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Abstract. In object-oriented databases (OODBs), a method
encapsulated in a class typically accesses a few, but not all the
instance variables defined in the class. It may thus be prefer-
able to vertically partition the class for reducing irrelevant data
(instance variables) accessed by the methods. Our prior work
has shown that vertical class partitioning can result in a sub-
stantial decrease in the total number of disk accesses incurred
for executing a set of applications, but coming up with an
optimal vertical class partitioning scheme is a hard problem.
In this paper, we present two algorithms for deriving optimal
and near-optimal vertical class partitioning schemes. The cost-
driven algorithm provides the optimal vertical class partition-
ing schemes by enumerating, exhaustively, all the schemes and
calculating the number of disk accesses required to execute a
given set of applications. For this, a cost model for executing
a set of methods in an OODB system is developed. Since ex-
haustive enumeration is costly and only works for classes with
a small number of instance variables, a hill-climbing heuristic
algorithm (HCHA) is developed, which takes the solution pro-
vided by the affinity-based algorithm and improves it, thereby
further reducing the total number of disk accesses incurred.
We show that the HCHA algorithm provides a reasonable
near-optimal vertical class partitioning scheme for executing
a given set of applications.

Keywords: Vertical class partitioning – Object-oriented data-
bases – Method-induced – Cost-driven – Affinity-based – An-
alytical cost model – Hill-climbing heuristic algorithm

1 Introduction

Database design plays an important role in supporting end-
user applications. Some database design techniques, such as
conceptual schema design, view integration, and schema nor-
malization, aim at capturing appropriate integrity constraints
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and complete incorporation of database application require-
ments, whereas techniques such as index selection and data-
base clustering aim towards efficiently executing end-user ap-
plications. Vertical class partitioning is a technique for facili-
tating efficient execution of end-user applications by reducing
irrelevant instance variable (attribute) access. Although this
problem has been addressed in relational database systems,
there has been very little work done on vertical partitioning
in object-oriented database (OODB) systems. Part of the rea-
son for this is due to the complexity of OODB models sup-
porting subclass hierarchy and class composition hierarchy,
which complicate the definition and representation of vertical
partitioning. Another reason for the complexity is due to the
encapsulation property of the OODB model, which enforces
accesses to objects through encapsulated methods.

1.1 Motivation for vertical class partitioning

(1) In OODB systems, methods encapsulated in a class typ-
ically access a few, but not all, of the instance variables
defined in the class. Therefore, a judicious vertical class
partitioning of the class can drastically reduce the irrele-
vant instance variables accessed by the methods and im-
prove the performance. In the case of query processing,
most OODB query languages allow for method invoca-
tion in the project and select clauses, and only some, but
not all, instance variables are accessed.

(2) Though the encapsulation feature of OODB systems com-
plicates the partitioning problem, it has been demonstrated
as being useful for providing fragmentation transparency
support [18,19], thus enabling easier development of ap-
plications and their maintenance.

(3) The problem of creating an optimal vertical class partition-
ing scheme is a hard problem [26], hence heuristic algo-
rithms need to be designed to come up with near-optimal
vertical class partitioning schemes. Two main heuristics,
namely, affinity-based [22] and cost-driven [5], have been
proposed in prior research.

(4) With the presence of methods in OODB systems, the cost-
driven approach requires the development of a cost model
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for method execution. This is a hard and relevant problem
by itself, and is addressed in this paper.

(5) For the next generation database applications, such as doc-
ument management, multimedia and hypermedia applica-
tions, many of the instance variables tend to be of very
large-sized objects, and should not be retrieved if they
are not accessed by the applications. Vertical class parti-
tioning techniques can be applied to these applications to
provide faster access to the relevant data based on user
access characteristics.

1.2 Related work in vertical class partitioning

There has been some preliminary work done in recent years
on class partitioning for OODBs. In particular, the basic ideas
about class partitioning in OODBs were developed in [6, 17,
18, 19, 21]. In [21], the issues involved in distributing OODBs
were identified, with a main emphasis on the factors that af-
fect the distribution and partitioning for OODBs. In [6], the au-
thors presented an approach to vertical partitioning of OODBs,
which is based on the concept of affinity [22]. However, there
was no representation scheme provided for vertical fragments.
In addition, the physical costs corresponding to the savings in
the amount of irrelevant data accessed and the overhead in-
curred due to vertical partitioning were ignored.

In [17,18,19], representation schemes for vertical class
fragments have been presented, along with a method-induced
methodology for class partitioning and the support for frag-
mentation transparency. In [8,9,10], we developed a cost
model based on [11] for query execution in vertically par-
titioned OODBs. Based on the cost model, we reported on the
analytical evaluation of vertical partitioning under different
environments, namely: (1) different numbers of fragments; (2)
different fan-outs in class composition hierarchy; and (3) dif-
ferent cardinalities for classes. We showed that the cost-based
approach is superior to the affinity-based approach in that it
guarantees the minimum number of disk accesses to process
all the queries. We note that the main themes of [8,9] were
focussed on the analytical evaluation of the cost model and
the utility of vertical class partitioning under different OODB
system environments; in addition, the cost model was based
on query execution. Since the data objects in an OODB are ac-
cessed by encapsulated methods, there is also a need to obtain
the cost of executing methods for evaluating the effectiveness
of vertical class partitioning.

1.2.1 Partitioning vs clustering, indexing
and complex object assembly

Vertical partitioning is a facility in OODBs to reduce the num-
ber of disk IOs for application execution by reducing the ac-
cesses to irrelevant instance variables. In contrast, indexing in
OODBs is a facility to reduce the number of disk IOs in query
execution (see, for example, [2,20]) by reducing the accesses
to irrelevant object instances (as compared with sequential
scanning). In other words, indexing reduces disk IOs at the
object instance level, but since typically not all the instance
variables are relevant to a specific query being processed, ac-
cess to irrelevant instance variables can still occur, whereas

vertical partitioning reduces disk IOs at the instance variable
level.

In [14], an “assembly” operator is devised to address the
problem of avoiding “pointer chasing on disk”. This assembly
operator is designed to improve the processing of bulk data
types such as sets in object bases. When compared with ver-
tical partitioning, complex object assembly concentrates on
the physical object instance level, whereas vertical partition-
ing concentrates on the instance variable level. During query
processing, complex object assembly still accesses irrelevant
instance variables. If the irrelevant instance variables are large,
complex object assembly may not be very useful.

We note that partitioning is a logical database design tech-
nique whereas clustering/indexing/complex object assembly
is a physical database design technique. The use of indexing is
complementary and orthogonal to the use of partitioning. That
is, once the classes are vertically partitioned, indices can be
built to execute the applications more efficiently. Since vertical
class fragments redefine the OODB schema with new classes,
clustering and complex object assembly can be applied to fur-
ther improve efficient execution of applications. The issue of
integrating clustering, indexing, and complex object assembly
with vertical partitioning is, however, beyond the scope of this
paper.

1.3 Related work in the method execution cost model

In an OODB, accesses to data are through encapsulated meth-
ods. The encapsulation of methods forces the user to access the
data by invoking the methods and keeps the user from making
use of knowledge about the data structures used to store the
objects or the implementation of the method. The encapsula-
tion property of methods in the OODB makes the estimation of
execution cost more difficult than conventional query process-
ing in relational databases. Furthermore, the encapsulation of
methods also complicates the issue of query optimization. In
some early studies of OODB query optimization, methods are
not considered in query optimization. However, some systems
overcome this difficulty by treating the query optimizer as a
special application that can break encapsulation and access
information directly [3]. However, in order to come up with
optimal method execution plans, an analytical cost model for
method execution is essential.

In other previous research, encapsulated methods in
OODBs are treated as black boxes and are neglected from
cost analysis. There has been very little discussion on the cost
model for general method execution, due to the complexity
of the detailed semantics of a general method. Unlike rela-
tional databases, query processing in OODBs has to deal with
methods whose different types of invocation can affect the
cost model. We consider three types of invocations found in
general purpose programming languages: simple invocation,
conditional invocation, and repeated invocation. To utilize this
model, run-time invocation frequencies are collected through
monitoring the past runs. The novelty of this approach is the
use of methods of OODBs as input for describing the applica-
tion load on each instance variable. Method semantics can be
abstracted by means of graphs describing the flow of execution
with control structures.
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The following is a summary of some related work on
OODB method execution cost models:

(1) In [28], the optimization of queries containing methods
is discussed. Some new strategies of object query opti-
mization (for the classification and evaluation of selec-
tions and joins containing path expressions or methods)
are proposed. Object query graphs are used to represent
object queries and to capture different kinds of selections
and joins. Object query graphs are also used to factorize
common sub-path expressions among not only path ex-
pressions in queries, but also maximal common sub-path
expressions in methods and to generate query evaluation
plans.

(2) In [27], no specific cost model is proposed. Instead, they
assume that the OODBMS is capable of using OID-stream
statistics to derive a cost for method calls. Appropriate
OID-stream statistics might be stream cardinality and in-
formation about the classes represented in the stream. For
a given method call, the OODBMS could derive a process-
ing cost and statistics for the resulting output OID-stream.

(3) In [13], a model is developed for measuring the cost of
a predicate function (similar to our notion of method).
The cost of a predicate function is computed by adding
up the costs for each sub-predicate function in the pred-
icate function expression. Given a predicate function
p(a1, . . . , an), the expense per object is recursively de-
fined as:

ep =




n∑
i=1

eai + percall cpu(p)+

perbyte cpu(p) ∗ (byte pct(p)/100)∗
n∑

i=1
bytes(ai) + access cost

if p is a predicate function
0 if p is constant or instance variable

and eai
is the recursively computed expense of argument

ai. The parameter values as listed in Table 1 are initial esti-
mations based on either default values or system statistics.
After repeated applications of a predicate function, one
could collect performance statistics and use curve-fitting
technique to make estimates about the predicate function’s
behavior.

(4) The HERMES project is an ESPRIT joint project [12].
The objective of the project is to develop principles and
methodologies for the design and implementation of high-
performance integrated system environments for the re-
trieval of real-time, delay-sensitive, and synchronized
multimedia data. One of their contributions is their ex-
perimentation on method execution cost calibration and
history.

1.4 Contributions and paper organization

In contrast, the main contributions of our work described in
this paper are as follows:

(1) A cost model for method execution in OODBs is devel-
oped. This cost model is used in the subsequent algorithms
to generate the optimal vertical class partitioning scheme.

To the best of our knowledge, this is the first piece of work
on developing a cost model for complex method execution
in OODBs.

(2) A cost-driven algorithm (CDA) is developed, which guar-
antees to produce the cost-optimal partitioning scheme
based on exhaustive enumeration and has a high compu-
tational complexity O(nn) [4], where n is the number of
instance variables in the class.

(3) An affinity-based algorithm which has low computational
complexity of O(n2) [24] is designed. Furthermore, it is
shown that the affinity-based algorithm does not necessar-
ily generate the optimal vertical class partitioning scheme.

(4) Finally, a hill-climbing heuristic algorithm (HCHA) based
on both the cost-based and affinity-based approaches is de-
signed. This algorithm uses the initial solution generated
by affinity-based algorithm and incrementally evolves it
to generate optimal or near optimal vertical class parti-
tioning scheme.

The rest of the paper is organized as follows: Sect. 2
presents the characteristics and specifications of OODB meth-
ods. Section 3 presents an analytical cost model for method-
induced vertical partitioning. Section 4 presents two different
vertical partitioning algorithms, namely, CDA and HCHA, and
Sect. 5 presents analytical evaluation results on these algo-
rithms. Section 6 presents the empirical validation of the cost
model and discussions on the applicability and limitations.
Conclusions and future work are given in Sect. 7.

2 Method characteristics and specification

To lay down a foundation for the development of a cost model
for method execution and method-induced vertical class parti-
tioning (MI-VCP), in this section we first review a core object-
oriented data model. Through the concept of method depen-
dency graph, a general model for method execution with em-
phasis on the different types of method invocations is devel-
oped.

2.1 A core object-oriented data model

To make our discussions general-purpose, we focus on the
basic concepts that are mandatory and/or common to most
OODB models and systems [1,15,16]. These elementary con-
cepts also form the core of the OODB model that we shall
assume for our subsequent discussion.

Table 1. Method execution cost terms

Term Descriptions

percall cpu execution time per invocation, regardless of the size
of the arguments

perbyte cpu execution time per byte of arguments
byte pct percentage of arguments bytes that the function will

need to access
bytes expected (return) size of the argument in bytes
access cost cost of retrieving any data necessary to complete the

function
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o2/f1 o3/f2 o4*r1

o9

Fig. 1. MDG of an example method ma()

The most fundamental concepts of an OODB include class,
inheritance, and object identifier (OID). A class defines a set
of instance variables (or attributes) that constitute the “state”,
and a set of proceduralmethods that embody the “behavior” of
its objects. Classes are organized into an inheritance (Is-A) hi-
erarchy, in which a subclass inherits the attributes and methods
defined in the superclass(es) for its objects. For each attribute,
the set of values it may have is confined by its class type
(which is called the domain class); both atomic (e.g., integer,
string of characters) and abstract (i.e., object) domain classes
are possible for an object. Objects are uniquely distinguished
with their (system-generated) object identifiers (OIDs), hence
the existence of an object is independent of its state (i.e., at-
tribute values). Besides the Is-A hierarchy, OODBs exhibit
another form of useful hierarchy called the composition hier-
archy, which captures the “Is-Part-Of” relationship between a
parent class and its component classes.

A method has a signature (interface) including the
method’s name, a list of parameters, and a list of return val-
ues. Parameters and return values may be either value-based or
object-based instance variables (VBIVs or OBIVs). Methods
are inherited from the superclass(es). A subclass may alter the
method code of an inherited method or introduce additional
methods.

A simple method does not call/invoke any other method.
A complex method [6] calls/invokes other methods. A method
that accesses VBIVs only accesses the leaf node of a compo-
sition hierarchy. On the other hand, a method that accesses
OBIVs can potentially invoke other methods. A method can
return atomic values (such as real, integers and string) or return
object identifiers.

2.2 Method dependency graph

Method dependency graph (MDG) is a graphical representa-
tion of a complex method which calls/invokes other methods
[18,19]. Each method dependency graph represents the behav-
ior of a complex method accessing an object-based instance
variable (OBIV). A MDG has a set of nodes and a set of di-
rected edges. The nodes represent the methods that are invoked
by the complex method, and the edges denote the sequence in
which the methods are invoked. Since a complex method can
invoke other methods (both simple and complex), a complex
method can be naturally represented by a set of MDGs. An
example MDG is illustrated in Fig. 1.

2.2.1 Method execution semantics

In most of the previous research, methods are treated as “black
boxes” and are neglected from cost analysis. Nevertheless, an
analytical cost model for method execution in OODBs is a
problem relevant to class partitioning. We tackle this problem
by studying the cost relationship between different subpro-
grams defined in a method. As many query languages do not
(yet) support recursion, we focus on non-recursive methods in
this paper.

The following different types of method invocation are dis-
tinguished: (1) simple invocation; (2) conditional invocation;
and (3) repeated invocation. We discuss the different types of
method invocation below, the purpose of which is to yield the
basic cost formula for each type. For expository purpose, the
discussion is based on the three example methods illustrated
in Fig. 2.

Method invocation dependency (MID) terms

In Fig. 2a, ma() defined in class A is a complex method in-
voking methodsmb1()andmb2()in sequence. The two OBIVs
o1 and o2 are defined in class A, with the domain A.o1 be-
ing of class B1 and A.o2 being of class B2. We introduce a
term of method invocation dependency (MID) asma < o1 →
mb1 , o2 → mb2 > which, intuitively captures the MDG in-
formation of ma() in that the methods mb1() and mb2() are
called directly by method ma() (i.e., they are inside the “<>”
which contains the methods called by ma()). The notation
< o1 → mb1 , o2 → mb2 > implies that methods mb1()
and mb2() are executed one after the other in sequence, and
the notation o1 → mb1 implies that the sub-method mb1() in
the MDG is invoked by ma() through an object-based instance
variable o1. The IO cost of the method ma() is calculated by
a summation of the IO cost of executing the two sub-methods
mb1()and mb2(),plus the IO cost of executing the method
ma() without regard to the cost of executing mb1()and mb2()
(as they are already considered). Figure 2a also shows the re-
sultant cost formula in this case. The details of IOCost and
Cost will be described in Sect. 2.3 and Sect. 3.2, respectively.

In Fig. 2b, the complex method ma() is assumed to in-
voke methods mb1()and/or mb2() conditionally. That is, the
method ma() branches out to method mb1() or mb2(). The arc
connecting branches in the MDG represents a conditional ex-
ecution. Furthermore, the method mb1() is to be invoked with
relative frequency f1 and the methodmb2() to be invoked with
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Fig. 2a–c. MDG, sample code, and cost formula for a simple method invocation, b conditional method invocation, and c repeated method
invocation

relative frequency f2. Similar to [27], we assume that the un-
derlying OODBMS can monitor the method execution to keep
track of these execution frequency values (whenever required
by the database administrator). This leads to an extra overhead
to the OODBMS but will be amortized by the higher-quality
cost estimation produced. Note that per method invocation of
ma(), both of its sub-methods may be executed inclusively or
only one of them is actually executed. We therefore introduce
a new MID term: ma < o1/f1 → mb1 | o2/f2 → mb2 >,
which indicates that method ma() will execute either method
mb1() (with frequency f1) and/or method mb2() (with fre-
quency f2); the “|” inside the “[ ]” means a conditional ex-
ecution between the two (or more) methods. The IO cost of
method ma() is calculated by the cost formula as shown in the
lower portion of Fig. 2b.

To facilitate the subsequent discussion, as in [11], we
make the following observations regarding the amount of main
memory, Large Memory Hypothesis (LMH) – the main mem-
ory size is so large that we have enough memory buffers for
all the incoming objects (i.e., in loading objects from the disk,
they are only loaded once).SmallMemoryHypothesis (SMH)–
the main memory size is so small that we can afford to allocate
only one page of memory buffer for each class or fragmented
class (i.e., during method execution, the same objects or object
fragments of a particular class are required to be loaded into
the main memory multiple times and cause a high increase in
the number of disk accesses). Note that LMH is the best case
and the SMH is the worst case scenario with respect to the
number of disk accesses required to execute a method.

As shown in Fig. 2c, the complex method ma() in this case
repeatedly invokes method mb() with a repeating factor r (i.e.,
mb() is executed for r times). We introduce one more MID
term: ma < o ∗ r → mb >. This term depicts that method
ma() will execute method mb() repeatedly (with a repeating
factor r); the “*” inside the “< >" means a repeated execution.
For SMH, the IO cost of method ma() is as shown by the
upper cost formula in Fig. 2c, where the cost of methodmb() is
multiplied by the repeating factor r. Again, similar to [27], we
assume that the underlying OODBMS can monitor the method
execution to keep track of these repeating factor values. This
formula is based on the assumption that the objects required
by method mb() are repeatedly loaded into the main memory
each time they are needed (i.e., the SMH case). If we have
enough main memory to hold all the objects involved (i.e., the
LMH case), then the objects required by method mb() need
not be repeatedly loaded into the main memory. Hence the
IO cost of method ma() in this case is as shown by the lower
cost formula in Fig. 2c, where we see the multiplying factor r
disappears as a consequence.

2.3 Method execution cost model

Let m < q1, q2, . . . , qn > be the MDG representation of
a method m(),where q1, q2, . . . , qn are the MID terms (as
introduced in Sect. 2.2.1), then the cost of executing m() is
similar to that of [13], that is:
If qi is of form oi → mi then



192 C.-W. Fung et al.: Cost-driven vertical class partitioning in object oriented databases

Cost(qi)=Cost(mi).

If qi is of form [oj/fj → mj | . . . | ok/fk → mk] then

Cost(qi) =
fj

fj + . . . + fk
Cost(mj) + . . .

+
fk

fj + . . . + fk
Cost(mk).

If qi is of form oi ∗ ri → mi then

Cost(qi) = ri*Cost(mi) in the case of Small Memory
Hypothesis (SMH) or

Cost(qi) = Cost(mi) in the case of Large Memory Hy-
pothesis (LMH).

Similarly Cost(mi), Cost(mj) and Cost(mk) are recur-
sively defined. In conclusion, a nested method invocation can
be represented as a combination of the above types of method
invocation. We now illustrate method execution cost calcula-
tion by means of an example.

Example. Consider the method ma() as shown in Fig. 1, it can
be represented by using MID terms as follows:

ma < o1 → mb1, [o2/f1 → mb2 | o3/f2 → mb3],
o4 ∗ r1 → mb4 >

Assuming in SMH cases, the cost of executing ma() is
calculated as follows:

Cost(ma < o1 → mb1, [o2/f1 → mb2 | o3/f2 → mb3],
o4 ∗ r1 → mb4 >)
= IOCost(ma)+Cost(mb1 < [o5/f3
→ mc1 | o6/f4 → mc2 | o7/f5 → mc3] >)

+
f1

f1 + f2
Cost(mb2 < o8 ∗ r2 → mc4 >)

+
f2

f1 + f2
Cost(mb3)

+r1 ∗ Cost(mb4 < o9 → mc5 >).

In the above formula,

Cost(mb1 < [o5/f3 → mc1 | o6/f4
→ mc2 | o7/f5 → mc3] > )=IOCost(mb1)

+
f3

f3 + f4 + f5
Cost(mc1) +

f4
f3 + f4 + f5

Cost(mc2)

+
f5

f3 + f4 + f5
Cost(mc3),

Cost(mb2 < o8 ∗ r2 → mc4 > )

=IOCost(mb2) + r2*Cost(mc4),

and

Cost(mb4 < o9 → mc5 > )=IOCost(mb4)+Cost(mc5),

with

Cost(mb3)=IOCost(mb), Cost(mc1)=IOCost(mc1),
Cost(mc2)=IOCost(mc2), Cost(mc3)=IOCost(mc3),
Cost(mc4)=IOCost(mc4),
and Cost(mc5)=IOCost(mc5).

Class E*
{

io1 V1;
io2 V2;
io3 V3;

}

Class V3
{

Qualification char[200];
Experience char[200];

}

Class V1
{

EmpId char8];
Name char[40];
Title char[20];
Tel char[12];
Fax char[12];

}

Class V2
{

Street char[40];
City char[20];
Country char[20];
Zip char[10];

}

Fig. 3. Vertical class fragments V1, V2, V3 and composite object E∗

of class Employee

2.4 Estimation of parameter values

To enable us to calculate the cost of executing a complex
method, we need to have estimates on the following method
invocation parameters: (1) the relative frequencies between
different sub-methods in conditional invocation; and (2) the
repeating factor for repeated invocation. These estimates can
be obtained from any one or all of the following sources:

(a) extra counter variables may be attached to each method to
obtain the method invocation parameter values;

(b) the underlying OODBMS monitors and keeps track of
statistics on these method invocation parameter values.

(c) the method designer provides a preliminary estimate.

With some extra overhead, accurate parameter values can
also be obtained from (a) and (b). The extra overhead of moni-
toring/keeping track of the query/method execution in (a) and
(b) is amortized by the performance gain after we apply the
method-induced vertical class partitioning (VCP) technique.
In (c), the parameter values are estimated by the VCP de-
signer, hence the values will not be too accurate and can affect
the utility of VCP. However, our HCHA provides guidelines
for choosing the initial VCP scheme. The VCP scheme can
be further refined when more accurate parameter values are
subsequently obtained.

3 Cost model

In this section, we present an analytical cost model for method-
induced vertical partitioning in OODBs. First, we consider an
example class (Employee) which has been partitioned based on
a vertical partitioning scheme{V1,V2,V3}.As shown in Fig. 3,
the original class Employee can be internally represented by
a class E∗with a set of object-based instance variables: io1,
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C1

C1,1 C1,2

......

C2

C1,3 C1,q1

......

...... C n
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IsA link IsPartOf link

C i

C i,1 C i,2

......

o2

on

C i,3 C i,q i

......

o3

Key:

Fig. 4. Example schema for a MDG path in un-
partitioned case

io2 and io3, where each object-based instance variable refers
to an object from vertical fragment Vj (for 1 ≤ j ≤ 3). This
embodies an object-oriented representation of a vertical parti-
tioning of a class [17,18]: each of the vertical class fragments
is represented as a class, and a logical object of classEmployee
is internally represented as a composite object (of class E∗)
that consists of objects from the vertical class fragments. As
vertical class fragments are also represented as classes, this
uniform/homogeneous approach has the added advantage of
supporting fragmentation transparency [18,19]. Furthermore,
this approach does not require extra support in schema main-
tenance (as found in vertical partitioning for relational data-
bases). Thus, in the remaining discussions this internal repre-
sentation of vertical partitioned classes is assumed.

3.1 Basic concepts

Similar to other related work (e.g., [11]) on cost models in
OODBs, we have the cost model parameters as shown in Table
2. Some of the parameters can readily be obtained from the
system catalog (like sizes of instance variables), while others
require the OODBMS to keep track of their values, such as the
fan-outs between classes in the class composition hierarchy.

The total cost to execute a method is calculated as:
Total cost = Disk IO cost + CPU cost,

where Disk IO cost is the cost of performing disk IO and
CPU cost is the cost for performing the computation during
the method execution.As in [5], we concentrate in this paper on
the Disk IO cost and disregard the CPU cost. This is because
for very large database applications with huge amount of data
accesses, the CPU cost’s contribution towards the Total cost
would be insignificant.

To facilitate the building of the cost model, we define the
following types of path expressions (with the last two being
incorporated from [28]):

• MDG path expression – a path expression obtained from
the MDG. An example is A · o1 · o5 of Fig. 1. Note that a
MDG can contain more than one MDG path expression.

• Parameter path expression – a path expression originating
from parameter objects of a method.

• Hidden path expression – all path expressions that are not
MDG or parameter path expressions.

A particular MDG path (i.e., one of the several possible
MDG paths in a MDG) with path length n is of the general

formC1 ·o2 ·o3 · . . . ·on, whereC1 is the root class of the MDG,
and oi ∈ Ci−1 (i.e., oi is the OBIV defined in class Ci−1 with
a domain of class Ci). An example schema of a MDG path
with a class inheritance hierarchy is shown in Fig. 4. For con-
venience, we denote the k the subclass of a class inheritance
hierarchy rooted at class Ci by the notation Ci, k, where k
ranges over 1 through qi (which is the total number of sub-
classes of classCi). To make the cost formulae more compact,
we can also denote the root class Ci as Ci, 0. We further de-
note the jth vertical fragment of the kth subclass of classCi by
Ci, kVj , where j ranges over 1 through mi (which is the total
number of fragments for every class in the class inheritance
hierarchy rooted at class Ci). For simplicity, we assume after
vertical partitioning, all the class/subclasses of the whole class
inheritance hierarchy are partitioned into the same number of
fragments. An example schema for a MDG path with vertical
partitioning is shown in Fig. 5. Similar notation is also used
for hidden and parameter paths.

The total number of pages occupied by a class collection

(i.e., class extent) C is given by: |C| =
⌈

‖C‖∗SC
PS

⌉
, where


� is the ceiling function and SC is the object size. When ap-
plying these formulae to a subclass hierarchy, we assume that
within the same class/subclass, objects are stored together.
Between different subclasses, however, objects are stored in-
dependently. This means that all the subclasses are not clus-
tered into one huge class collection for the reason of effi-
cient processing of queries on individual subclasses. When
we apply these formulae to a subclass hierarchy with vertical
fragments, we further assume that the fragments of different
classes/subclasses are stored independently (for the same rea-
son as the unpartitioned case).

In evaluating a predicate, it is important to estimate the
number of page accesses to a class collection during path ex-
pression traversal. In estimating the number of page accesses
to a collection, we use the Yao function [29]. Specifically,
given n records uniformly distributed into b blocks or pages
(1 < b ≤ n), if k records (k ≤ n) are randomly selected from
the n records, the expected number of page accesses is given

by Y ao(n, b, k) = b ∗
[
1 −

k∏
i=1

nd−i+1
n−i+1

]
, where d = 1− 1/b.

(The expected number of page accesses is not equal to k be-
cause some pages may contain two or more records.) Note that
theYao function models database accesses with limited buffer
cache. In our discussion, we usually take n = ‖C‖, b = |C|
and k = SEL ∗ ‖C‖ (where SEL is the selectivity of the



194 C.-W. Fung et al.: Cost-driven vertical class partitioning in object oriented databases

Table 2. Cost model parameters for MI-VCP

Category Parameter Meaning

Database ‖Ci,k‖ cardinality of class collection Ci,k(i.e., kth subclass of ith class along the class composition hierarchy)

|Ci,k| number of pages occupied by class Ci,k

SCi,k size of object (in unit of byte) in class Ci,k

qi number of subclasses in the class inheritance hierarchy rooted by class Ci

fani−1, i, j, k fan-out for the class composition hierarchy from jth subclass of class Ci−1 to the kth subclass of class
Ci

n path length of the MDG path, i.e., the number of classes along the MDG path in the class composition
hierarchy

NPi, k number of objects (of kth subclass of class Ci) per page. If SCi,k < PS then NPi, k is
⌊

SC
SCi,k

⌋
,

otherwise we set it to 1
h path length of the hidden path
p path length of the parameter path
b B+-tree index average fan-out
PS page size of the file system (in unit of byte)

Method Mi, j, k a binary variable, it is of value 1 if the method accesses jth vertical fragment of the kth subclass in
class Ci; 0 otherwise

Sproj i, k length of output result that is within kth subclass in class Ci

Sproj i, j, k length of output result that is within jth fragment of the kth subclass in class Ci

refi, k number of object references for kth subclass in class Ci during the path expression evaluation process
along the class composition hierarchy in the MDG path

SELi selectivity of the method’s predicate on class Ci

Vertical mi number of fragments in class Ci

Partitioning SCi, k Vj size of jth fragment in kth subclass in class Ci

|Ci, k Vj | number of pages occupied by jth fragment of the kth subclass of class Ci

V Pi a binary variable, it is of value 1 if class/subclasses of Ci is vertically partitioned; 0 otherwise
|COi, k| number of pages occupied by the composite objects of class Ci,k

<For the hidden path, the following parameters are similarly defined: ‖Hi, k‖, |Hi, k|, SHi, k,
hqi , Hfan i−1, i, j, k, HM i, j, k, Hrefi, k, HSeli, hmi, SHi, kVj , |Hi, kVj |, HV Pi, |HCOi, k|.
For the parameter path, the following parameters are similarly defined:‖Pi, k‖, |Pi, k|, SPi, k, pqi,
Pfan i−1, i, j, k, PM i, j, k, P refi, k, PSeli, pmi, SPi, kVj , |Pi, kVj |, PV Pi, |PCOi, k|. >

C1

C1,1 C1,2

......

......

C2C1V1

C1,1V1 C1,1Vm1

C1Vm1

......

......

Key:

Unpartitioned
Class

Vertical Partitioned
Class

IsA link IsPartOf link
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......

C n
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C i
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CiVmi
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Ci,qiV1 Ci,qiVmi

......

......

......
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o3

on

Fig. 5.Example schema for a MDG path
in vertical partitioned case
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predicate on the current class C). However, the Yao function
only applies when b ≤ n, i.e., when the object is smaller than
or equal to the page size. For larger objects, we estimate the
number of page accesses by a simple proportion: b ∗ k/n. In
building the cost model, we thus use an auxiliary function Y
as defined below:

Y (n, b, k) =



Y ao(n, b, k) for object size smaller

than or equal to page size
b ∗ k/n for object size

larger than page size

3.2 IO cost formulae for method execution

In [11], the query processing cost along a path expression
(either MDG, parameter or hidden path expression) has the
following three cost components:

IOPathExpression = IOLoad + IOEval + IOBuild

where IOLoad is the number of disk IOs to load in the whole
root class collection, IOEval is the total number of disk IOs
to evaluate the predicate by traversing through the different
classes along the path expression, and IOBuild is the number of
disk IOs to build the results. In [8,9,10], we have extended the
cost formulae of [11] to query processing in both unpartitioned
and vertically partitioned OODBs.

In this paper, these three cost components are further ex-
tended to the different path expressions (namely MDG, param-
eter, and hidden path expressions) in a complex method. As
described in Sect. 2.3, the cost of evaluating a complex method
m is calculated by the general cost formula ofCost(m)which is
dependent on IOCost functions of each (sub)method involved.
We thus concentrate here on the cost formulae of IOCost(m)
for a complex methodm(defined in a classCi) without regard
to other method invocations. Similar to IOPathExpression, the
IOCost(m) includes the following components:

IOCost(m) = IOLoad + IOMDGPath + IOBuild +∑
IOHiddenPaths +

∑
IOParamPaths

where: (1) IOLoad is the number of disk IOs to load in the
whole root class collection (with Ci being the root class) of
a MDG; (2) IOMDGPath is the number of disk IOs to eval-
uate “one node” in a MDG path expression which is from a
previous class Ci−1 to the current class Ci (if Ci is not the
root class in the MDG)1; (3) IOBuild is the number of disk
IOs to build the results; and (4) IOHiddenPath is the number
of disk IOs to process the whole hidden path expression, and
IOParamPath is the number of disk IOs to process the whole
parameter path expression2. After this we use the formulae

1 As we are calculating the method execution cost for the current
class, we only need to consider the traversal cost from the previous
class towards the current class.

2 Note that in general there may be multiple hidden / parameter
path expressions within a method. IOHiddenPath= IOHiddenLoad+
IOHiddenEval and IOParamPath = IOParamLoad + IOParamEval.
For simplicity, our cost model concentrates on methods whose re-
sulting values or OIDs from method execution are from the classes
along the MDG path expression, not from the hidden/parameter path
expressions so there is no disk IO required to build the result along
the hidden/parameter path expression and hence IOHiddenBuild and
IOParamBuild are all zeros.

developed in Sect. 2.2.1 to calculate the total cost of invoking
complex method m.

We note that sequential scan and index scan are the two
major strategies used for scanning a class collection. As men-
tioned before, the objective of using an index is to attain faster
object access, while the objective of using vertical partitioning
is to reduce irrelevant data access. In the general case, since
not every instance variable defined in a class has an index
associated with it, the objects in the class collection are as-
sumed to be accessed sequentially in order to have a uniform
comparison of experimental results.

The cost formulae for sequential scans are summarized in
Tables 3 and 4. Interested readers are referred to [8,9,10] for
details. For methods that use index scan to a class collection,
the cost model formulae differ only in the IOLoad, IOHidden-
Load, and IOParamLoad components. For example in LMH,
according to [11], for non-clustered index implemented as a
B+-tree with average fan-out of b, the IOLoad for the unpar-
titioned case is

logb

(
SEL1 ∗

q1∑
k=0

‖C1, k‖
NP1, k

)

+
q1∑

k=0

Y (‖C1, k‖ , |C1, k| , ref1, k),

and the IOLoad for the vertical partitioned case is

logb

(
SEL1 ∗

q1∑
k=0

‖C1, k‖
NP1, k

)

+
q1∑

k=0

Y (‖C1, k‖ , |CO1, k| , ref1, k)

+
q1∑

k=0


m1∑

j=1

M1, j, k ∗ Y (‖C1, k‖ , |C1, kVj | , ref1, k)


.

The IOHiddenLoad and IOParamLoad can be similarly
defined.

3.3 Evaluation of vertical class partitioning

To compare and contrast the utility of vertical class partition-
ing, we have conducted a number of analytical experiments
in [7,8,9,10]. We evaluated the effectiveness of vertical class
partitioning in reducing the irrelevant data accessed for pro-
cessing queries and methods. Due to the space limits, we only
summarize below the findings and conclusions from these ex-
periments:

• In [7,8,9,10], a cost model was developed for calculating
the number of disk accesses required for processing a set of
OQL (object query language) queries. This cost model was
extended to calculate the number of disk accesses incurred
for processing a set of queries and methods on a vertical
class partitioned OODB.

• In [7,8,9,10], analytical experiments were conducted to
show the utility of vertical class partitioning. In particular,
it was shown that: (1) there is an optimal number of vertical
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Table 3. Cost model formulae for MI-VCP in LMH

LMH Unpartitioned Vertical Partitioned

IOLoad
q1∑

k=0
|C1, k|

q1∑
k=0

[
|CO1, k| +

m1∑
j=1

M1, j, k ∗ |C1, kVj |
]

IOMDGPath
qi∑

k=0
Y (‖Ci, k‖ , |Ci, k| , refi, k)

qi∑
k=0

[V Pi ∗ (Y (‖Ci, k‖ , |COi, k| , refi, k)+
mi∑
j=1

(Mi, j, k ∗ Y (‖Ci, k‖ , |Ci, kVj | , refi, k)))

+(1 − V Pi) ∗ Y (‖Ci, k‖ , |Ci, k| , refi, k)]

IOBuild
qi∑

k=0

SELi∗‖Ci. k‖∗Sproji, k

PS

qi∑
k=0

[
mi∑
j=1

SELi∗‖Ci. k‖∗Sproji, j, k

PS

]

IOHiddenLoad
hq1∑
k=0

|H1, k|
hq1∑
k=0

[
|HCO1, k| +

hm1∑
j=1

HM1, j, k ∗ |H1, kVj |
]

IOHiddenEval
h∑

i=2

[
hqi∑
k=0

Y (‖Hi, k‖ , |Hi, k| , Hrefi, k)
]

h∑
i=2

[
hqi∑
k=0

[HV Pi ∗ (Y (‖Hi, k‖ , |HCOi, k| , Hrefi, k)+

hmi∑
j=1

(HMi, j, k ∗ Y (‖Hi, k‖ , |Hi, kVj | , Hrefi, k)))

+(1 − HV Pi) ∗ Y (‖Hi, k‖ , |Hi, k| , Hrefi, k)]]

IOParamLoad
pq1∑
k=0

|P1, k|
pq1∑
k=0

[
|PCO1, k| +

pm1∑
j=1

PM1, j, k ∗ |P1, kVj |
]

IOParamEval
p∑

i=2

[
pqi∑
k=0

Y (‖Pi, k‖ , |Pi, k| , P refi, k)
]

p∑
i=2

[
pqi∑
k=0

[PV Pi ∗ (Y (‖Pi, k‖ , |PCOi, k| , P refi, k)+
pmi∑
j=1

(PMi, j, k ∗ Y (‖Pi, k‖ , |Pi, kVj | , P refi, k)))

+(1 − PV Pi) ∗ Y (‖Pi, k‖ , |Pi, k| , P refi, k)]]

Table 4. Cost model formulae for MI-VCP in SMH

SMH Unpartitioned Vertical Partitioned

IOLoad same as LMH same as LMH

IOMDGPath
qi∑

k=0

[(
i∏

r=2
refr, k

)
∗
⌈

SCi, k

PS

⌉] qi∑
k=0

[(
i∏

r=2
refr, k

)
∗
(

1 +
mi∑
j=1

Mi, j, k ∗
⌈

SCi, kVj

PS

⌉)]

IOBuild same as LMH same as LMH

IOHiddenLoad same as LMH same as LMH

IOHiddenEval
h∑

i=2

[
hqi∑
k=0

[(
i∏

r=2
Hrefr, k

)
∗
⌈

SHi, k

PS

⌉]] h∑
i=2

[
hqi∑
k=0

[(
i∏

r=2
Hrefr, k

)
∗
(

1 +
hmi∑
j=1

HMi, j, k ∗
⌈

SHi, kVj

PS

⌉)]]

IOParamLoad same as LMH same as LMH

IOParamEval
p∑

i=2

[
pqi∑
k=0

[(
i∏

r=2
P refr, k

)
∗
⌈

SPi, k

PS

⌉]] p∑
i=2

[
pqi∑
k=0

[(
i∏

r=2
P refr, k

)
∗
(

1 +
pmi∑
j=1

PMi, j, k ∗
⌈

SPi, kVj

PS

⌉)]]

class fragments of a class to process a set of queries; (2) the
proportion of benefit due to vertical class partitioning re-
mains constant as cardinality of the relation increases, that
is, vertical class partitioning is beneficial for both small and
large object databases; (3) the proportionality of instance
variables affects the utility of the vertical class partitioning,
in that the larger the proportionality of instance variables
accessed the less useful vertical class partitioning is; and
(4) it is better to vertically class partition all the classes

along the class composition hierarchy, especially for large
fan-outs.

4 Vertical partitioning algorithms

Given an OODB schema and a set of methods with speci-
fied execution characteristics (MDGs and MID terms), verti-
cal partitioning algorithms can be devised to generate optimal
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or near-optimal partitioning schemes. The problem of creat-
ing an optimal vertical class partitioning scheme is a hard
problem [26], hence heuristic algorithms are needed to be de-
signed to come up with near-optimal vertical class partitioning
schemes. Two main heuristics, namely, affinity-based [22] and
cost-driven [5] have been proposed in prior research. In this
section, we present two algorithms for vertical class partition-
ing: a cost-driven algorithm which is a pure cost-based ap-
proach, and a hill-climbing heuristic algorithm which is based
on a combination of affinity-based and cost-based approaches.

4.1 Cost-driven algorithm (CDA)

The cost-driven algorithm (CDA) uses the cost model for
method execution. By exhaustively searching all the partition-
ing schemes, it finds the optimal vertical partitioning scheme
that minimizes the cost. As shown in Fig. 6, the algorithm
consists of two stages. In the first stage, we perform a de-
tailed analysis on the cost relationship and the different cost
component distributions among the different classes for ev-
ery method defined in the schema. In the second stage, we
make use of the cost information obtained to derive the op-
timal vertical partitioning scheme. We begin the first stage
by studying the cost relationship within the MDG for each
method defined in the schema. Different types of method in-
vocation are identified, which include simple, conditional, and
repeated method invocations. (Again, we assume that the un-
derlying OODBMS monitors the method execution and keeps
track of the relative frequencies between conditional method
invocations and the repeating factors under repeated invoca-
tions.) We then study the detailed cost components within
each class for each method defined in the schema; these com-
ponents include the IO costs involved in the different stages
of method execution: IOLoad, IOMDGPath, IOBuild, IOHid-
denPath and IOParamPath. We treat polymorphic/redefined
methods as different methods during the analysis. At the end
of the first stage, we obtain detailed cost formulae and cost
distribution among the different classes for each method de-
fined in the schema. The above information is then used in the
find method execution cost within that class procedure of the
CDA algorithm (see Fig. 6) to find the method execution cost.
In this respect, CDA is more suitable for production OODBs
(with predefined method execution characteristics) because
all of the above information can be collected and stored in the
system catalog.

In the second stage, we make use of the cost information to
derive the optimal vertical partitioning scheme. For each class
in the schema, we enumerate all possible vertical partitioning
schemes of that class, and for each possible vertical partition-
ing scheme Si, we calculate the total IO required (which takes
into account the cost relationship and the cost components)
for each method, and sum up the grand total IO cost required
for all the methods under the scheme Si. After enumerating all
possible vertical partitioning schemes, the overall minimum
cost vertical partitioning scheme for a particular class can be
obtained.

/* first stage */
Step 1: Perform detailed analysis on cost relationship and

cost components
/* second stage, perform exhaustive enumeration on every class */
Step 2: For every class in the schema do
Step 3: min:= + ∞
Step 4: For every possible vertical partitioning scheme in that

class do
Step 5: total_IO:= 0
Step 6: For every method do
Step 7: IOCost:= find_method_execution_cost_within_that_class
Step 8: total_IO:= total_IO + IOCost
Step 9: EndFor
Step 10: If total_IO < min
Step 11: min:= total_IO
Step 12: optimal_configuration:= current_configuration
Step 13: EndIf
Step 14: EndFor
Step 15: EndFor

Fig. 6. Cost-driven algorithm

4.2 Hill-climbing heuristic algorithm (HCHA)

Our second algorithm combines the well-known affinity-based
vertical algorithm (viz., the graph-based algorithm described
in [24]) with the cost-based approach, so as to achieve a rea-
sonable near-optimal result in an efficient manner. We start
with a recap of the affinity-based algorithm first.

Pure affinity-based vertical partitioning algorithm.

As described in [24], the affinity-based algorithm starts from
the instance variable affinity matrix which is generated from
the instance variable usage matrix.An instance variable usage
matrix (IVUM) represents the use of instance variables. Each
row in the matrix refers to a method; a “1” entry in a column
indicates that the method accesses the corresponding instance
variable. An IVUM element ut, i is set to “1” if the tth method
accesses the ith instance variable; “0” otherwise. Figure 7a
shows an example IVUM.

Based on IVUM, an instance variable affinity matrix
(IVAM) element is defined as

ai, j =
∑

t ∈ Methods

(ut, iANDut, j) ∗ freqt ,

where the summation is over all the methods and freqt is
the frequency of method execution of the tth method. Each
IVAM matrix element measures the strength of an “imaginary
bond” [24] between the two instance variables when they are
accessed together by methods. An example IVAM (which cor-
responds to the above IVUM) is shown in Fig. 7b.

As in [24], the algorithm starts with the instance variable
affinity matrix by considering it as a complete graph. It then
forms a linearly connected spanning tree and generates all
meaningful vertical fragments simultaneously by considering
a cycle as a fragment. This algorithm is based on the fact that
all pairs of attributes in a fragment have high intra-fragment
affinity and low inter-fragment affinity. Compared with previ-
ous vertical partitioning algorithms, this algorithm has com-
putational superiority and is of complexityO(n2) [24] (where
n is the number of instance variables in the class).
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Instance variable
v1 v2 v3 v4 v5

m1 0 1 1 1 0
method m2 0 1 1 1 0

m3 0 1 1 0 0

v1 v2 v3 v4 v5
v1 0 0 0 0 0
v2 0 160 160 110 0
v3 0 160 160 110 0
v4 0 110 110 110 0
v5 0 0 0 0 0

a b

Fig. 7. a Instance variable usage matrix (IVUM) and b instance variable affinity matrix (IVAM)

/* first stage */
Step 1: Perform [24] graph-based algorithm

/* it outputs the affinity-based optimal partitioning scheme
and the instance variable affinity matrix for later use */

/* second stage */
Step 2: For each class in the schema
Step 3: curr_part_scheme:= affinity-based optimal partitioning scheme
Step 4: old_cost:= find_cost(curr_part_scheme)
Step 5: finished:= false
Step 6: While not finished
Step 7: Perform find_max_inter_fragment_affinity
Step 8: Perform find_min_popularity
Step 9: For next_move in [left_merge, right_merge, split_new,

single_split]
Step 10: next_part_scheme:= next_move(curr_part_scheme)
Step 11: new_cost:= find_cost(next_part_scheme)
Step 12: If new_cost<old_cost
Step 13: curr_part_scheme:= next_part_scheme
Step 14: old_cost:= new_cost
Step 15: Goto Step 19
Step 16: EndIf
Step 17: EndFor
Step 18: finished:= true /* Cannot find any next state with lower cost */
Step 19: EndWhile
Step 20: EndFor

Fig. 8. Hill-climbing heuristic algorithm

In our approach, we first generate the instance variable us-
age matrix by analyzing the method definition and then apply
the graph-based algorithm [24] to generate an optimal affinity-
based vertical partitioning scheme. Concerning the instance
variable usage matrix, we do not need to separate the instance
variables into groups (such as one group per class), as the
graph-based algorithm is general enough to cater for all the
instance variables in the whole schema in one shot. The algo-
rithm of [24] is included in Appendix A for reference. Note
that the affinity-based algorithm is more suitable for determin-
ing an initial vertical class partitioning scheme, as is the case
in the HCHA algorithm to be described next.

The hill-climbing heuristic algorithm

As the exhaustive enumeration strategy used in the cost-driven
algorithm (CDA) requires a high computational cost of order
O(nn) [4] (where n is the number of instance variables in
the class), it is impractical when the total number of instance
variables in the schema is very large. On the other hand, the
pure affinity-based approach is not as comprehensive as the
cost-based approach in modeling important database charac-
teristics, like the sizes of the instance variables. Furthermore,
the affinity-based approach cannot yield an analytical cost
comparison between different partitioning schemes, yet such
a comparison is very crucial in comparing the effectiveness of
different vertical partitioning algorithms. Some heuristic ap-
proach is therefore needed to tackle the vertical partitioning

problem effectively. Here we introduce a hill-climbing heuris-
tic algorithm (HCHA). The HCHA algorithm uses the concept
of popularity which is defined by the following:

Definition. The popularity of a particular instance variable
vi is the sum of the frequencies of the methods (transactions)
which access vi.

As in [25], there are four major elements in the hill-
climbing heuristics used by HCHA:

• Initial state: the optimal partitioning scheme generated by
the graph-based algorithm of [24] is used as the initial state.
This is a good choice because the affinity-based optimal
partitioning scheme is closer to the real cost-based optimal
partitioning scheme than any random and/or ad hoc initial
guess.

• Next state: as to be explained later, we shuffle the instance
variables in the different fragments in the current parti-
tioning scheme to generate the next state. We have several
“move” operations from the current state to the next state,
which can involve: (1) migrating an instance variable v
from one fragment Fi to another fragment Fj, so that for
some instance variablew inFj, (v, w) has the highest inter-
fragment affinity; (2) grouping two instance variables from
two fragments to form a new fragment; and (3) separating
one or more instance variables that have the lowest pop-
ularity3 from a fragment to form a new fragment, where
the popularity for the ith instance variable vi is defined
as the ith diagonal element in the instance variable affin-
ity matrix used by the affinity-based algorithm. The in-
tuition is that we should group instance variables which
are frequently accessed together, i.e., those instance vari-
ables having similar/comparable popularities, to form a
fragment, so that the variations of the popularities within
the fragment will be small.

• Comparison: we use the cost formulae of the cost-based
approach to calculate the cost required for the next parti-
tioning scheme, to see if it is of lower cost than the current
partitioning scheme.

• Termination: we terminate the hill-climbing algorithm in
any iteration when we cannot find any partitioning scheme
(after all different ways of shuffling from the current par-
titioning scheme) with lower cost than the current parti-
tioning scheme.

The HCHA algorithm as shown in Fig. 8 is thus of a two
stage process: stage one is the graph-based vertical partitioning
algorithm [24], and stage two is the application of the hill-
climbing heuristics.

3 Note that we use popularities to decide if a fragment of a par-
titioning scheme S should be split. When there is more than one
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Table 5. OODB schema

Class STAFF { 
Properties: 
    staff_name    char[40]; 
    basic_salary    int; 
Methods: 
    staff_name()    char[40]; 
    basic_salary()    int; } 

Class PROJECT { 
Properties: 
    name     char[40]; 
    supervisor    STAFF; 
    staff     setof STAFF;
    pj_loc     BRANCH; 
    plan     char[200]; 
Methods: 
    name()     char[40]; 
    supervisor()    STAFF; 
    staff()     setof STAFF;
    pj_loc()     BRANCH; 
    plan()     char[200]; 
    expense()    int; } 

Class ADM_STAFF IsA STAFF { 
Properties: 
    fringe_benefit    int; 
Methods: 
    fringe_benefit()   int; 
    income()     int; } 
 

Class BRANCH { 
Properties: 
    br_name     char[40]; 
    estate_tax    int; 
    br_locs     setof SITE; 
    br_staff     setof STAFF; 
    function     char[100]; 
Methods: 
    br_name()    char[40]; 
    estate_tax()    int; 
    br_locs()     setof SITE; 
    br_staff()     setof STAFF; 
    function()    char[100]; 
    br_cost()     int; } 

Class TECH_STAFF IsA STAFF{ 
Properties: 
    ot_hours     int; 
    ot_hourly_rate    int; 
Methods: 
    ot_hours()    int; 
    ot_hourly_rate()   int; 
    income()     int; } 
 

Class SITE { 
Properties: 
    address     char[120];
    rent_per_sqft    int; 
    size     int; 
    district     char[20]; 
    tel      char[8]; 
Methods: 
    address()     char[120];
    rent_per_sqft()    int; 
    size()     int; 
    district()     char[20]; 
    tel()     char[8]; 
    rent()     int; } 

The procedure find cost calculates the total cost of
method execution of the input partitioning scheme us-
ing the cost-based formulae. There are four procedures in
the algorithm to find the “next move”: (1) left merge, (2)
right merge, (3) split new , and (4) single split. Given the
current partitioning scheme (curr part scheme), procedure
find max inter fragment affinity finds a pair of instance vari-
ables from two different fragments with maximum inter-
fragment affinity (by consulting the instance variable affin-
ity matrix produced in stage one). The three procedures
left merge, right merge and split new all require the maximum
inter-fragment affinity pair. For example, if instance variables
B and D are of maximum inter-fragment affinity for the cur-
rent partitioning scheme: {(A B C) (D E) (F G)}, then pro-
cedures left merge, right merge and split new will yield {(A
B C D) (E) (F G)}, {(A C) (B D E) (F G)} and {(A C) (B
D) (E) (F G)}, respectively. On the other hand, procedure
find min popularityfinds within the fragment the instance vari-
able of minimum popularity but of the largest variation in
popularity. For example, if <(100 60 80) (0 0) (50 50)> is the
popularity for a current partitioning scheme {(A B C) (D E)
(F G)}, the minimum popularity instance variable will then
be B since (ABC)has larger variation than(FG). Therefore

fragment in S, we select the fragment F with the largest variation
among the popularities of its instance variables.

BRANCH::
br_cost( )

SITE::
rent( )

br_locs

PROJECT::
expense( )

STAFF::
income( )

supervisor

staffs

pj_loc

Fig. 9. MDG of complex method expense()

the next partitioning scheme will become {(A C) (D E) (F G)
(B)} after applying the procedure single split.

Note that HCHA will not enter an infinite loop or fail to
terminate. This is because: (1) the total number of different
partitioning schemes is finite; and (2) our old cost is ever de-
creasing, so if the algorithm generates a particular partition-
ing scheme that has been generated before, this partitioning
scheme will not be considered as the next one, since the cost of
it cannot be less than itself. Another characteristic of this algo-
rithm is that it either obtains an improved partitioning scheme
or terminates at once. As our initial partitioning scheme is the
affinity-based optimal partitioning scheme generated from the
[24] algorithm, HCHA is guaranteed to always produce a par-
titioning scheme which is at least as good as that of the [24]
algorithm.

5 Evaluation of the vertical partitioning algorithms

In this section we present the results of analytical evaluation
experiments on the vertical partitioning algorithms (viz., CDA
and HCHA) introduced in the previous section. For better
comparing and contrasting purposes, we treat here the pure
affinity-based algorithm [24] as a separate, additional algo-
rithm for vertical class partitioning. Therefore, the pros and
cons of the pure affinity algorithm are also discussed along
with that of CDA and HCHA.

According to the result of actual experimental studies we
have conducted (see Sect. 6.3), LMH is a good approximation
to the actual method execution cost for large objects, therefore
we shall concentrate on the LMH case in all our subsequent
experiments.

5.1 OODB schema

We use the OODB schema as shown in Table 5 for our analyt-
ical evaluation experiments.
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Case (i) – even distribution of instance variable accesses:

Case (i) 
 

Class 

# of 
iterations 

# of partitioning 
schemes 
checked 

IO cost of initial 
partitioning 

scheme by HCHA 

IO cost of final 
partitioning 

scheme by HCHA 

Optimal IO cost as 
predicted by CDA 

PROJECT 6 17 14920 9520 9520 
STAFF 2 8 27790 27740 27740 

BRANCH 6 19 13590 9300 9300 
SITE 5 15 22830 17440 17440 

5.2 Example methods

In our example, the method definitions are divided into two
categories: (1) elementary instance variable access (EIVA)
methods; and (2) application methods. EIVA methods are
defined on a one-to-one correspondence with the instance vari-
ables of a class. They are used to access the instance variable
values, which facilitates the encapsulation properties of the
OODB model and the hiding of the implementation details
of the instance variables. For example, method estate tax()
returns the estate tax of the BRANCH class object. Applica-
tion methods are defined by the application designer to access
the database. Usually these methods access multiple instance
variables, and may return some results and/or invoke other
methods. In our example, we have the following methods be-
longing to this category:

• income() in class TECH STAFF returns the salary as calcu-
lated by basic salary + ot hours * ot hourly rate;

• income() in class ADM STAFF returns the salary as calcu-
lated by basic salary + fringe benefit; (Note that
TECH STAFF andADM STAFF are subclasses of STAFF,
and they have different definitions for the income()
method.)

• rent() in class SITE returns the rent as calculated by
rent per sqft * size;

• br cost() in class BRANCH returns the cost as calculated by
adding estate tax with the sum of rents of all br locs sites;

• expense() in class PROJECT returns the expense as calcu-
lated by adding salary of supervisor with the sum of salary
of all staff and the br cost of pj loc branch. The MDG of
this complex method is illustrated in Fig. 9.

5.3 Method execution environment

Table 6 presents the method execution environment for this
analytical evaluation. To better understand the query process-
ing requirements of the method execution environment, the
methods are expressed in the form of Object Query Language
(OQL). There are eight queries: q1 to q8, that correspond to
eight methods: m1( ) to m8( ). Table 7 presents the MDGs
of the eight methods. In the last column of Table 7, the rel-
ative method execution frequencies are shown. For method
execution cost calculation, the eight methods in the MDG (as
shown in Fig. 10) can be viewed as sub-methods of a dummy
methodm. The dummy method contains no method execution
code and hence requires no disk access for method execution.
This dummy methodm is created to facilitate the formulation
of method execution cost. The total method execution cost is
given by:

Total Method Execution Cost

=
f1 ∗ Cost(m1) + . . .+ f8 ∗ Cost(m8)

f1 + . . .+ f8
. That means the

total method execution cost is the weighted sum by frequency
of the individual methods’ execution costs.

5.4 Results

Our analytical evaluations are performed using the cost model
of Sect. 3 on the three vertical partitioning algorithms for two
different cases:

• Case (i) – This corresponds to the case of rather even dis-
tribution of instance variable accesses4, meaning that the
expected performance gain of using vertical partitioning
will not be substantial. The method execution environ-
ment is as shown in Tables 6 and 7. In Fig. 11, we show
the Method Usage Matrix indicating the EIVA methods
that are accessed by the methods m1( ) to m8( ).

• Case (ii) – This is the case of skewed instance variable ac-
cesses5, meaning that some instance variables are heavily
accessed and the expected performance gain of using ver-
tical partitioning will be substantial. In Fig. 12, we show
the Method Usage Matrix for this case.

5.4.1 The HCHA approach

We first present the results on the HCHA approach. To be
concise, the results for the STAFF class actually represent the
results for the whole STAFF class inheritance hierarchy.

As shown in the above table, all four classes’costs based on
the HCHA approach attain the optimal IO costs as predicted by
the pure cost-based approach. The conclusion is that HCHA’s
predicting power of the optimal partitioning scheme is very
good. In addition, note that the total number of partitioning
schemes checked in the CDA approach using the exhaustive
enumeration strategy is 52 for each of the four classes6, but the
number of partitioning schemes checked in the HCHA case

4 Even distribution refers that every instance variable is accessed
by the methods.

5 Skewed instance variable accesses means that some instance vari-
ables are heavily accessed, and some instance variables may never
be accessed by the methods. The instance variables that are never
accessed by the methods in this case are: plan (in class PROJECT),
staff name (in class STAFF), br staffs, function (in class BRANCH),
and address, tel (in class SITE).

6 For a class with five instance variables (say A, B, C, D and E),
the different partitioning schemes include a one-fragment partition-
ing scheme – {(A B C D E)}, 15 two-fragments partitioning schemes
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SITE::m8( )

m( )

PROJECT::
m1( )

PROJECT::
m2( )

PROJECT::
m3( )

f1
f2 f3 f8

... Fig. 10. MDG of method execution environ-
ment

Table 6. Method execution environment

Query OQL Method

q1 select p.name from p in PROJECT
where expense(p) > 2000000;

m1( )

q2 select p.name, s.basic salary from p in PROJECT, s in TECH STAFF
where s in p.staffs and income(s) > 10000;

m2( )

q3 select p.name, s.staff name from p in PROJECT, s in ADM STAFF
where s=p.supervisor and s.basic salary > 50000;

m3( )

q4 select b.br name, st.address, st.district, st.tel
from p in PROJECT, b in BRANCH, st in SITE
where b in p.pj loc, st in b.br locs;

m4( )

q5 select b.br name, b.function, st.size, st.district
from b in BRANCH, st in SITE
where st in b.br locs;

m5( )

q6 select p.staffs, p.plan from p in PROJCET
where p.name=“OODB”;

m6( )

q7 select b.br name, b.function from b in BRANCH; m7( )

q8 select st.address, st.tel from st in SITE
where st.district=“HK”;

m8( )
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m5( ) √ √ √ √ √ 50
m6( ) √ √ √ 10
m7( ) √ √ 20
m8( ) √ √ √ 30 Fig. 11. Method usage matrix for case (i)
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m2( ) √ √ √ √ √ 20
m3( ) √ √ √ 20
m4( ) √ √ √ √ √ 20
m5( ) √ 40
m6( ) √ √ √ √ 40
m7( ) √ √ 40
m8( ) √ √ 40 Fig. 12. Method usage matrix for case (ii)
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Table 7. MDGs of method execution environment

Method MDG Frequency 

)(1m  
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SITE:: 
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PROJECT:: 
m1( )

STAFF:: 
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staffs
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)(2m  
PROJECT:: 

m2( )

STAFF:: 
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PROJECT:: 
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SITE:: 
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30 
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Case (ii) – skewed distribution of instance variable accesses:

Case(ii) 
 

Class 

# of 
iterations 

# of partitioning 
schemes 
checked 

IO cost of initial 
partitioning 

scheme by HCHA 

IO cost of final 
partitioning 

scheme by HCHA 

Optimal IO cost as 
predicted by CDA 

PROJECT 5 13 5280 4600 4520 
STAFF 2 5 2560 2500 2500 

BRANCH 4 10 2080 1820 1820 
SITE 4 10 2700 2280 2280 

Bar Chart of Normalized IO of Different Classes

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

PROJECT STAFF BRANCH SITE Total

N
o

rm
al

iz
ed

IO

CDA

Pure Affinity

HCHA

Fig. 13. Normalized IO for case (i) of even distribution of instance
variable accesses

is much lower than the CDA approach. Thus, a companion
conclusion is that the HCHA approach is more efficient than
the CDA approach in the even distribution case.

In this case, the distribution of instance variable accesses
is skewed, meaning that some of the instance variables are
heavily accessed and some of the instance variables are never
accessed by the methods7. As shown in the above table, the
HCHA approach attains the optimal IO costs for three out of
the four classes as predicted by the CDA approach. For the
missed case (i.e., PROJECT class), the IO cost of the final
partitioning scheme is 4,600, which means only a 2% error
(since 4, 600/4, 520 = 1.02). The conclusion is that HCHA’s
predicting power of the optimal partitioning scheme is still
good. In addition, we can see that the number of partitioning
schemes checked in this case is much lower than the CDA’s ex-
haustive enumeration strategy (which requires 52). This again
confirms that HCHA is much more efficient than the CDA
even for the skewed case.

– {(A)(B C D E)}, {(A B)(C D E)}, . . . , etc., 25 three-fragments
partitioning schemes – {(A)(B)(C D E)}, {(A)(B C)(D E)}, . . . ,
etc., 10 four-fragments partitioning schemes – {(A)(B)(C)(D E)},
{(A)(B)(D)(C E)}, . . . , etc., and one five-fragments partitioning
scheme – {(A)(B)(C)(D)(E)}. Thus the total number of partitioning
schemes is 52.

7 Our definition of skewness is based on the total number of in-
stance variables accessed by all methods. Another interesting defini-
tion would be based on a per method basis.

Bar Chart of Normalized IO in Different Classes

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

PROJECT STAFF BRANCH SITE Total

N
o

rm
al

iz
ed

IO

CDA

Pure Affinity

HCHA

Fig. 14.Normalized IO for case (ii) of skewed distribution of instance
variable accesses

5.4.2 Comparisons

The results of all the three algorithms are now summarized
and compared as follows:

Computation cost required by the algorithms: as CDA uses
an exhaustive enumeration strategy, the computation cost is
very high for a large number of instance variables. For the
pure affinity-based approach, the graph-based algorithm is
very efficient and the computation cost of the algorithm is
low. The computation cost for the HCHA is always between
the CDA and the pure affinity-based approach; in addition, the
performance is dependent upon the instance variable access
patterns: if the initial guess from the pure affinity-based ap-
proach is already close to optimal, then the extra computation
cost to obtain the optimal scheme will be very low.

IO cost gain: the performance metric is the Normalized IO,
which is defined as the cost ratio between vertical partitioned
class and unpartitioned class. In the case of even distribu-
tion of instance variable accesses, Fig. 13 illustrates that the
Normalized IO (in the Total column) of the HCHA approach
has the same performance as that of the CDA approach,
which is 1.0 − 0.47 = 53% better than the unpartitioned
case. On the other hand, the pure affinity-based approach is
1.0 − 0.58 = 42% better than the unpartitioned case. There-
fore, in the case of even distribution of instance variable ac-
cesses, the CDA and HCHA approaches are the best and they
are (0.53 − 0.42)/0.53 = 21% better than the pure affinity-
based approach. For skewed distribution of instance variable
accesses, Fig. 14 shows that the Normalized IO (in the Total
column) of the HCHA approach has similar performance as
CDA, namely they are 1.0 − 0.29 = 71% better than the un-
partitioned case (which is a quite substantial gain); the pure
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affinity-based approach is 1.0 − 0.33 = 67% better than the
unpartitioned case. Therefore, in the case of skewed instance
variable accesses, the CDA and HCHA approaches are still
the best, even though they are only (0.71 − 0.67)/0.71 = 6%
better than the pure affinity-based approach in this skewed
case. We note that as the instance variable accesses become
more skewed, the differences in the ability to identify the opti-
mal partitioning scheme for the different approaches become
smaller.

Comparing the pros and cons of the three algorithms:

(1) Cost-driven algorithm:

(a) this has the advantage of obtaining the optimal partitioning
scheme;

(b) it has a high computation cost if the number of instance
variables is large;

(c) it is most suitable for a production OODB system.

(2) Pure affinity-based algorithm:

(a) it has the advantage of low computation cost even with a
large number of instance variables;

(b) it has the disadvantage that it only considers very limited
(transaction) characteristics, and does not take into consid-
eration other important database characteristics such as the
size of instance variables. For example, when we change
the size of the instance variable name in the PROJECT
class from 40 bytes to 10 bytes, the cost-driven approach
would respond to the change and produce a new opti-
mal partitioning scheme. However, as the affinity-based
approach does not consider the sizes of the instance vari-
ables, it does not adapt to the change and would retain the
old partitioning scheme;

(c) it is more suitable for determining an initial vertical class
partitioning scheme.

(3) HCHA:

(a) it has a comparable predicting power as CDA;
(b) it uses the cost-based formulae to compare for optimality,

thus can respond to database characteristic changes (such
as the change in instance variable sizes);

(c) it avoids the exhaustive enumeration of all the possible
partitioning schemes, hence the computation cost is more
acceptable for a large number of instance variables;

(d) as with other hill-climbing algorithms, there is a chance
of not finding the globally optimal solution;

(e) it is most suitable both for determining an initial verti-
cal class partitioning scheme and for a production OODB
system.

6 Empirical validation of cost model and discussions

The cost model we have developed (see Tables 3 and 4) has
two distinct parts: one for the unpartitioned case and the other
part for the vertically partitioned case. As our unpartitioned
cost model stems from [11] in which the cost model for query
execution for unpartitioned case has been validated, we con-
centrate on validating the cost model in the vertical partitioned
scenario. In this section, we first report the evaluation on the

utility of vertical partitioning by reporting the performance
gain obtained from vertically partitioning a single class; we
then validate our cost model by using a more general (com-
plex) schema. We confirm that the experimental number of
disk IO required for method execution is bounded by the the-
oretical SMH (upper bound) and LMH (lower bound) calcu-
lations. The experimentation is done on NeoAccess System –
an OODB tool kit [23]. When validating the cost model, we
use the Unix time utility to count the actual number of phys-
ical disk accesses in order to eliminate the effect of memory
contention.

6.1 Experiment one: validating the utility of vertical
partitioning in a single class

The aim of this experiment is to testify that vertical partition-
ing can indeed yield performance gain. We have implemented
vertical partitioning of a single class on NeoAccess, which al-
lowed us to study the effect of object size on the performance
gain flexibly.

The implementation has the following schema:
Class Emp {
Properties:

DeptInfo Dept;
EmpId char[8*P];
EName char[50*P];
Skill char[200*P];
EAddress char[254*P-10];

Methods:
DeptInfo() Dept;
EmpId() char[8*P];
EName() char[50*P];
Skill() char[200*P];
EAddress() char[254*P-10];

}

In the NeoAccess System, each object has a unique object
identifier (OID) of 6 bytes in length, and each reference pointer
to another object instance (e.g., DeptInfo) uses 4 bytes. The
parameter “P ” in the above schema is a multiplication factor
so that we can vary the size of the object (e.g., if we setP = 2,
then the size of Emp object will be 1,024 bytes = 1 kB.)

Vertical partitioning scheme

We vertically partitioned the class Emp into four fragments:
fragment 1-(DeptInfo), fragment 2-(EmpId, EName), frag-
ment 3- (Skill), and fragment 4-(EAddress). These four frag-
ments thus serve as ”component objects” of a composite ob-
ject. The composite object contains its own OID and the four
object references to these fragments. The cardinality of the
class Emp is 1,000 and the page size is 8 kB.

In table on top of the next page, the notation of “ME”
on a method row means that the method uses an elementary
instance variable access method (EIVAM) for method exe-
cution; the notation of “RL” means method uses that EIVAM
for building up of the result; “frequency” is the relative con-
ditional method execution frequency and “selectivity” is the
selectivity of method mi. Figure 15 shows the MDG for the
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Method execution environment

The method execution environment is as follows:

Method DeptInfo() EmpId() EName() Skill() EAddress() Frequency Selectivity
m1  ME ME,RL ME,RL  100 0.05 
m2  ME,RL ME,RL ME  10 0.5 
m3  ME,RL ME   50 0.1 

Emp::m3( )

m( )

Emp::m1( ) Emp::m2( )

f1=100

f2=10
f3=50

Fig. 15. MDG of method execution environment for validat-
ing the utility of vertical partitioning in a single class
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Fig. 16. The plot of NIO vs object size to see the effect on
performance gain variation by object size in single class

method execution environment under discussion. The cost of
method execution is given by:

Cost(m)

= IOCost(m) +
f1

f1 + f2 + f3
Cost(m1)

+
f2

f1 + f2 + f3
Cost(m2) +

f3
f1 + f2 + f3

Cost(m3)

Two result plots from this experiment are enclosed here
(see Figs. 16 and 17), one with larger range in the object size
in order to show the general trend, and the other plot with
smaller range in the object size (close to the page size of the
system) so as to observe the performance gain more closely.
The improvement of performance is characterized by the Nor-
malized IO metric:

Normalized IO

=
Number of disk IOs for vertical partitioned class(es) case

Number of disk IOs for unpartitioned class(es) case

If the value of Normalized IO (NIO)is less than 1.0, it
implies vertical partitioning is beneficial.

Observations

Figure 16 shows the plot of NIO vs object size. The plot natu-
rally breaks into two different regions, with the break point at
object size around 8 kB. We observe that when the object size
is less than 8 kB, the NIOs are close to, but still above, 1.0,

meaning that the performance of the vertical partitioned case
is only comparable to that of the unpartitioned case and that
the vertical partitioned case requires a few more disk IOs than
the unpartitioned case due to extra overhead. However, for the
region with object sizes ranging from 16 kB to 64 kB, the NIO
decreases from 0.66 to 0.31. For the 64 kB case, the saving in
disk IO is 1.0−0.31 = 69% which is quite substantial. When
the object size increases from 16 kB, the NIO decreases; when
the object size further increases, the NIO decreases (but at a
slower rate and tends to flatten for very large object size).

In order to find the critical object size that has better per-
formance than unpartitioned case, we plot in Fig. 17 with more
data points close to the 8 kB region. Concluding from the fig-
ure, when the object size is 9 kB or larger, the vertical parti-
tioned case performs better than their unpartitioned counter-
part. Knowing that the page size of our experiment is 8 kB,
the observation is that the page size plus a fixed amount is the
critical size which makes vertical partitioning more effective.
This is because, when implementing vertical partitioning, we
have an extra operating system overhead for maintaining quite
a number of very small composite objects that store the ref-
erence pointers to different vertical fragments. When the size
of the unpartitioned object is larger than the critical size, it
becomes more beneficial, as expected.

6.2 Experiment two: validation of cost model

Our cost model has important assumptions concerning the
availability of free memory buffers for objects. For the LMH
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Plot of Normalized IO vs. Object size
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Fig. 17. The plot of NIO vs object size to observe the break
point for performance gain

Class Emp { 
Properties: 
    DeptInfo  Dept; 
    EmpId  char[8]; 
    EName  char[50]; 
    Skill  char[200]; 
    EAddress char[100]; 
Methods: 
    DeptInfo() Dept; 
    EmpId()  char[8]; 
    EName()  char[50]; 
    Skill()  char[200]; 
    EAddress() char[100]; 
} 

Class Dept { 
Properties: 
    ProjInfo  setof Proj; 
    DeptId  char[8]; 
    DName  char[50]; 
    DeptType char[10]; 
    DAddress char[100]; 
Methods: 
    ProjInfo() setof Proj; 
    DeptId()  char[8]; 
    DName()  char[50]; 
    DeptType() char[10]; 
    DAddress() char[100]; 
} 

Class Proj { 
Properties: 
    ProjType  char[8]; 
    PId  char[8]; 
    PName  char[50]; 
    Priority  char[2]; 
    Location  char[100]; 
Methods: 
    ProjType() char[8]; 
    PId()  char[8]; 
    PName()  char[50]; 
    Priority()  char[2]; 
    Location() char[100]; 
} 

Emp

Dept

Project

DeptInfo

ProjInfo

Fig. 18. Example schema for experiment two

case, we have very large memory page buffers for the objects
so that no object needs to be retrieved twice. This corresponds
to an ideal case for the cost model, i.e., the disk IO predicted
by LMH will be the lower bound to the actual vertical parti-
tioned implementation. For the SMH case, we have the other
extreme that we only have one memory page buffer for every
class/class fragment. This means when traversing the class
composition hierarchy to evaluate the predicate, the same ob-
ject may be required to be loaded in multiple times, causing
a high increase in the number of disk IOs required. This cor-
responds to the worst-case scenario for the cost model, i.e.,
the disk IO cost predicted by SMH will be the upper bound to
the actual vertical partitioned implementation. In this second
experiment, our aim is to demonstrate that the actual imple-
mentation disk IO costs are bounded by the SMH and LMH
theoretical calculations of our cost model, thereby confirming
that our cost model is very general and can support quite a
number of database characteristics.

Implementation setup

We start with an elementary method execution environment
which has only MDG paths. As hidden and parameter paths

have a similar cost formula as the MDG paths, once the va-
lidity of an MDG path is confirmed, so are the validities of
the cost model for hidden and parameter paths. Because the
subclass hierarchy is modeled by our cost model as a sum of
cost factors over all the subclasses, we thus concentrate here
on the class composition hierarchy. The schema for this ex-
periment is shown in Fig. 18, with the detailed descriptions
of each class given below. Similar to experiment one, we also
have a P factor. For example, a P factor of 10 means that
all the sizes of value-based instance variables are scaled up
by 10. However, the sizes of object-based instance variables
(OBIVs) are not scaled up since OBIVs are pointer references
and their sizes are fixed.

In this experiment, we use the following vertical partition-
ing schemes which are obtained from our previous theoreti-
cal calculation [8] upon the same database schema, method
characteristics, and frequencies: (1) Class Emp has four frag-
ments: fragment 1-(DeptInfo), fragment 2-(EmpId, EName),
fragment 3-(Skill), and fragment 4-(EAddress); (2) ClassDept
has three fragments: fragment 1- (ProjInfo, DeptId), fragment
2-(DName, DeptType), and fragment 3-(DAddress); and (3)
Class Proj also has three fragments: fragment 1-(ProjType,
PId), fragment 2-(PName), and fragment 3-(Priority, Loca-
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Plot of Disk IO vs. P factor
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Fig. 19. Plot of disk IO vs object size for unpartitioned case

tion). The cardinalities for the classes are as follows: Emp is
1,000, Dept is 200 and Proj is 1,000.

Results and observations

Due to the space limits, we only present results on the Emp
class here; the results of the other two classes follow the same
trend. Figure 19 shows the plot of disk IO vs the object size (for
the unpartitioned Emp class). The figure shows three curves:
“Theory SMH UP” – the theoretical calculation result from the
SMH cost model in the unpartitioned case, “Expt UP” – the
actual experimental result from the NeoAccess System in the
unpartitioned case, and “Theory LMH UP” – the theoretical
calculation result from the LMH cost model in the unparti-
tioned case. We observe that the experimental result curve is
actually bounded by the SMH (as upper bound) and LMH (as
the lower bound) curves. This verifies that our cost model is
sound and realistic. Furthermore, as the object size increases,
the “Expt UP” curve approaches the “Theory LMH UP” curve,
which means for large objects (of the range sizes in our ex-
periment), the LMH cost formula is a good approximation to
the experimental results. We observe that the Emp class ob-
ject size ranges from 3.6 kB to 28.8 kB, the SMH buffer size
is just the size of one object and the LMH buffer size is the
total size for all (1,000) Emp class objects. The LMH buffer
size is more comparable to the main memory size (16 MB),
and hence LMH is a more reasonable approximation to the
experimental results. The SMH buffer size is too small when
compared with the main memory size, and hence represents a
too pessimistic or too high estimation of the actual number of
disk IOs. That is, as the size of the object increases, the dis-
parity between the amount of main memory required to store
the objects and the amount of main memory allocated for the
objects by the NeoAccess system reduces. Hence, for large
objects, LMH is a valid assumption.

Plot of Disk IO vs. P factor
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Fig. 20. Plot of disk IO vs object size for vertically partitioned case

Figure 20 shows a similar plot of disk IO vs the object size
(for the unpartitioned Emp class) in the vertically partitioned
case. Again, the legend “Theory SMH VP” – denotes theo-
retical calculation results from the SMH cost model in the
vertical partitioned case, and the other legends have similar
meanings to those of Fig. 19. In Fig. 20, we also observe that
the experimental curve is bounded by the SMH upper bound
and LMH lower bound, which confirms that our cost model
for vertical partitioned case is also sound and realistic. Similar
to the unpartitioned case, for large object (of the range of ob-
ject sizes in our experiment) the LMH cost formula is a good
approximation to the experimental results.

6.3 Summary of experimental results

The conclusions from these two experiments are summarized
as follows: (1) vertical partitioning can effectively reduce disk
accesses for method execution; (2) theoretical calculations
based on our cost model of SMH and LMH are realistic bounds
for actual disk IO costs for method executions; (3) vertical
partitioning favors large-sized object; and (4) for large objects
(of the range sizes in our experiment), LMH cost formulae are
good approximation to the estimation of the actual method
execution costs.

6.4 Discussion

• The aim of vertical class partitioning (VCP) is to reduce
the amount of irrelevant data accessed by an application
[17,18,19]. This is especially useful for the next generation
database applications, such as document management,
multimedia, and hypermedia systems, in which many of
the instance variables tend to be very large objects that
should not be accessed if they are not actually needed by
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the applications. Although in this paper we illustrate VCP
using a centralized OODB environment, by extending the
cost model and algorithm, it is also applicable to a dis-
tributed OODB environment.

• Although we illustrate the VCP in OODBs, it is equally ap-
plicable for object-relational databases, as both OODBs
and object-relational databases share the same object-
oriented technology.

• The analytical results (see Sect. 5.4) show that VCP algo-
rithms require judicious incorporation based on the data-
base system parameters, database characteristics, and ap-
plication characteristics. Thus, if these characteristics can-
not be accurately determined, then the applicability of
the proposed techniques is diminished. However, on the
whole, the cost model provides general guidelines to com-
pare the utility of these algorithms to different database and
application characteristics.

• Given the parameter values of a database application, with
the help of the cost model, we can use the HCHA to set
up the initial VCP scheme. When the database and/or the
query processing environment change, there may be a need
to evolve the VCP scheme and to reorganize the vertical
class fragments. Our viewpoint is that, as we are using
a cost-based approach, we are in a better position than
an affinity-based approach. We can use the cost model
to estimate the costs of reorganizing towards a new VCP
scheme, or to estimate the extra processing cost if we con-
tinue to use the current VCP scheme. As the affinity-based
approach does not guarantee generating the cost-optimal
VCP scheme, it and hence will not be too useful in predict-
ing the cost for reorganization or the extra processing cost
if we continue using the current VCP scheme. From the
above discussion, we conclude that VCP is more suitable
to be applied to a production type OODB system8 with
a rather static database and query processing characteris-
tics. For an evolving type of OODB system9 with a highly
dynamic database and query processing characteristics,
VCP can still be applied, but we need extra processing
to monitor the need for reorganizing and to perform the
reorganization of the existing VCP scheme.

• Support for VCP in current commercial OODBs is still in
its infancy. However, with the results showing the utility
of VCP [8,10,9], it is promising that VCP can be well
supported by OODB systems in the near future. Even if this
is not the case, for specific applications, VCP can be hard-
coded to provide efficient execution of the applications.

As a cost model for query processing is an important com-
ponent in the optimizer of an Object-Oriented Databases Man-
agement System (OODBMS), and we are using a cost-based
approach in the HCHA, we are in a better position to incor-
porate the HCHA into query processing in an OODBMS than
the affinity-based approach.

8 A production type of OODB system is a system with predefined
query processing requirements. Such a system is usually used in daily
operations of an organization.

9 An evolving type of OODB system is a system with evolv-
ing/dynamic query processing requirements. Such a system is usually
used in handling ad hoc requests in the organization.

7 Conclusions

Vertical partitioning in object-oriented databases (OODBs) is a
challenging but very effective and relevant problem. Although
a similar problem has been addressed in relational database
systems, the complexity of OODB models involving subclass
hierarchy and class composition hierarchy complicates the
problem and thus requires new approaches to be developed.
Due to the encapsulation property of OODBs, methods gov-
ern the nature of optimal (or near optimal) vertical partitioning
schemes. In our earlier work [8,10,9], we have already shown
the utility and effectiveness of vertical partitioning in OODB
systems. In this paper, we further took into consideration the
methods being invoked during OODB processing to generate
an optimal/near-optimal vertical partitioning scheme. Specif-
ically, we have developed, based on MDGs (method depen-
dency graphs), a general-purpose cost model for method ex-
ecution, and applied this model to yield vertical partitioning
algorithms. Two algorithms have been developed to exploit
method execution for deriving optimal/near-optimal vertical
partitioning schemes. The first algorithm is the cost-driven al-
gorithm which uses the cost model for method execution to
exhaustively search all the partitioning schemes, so as to find
the optimal vertical partitioning scheme. This algorithm is use-
ful for comparing the effectiveness of the other algorithms, but
may not be practical since it has a high cost of O(nn) where
n is the number of instance variables. The second algorithm,
HCHA, applies an affinity-based algorithm [24] to obtain an
initial partitioning scheme, then applies hill-climbing heuris-
tics to improve this solution by using the cost model for method
execution. It is shown that the HCHA (which is significantly
more efficient than the cost-based approach) generates an op-
timal or near optimal scheme. The HCHA approach thus rep-
resents a good compromise, and it can generate a solution that
is at least as good as the solution provided by the affinity-based
approach; in most cases, it will yield the optimal partitioning
scheme.

With the help of method transformation, our method-
induced VCP technique can easily support fragmentation
transparency [18, 19]. This fragmentation transparency sup-
port places our method-induced VCP technique in a better
position to be incorporated into an OODBMS than the affinity-
based approach. On the other hand, in order to obtain an effec-
tive VCP scheme using our method-induced VCP technique,
we need to obtain high-quality estimations of a number of
method execution parameters. This can be an obstacle if the
underlying OODBMS does not provide adequate estimations
on the various method execution parameters.

Further research issues concerning this work include the
application of ourVCP technique to the problem of query opti-
mization, and to the development of data-intensive multimedia
applications involving large objects.
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in Object Oriented Databases”, Department of Computer Science,
Hong Kong University of Science & Technology, Dec 1996.
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Appendix A – [24] Graph-based algorithm

Step 1: Construct the affinity graph of
the attributes in the classes

Step 2: Start from any node
Step 3: Select an edge which satisfies

the following conditions: it
should be linearly connected to
the tree already constructed and
it should have the largest value
among the possible choices of
edges at each end of the tree
/* this iteration will end when
all nodes are used for tree
construction */

Step 4: When the next selected edge
forms a primitive cycle:
If a cycle node does not exist,
check for the possibility of a
cycle and if the possibility
exists, mark the cycle as an
affinity cycle. Consider this
cycle as a candidate partition.
Goto Step 3 If a cycle node
exists already, discard this
edge and goto Step 3
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Step 5: When the next selected edge does
not form a cycle and a candidate
partition exists:
If no former edge exists, check
for the possibility of extension
of the cycle by this new edge.
If there is no possibility, cut
this edge and consider the cycle
as a partition. Goto Step 3 If a
former edge exists, change the
cycle node and check for the
possibility of extension of the
cycle by the former edge. If
there is no possibility, cut the
former edge and consider the
cycle as a partition. Goto Step
3

[24] graph-based algorithm


