
Signature File Hierarchies and Signature Graphs: a New

Index Method for Object-Oriented Databases
Yangjun Chen* and Yibin Chen

Dept. of Business Computing
University of Winnipeg, Manitoba, Canada R3B 2E9

2004 ACM Symposium on Applied Computing
ABSTRACT
In this paper, we propose a new index structure for object-oriented
databases. The main idea of this is a graph structure, called a sig-
nature graph, which is constructed over a signature file generated
for a class and improves the search of a signature file dramatically.
In addition, the signature files (accordingly, the signature graphs)
can be organized into a hierarchy according to the nested structure
(called the aggregation hierarchy) of classes in an object-oriented
database, which leads to another significant improvements.

Categories & Subject Descriptors: H.2.4

General Terms: System

Key Words: object-oriented databases, index structure, signature
files, signature graphs

1. INTRODUCTION
In the past two decades, object-oriented database systems
(OODBS) have attracted a significant amount of attention in aca-
demic and industrial communities [4, 10]. Several experimental
and commercial systems such as GemStone [15], Orion [11] and
O2 [2] have been developed. The powerful modeling capability is
a major advantage of OODBS over relational databases. However,
much work still need to be done on query processing, optimization,
and indexing techniques in order to improve the performance.
In this paper, we propose a new index structure that can be used to
improve query evaluation significantly. First, we organize a set of
sequential signature files into a hierarchical structure (in which
each node is a signature file) to reduce the search space during a
query evaluation. Second, we store a single signature file itself as
a graph, the so-called signature graph, to expedite the scanning of
a single signature file. When a signature file is large by itself, the
amount of time saved is significant using this approach. A closely
related work is the S-tree proposed in [6]. It is in fact a R-tree built
over a signature file. Thus, it can be used to speed up the location
of a signature in a signature file just like a R-tree for keys in a re-
lational database. The methods proposed in [16, 17] are in fact the
improved S-trees, suited for set-valued attributes. However, in the
signature graph each path corresponds to a signature identifier
which can be used to identify uniquely the corresponding signature
in a signature file. It helps to find the set of signatures matching a
query signature quickly.
The rest part of the paper is organized as follows. In Section 2, we
discuss signature files and signature graphs. In Section 3, we show
* The author is supported by NSERC 239074-01 (242523) (Natural Sciences an

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-812-1/03/04…$5.00.

72
how to construct a signature file hierarchy for an object-oriented
database and how to use such an index structure to speed up query
evaluation. Finally, Section 4 is a short conclusion.

2. SIGNATURE FILES AND SIGNATURE
GRAPHS
In this section, we discuss the concept of signature files and signa-
ture graphs. We first discuss what is a signature file in 2.1. Then, in
2.2, we show the structure of a signature graph, its construction and
how it can be searched.

2.1 Signature Files
Signature files are based on the inexact filter. They provide a quick
test, which discards many of the nonqualifying elements. But the
qualifying elements definitely pass the test although some ele-
ments which actually do not satisfy the search requirement may
also pass it accidentally. Such elements are called “false hits” or
“false drops” [8, 9]. In an object-oriented database, an object is rep-
resented by a set of attribute values. The signature of an attribute
value is a hash-coded bit string of length m with k bit set to “1”,
stored in the “signature file” (see [7] to know how to construct a
signature for an attribute value). An object signature is formed by
superimposing its attribute values. (By ‘superimposing’, we mean
a bit-wise OR operation.) Object signatures of a class will be stored
sequentially in another file, called a signature file. Fig. 1 depicts
the signature generation and comparison process of an object hav-
ing three attribute values: “John”, “12345678”, and “professor”.

When a query arrives, the object signatures are scanned and many
nonqualifying objects are discarded. The rest are either checked (so
that the “false drops” are discarded) or they are returned to the user
as they are. Concretely, a query specifying certain values to be
searched for will be transformed into a query signature sq in the
same way as for attribute values. The query signature is then com-
pared to every object signature in the signature file. Three possible
outcomes of the comparison are exemplified in Fig. 1: (1) the ob-
ject matches the query; that is, for every bit set in sq, the corre-
sponding bit in the object signature s is also set (i.e., s ∧ sq = sq) and
the object contains really the query word; (2) the object doesn’t
match the query (i.e., s ∧ sq ≠ sq); and (3) the signature comparison

object:

attribute signature:

John

12345678

professor

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)

∨

Fig. 1. Signature generation and comparison

queries:

John

Paul
11223344

query signatures:

010 000 100 110

011 000 100 100
110 100 100 000

matching results:

match with OS

no match with OS
false drop

John 12345678 professor
d Engineering Council of Canada).

4

indicates a match but the object in fact doesn’t match the search cri-
teria (false drop). In order to eliminate false drops, the object must
be examined after the object signature signifies a successful match.
The purpose of using a signature file is to screen out most of the non-
qualifying objects. A signature failing to match the query signature
guarantees that the corresponding object can be ignored. Therefore,
unnecessary object access is prevented. Signature files have a much
lower storage overhead and a simple file structure than inverted in-
dexes.
From the above analysis, we see that each class will be associated
with a signature file with each signature for an object, which is con-
structed by superimposing the signatures for its attribute values.
Then, each object can be considered as a block. To determine the
size of a signature file, we use the following formula [5]:

m × ln2 = h × D,

where m is the signature length, h is the number of bits set to 1 in a
signature, and D is the average size of a block.

2.2. Signature Graphs
To find a matching signature, a signature file has to be scanned. If it
is large, the amount of time elapsed for searching such a file be-
comes significant. A first idea to improve this process is to sort the
signature file and then employ a binary searching. Unfortunately,
this does not work due to the fact that a signature file is only an in-
exact filter. The following example helps for illustration.
Consider a sorted signature file containing only three signatures:

Assume that the query signature sq is equal to 000010010100. It
matches 100 010 010 100. However, if we use a binary search, 100
010 010 100 can not be found.
For this reason, we try a different way and organize a signature file
into a graph, called a signature graph, which will be discussed in this
section in great detail.

Definition of signature graphs

A signature graph working for a signature file is just like a trie [12,
14] for a text. But in a signature graph, each path visited to find a sig-
nature that matches a query signature corresponds to a signature
identifier, which is not a continuous piece of bits, and quite different
from a trie in which each path corresponds to a continuous piece of
bits.

Definition 1. (signature graph) A signature graph G for a signature
file S = s1.s2sn, where si ≠ sj for i ≠ j and |sk| = m for k = 1, ..., n,
is a graph G = (V, E) such that

1. each node v ∈ V is of the form (p, skip), where p is a pointer to a
signature s in S, and skip is a non-negative integer i. If i > 0, it tells
that the ith bit of sq will be checked when searching. If i = 0, s will
be compared with sq.

2. Let e = (u, v) ∈ E. Then, e is labeled with 0 or 1 and skip(u) > 0.
Let skip(u) = i. If e is labeled with 0 and i > 0, the ith bit of the sig-
nature pointed to by p(v) is 0. If e is labeled with 1 and i > 0, the ith
bit of the signature pointed to by p(v) is 1. A node v with skip(u) = 0
does not have any children.

In Fig. 2(b), we show a signature graph for the signature file shown
in Fig. 2(a).

In Fig. 2, each pi represents a pointer to a si (i = 1, ..., 8).

In the following, we first discuss how a signature graph is construct-
ed. Then, we discuss how to use signature graphs to speed up the

search of signature files.

Construction of Signature Graphs
Below we give an algorithm to construct a signature graph for a sig-
nature file, which needs O(N⋅m) time, where N represents the num-
ber of signatures in the signature file and m is the length of a
signature.

At the very beginning, the tree contains an initial node: a node v with
p(v) pointing to the first signature and skip(v) = 0.

Then, we take the next signature to be inserted into the graph. Let s
be the next signature we wish to enter. We traverse the graph from
the root and each encountered node will be marked. Let v be a node
encountered and assume that skip(v) = i. If v is not marked and i >
0, check s[i] and mark v. If s[i] = 0, we go left. Otherwise, we go
right. If i = 0 or v is marked, we compare s with the signature s’
pointed to by p(v). s’ can not be the same as s since in S there is no
signature which is identical to anyone else. (If there are two identical
signatures s1 and s2, we remove s2 and associate the oids of s1 and s2
with s1.) But several bits of s can be determined, which agree with
s’. Assume that the first k bits of s agree with s’; but s differs from s’
in the (k + 1)th position, where s has the digit b and s’ has 1 - b. We
construct a new node u with skip(u) = k + 1 and p(u) pointing to s.
Let w1 → w2 ... → wj → v be the accessed path. Then, make u the
left child of wj if v is a left child of wj; otherwise, make u the right
child of wj. If b = 1, we make v be the left child of u and the right
pointer of u pointing to itself. If b = 0, we make v be the right child
of u and the left pointer of u pointing to itself.
The following is the formal description of the algorithm.

Algorithm sig-graph-generation(file)
begin

construct a root node r with skip(r) = 0 and p(v) pointing to s1;
for j = 2 to n do

call insert(sj);
end

Procedure insert(s)
begin
1 stack ← root;
2 while stack not empty do
3 {v ← pop(stack);
4 if v is not marked and skip(r) ≠ 0 then
5 {i ← skip(v); mark v;
6 if s[i] = 1 then
7 {let a be the right child of v; push(stack, a);}
8 else {let a be the left child of v; push(stack, a);}}
9 else (*v is marked or skip(v) = 0.*)
10 {compare s with the signature s’ pointed to by p(v);
11 assume that the first k bits of s agree with s’;
12 but s differs from s’ in the (k + 1)th position;
113 let w1 → w2 ... → wj → v be the accessed path;
14 generate a new node u with skip(u) = k + 1 and p(u)

pointing to s;
15 make u be a child of wj;
16 if s[k + 1] = 1 then

010 000 100 110

100 010 010 100
010 100 011 000

1011 0110
1011 1001
1010 0111
0111 0110
0111 0101
0101 1100
1110 0100
1010 1011

s1.
s2.
s3.
s4.
s5.
s6.
s7.
s8.

(a) (b)

Fig. 2. Signature file and signature graph

p1 5

p3 4 p2 1

p7 2 p4 1 p6 0 p8 4

p5 7

0

0

1

11

1

1

0

0

0

0

0

1

1

725

17 make v be the left child of u;
18 else make v be the right child of u;}
19 }
end

In the procedure insert, stack is a stack structure used to control the
tree traversal.
Below we trace the above algorithm against the signature file shown
in Fig. 2(a).

Searching of Signature Graphs
In terms of 2.1, the matching of signatures is a kind of ‘inexact’
matches. That is, for a signature s in S, any bit set to 1 in sq, the cor-
responding bit in s is also set to 1, then we say, s matches sq.
In the following, we first describe how to traverse a signature graph
to find a signature in S which may be identical to sq. Then, we
present an algorithm which is able to find all the signatures that may
match sq.
To find a signature in S that may be identical to sq, we do the follow-
ing.
Algorithm exact-matching(G, sq)

1. The search begins from the root.
2. Let v be the node encountered. Let skip(v) = i. If ith bit of sq is 1,
explore the right child of v; otherwise, explore the left child of v. v is
marked.
3. The search ends up when a node v is encountered, which is
marked or skip(v) = 0. In this case, compare sq with the signature
pointed to by p(v).
In the following, we show the correctness of the Algorithm exact-
matching(). To do this, we borrow the concept of signature identifi-
ers proposed in [19].
Consider a signature si of length m. We denote it as si = si[1]si[2] ...
si[m], where each si[j] ∈ {0, 1} (j = 1, ..., m). We also use si(j1, ..., jh)
to denote a sequence of pairs w.r.t. si: (j1, si[j1])(j2, si[j2]) ... (jh,
si[jh]), where 1 ≤ jk ≤ m for k ∈ {1, ..., h}.
Definition 2 (signature identifier) Let S = s1.s2sn denote a signa-
ture file. Consider si (1 ≤ i ≤ n). If there exists a sequence: j1, ..., jh

such that for any k ≠ i (1 ≤ k ≤ n) we have si(j1, ..., jh) ≠ sk(j1, ..., jh),
then we say si(j1, ..., jh) identifies the signature si or say si(j1, ..., jh)
is an identifier of si w.r.t. S.

As an example, consider the signature file shown in Fig. 2(a), in
which s6(1, 5) = (1, 0)(5, 1) is an identifier of s6 since for any i ≠ 6
we have si(1, 5) ≠ s6(1, 5). (For instance, s1(1, 5) = (1, 1)(5, 0) ≠ s6(1,
5), s2(1, 5) = (1, 1)(5, 1) ≠ s6(1, 5), and so on. Similarly, s5(5, 4, 1,
7) = (5, 0)(4, 1)1, 0)(7, 0) is an identifier for s1 since for any i ≠ 5 we
have si(5, 4, 1, 7) ≠ s1(5, 4, 1, 7).

Let v1 → ... vk-1 → vk be the path explored. Let skip(vi) = ji (i = 1, ...,
k). Let s the signature pointed to by p(vk). Denote li the label for vi-1
→ vi. Then, we have

s(j2, ..., jk) = sq(j2, ..., jk) = (j1, l1)(j2, j2) ... (jk-1, lk-1).

But we don’t have any other signature such that

s’(j2, ..., jk) = (j1, l1)(j2, j2) ... (jk-1, lk-1).

Now we discuss how to search a signature graph to model the behav-
ior of a signature file as a filter and to get all the signatures that may
match sq.

Denote sq(i) the ith position of sq. During the traversal of a signature
graph, the inexact matching can be done as follows:

(i)Let v be the node encountered and sq (i) be the position to
be checked.

(ii)If sq (i) = 1, we move to the right child of v.

(iii)If sq (i) = 0, both the right and left child of v will be vis-
ited.

In fact, this definition just corresponds to the signature matching cri-
terion.

To implement this inexact matching strategy, we search the signature
graph in a depth-first manner and maintain a stack structure stackp
to control the graph traversal.

Algorithm signature-graph-search
input: a query signature sq;
output: set of signatures which survive the checking;

1.Set ← ∅ .
2.Push the root of the signature tree into stackp.
3.If stackp is not empty, v ← pop(stackp); else return(Set).
4.If v is not a marked node and skip(v) ≠ 0, i ← skip(v);
mark v;
If sq (i) = 0, push cr and cl into stackp; (where cr and cl are v’s
right and left child, respectively.) otherwise, push only cr into
stackp.
5.Compare sq with the signature pointed by p(v).

(*p(v) - pointer to a signature*)
If sq matches, Set ← Set ∪ {p(v)}.
6.Go to (3).

The following example helps for illustrating the main idea of the al-
gorithm.
Example 1. Consider the signature file shown in Fig. 2(a) and the
signature graph generated in Fig. 3 once again.

insert s1 insert s2 insert s3

insert s4

insert s6

insert s7

insert s8

Fig. 3. Sample trace of signature graph generation

insert s5

p1 0
p2 5

p1 0

p2 5

p1 0

p3 4

p2 5

p4 1

p3 4

p1 0

p2 5

p4 1

p3 4

p1 0p5 7

p2 5

p4 1

p3 4

p1 0p5 7

p6 1

p2 5

p4 1

p3 4

p1 0p5 7

p6 1

p7 2

p2 5

p4 1

p3 4

p1 0p5 7

p6 1

p7 2 p8 4

0
1

11 11

1

11

1

1

1 1

1

1
1

1

1
1

1
11

0

0

0

0

0

0

0
0

0

1 1

0

0 00

0

0

0

0

0

0

0

0

0 0

0 0

0
0

1
1 1
726

Assume sq = 1011011. Then, only part of the signature tree (marked
with thick edges in Fig. 4) will be searched. On reaching a node v
that is marked or skip(v) = 0, the signature pointed to by this node
will be checked against sq. Obviously, this process is much more
efficient than a sequential searching since only 2 signatures
(marked grey) need to be checked while a signature file scanning
will check 8 signatures.
In general, if a signature file contains N signatures, the method dis-
cussed above requires only O(N/2l) comparisons in the worst case,
where l represents the number of bits set in sq and checked during
the searching, since each bit set in sq will prohibit half of a subtree
from being visited. Compared to the time complexity of the signa-
ture file scanning O(N), it is a major benefit.

3. BUILDING INDEXES FOR OODBS
In this section, we discuss how to use the technique discussed
above to speed up query evaluation in an object-oriented environ-
ment.
In object-oriented database systems, an entity is represented as an
object, which consists of methods and attributes. Methods are pro-
cedures and functions associated with an object defining actions
taken by the object in response to messages received. Attributes
represent the state of the object. Objects having the same set of at-
tributes and methods are grouped into the same class. A class is ei-
ther a primitive class or a complex class. Objects in the respective
classes are called primitive objects and complex objects. A primi-
tive class, such as integer and string, is not further broken down
into attributes or substructures. A complex class is defined by a set
of attributes, which may be primitive, or complex with user-de-
fined classes as their domains. Since a class C may have a complex
attribute with domain C’, an relationship can be established be-
tween C and C’. The relationship is called aggregation relation-
ship. Using arrows connecting classes to represent aggregation
relationship, an aggregation hierarchy (or say, a nested object hier-
archy) can be constructed to show the nested structure of the class-
es.
An example of a nested object hierarchy is extracted from [3] and
shown in Fig. 5, where an attribute of any class can be viewed as a
nested attribute of the root class.
As pointed out in [13], an important element common to OODBS
is the view that the value of an attribute of an object can be an ob-
ject or a set of objects. If an object O is referenced as an attribute
of object O’, O is said to be nested in O’ and O’ is referred to as the
parent object of O.
In object-oriented databases, the search condition in a query is ex-
pressed as a boolean combination of predicates of the form <at-
tribute operator value>. The attribute may be a nested attribute of
the target class. For example, the query “retrieve all red vehicles
manufactured by a company with a division located in Ann Arbor”
can be expressed as:

select vehicle
where Vehicle.color = “red”
and Vehicle.Company.Division.location = “Ann Arbor”

Fig. 4. Signature graph search

p2 5

p4 1

p3 4

p1 0p5 7

p6 1

p7 2 p8 4

1

1
11

0

0

0

0 0
0

0 1 1

marked

marked

marked

marked

marked
72
The search condition against the class Vehicle consisting of two
predicates, one involving the attribute ‘Color’ and the other involv-
ing the nested attribute ‘location’.

Without indexing structures, the above query can be evaluated in a
top-down manner as follows. First, the system has to retrieve all of
the objects in class Vehicle and single out those with red color.
Then, the system retrieves the company objects referenced by the
red vehicles and checks the manufacturer’s divisions’ location. Fi-
nally, those red vehicles made by a company that has a division lo-
cated in “Ann Arbor” are returned.
A simple indexing strategy is to construct a signature graph for
class Vehicle, by means of which the target objects can be quickly
located. Then, the rest part of the database will be searched using
referencing links among the objects of different classes. This pro-
cess can be further improved if a signature file (or signature graph)
is established for every class and all the signature files are orga-
nized into a hierarchy as shown in Fig. 6.

Such a hierarchical structure enables us to get rid of non-relevant
data as soon as possible by using the so-called query signature tree
as shown in Fig. 7(b).

Given a query tree as shown in Fig. 7(a), the signature of a node in
a query signature tree can be constructed by superimposing the sig-
natures of its children.
In the following, we give an algorithm for evaluating queries with
the above index structures employed. The main idea of it is to use
the query signature tree to reduce the search space. For this pur-
pose, two stack structures are needed to control the depth-first tra-
versal of tree structures: stackq for Q(s,t) and stackc for the class
hierarchy. In stackq, each element is a signature while in stackc
each element is a set of object identifiers belonging to the same
class reached during the class hierarchy traversal.
Algorithm top-down-hierarchy-retrieval;
input: an object query Q;
output: a set of OIDs whose attribute values satisfy the query.

manufacturer
model
color

DriveTrain

body

engine
transmission

names
headquarters

divisions

names
function

location

HPpower
CCsize

CylinderN

chassis
interior

door

Vehicle

Company Division

VehicleDriverTrain PistonEngine

VehicleBody

String

String

String

String

String

String

String

String

Numeric

Numeric

Numeric

String

String

Numeric

Fig. 5. An example of nested object hierarchy

Fig. 6. A signature file hierarchy

010 000 100 110
100 010 010 100

Division

... ...

... ...

110 010 110 110

100 100 001 100
110 100 000 100

110 110 000 110

110 110 111 110

Vehicle

Company

VehicleDriverTrain

VehicleBody

PistonEngine... ...
... ...

... ...

... ...

OID
OID

OID

OID

OID

(c)
OID

Fig. 7. Query tree and query signature tree

Vehicle

Color Company

Division

Vehicle

Color Company

red

110 110 100 110

Division

100 110 000 100

100 110 000 100

Ann Arbor
(a) (b)

Location
Location

010 000 100 110

010 000 100 110

010 000 100 110

010 000 100 110
7

1.Compute the query signature hierarchy Q(s,t) for the query Q.
2.Push the root signature of Q(s,t) into stackq; push the set of ob-
ject OIDs of the target class into stackc.
3.If stackq is not empty, sq ← pop stackq; else go to (7).
4.S ← pop stackc; For each oidi ∈ S, if its signature osigi does not
match sq, remove it from S; put S in Sresult.
5.Let C be the class, to which the objects of S belong; let C1, ...,
Ck be the classes referenced by C; then partition the OID set of
the objects referred by the objects of S into S1, ..., Sk such that Si
belongs to Ci; push S1, ..., Sk into stackc; push each of the child
nodes of sq into stackq.
6.Go to (3).
7.For each leaf object, check false drops.

By this strategy, the optimization is achieved by executing step (4).
In this step, some objects are filtered using the corresponding signa-
tures in the query signature tree. In step (5), the referred object sets
and the signatures of the child nodes of the query signature tree will
be put in stackc and stackq, respectively. (We note that in stackc each
element is a set of object identifiers while in stackq each element is
just a single signature.) In step (7), the checking of false drops will
be performed.
Example 2 Continue with our running example. Assume that part of
the signature file hierarchy constructed for a database with the sche-
ma shown in Fig. 5 is of the form as shown in Fig. 6.
Since both the top two signatures in the signature file for Vehicle
(called V-file for short) match the corresponding signature in the
query signature tree, the Algorithm top-down-hierarchy-retrieval
will further check the signatures referenced by them in the signature
file for Company (called C-file for short). Assume that the first sig-
nature in C-file is referenced by the first signature in V-file while the
second in C-file is referenced by the second in V-file. We see that the
second signature in C-file does not match the corresponding signa-
ture in the query signature tree. Thus, all those Division object sig-
natures referred by it will not be checked further (see the part marked
grey in Fig. 8 for illustration.) It is efficient in comparison with the
algorithm top-down-retrieval since by it the checking against all Di-
vision object signatures will be performed.

Now we consider another query:
select vehicle
where Vehicle.color = “red”
and Vehicle.x = “Ann Arbor”,

where x represents a path.

For such a query, a signature file hierarchy is not so useful since ev-
ery possible path starting from class Vehicle has to be considered
and the query signature tree constructed for it is not a powerful filter.
In this case, the bottom-up strategy should be used to start the search
from the leaf nodes in the corresponding class hierarchy. If each leaf
node is associated with a signature graph, a lot of futile search can

be avoided.

4. CONCLUSION
In this paper, a new index structure for OODBs is proposed. The
main idea of this approach is a graph structure, called a signature
graph, which is constructed over a signature file of a class to locate
possible matching signatures quickly. Together with the concept of
signature file hierarchies, this approach improves the efficiency of
query evaluation in an object-oriented database significantly.

REFERENCES
[1] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G.

Moerkotte and J. Simeon, “Querying documents in object da-
tabases,” Int. J. on Digital Libraries, Vol. 1, No. 1, Jan. 1997,
pp. 5-19.

[2] F. Bancihon, S. Cluet and C. Delobel, A query language for
O2, in Francois Bancihol, Claude Delobel and Paris Kanel-
lakis editors, Building an Object-Oriented Database System -
The Story of O2, Margan Kaufmann, 1992, pp. 234-255.

[3] E. Bertino and W. Kim, Indexing Techniques for Queries on
Nested Objects, IEEE Transaction on Knowledge and Data
Engineering, 1(2):196-214, JUne 1989.

[4] R.G.G. Cattell, Object Data Management: object-oriented
and extended relational database systems, Addison-Wesley
Publishing Company, INC., 1991.

[5] S. Christodoulakis and C. Faloutsos, “Design consideration
for a message file server,” IEEE Trans. Software Engineering,
10(2) (1984) 201-210.

[6] U. Deppisch, S-tree: A Dynamic Balanced Signature In-
dex for Office Retrieval, ACM SIGIR Conf., Sept. 1986, pp.
77-87.

[7] D. Dervos, Y. Manolopulos and P. Linardis, “Comparison of
signature file models with superimposed coding,” J. of Infor-
mation Processing Letters 65 (1998) 101 - 106.

[8] C. Faloutsos, “Access Methods for Text,” ACM Computing
Surveys, 17(1), 1985, pp. 49-74.

[9] C. Faloutsos, “Signature Files,” in: Information Retrieval:
Data Structures & Algorithms, edited by W.B. Frakes and R.
Baeza-Yates, Prentice Hall, New Jersey, 1992, pp. 44-65.

[10] W. Kim, Introduction to Object-oriented Databases, The MIT
Press, Cambrige, Massachusetts, 1990.

[11] W. Kim, A Model of Queries for Object-oriented databases, in
Proc. of Int. Conf. on Very Large Data Base, 1989, pp. 423-
432.

[12] D.E. Knuth, The Art of Computer Programming: Sorting and
Searching, Addison-Wesley Pub. London, 1973.

[13] W. Lee and D.L. Lee, “Signature File Methods for Indexing
Object-Oriented Database Systems, “ Proc. ICIC'92 - 2nd Int.
Conf. on Data and Knowledge Engineering: Theory and ApA-
pplication, Hongkong, Dec. 1992, pp. 616-622.

[14] Morrison, D.R., PATRICIA - Practical Algorithm To Retrieve
Information Coded in Alphanumeric. Journal of Association
for Computing Machinery, Vol. 15, No. 4, Oct. 1968, pp. 514-
534.

[15] D. Maier and J. Stein, Indexing in an Object-oriented
DBMS, in Proc. Int. Workshop on OODB Systems, 1986, pp.
171-182.

[16] E. Tousidou, A. Nanopoulos, Y. Manolopoulos, “Improved
methods for signature-tree construction,” Computer Journal,
43(4):301-314, 2000.

[17] E. Tousidou, P. Bozanis, Y. Manolopoulos, “Signature-based
structures for objects with set-values attributes,” Infromation
Systems, 27(2):93-121, 2002.

[18] E. Ukkonen, “Constructing suffix trees on-line in linear
time,” Information Processing 92, Vol. 1 (ed. J. van Leeu-
wen), 1992, pp. 484-492.

[19] Y. Chen, Signature Files and Signature Trees, Information
Processing Letters 82(2002) 231-221, Elsevier Science B.V.

Fig. 8. Illustration of query evaluation

010 110 101 110
100 010 010 100

Division

... ...

010 110 101 111110 110 101 111

Vehicle Company

... ...

OID
OID

110 110 110 100
... ...

... ...

100 110 010 100
OID

... ...

Vehicle

Company

Color

Division110 110 100 110

100 110 000 100 010 110 000 100
red

010 110 100 110 010 110 100 110
Ann Arbor

010110 100 110

matched

matched not matched this part will not
be visited.

110 110 110 110

legend:
matched
not matched
728

