outgoing label from X, then 
X.l is the empty set. Such "dot expressions" are used in the 
query language, described next. 

2.2 The Lorel Query Language 

In this subsection we introduce the Lorel query language, 
primarily through examples. Lorel is an extension of OQL 
and a full specification can be found in [AQM+96]. Here we 
highlight those features of the language that have an impact 
on the novel aspects of the system--features designed specif- 
ically for handling semistructured data. Many other useful 
features of Lorel (some inherited from OQL and others not) 
that are more standard will not be covered. 

Our first example query introduces the basic building 
block of Loreh the simple path expression, which is a name 
followed by a sequence of labels. For example, DBGroup. 
Member.0ffice is a simple path expression. Its semantics 
consists of the set of objects that can be reached starting 
with the DBGroup object, following an edge labeled Member, 
then following an edge labeled Off ice.  Range variables can 
be assigned to path expressions, e.g., "DBGroup.Member. 
Off ice  X" specifies that X ranges over the set of offices. 
Path expressions also can be used directly, in an SQL style, 
as in the example. 

The example query retrieves the offices of the older mem- 
bers of the group. The query, along with its answer for our 
sample database in Figure 1, follow. Note that in the query 
result, indentation is used to represent graph structure. 

QUERY 
select DBGroup.Member.Office 
where DBGroup. Hember. Age> 30 
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DBGroup 
M e m b e r  ~ ~ ~ --._._Project 

IName / A g e /  Offic:\ ~ / [Age "~ Office - - - - - - ]Ti t le .  - Title 

Bulldi~ ~ OOm Buildi~ ~om 
"CIS . . . .  411 . . . .  Gates" 252 

Figure h An OEM database 

RESULT 
Office "Gates 252" 
Office 

Building "CIS" 
Room "411" 

The database over which the query is evaluated presents 
a number of irregularities, as discussed earfier. A guiding 
principle in Lorel is that, to write a query, one should not 
have to worry about such irregularities or know the precise 
structure of objects (e.g., the structure of offices), nor should 
one have to bother with precise types (e.g., the type of Age is 
integer). This query will not yield a run-time error if an Age 
object has a string value or is complex, or if Ages or Offices 
are single-valued, set-valued, or even absent for some group 
members. Indeed, the above query will succeed no matter 
what the actual structure of the database is, and will return 
an appropriate answer. 

The Lore query processor rewrites queries into a more 
elaborate OQL style. For example, the previous query is 
rewritten by Lore to: 

select 0 
from DBGroup.Member M, M.Office 0 
where exists A in M.Age : A > 30 

The Lore system then executes this OQL-style query, incor- 
porating certain features such as special coercion rules (see 
Section 4.3) for the comparison A > 30. 2 

Note that a from clause has been introduced in the rewrit- 
ten version of the query. (Omitting the from clause is a mi- 
nor syntactic convenience in Lorel; a similar shorthand was 
allowed in Postquel [SK91].) Also note that the comparison 
on Age has been transformed into an existential condition. 
This transformation occurs because all properties are set- 
valued in OEM. Thus, the user can write DBGroup.Member. 
Age > 30 regardless of whether Age is known to be single- 
valued, "known to be set-valued, or unknown. We will see in 
Section 4 that an important first step of query processing in 
Lorel is rewriting the query into an OQL-style as above. 

~-We also are implementing Lorel on top of the 02 system based 
on this translation to OQL; see Section 7 for a brief discussion. 

Lorel offers a richer form of "declarative navigation" in 
OEM databases than simple path expressions, namely gen- 
eral path expressions. Intuitively, the user loosely specifies 
a desired pattern of labels in the database: one can specify 
patterns for paths (to match sequences of labels), patterns 
for labels (to match sequences of characters), and patterns 
for atomic values. A combination of these three forms of 
pat tern matching is illustrated in the following example: 

QUERY 
select DBGroup.Member.Name 
where DBGroup.Member. Office(.RoomZI.Cubicle)? 

like "Z252" 
RESULT 

Name "Jones" 
Na=e "Smith" 

Here the expression Room~o is a label pat tern that matches 
all labels starting with the string Room, e.g., Room, Rooms, 
or Room68. For path patterns, the symbol "[" indicates dis- 
junction between two labels, and the symbol "?" indicates 
that the label pattern is optional. The complete syntax is 
based on regular expressions, along with syntactic wildcards 
such as "#" ,  which matches any path of length 0 or more. 
Finally, " l i ke  Z252" specifies that  the data value should 
end with the string "252". The l i k e  operator is based 
loosely on SQL. We also support grep (similar to Unix) and 
soundex for phonetic matching. 

During preprocessing, simple path expressions are elimi- 
nated by rewriting the query to use variables, as in our first 
example. It is not possible to do so with general path ex- 
pressions, which require a run-time mechanism (described 
in Section 4.2). Indeed, note that if the database contains 
cycles, then a general path expression may match an infi- 
nite number of paths in the data. When trying to match 
a general path expression against the database, we match 
through a cycle at most once, which appears to be a reason- 
able simplification in practice. 

We conclude with two more examples that illustrate ad- 
vanced features of the language. The following query illus- 
trates subqueries and constructed results. It retrieves the 
names of all members of the Lore project, together with 
titles of projects they work on other than Lore. 
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Results 

~ e r a ~ t i m i z ~ / ) l - ' a r s m g  (Lorel to OQL) Generat~,~~t imiz~/)  

Non-Query Data Engine / 
Requests 

Storage 

Lore 
System 

External, 
Read-only 

Data 
Sources 

Figure 2: Lore architecture 

QUERY 
select M.Name, 

( select M.Project.Title 
where M.Project.Title != "Lore" ) 

from DBGroup.Member M 
where M.Project.Title = "Lore" 

RESULT 
Member 

Name "Jones" 
Title "Tsimmis" 

Over a larger database,  this query would construct one 
Member object for each group member in the result, con- 
taining the member 's  Name and a Title for each qualifying 
project. 

A Lore database is modified using Lorel's declarative up- 
date language, as in the following example: 

update P.Member += 
( select DBGroup.Member 
where DBGroup.Member.Name = "Clark" ) 

from DBGroup.Project P 
where P.Title = "Lore" or 

P.Title = "Tsimmis" 

This update  adds all group members named Clark as 
members of the Lore and Tsimmis projects. Intuitively, the 
from and where clauses are first evaluated, providing bind- 
ings for P. For each binding, the expression "P. Member +=" 
specifies to add Member edges between P and every object 
returned by the subquery. In general, the update  language 
supports the insertion and removal of edges, the creation of 
new vertices (objects), and the modification of atomic values 
and name assignments. (As mentioned earlier, object dele- 
tion is by unreachability, i.e., garbage collection, so there is 
no explicit delete operation.) 

Lorel also offers grouping and aggregate functions in the 
style of OQL, external functions and predicates, and a pow- 
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erful bulk loading facility that  allows merging new da ta  into 
an existing database.  There is also a means of attaching 
variables to certain objects on paths, or even to the labels 
or paths themselves (in the style of the a t t r ibute  and pa th  
variables of [CACS94]), which yields a rich mechanism for 
structure discovery. Such features, described in [AQM+96], 
are beyond the scope of this paper. 

3 System Architecture 

The basic architecture of the Lore system is depicted in Fig- 
ure 2. This section gives a brief introduction to the com- 
ponents that  make up Lore. More detailed discussions of 
individual components appear  in subsequent sections. 

Access to the Lore system is through a variety of applica- 
tions or directly via the Lore Application Program Interface 
bAPI). There is a simple textual interface, primarily used 

y the system developers, but suitable for learning system 
functionality and exploring small databases. The graphical 
interface, the primary interface for end users, provides pow- 
erful tools for browsing query results, a DataGuide feature 
for seeing the structure of the da ta  and formulating sim- 
ple queries "by example," a way of saving frequently asked 
queries, and mechanisms for viewing the multimedia atomic 
types such as v ideo ,  audio,  and java .  These two interface 
modules, along with other applications, communicate with 
Lore through the API. Details of interfaces are discussed in 
Section 6. 

The Query Compilation layer of the Lore system consists 
of the parser, preprocessor, query plan generator, and query 
optimizer. The parser accepts a textual representation of a 
query, transforms it into a parse tree, and then passes the 
parse tree to the preprocessor. The preprocessor handles the 
transformation of the Lorel query into an OQL-like query 
(recall Section 2.2}. A query plan is generated from the 
transformed query and then passed to the query optimizer. 
In addition to doing some (currently simple) transformations 
on the query plan, the optimizer also decides whether the 
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use of indexes is feasible. The optimized query plan is then 
sent to the Data  Engine layer. 

The Data Engine layer houses the OEM object manager, 
query operators, external data manager, and various utili- 
ties. The query operators execute the generated query plans 
and are explained in Section 4. The object manager func- 
tions as the translation layer between OEM and the low- 
level file constructs. It supports basic primitives such as 
fetching an object, comparing two objects, performing sim- 
ple coercion, and iterating over the subobjects of a complex 
object. In addition, some performance features, such as a 
cache of frequently accessed objects, are implemented in this 
component. The index manager, external data manager, 
and DataGuide manager are discussed in Sections 4.3, 5.1, 
and 5.2 respectively. Finally, bulk loading and physical ob- 
ject layout on disk are discussed in Section 4.5. 

4 Query and Update Processing in Lore 

As depicted in Figure 2, the basic steps that Lore follows 
when answering a query are: (1) the query is parsed; (2) the 
parse tree is preprocessed and translated into an OQL-like 
query; (3) a query plan is constructed; (4) query optimiza- 
tion occurs; and (5) the optimized query plan is executed. 
Query processing in Lord is fairly conventional, with some 
notable exceptions: 

* Because of the flexibility of Lorel, the preprocessing of 
the parse tree to produce the OQL-like query is com- 
plex. We have implemented the specification described 
in [AQM+96] and we will not discuss the issue further 
here. 

• Although the Lore engine is built around standard op- 
erators(such as Scan and Join), some take an original 
flavor. For example, Scan may take as argument a gen- 
eral path expression, and therefore may entail complex 
searches in the database graph. 

• A unique feature of Lore is its automatic coercion of 
atomic values. Coercion has an impact on the imple- 
mentat ion of comparators (e.g., = or <), but  more 
importantly we shall see that it has important effects 
on indexing. 

The result of a Lorel query is always a set of OEM ob- 
jects, which become subobjects of a newly created Result 
object. The Result object is returned through the API. The 
application may then use routines provided by the API to 
traverse the result subobjects and display them in a suitable 
fashion to the user. 

To illustrate the sequence of steps that Lore follows when 
answering a query, we will trace an example through query 
planning and then discuss the operators used to execute the 
query plan. Consider the query introduced in Section 2, 
whose OQL-like version is: 

select 0 
from DBGroup.Member M, R.0ffice 0 
where exists A in M.Age : A > 30 

The initial query plan generated for this query is given in 
Figure 3. Before discussing tim various operators in this 
plan, it is necessary to first understand the flow of control 
and the auxiliary data structures used when executing such 
a plan. 

4.1 Iterators and Object Assignments 

Our query execution strategy is based on familiar database 
operators. We use a recursive iterator approach in query 

processing, as described in, e.g., [Gra93]. With iterators, 
execution begins at the top of the query plan, with each node 
in the plan requesting a tuple at a time from its children and 
performing some operation on the tuple(s). After a node 
completes its operation, it passes a resulting tuple up to its 
parent. For many operators, an iterator approach avoids 
creation of temporary relations. 

The "tuples" we operate on are Object Assignments, or 
OAs. An OA is a simple data structure containing slots cor- 
responding to range variables in the query, along with some 
additional slots depending on the form of the query. For 
example, the OA slots for the example query are shown in 
Figure 4. Intuitively, each slot within an OA will hold the 
oid of a vertex on a data path currently being considered 
by the query engine. For example, if OA1 holds the oid for 
member "Smith", then OA2 and OA3 can hold the oids for 
one of Smith's Office subobjects and one of his Age subob- 
jects, respectively. Note that at a given point during query 
processing, not all slots of the current OA necessarily con- 
thin a valid oid. Indeed, the goal of query execution is to 
build complete OAs. Once a valid OA reaches the top of the 
query plan, oids in appropriate slots are used to construct a 
component of the query result. 

4.2 Query Operators 

We now briefly explain the query operators appearing as 
nodes in Figure 3; query operators not appearing in this 
plan are discussed later. Each operator takes a number of 
arguments, with the last argument being the OA slot that 
will contain the result of the operation. Exceptions to this 
are the Select and Project operators, which do not have a 
target slot. 

The Scan operator, which is used in several leaf nodes, 
is similar in functionality to a relational scan. Here, how- 
ever, instead of scanning the set of tuples in a relation, our 
scan returns all oids that are subobjects of a given object, 
following a specified path expression. The Scan operator is 
defined as: 

Scan (Starting0hSlot, Path_expression, 
Target0ASlot) 

Scan starts from the oid stored in the S t a r t i ng0ASlo t ,  and 
at each iteration places into the Targe t0hSlo t  the oid of 
the next subobject that satisfies the Path_express ion,  until 
there are no more matching subobjects. Note that in most 
cases Path_express ion  consists of a single label, however it 
may be a complex data structure representing an arbitrary 
component of a general path expression (recall Section 2.2), 
essentially a regular expression. For the regular expressions 
that we currently support, it is sufficient for the Scan op- 
erator to keep a run-time stack of objects visited in order 
to match the Path_expression.  However, for general regu- 
lax expressions a finite-state automaton is required. Recall 
that to avoid infinite numbers of matching paths, we match 
acyclic paths in the data only. Currently, the Scan operator 
can avoid traversing a cycle by ensuring that no oid appears 
more than once on its stack. Since the stack grows no larger 
than acyclic paths in the database, we do not expect its size 
to be a problem. 

As a simple example of the Scan operator, consider the 
following node from our example plan: 

Scan (0A1, "Of f i ce" ,  0A2) 

This iterator will place into slot OA2, one at a time, all 
Office subobjects of the object appearing in slot OA1. Note 
the special form for the lower left Scan: 

Scan (Root, "DBGroup", OAO) 
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li Project 
[ (OA2) t 

Join , ~  

. ~  Scan 
Join (OA 1,"Office",OA2) 

Scan Scan 
(Root,"DBGroup",OA0) (OA0,"Member",OAl) 

Select 
(OA4 = TRUE) 

< >  
Aggr  

(Exists, OA3, OA4) 

Select 
(OA3 > 30 ) 

Scan 
(OA I ,"Age",OA3) 

Figure 3: Example Lore query plan 

I OA0 (DBGroup) ] OA1 OA3 (OA0"Member) I OA2 (OA1.Age) (true/false) I 

Figure 4: Example object assignment 

Instead of using an OA slot as the first argument, the value 
Root, which is a system-known object  from which all names 
(such as DBGroup) can be reached, is used. 

The Join, Project, and Select nodes are nearly identical 
to their corresponding relational operators.  Like a relational 
nested-loop join, the Join node coordinates its left and right 
children. For each partially completed OA that  the left child 
returns, the right child is called exhaustively until no more 
new OAs are possible. Then the left child is instructed to 
retrieve its next (partial) OA. The iteration continues until 
the left side produces no more OAs. The Projectnode is used 
to limit which objects should be returned by specifying a set 
of OA slots, while the Select node applies a predicate to the 
object identified by the oid in the OA slot specified. 

The Aggregation node (shown in Figure 3 on the right 
side of the query plan as Aggr) is used in a somewhat novel 
way, since it implements quantification as well as aggrega- 
tion. At a high level, the aggregation node calls its child 
exhaustively, storing the results temporari ly or computing 
the aggregate incrementally. When the child can produce 
no more valid OAs, a new object  is created whose value is 
the final aggregation; this new object  is identified within the 
target OA mot. In the example shown, the aggregation node 
adds to the target slot (OA4) the result of the aggregation, 
which here is the value true ff the existential quantification 
is satisfied (an object exists in OA3) and false otherwise. 
Filtering of OAs whose quantification is true occurs in the 
Select node immediately above the aggregation node. Note 
that  the exists aggregation operator  "short circuits" when it 
finds the first satisfying OA, while other aggregation opera- 
tors may need to look at  all OAs. 

There are four other pr imary query operators in Lore, 
in addition to operators for plans that  use indexes (see Sec- 
tion 4.3): SetOp, ArithOp, CreateSet, and Groupby. SetOp 
handles the Lorel set operations Union, Intersect, and Ex- 
cept. Likewise, ArithOp handles ari thmetic operations such 
as addition, multiplication, etc. CreateSet is used to pack- 
age the results of an arbi t rary  subquery before proceeding; 
it calls its child exhaustively, storing each old returned as 
part  of a newly created complex object. After the child has 
produced all possible OAs, the CreateSet operator  stores the 

oid for the new set of objects within the target slot in the 
OA. Finally, the Groupbyoperator handles (sub)queries that 
include a groupby expression. 

To give a more in-depth flavor of query plan construction, 
we consider a second query. This query asks for the names 
and the number of publications for each database group 
member who is in the Computer Science ("CS') department. 3 

select M.Name, count(M.Publication) 
from DBGroup.Member M 
where M.Dept = "CS" 

It is important to note that both/4. Name and M. Publication 
appearing in the select clause are sets of objects, and in 
the general case are represented by subqueries. Thus, the 
OQL-like translation of this query is: 

select (select N from M.Name N), 
count(select P 

from M.Publication P) 
from DBGroup.Member M 
where exists D in M.Dept : D = "CS" 

To see the construction of the query plan, refer to Figure 5. 
The subtree for the from clause is constructed first. Each 
simple pa th  expression (or range variable) appearing within 
the from becomes a Scan node. If several of these exist, 
then a left-deep tree of Scan nodes with Join nodes con- 
necting them is constructed. At the top of the from subtree 
a Join node connects the from clause with the subtree for 
the where clause. For where, each e x i s t s  becomes a Select, 
Aggr, and Scan node, and each predicate becomes a Select 
node. Finally, for the s e l e c t  clause, another Join node is 
added to the top of the tree, and the query plan subtree for 
the s e l e c t  clause becomes the right child. 

Let us further consider the subtree for the s e l e c t  clause. 
The plans for the two expressions constituting the s e l e c t  
clause are combined via union (using the SetOp operator).  

3Several of our group members are in the Electrical Engineering 
department. 
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Figure 5: Steps in constructing a query plan 
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(Count, OA6, OA7) 

..tJ. 
Scan 

(OA 1 ,"Publications", 
OA6) 

Thus, each (complex) object  in the result contains the set 
of all Name subobjects  of a Member  (the left subtree of the 
Union), together with the count of all publications for tha t  
member. (In Lorel, a s e l e c t  list indicates union, while or- 
dered pairs would be achieved using a tuple constructor op- 
erator [AQM+96].) The CreateSet operator,  described ear- 
lier, is needed to obtain all Name  children of a given member 
before returning its object  assignment up the query tree. A 
CreateSet operator  is not used in the right subtree, however, 
since the Aggregation operator  by definition already calls its 
subquery to exhaustion (and then applies the aggregation 
operator,  in this case count)  before continuing. 

4.3 Query Optimization and Indexing 

The Lore query processor currently implements only a few 
simple heuristic query optimization techniques. For exam- 
ple, we do push selection operators down the query tree, and 
in some cases we eliminate or combine redundant operators.  
In the future, we plan to consider additional heuristic op- 
timizations, as well as the possibility of truly exploring the 
search space of feasible plans. 

Despite the lack of sophisticated query optimization, Lore 
does explore query plans that  use indexes when feasible. In 
a tradit ional  relational DBMS, an index is created on an 
a t t r ibute  in order to locate tuples with part icular  a t t r ibute  
values quickly. In Lore, such a value index alone is not suf- 
ficient, since the pa th  to an object is as important  as the 
value of the object.  Thus, we have two kinds of indexes in 
Lore: a link (edge) index, or Lindex, and a value index, or 
Vindex. A Lindex takes an old and a label, and returns the 

oids of all parents via the specified label. (If the label is 
omitted all parents are returned.)  The Lindex essentially 
provides "parent pointers," since they are not supported by 
Lore's object manager. A Vindex takes a label, operator.  
and value. It returns all atomic objects having an incom- 
ing edge with the specified label and a value satisfying the 
specified operator  and value (e.g., < 5). Because Vindexes 

60 

argl arg2 string real int 

string - s t r ing -+rea l  bo th-~rea l  
real string--+real - tnt--+real 
~nt both-+real i n t - ~ r e a l  -- 

Table 1: Coercion for basic comparison operators 

are useful for range (inequality) as well as point  (equality) 
queries, they are implemented as B-q--trees. Lindexes, on 
the other hand, are used for single object  lookups and thus 
are implemented using linear hashing [Lit80]. 

Used in conjunction, these two kinds of indexes enable 
query processing in Lore to avoid the s tandard  Scan opera- 
tor. Before examining query plans that  exploit indexes, we 
first take a more detailed look at  Vindexes and how they 
handle the coercion present in Lorel. 

4.3.1 Value indexes 

Value indexing in Lore requires some novel features due to 
its non-strict typing system. When comparing two values 
of different types, Lore always a t t empts  to coerce the val- 
ues into comparable types. Currently, our indexing system 
deals with coercions involving integers, reals, and strings 
only. Table 1 illustrates the coercion that  Lore performs for 
these types; note that  we simplify the situation by always 
coercing integers to reals. Now, in order to use Vindexes 
for comparisons, Lore must maintain three different kinds 
of Vindexes: 

1. A String Vindex. which contains index entries for all 
string-based atomic values ( s t r i n g ,  HTRL, URL, etc.). 

2. A Real Vindex. which contains index entries for all 
numeric-based atomic values ( i n t e g e r  and r e a l ) .  
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Figure 6: A query plan using indexes 

3. A String-coerced-to-real Vindex, which contains all string 
values that  can be coerced into an integer or real {stored 
as reals in the index). 

For each label over which a Vindex is created, three separate 
B+-trees,  one for each type, are constructed. 

When using a Vindex for a comparison (e.g., find all Age 
objects > 30), there are two cases to consider, based upon 
the type of comparison value: 

1. If the value is of type string, then: (i) do a lookup in 
the String Vindex; (ii) if the value can be coerced to 
a real, then also do a lookup for the coerced value in 
the Real Vindex. 

2. If the value is of type real (or integer), then: (i) do a 
lookup in the Real Vindex; (ii) also do a lookup in the 
String-coerced-to-real Vindex. 

4.3.2 Index Query Plans 

If the user's query contains a comparison between a path 
expression and an integer, real, or string (e.g., "DBGroup. 
Member.Age > 30"), and the appropriate  Vindexes and Lin- 
dexes exist, then a query plan that  uses indexes will be gen- 
erated. For simplicity, let us consider only queries in which 
the where clause consists of one such comparison. 

Query plans using indexes are different in shape from 
those based on Scan operators.  Intuitively, index plans tra- 
verse the database bot tom-up,  while scan-based plans per- 
form a top-down traversal. An index query plan first locates 
all objects with desired values and appropriately labeled in- 
coming edges via the Vindex. A sequence of Lindex oper- 
ations then traverses up from these objects at tempting to 
match the full path  expression in the comparison. 4 Note 
that  once we have an OA that  satisfies the where clause, 
it may be necessary to use one or more Scan operations to 
find those components of the s e l e c t  expression that do not 
appear in the where clause. 

Let us consider the following query (in its OQL-like form), 
first introduced in Section 2: 

4An obvious  a l t e r n a t i v e  is t o  use full pa th  indexes  m place of  the  
Lindex.  P a t h  indexes  would be (much)  m o r e  expens ive  to m a i n t a i n  
but (much)  f a s t e r  a t  que ry  t ime.  P a t h  indexes  a re  discussed in more  
detai l  in [GW97].  

select 0 
from DBGroup. Member M, M.0ffice 0 
where exists A in M.Age : A > 30 

A query plan using indexes is shown in Figure 6. This plan 
introduces four new query operators: Vindex, Lindex, Once, 
and Named_Obj. The Vindex operator,  which appears as 
the left child of the second Join operator,  iteratively finds 
all atomic objects with value less than 30 and an incoming 
edge labeled Age, placing their oids in slot OA2. The Lindex 
operator  that  appears below the Once operator  iteratively 
places into OA1 all parents of the object  in OA2 via an Age 
edge. (Since OEM data  may have arbi t rary graph structure, 
the object  could potentially have several parents via Age, as 
well as parents via other labels.) Since Age is existentially 
quantified in the query, we only want to consider each par- 
ent once, even if it has several Age subobjects; this is the 
purpose of the Once query operator. The second Lindex 
operator  finds all parents of the OA1 object  via a Member 
edge, placing them in OA0. Since we want the object  in 
OA0 to be the named object DBGroup, the Narned_Obj op- 
erator checks whether this is so. Once we have traversed 
up the database using index calls and constructed a valid 
OA, we finally use a Scan operator  to find all O f f i c e  sub- 
objects, which are returned as the result via the topmost  
Project operator.  

Currently, for processing where clauses, Lore only consid- 
ers subplans that  are completely index-based (i.e., bot tom- 
up), such as the one discussed here, or subplans that  are 
completely Scan-based (i.e., top-down), such as the one in 
Figure 3. An interesting research topic that  we have just  be- 
gun to address is how to combine both bot tom-up (index) 
and top-down (Scan) traversals. When the two traversals 
reach a predefined "meeting point", the intersection of the 
objects discovered by the index calls and the Scan operators 
identify paths that  satisfy the where clause. The appropri-  
ate meeting point depends on the "fan-in" and "fan-out" of 
the vertices and labels in the database, and requires the use 
of statistical information. 

4.4 Update Query Plans 

Thanks to query plan modularity, we were able to handle 
arbi trary Lorel update  statements by adding a single opera- 
tor, Update, to the query execution engine. We illustrate the 
approach with our example update query from Section 2.2: 
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Query plan to find all projects with 
the title "Lore" or "Tsimmis". 

results placed in OAI 

t Update 
(Create_Edge, OA 1, 

OA5, "Member") ~ Query plan to find all members 
with name "Clark", results 
placed in OA5 

/ 

Figure 7: Example update query plan 

update P.Member += 
( select DBGroup.Member 

where DBGroup. Member. Name = "Clark" ) 
from DBGroup. Project P 
where P.Title = "Lore" or 

P.Title = "Tsimmis" 

reader a flavor of these components. For further details on 
the external data  manager see [MW97]. Further details on 
DataGuides can be found in [GW97]. 

S.1 External Data 

The query plan is outlined in Figure 7. The left subtree of 
the Update node computes the :from and where clauses of the 
update. In our example, the left subtree finds those projects 
with title "Lore" or "Tsimmis". For each OA returned, the 
right subtree is called to evaluate the query plan for the sub- 
query to the right of +=. (Other valid update assignment 
operators are := and -= [AQM+96]). In our example, the 
right subtree finds those members whose name is "Clark". 
Once the right subtree completes the OA, the Update node 
performs the actual update operation; valid operations are 
Create_Edge, Destroy_Edge, and Modify_Atomic. In our ex- 
ample, the Update node creates an edge labeled Member be- 
tween each pair of objects identified by its subtrees. Clearly 
a number of optimizations are possible in update process- 
ing. For instance, in our example the right subtree of the 
Update node is uncorrelated with the left subtree and thus 
needs to be executed only once. We currently perform this 
optimization, and we are investigating others. 

4.S Bulk Loading and Physical Storage 

Data can be added to a Lore database in two ways. Either 
the user can issue a sequence of update statements to add 
objects and create labeled edges between them, or a load file 
can be used. In the latter case, a textual description of an 
OEM database is accepted by a load utility, which includes 
useful features such as symbolic references for shared sub- 
objects and cyclic data, as well as the ability to incorporate 
new data into an existing database. 

Lore arranges objects in physical disk pages; each page 
has a number of slots with a single object in each slot. Since 
objects are variable-length, Lore places objects according 
to a first-fit algorithm, and provides an object-forwarding 
mechanism to handle objects that grow too large for their 
page. In addition, Lore supports large objects that  may span 

• many pages; such large objects are useful for our multimedia 
types, as well as for complex objects with very broad fan- 
out. Objects are clustered on a page in a depth-first manner, 
primarily because our Scan-based plans traverse the data- 
base depth-first. It is obviously not always possible to keep 
all objects close to their parents since an object may have 
several parents. For now, if an object has multiple parents 
then it is stored with an arbitrary parent. Finally, if an 
object o cannot be reached via a path originating from a 
named object, then o is deleted by our garbage collector. 

S Novel Features 

This section provides brief overviews of two novel features 
of Lore: the external data manager and DataGuides. Due 
to space constraints, coverage is cursory, but should give the 

Lore's external data manager enables dynamic retrieval of 
information from other data  sources based on queries issued 
to Lore. The externally obtained data is combined with res- 
ident Lore data during query evaluation, and the distinction 
between the two types of data  is invisible to the user. (Thus, 
external data in Lore provides a way to query distributed 
information sources by essentially transforming Lore into an 
information integration engine.) An external object stored 
within a Lore database functions as both a placeholder for 
the external data, and specifies how Lore interacts with the 
external data  source. During query processing, when the 
execution engine discovers an external object, information 
is fetched from the external source to answer the query, and 
the fetched information is cached within the Lore database 
until it becomes "stale." 

Clearly there are many possible approaches that can be 
taken to integrate external data  in this fashion. Our main 
motivation in choosing the approach outlined below was to 
enable Lore to bring in data  from a wide variety of exter- 
nal sources, and to introduce a variety of argument types 
and optimization techniques to limit the amount of data 
fetched from an external source to that which is immedi- 
ately useful in answering a given query. Because the re- 
lated Tsimmis project at Stanford has focused on build- 
ing "wrappers" that  provide OEM interfaces to arbitrary 
data sources [PGGMU95], we are able to easily exploit such 
sources as external data in Lore. 

In Figure 8, we see the logical and physical views of a 
small database with an external object (shaded in the fig- 
ure). The logical view is that  seen by the user, as if the 
external data  is stored in Lore. The physical view shows 
how Lore encodes the information associated with an ex- 
ternal source, along with any fetched data. The sample 
database contains information about member "Jim", where 
Jim's publication information is obtained externally. Dur- 
ing query processing, the Scan operator notifies the external 
data manager whenever an external object is encountered. 
The external data  manager may need to fetch information 
from the external source, and will provide back to the Scan 
operator zero or more oids that  are used in place of the old 
of the external object. Query processing then proceeds as 
normal. 

The physical view in Figure 8, simplified from the ac- 
tual implementation, shows that the specification for an ex- 
ternal object includes: (i) the location of a Wrapper pro- 
gram that fetches the external data and translates it into 
OEM, (ii) a Quantum that  indicates the time interval until 
fetched information becomes stale, and (iii) a set of Argu- 
ments that are used to limit the information fetched in a 
call to the external source. Arguments sent to the external 
source can come from three places: the query being pro- 
cessed (query-defined), values of other objects in the local 
database (data-defined), or constant values tied to the exter- 
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Figure 8: The logical and physical views of the da ta  

nal object  (hard-coded). Example data-defined and query- 
defined arguments can be seen in Figure 8 as Argl and 
Arg2 respectively. The value of the atomic object  pointed 
to by the Value edge from Art1 is sent to the da ta  source 
as one argument.  In the query-defined argument specifica- 
tion, the Query Label object with value "Keyword" speci- 
fies that  if the query being processed has a predicate of the 
form "Member. Pub l i ca t ions .Keyword  = X", then X is sent 
to the external da ta  source as another argument. 

Many calls to an external source can quickly dominate 
query processing time. We briefly mention two of the ways 
our external da ta  manager a t tempts  to limit the number of 
calls. First,  if a single query will result in multiple calls 
to an external source (due to multiple bindings for data- 
defined and /o r  query-defined arguments), then we have a 
mechanism for recognizing when a call to an external source 
will subsume another scheduled call with a different argu- 
ment set, and we eliminate the second call. Second, we track 
the argument sets used by previous queries and determine 
when previously fetched (non-stale) information partially or 
entirely subsumes information required by the current argu- 
ment set. A more detailed description of argument sets and 
optimizations appears in [MW97]. 

5.2 DataGuides 

Since a Lore database does not have an explicit schema, 
query formulation and query optimization are particularly 
challenging. Without  some knowledge of the structure of the 
underlying database,  writing a meaningful Lorel query may 
be difficult, even when using general path  expressions. One 
may manually browse a database to learn more about its 
structure, but this approach is unreasonable for very large 
databases.  Further, without information about  the struc- 
ture of the database,  the query processor may be forced to 
perform more work than necessary. For example, consider 
the query plan discussed in Section 4, which finds the offices 
of all group members older than 30. Even if no members 
have an office, the query plan would needlessly examine ev- 
ery member in the database. 

A DataGuide is a concise and accurate summary of the 

Mem~,/ M ember N~jeet 

Nam~/ ~Age ~ k O f f i c e ~  Title 

C) oom (3 

Figure 9: A DataGuide for Figure 1 

structure of an OEM database,  stored itself as an OEM ob- 
ject. Each possible path  expression of a database is encoded 
exactly once in the DataGuide,  and the DataGuide has no 
path  expressions that  do not exist in the database. In typ- 
ical situations, the DataGuide is significantly smaller than 
the original database. Figure 9 shows a DataGuide for the 
sample OEM database from Figure 1. In Lore, a DataGuide 
plays a role similar to metada ta  in tradit ional  database sys- 
tems. The DataGuide may be queried or browsed, enabling 
user interfaces or client applications to examine the struc- 
ture of the database. As will be seen in the next section, an 
interactive DataGuide is an impor tant  part  of Lore's Web 
interface. Assuming the role of the missing schema, the 
DataGuide can also guide the query processor. Of course, 
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in relational or object-oriented systems the schema is explic- 
itly created before any data is loaded; in Lore, DataGuides 
are dynamically generated and maintained over all or part 
of an existing database. 

For a given OEM database, there are many DataGuides 
that satisfy the desired properties specified above (accuracy 
and conciseness). For example, in Figure 9 we could fuse 
all leaf objects into a single object without changing the 
fact that every path expression is encoded exactly once (and 
without adding superfluous patlhs). It turns out that certain 
DataGuides are much easier to keep consistent in response 
to updates to the underlying database. In addition, some 
DataGuides support storage of annotations within objects: 
properties of the set of objects reachable by a path expres- 
stun in the original database. We store an annotation for 
a given path expression by assigning it to the single object 
in the DataGuide reachable by that path expression. An- 
notations are useful, e.g., for storing sample atomic values 
reachable via a given path expression, or for specifying the 
statistical chances of finding an outgoing edge with a certain 
label. 

In [GW97], formal definitions for DataGuides are pro- 
vided as well as algorithms to build and incrementally main- 
tain DataGuides that support annotations. Also given is a 
discussion of how DataGuides aid query formulation in prac- 
tice and their use for query optimization. 

6 Interfaces to Lore 

As shown in Figure 2, the Lore Application Programming 
Interface (API) provides a gateway between Lore and any 
user interface or client application. It is used, for instance, 
by the system's textual interface, which passes user com- 
mands to Lore and presents query results in a hierarchical 
display. After summarizing the API, we describe a Java- 
based Web interface that makes Lore simple to use in an 
interactive fashion. 
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Figure 10: A DataGuide in Java 

6.1 Application Programming Interface 

The Lore API is composed of a small collection of C + +  
classes. For any client, Lore is simply viewed as a single 
library, accessible through the API classes and methods de- 
clared in a single header file. (Eventually we hope to move 
Lore toward a traditional client-server model.) At the high- 
est level, the API allows a client program to connect to a 
Lore database, submit queries and commands, and process 
query results. 

Any session with a Lore database is encapsulated in an 
instance of the LoreConnect ion  class. A client will first 
Connect to a specific database (and eventually Disconnect  
when finished). Clients submit Lorel queries using the 
Submit function. Submit is also used for other Lore sys- 
tem commands, such as index creation and updates. When 
called with a Lorel query, Submit returns the query result as 
a Lore0em object. A Lore0em instance initially contains only 
an old; the actual value is fetched from the database on de- 
mand. For atomic objects, a client may request the Type and 
Value of the object. To traverse the subobjects of a complex 
object, a client instantiates a L o r e I t e r a t o r .  Each succes- 
sive call to the i terator 's  Next method returns a different 
Lore0em subobject and its Label.  By nesting L o r e I t e r a t o r  
instances, a client may perform arbitrary traversals of OEM 
objects. 

6.2 Web Interface 

A user connects to our graphical Web interface by visit- 
ing a specific URL and choosing a database. The user is 

then presented with a Java program featuring a DataGuide, 
as described in Section 5.2. Users can quickly and easily 
browse the DataGuide to explore the structure of the under- 
lying database. Through the Web interface, the user may 
submit a textual Lorel query or select a sample prewrit- 
ten query. Furthermore, in a style similar to Query-By- 
Example [Zlo77], queries may be formulated and submitted 
without any knowledge of Lorel by using the DataGuide 
to select path expressions and specify selection conditions. 
Currently, DataGuide queries can express Lorel queries with 
simple path expressions and a where clause that  is conjunc- 
tive with respect to unique path expressions. 

As an example, Figure 10 is a screen snapshot of the 
Java presentation of a DataGuide. This DataGuide summa- 
rizes an existing database for Stanford's Database Group, 
similar in structure to (but much larger than) the sample 
database used throughout this paper. Arrows accompany 
complex objects and are used to expand or collapse s u b -  
objects. Also, a diamond is associated with each displayed 
label, corresponding to a unique path expression from the 
root. When the user clicks on a diamond, a dialog box 
pops up, from which the user may view sample values, se- 
lect the path expression for the query result, or add filtering 
conditions. When the user selects a path expression, the 
corresponding diamond is rendered in a different color. Fil- 
tering conditions are displayed next to the corresponding la- 
bel. The DataGuide shown in Figure 10 represents a query 
to select all group members that  are PhD students, have a 
research interest in semistructured data, and have been at 
Stanford more than one year but less than six. When the 
user clicks Go, the Java program automatically generates an 
equivalent Lorel query and sends it to Lore to be processed. 
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Regardless of how a query is submitted, the interface dis- 
plays query results in HTML, in a hierarchical format that 
is easy to read and navigate. By formatting OEM objects in 
HTML, we can leverage Web browser support for our multi- 
media data (such as g i f  files, audio, or video). To make the 
hierarchical display of OEM more readable, we perform two 
small presentation transformations. First, if several objects 
share the same label, we display the label only once and 
show the values of the objects underneath it. For example, 
if a query result contains ten objects, each with the same 
label P ro jec t ,  we create an HTML page that begins with 
a single header P ro j ec t s ,  followed by the values for all ten 
projects. Second, we present complex OEM objects as ac- 
tive hyperlinks. Clicking on the link brings up a new HTML 
page showing the subobjects of that complex object. 

7 System Status and Future Work 

As of June 1997, the Lore system is functional and robust for 
a large subset of the Lorel language. It consists of approxi- 
mately 60,000 lines of C + +  code. Some language features, 
such as external predicates and functions, are still under 
implementation. Also, general path expressions are not yet 
implemented in their full generality, although a substantial 
and very useful subset is. 

A Lore server with sample databases is available for pub- 
lic use. Users can submit queries and can experiment with 
features such as DataGuides and result browsing. To visit 
our on-line demo, see h t t p  ://www-db. s t a n f o r d ,  edu/ lore .  
In addition, Lore system binaries for several platforms are 
available through the Web page. 

We are considering many possible enhancements and ex- 
tensions to Lore, as follows. 

7.1 Compatibility and Interoperabillty 

As mentioned in Section 2 and covered in detail in [AQM+96], 
OEM and Lorel can be translated to ODMG and OQL 
[Cat94]. In the translation, OEM objects are represented 
by ODMG objects, while Lorel queries are transformed into 
pure OQL queries that use method calls to handle Lorel 
features such as type coercion and general path expressions. 
As a proof-of-concept for the translation, we have imple- 
menting Lorel on top of the 02 object-oriented database 
management system [BDK92]. Note that this implemen- 
tation enables the storage of semistructured (OEM) and 
structured (ODMG) data in a single repository, providing 
a useful setting in which we are studying integration of the 
two data models. We also plan to explore how Lorel could 
be translated to SQL3 and thus implemented on top of an 
object-relational database management system. 

7.2 Performance Issues 

To date we have done little performance analysis of Lore. 
There are a number of performance aspects we want to con- 
sider, such as overall performance and bottlenecks in the sys- 
tem, scalability of the system to extremely large databases, 
and comparing the performance of Lore against our imple- 
mentation of Lorel on top of 02 (see Section 7.1). 

There is significant additional research to do in query 
optimization, including query rewriting, operation ordering, 
selecting the best use of indexes in query plans, and exploit- 
ing information stored in the DataGuide. 

As described in Section 4.3, we can build in Lore a link 
index (Lindex) in order to quickly find all parents of a given 
object reachable via a given label. Alternatively, we could 
instead augment our storage manager to store with objects 
their inverse (parent) pointers in addition to their subobject 

(child) pointers. We plan to compare the performance of a 
storage manager with inverse pointers to that of our current 
approach based on Lindexes. We also plan to consider us- 
ing path indexes in place of the Lindex. Interestingly, the 
functionality of path indexes is incorporated easily into the 
DataGuide, as discussed in [GW97]. 

Currently all "expansions" of path expressions in query 
paths are done at run-time. However, for some classes of 
path expressions, it is possible to use information in the 
DataGuide to expand the regular expressions to all pos- 
sible completions at query compilation time. We plan to 
explore the compile-time approach and compare its perfor- 
mance against the run-time approach we now take. 

7.3 New Functionality 

We are in the process of implementing transaction support 
for concurrency control and recovery. As with other aspects 
of Lore, the semistructured nature of Lore's data is requiring 
us to rethink some aspects of traditional solutions. 

In the user interface area, we plan to increase the expres- 
siveness of DataGuide queries toward the full power of Lorel. 
In addition, to follow the recent trend of enabling database 
systems to dynamically generate customized HTML displays 
of query results [Gaf97, BDK92], we plan to investigate more 
sophisticated techniques for customizing the presentation of 
OEM objects in a Web environment. 

In a companion project, we have extended OEM and 
Lorel in order to treat changes to the data as a first-class 
concept [CAW97], similar to the Heraclitus system that op- 
erates on structured data [GHJ96]. Currently we are imple- 
menting this model and language on top of the Lore system. 

Initial work is underway to define both view and trigger 
mechanisms appropriate for semistructured data, and to im- 
plement them in Lore. (See [AGM+97] for a discussion of 
views in the context of OEM and Lord.) Finally, because 
many applications appropriate for a semistructured DBMS 
such as Lore include a significant amount of text data, we 
plan to incorporate a special t e x t  type along with a full-text 
indexing system into Lore. 
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