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1. Introduction

“Is object relations theory simply a new name for what classical theorists have been doing all along, or
is it a fundamentally new system, or an excursion into new realms wholly compatible with classical
theory?” From the cover of Object Relations in Psychoanalytic Theory, J. R. Greenberg, S. A.
Mitchell, Harvard Press 1983.

The notion of object and object-oriented features have seriously modified the
database field over the past ten years. This happened in a variety of ways. First,
object extensions have been introduced in the main relational systems, for
example, in Oracle. Also, in a clear departure from the relational model,
object-oriented database systems [Bancilhon 1988] that integrate the relational
and object technology have been commercialized, for example, O2 or Object-
Store. Somewhere in between, some constructors proposed the so-called object-
relational systems that provide richer modeling facilities than traditional rela-
tional systems.

The integration of objects in databases in these various contexts has been the
focus of a great deal of experimentation and research since the late eighties.1

These developments in databases are largely based on concepts and software
tools from object-oriented programming [Goldberg and Robson 1983; Bancilhon
1988; Kim 1988]. More generally, the integration of programming languages and
database systems is an important research activity.

Unfortunately, the understanding of the “principles of object-oriented data-
bases” is still rather limited. This is in marked contrast with the relational model
[Codd 1979] that is now equipped with an elegant and relevant theory [Abiteboul
et al. 1995; Ullman 1988; Kanellakis 1998].

This paper together with papers such as Beeri [1990], Denninghoff and Vianu
[1991], or Breazu-Tannen et al. [1992] participate in clarifying some of the
foundations of object-oriented databases. Our contribution is to demonstrate
that the concept of object identity (oid) is a powerful programming primitive for
database query languages by: having oids as the centerpiece of a data model with a
rich type system, inheritance and a powerful query language, called Identity Query
Language (IQL).

A major motivation for our work was the study of the formal aspects of the O2
system [Bancilhon et al. 1988]. The standard data model for object-oriented data
model as defined by the Object Data Management Group [Cattell 1994] was
strongly influenced by the O2 system. As a consequence, our model bears a lot of
resemblance with the ODMG data model. The ODMG model does not have
union types. We believe that union type is essential and we use it here. On the
other hand, we consider here a single kind of collections, set collections, whereas
the ODMG also handles list, bags, and arrays. The extension of the theory
presented here to these other kinds of collections is nontrivial.

Oids have been part of many data models; for example, they are called
surrogates in Codd [1979], l-values in Kuper and Vardi [1993], or object identifiers
in Abiteboul and Hull [1987]. They have been highlighted as an essential part of
object-oriented database systems [Khoshafian and Copeland 1986]. A variety of
reasons have been given for their use, for example, structure sharing, updates

1 See, for example, Atkinson and Buneman [1987], Maier et al. [1985], Zdonik [1985], Banerjee et al.
[1987], Fishman et al. [1987], Carey et al. [1988], and Bancilhon et al. [1988].
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[Abiteboul and Hull 1987], or the encoding of cyclicity [Kuper and Vardi 1993].
We use oids for the traditional encoding of directed (perhaps cyclic) graphs, but
also for the manipulation of sets and for making our query language fully
expressive. At an intuitive level, oids are “typed pointers” and IQL is based on a
controlled use of indirection.

The structural part of the object-based model described here is a synthesis of
elements that existed in the literature. It generalizes the relational data model
[Codd 1970], most complex-object data models2, and the logical data model
(LDM) [Kuper and Vardi 1993; Kuper 1985]. It can be viewed as the common
upper bound of the models used in Kuper and Vardi [1993] and Abiteboul and
Beeri [1988]. The pleasant surprise is that little mathematical simplicity had to be
traded-off in order to achieve this synthesis. The actual definitions are not much
longer than those for the relational model.

The operational part of the data model, the language IQL, is also surprisingly
simple both in syntax and semantics. It has three basic properties: (1) it is rule
based, (2) it can be type checked, and (3) it is complete, in the sense that it
expresses exactly all database transformations with certain desirable properties.
Let us comment on these three points: (1) highlights the declarative nature and
mathematical clarity of the programming paradigm used, (2) illustrates what is
controlled about the use of pointers, and (3) involves generalizing the basic
theorem of Chandra and Harel [1980] from the relational model to a data model
with first-order and recursive types.

As in the relational model, there is a clear separation of the notions of
instance and schema. As a consequence, the typing of IQL is similar with that of
query languages in Kuper and Vardi [1993], Abiteboul and Beeri [1988], and
Abiteboul and Grumbach [1988] and corresponds to strong typing in program-
ming languages. A number of recent language proposals in this area do not have
these properties. In many cases, there is no instance-schema separation, and in
some the query languages can be viewed as untyped extensions of Prolog.3

We give brief overviews (by example) of the structural and operational parts of
our data model. The detailed definitions are in Sections 2 and 3, respectively.

Structural Part. An instance consists of “data” in the form of: (1) a finite set
of o-values; that is, values containing oids, and (2) a partial function n of oids to
o-values, this mapping is the essence of the data model. Oids and constants are
o-values, but so are finite trees built out of constants and oids via finite tuple or
set constructors. We allow n to be partial; this is in order to model incomplete
information and will be very useful in the operational part of the model. Note
that repeated applications of n on oids yield pure values that are regular infinite
trees.

A schema contains the information on the structure of the data allowed in an
instance. In current terminology, it contains the names and types of “persistent
data.” We have chosen to include two forms of information: (1) relation names R
for naming relations, finite sets of o-values of the same type T(R), and (2) class
names P for naming classes, finite sets of oids, where these oids are mapped

2 See, for example, Abiteboul and Beeri [1988], Thomas and Fischer [1986], Jaeschke and Schek
[1982], Korth et al. [1985], Schek and Scholl [1986], and Verso [1986].
3 See, for example, Bancilhon and Khoshafian [1986], Maier [1986], Kifer and Wu [1989], and Kifer
and Lausen [1989].
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through n to o-values of the same type T(P). An important assumption is that
the classes of any legal instance are pairwise disjoint sets of oids.

The type language and interpretation is presented in a somewhat nonstandard
fashion for the recursive case (i.e., without a m constructor). The subtle point is
that the recursion is captured by having the types T(R) and T(P) refer to base
domains or class names.

The dichotomy between relations and classes is the only design decision that
slightly complicates the structural part. Its justification is that it greatly simplifies
the operational part. Since relations are sets of o-values, duplicates are elimi-
nated from them at a logical level. Thus, it is possible to program directly in
popular rule-based formalisms, for example, Datalog. Relations can name sub-
sets of classes and function as useful temporaries. Also, this distinction allows a
direct generalization of both Kuper and Vardi [1993] and Abiteboul and Beeri
[1988].

Example 1.1 (From Genesis 4 and 5.) Schema S has class names 1st-genera-
tion, 2nd-generation and relation names founded-lineage, ancestor-of-celebrity.
Their types are defined as follows:

T(1st-generation) 5 [name: string, spouse: 1st-generation, children: {2nd-gener-
ation}]

T(2nd-generation) 5 [name: string, occupations: {string}]

T(founded-lineage) 5 2nd-generation

T(ancestor-of-celebrity) 5 [anc: 2nd-generation, desc: (string ~ [spouse: string])]

Note that the types refer to base domain, for string, and to class names,
1st-generation, but not to relation names. Also, note the cyclicity in the type
associated with 1st-generation and the presence of union types.

Now let us come to an instance I of S. To each relation name R, the instance
associates a finite set r(R) of o-values of the right type. So, strictly speaking, the
type of r(R) is {T(R)}. To each class name P, the instance associates a finite set
p(P) of oids. Classes are assigned disjoint sets of oids. The partial function n
assigns o-values to the oids of the instance. Each one of these oids has a value of
the right type or is undefined. So, again strictly speaking, the type of p(P) is {P}
and the type of each n(o) for o in p(P) is in T(P).

In instance I, we denote the oids as adam, eve, cain, abel, seth, other. (The
object other denotes some other child of adam and eve of whom nothing is
known. This can indeed be viewed as a place holder for possibly several such
persons.) Note that adam is distinct from string Adam. I is cyclic; see this by
following the n mapping of the oids.

p(1st-generation) 5 {adam, eve},

p(2nd-generation) 5 {cain, abel, seth, other},

r(founded-lineage) 5 {cain, seth, other},

r(ancestor-of-celebrity) 5 {[anc: seth, desc: Noah], [anc: cain, desc: [spouse:
Ada]]},

n(adam) 5 [name: Adam, spouse: eve, children: {cain, abel, seth, other}],
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n(eve) 5 [name: Eve, spouse: adam, children: {cain, abel, seth, other}]

n(cain) 5 [name: Cain, occupations: {Farmer, Nomad, Artisan}],

n(abel) 5 [name: Abel, occupations: {Shepherd}],

n(seth) 5 [name: Seth, occupations: { }]

n(other) is undefined. (Genesis is rather vague on this point). e

Operational Part. The design of IQL was greatly influenced by both the COL
language of Abiteboul and Grumbach [1988], for the manipulation of sets, and
the detDL language of Abiteboul and Vianu [1988], for the invention of new
oids. The focus was on adding the minimum to Datalog rules in order to obtain
an object-based language that can express all computable queries.

In summary, IQL is inflationary Datalog with negation [Abiteboul and Vianu
1988; Kolaitis and Papadimitriou 1988] combined with set/tuple types, invention
of new oids, and a weak form of assignment. Inflationary semantics has been
chosen because of its simplicity and its generality as a control flow mechanism.
We feel that to get the same expressive power similar kinds of extensions would
have to be considered, if an algebraic language or a language based on any other
paradigm were chosen instead of rules.

The flexibility of a type system, such as the one used here, allows multiple
representations of the same information. For example, a directed graph may be
represented as a binary relation whose tuples are the arcs of the graph or as a
class whose type is recursive. In the second representation, each node has an oid,
a name, and a set of descendant nodes. IQL allows converting the first
representation into the second and vice-versa. Thus, it is possible to go from
acyclic to cyclic schemas. The following example illustrates most of the features of
IQL on this very transformation.

Example 1.2. Let the input schema be just a relation R with T(R) 5 [A1: D,
A2: D] and the output schema be a class P with T(P) 5 [A1: D, A2: {P}]. The
input instance I represents a directed graph G with nodes in D. The desired
query is to transform the input instance I into an output instance J representing
the same graph. Note that in this new representation, every node is associated
with an oid, whose value is the pair with the node name for first component, and
the set of successors for second component. Note also that the individual oids
used in the output do not matter; only their interrelationships do. Let us examine
the computation in IQL in four stages:

During the first stage, we produce (in standard Datalog fashion) the set of
node names. We use a relation R0 with T(R0) 5 [A1: D]. As a shorthand, we do
not list the attributes A1, A2, A3, . . . in the rules, but think of them as first
argument of relation, second argument of relation etc. The following rules are
used:

R0~ x! 4 R~ x, y!

R0~ x! 4 R~ y, x! .

In the second stage, we produce two oids per node using a semantics in the
style of detDL [Abiteboul and Vianu 1988]. We use a relation R9 with T(R9) 5
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[A1: D, A2: P, A3: P9] whose tuples contain oids from class P and from another
class P9. Class P9 is a class with T(P9) 5 {P}; that is, it’s oids have values that
are sets of oids from P. The following rule invents two oids for each node, one of
which will go into class P and the other into class P9

R9~ x, p, p9! 4 Ro~ x! .

Note how the variables p, p9 in the head are not in the body. When the new
oids are invented they are placed in the proper classes and they are automatically
assigned default values: p is undefined and p9 is the empty set (because of the set
valued type of P9).

Note that this is essentially equivalent to using Skolem functors in oids
denotation as introduced by Maier [1986], and refined for instance in Hull and
Yoshikawa [1991], Kifer and Lausen [1989], and Kifer et al. [1993]. In a Skolem
based approach, one would instead use a rule such as:

R9~ x, f~ x! , f9~ x!! 4 Ro~ x! ,

where f( x), f9( x) would denote the two new oids. In practice, the use of Skolem
functors sometimes facilitate programming. From a theoretical viewpoint, they
can be easily simulated and their use would unnecessarily force us to migrate
from atomic oids to more complex (constructed) oids.

In the third stage, we nest the oids representing nodes in P into sets of
successors of a node. This nesting of elements q is done by using the oids p9 of
P9 as temporary names. Each p9 is set valued and its value, noted p̂9, is a set in
which the corresponding qs are collected. This dereferencing and assignment to
objects in P9 simulates the effect of a COL data-function [Abiteboul and
Grumbach 1988] or a grouping in LDL [Beeri et al. 1987].

p 9̂~q! 4 R9~ x, p, p9! , R9~ y, q , q9! , R~ x, y! .

In the final stage, the nodes of P have been grouped into P9, and the
connection in R9 between x, p, p9 is used to produce the desired result. Note
that the value of some node p is a tuple with the name of the node as first
component, and a set of P-oids as a second component. This weak form of
assignment is performed only when p̂ was undefined (see Abiteboul and Hull
[1988]). No further changes are made to p̂.

p̂ 5 @ x, p 9̂# 4 R9~ x, p, p9! .

We have presented the program in four separate stages. We need not separate
the stages. It is possible through standard techniques (using negation) to slightly
modify the rules above and think of them as operating in parallel with inflation-
ary semantics. A useful construct, definable in IQL, is that of sequential
composition (;). In fact, only the last rule needs to be modified by separating it
with a (;) from the rest of the rules. e

An important primitive in the language is the invention of oids. This serves a
triple goal: (1) objects may be part of the result and oids must be assigned to
them, (2) invented oids are used for set manipulation, (3) they are also used to
obtain completeness in the sense of Chandra and Harel [1980]. The reason we
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use (1) is to code sharing of structures and cyclic structures. Regarding (2), the
rule-based language does not need to have any mechanism such as grouping in
LDL [Beeri et al. 1987], data-functions in COL [Abiteboul and Grumbach 1988],
or universal quantification [Kuper 1987]. Thus, one of our contributions is to
show that the manipulation and creation of sets can be realized only using invented
oids.

We examine (3) in detail in Section 4. The notion of completeness of [Chandra
and Harel 1980] is adapted to our context. Intuitively, the language must capture
all transformations that are recursively enumerable and that preserve some
isomorphism properties [Chandra and Harel 1980; Hull 1986]. Completeness
results have been shown for the relational [Chandra and Harel 1980; Abiteboul
and Vianu 1987/1998; 1988/1998] and for many complex-object data models
[Dahlaus and Makowski 1986; Abiteboul et al. 1987; Hull and Su 1989].

Our notion of completeness is more general than the notion used in Chandra
and Harel [1980] and Abiteboul and Vianu [1988/1998]. However, on relational
schemas, the two notions coincide. The originality of our extension comes from
the presence of oids: two instances are viewed as identical if they are isomorphic
up to renaming of oids. A basic contribution is a completeness result for IQL.
For disjoint input– output schemas, we show that all database transformations are
expressible in IQL, up to copy elimination. In many cases, we can express copy
elimination in IQL. But we show that this technical restriction is necessary. We
have to add a choice construct to reach completeness for disjoint input-output
schemas. To obtain completeness for nondisjoint schemas, we also need to add
noninflationary features to IQL. These are based on the study of deletions in
Abiteboul and Vianu [1988/1998].

In Section 5, we specialize IQL using a number of syntactic restrictions. This
specialization allows us to discover as IQL sublanguages most of the popular
rule-based formalisms. We also show that these restrictions can be used to
guarantee efficient query evaluation, that is, with PTIME data-complexity. In
Abiteboul et al. [1989], similar restrictions are used in the context of the COL
language to obtain queries that are evaluated in PTIME.

In summary, IQL is both a mathematical model of computation with types and
(particularly in its range restricted form IQLrr) a useful high level query
language. Like Prolog, it can be used to manipulate unbounded structured terms,
but unlike Prolog it is typed, it has negation, it is a good candidate for
conventional database optimizations, and its semantics is not complicated by
depth-first search strategies.

The subsequent sections of our paper deal with two issues which, we believe,
are orthogonal to the structural and the operational parts of our object-based
model. The first is type inheritance (Section 6), and the second is the relationship
of object-based with value-based (Section 7).

Type Inheritance. In all the development of IQL, we make crucial use of a
technical condition, the pairwise disjointness of the various classes of an instance.
This condition guarantees the soundness and the typability of IQL programs.
However, the removal of this condition is necessary if one is to study type
inheritance as proposed in Cardelli [1988]. With inheritance, the disjointness
condition on the classes is replaced by a less restricted condition that, we argue,
is natural. We show that, under this limited addition, type inheritance has simple
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semantics. The use of the union type constructor is critical in this development.
What we observe is that union types are a more general mechanism for sharing
structure than type inheritance. As a result, IQL can be used (at no cost of
expressive power) to deal with schemas with inheritance.

Value-Based vs Object-Based. Oids can be viewed as a syntactic trick to avoid
manipulating recursive objects. The same is true for the use of class names in the
type syntax. Even with these devices, recursive structures stay in the background
in a fundamental way. Object-based systems often allow features such as
equality-by-value, which is a precise way of addressing the underlying infinite
objects. We illustrate a natural connection with a value-based model founded on
regular infinite trees [Courcelle 1983]. Our analysis allows us to show that IQL
can serve as a language for this model as well. Object identities, in this context,
lose all semantic denotation to become purely primitives of the language. This is
a nontrivial link between value-based and object-based [Ullman 1988]. A value-
based point of view can be used to understand pure-values (no oids) and
equality-by-value (as a coercion mechanism for realizing inheritance).

There are aspects of object-oriented database systems that our mathematical
model cannot capture. For example, O2 emphasizes programming in a modular
fashion, by having methods attached to classes and by accessing data only through
these methods (encapsulation). (See Abiteboul et al. [1995].) Moreover, sharing
of programs is possible via method inheritance. We view these issues as largely
orthogonal to the one of: “what should be the computational capabilities of a
query language for an object-oriented database?” In a last section, Section 8, we
briefly consider how our study clarifies this latter issue.

2. An Object-Based Data Model

2.1. PRELIMINARIES. We assume the existence of the following countably
infinite and pairwise disjoint sets of atomic elements: (1) relation names {R1,
R2, . . .}, (2) class names {P1, P2, . . .}, (3) attributes {A1, A2, . . .}, (4) constants
D 5 {d1, d2, . . .}, and (5) object identities or oids O 5 {o1, o2, . . .}.
Throughout our exposition, we use the generic notation [A1: . . . , . . . , Ak: . . .]
(where k is a nonnegative integer) for a tuple formed using any k distinct
attributes A1, . . . , Ak (when k . 0) and for the empty tuple [ ] (when k 5 0).
The empty set is denoted À or { }.

Definition 2.1.1. The set of o-values is the smallest set containing D ø O and
such that, if v1, . . . , vk (k $ 0) are o-values, then so are: [A1: v1, . . . , Ak: vk]
and {v1, . . . , vk}.

Definition 2.1.2. Let R be a finite set of relation names and let P be a finite
set of class names.

An o-value assignment for R is a function r mapping each name in R to a finite
set of o-values.

An oid assignment for P is a function p mapping each name in P to a finite set
of oids, and we call p disjoint if P Þ P9 implies p(P) ù p(P9) 5 À (where P,
P9 [ P).
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Since o-values are defined using finite tupling and finite setting, it is possible
to represent them using finite trees of a special form. These trees have three kinds
of nodes: (1) nodes labeled by an element of D ø O and having no children, (2)
nodes labeled by a 3 and having a finite number k $ 0 of children, where the
arcs to these children are labeled by distinct attributes, (3) nodes labeled by a ,
and having a finite number k $ 0 of children, where the arcs to these children
are unlabeled. We also require that the children of a ,-labeled node be roots of
distinct subtrees; this guarantees the elimination of duplicates from our repre-
sentation of sets.

By finiteness, each relation r(R) (R [ R) and each class p(P) (P [ P) is
itself an o-value, representable by a finite tree with a ,-labeled root. Note that
both our o-value and oid assignments give names to sets of o-values. The
relations here resemble those of the relational data model. But classes are used
in a fundamentally different way in our subsequent definitions of types, database
schemas, and instances.

2.2 TYPES. The syntax and semantics of types are now defined using a given
finite set of class names P and an oid assignment p for P. The set of type
expressions, called type-exp(P), is given by the following abstract syntax, where t is
a type expression, P an element of P and k $ 0:

t 5 À u D u P u @A1 : t, . . . , Ak : t# u $t% u ~t ~ t! u ~t ` t! .

Given a type expression and an oid assignment, the type (in a more traditional
programming language style) can be obtained. For an oid assignment p, each
type expression t is given a set of o-values as it’s interpretation vtbp, in the
following natural fashion:

—vÀbp 5 À, vDbp 5 D, vPbp 5 p(P) (for each P [ P),
—v(t1 ~ t2)bp 5 vt1bp ø vt2bp and v(t1 ` t2)bp 5 vt1bp ù vt2bp,
—v{t}bp 5 {{v1, . . . , vj} u j $ 0, and vi [ vtbp, i 5 1, . . . , j},
—v[A1: t1, . . . , Ak: tk]bp 5 {[A1: v1, . . . , Ak: vk] u vi [ vt ibp, i 5 1, . . . , k}.

We may represent a type expression t by its parse tree, which has internal nodes
labeled by tupling (3), finite set construction (,), union (~), intersection (`).
We say that:

—t is intersection reduced if in t’s parse tree, no `-node is an ancestor of a 3, ,,
or ~-node,

—t is intersection free if t’s parse tree has no `-node.

Two type expressions t1, t2 are equivalent (over disjoint oid assignments), if for
each (disjoint) oid assignment p, they have the same interpretations.

Proposition 2.2.1. For each type expression, (1) there is an intersection
reduced, equivalent type expression and (2) there is an intersection free,
equivalent over disjoint oid assignments type expression.

Most of our analysis uses disjoint oid assignments and therefore, by this
proposition, intersection can be eliminated. The proof of the proposition is by
straightforward algebraic manipulation of parse trees and by using the semantics
of type expressions. We omit the actual tedious argument and instead illustrate it
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by some examples:

@A1 : D, A2 : $P1%# ` @A1 : D, A2 : $P2%# and @A1 : D , A2 : $~P1 ` P2!%#

are equivalent over all p, and they are equivalent over all disjoint p to [A1: D,
A2: {À}]. Also ({D} ~ P1) ` P2 is equivalent over all p to (P1 ` P2) and over
all disjoint p to À. Note the difference between the type expressions {À} and À.
[A1: À] and À are equivalent, but {À} and À are not.

2.3. DATABASE SCHEMAS AND INSTANCES. In this section, we present schemas
and instances and comment on their definitions.

Definition 2.3.1. A schema S is a triple (R, P, T), where R is a finite set of
relation names, P is a finite set of class names, and T is a function from R ø P to
type-exp(P).

A schema can be alternatively specified using a syntax of the form:

relation R1 : $t1% , . . . Rm : $tm%

class P1 : $t91% , . . . Pn : $t9n%

In our notation, R 5 {R1, . . . , Rm}, P 5 {P1, . . . , Pn}, and for each i,
T(Ri) 5 t i and T(Pi) 5 t9i.

Definition 2.3.2. An instance I of schema (R, P, T) is a triple (r, p, n), where
r is an o-value assignment for R, p is a disjoint oid assignment for P, and n is a
partial function from the set ø {p(P) u P [ P} of oids to o-values, such that:

(1) r(R) # vT(R)bp, for each R [ R,
(2) {n(o) u o [ p(P)} # vT(P)bp, for each P [ P,
(3) n is total on p(P), for each P [ P with T(P) 5 {t}.

Continuing with R1: {t1}, . . .Rm: {tm} and P1: {t91}, . . .Pn: {t9n}, let us
assume that the value of Ri, that is, r(Ri), is {t i1, . . .} and that of Pi, that is,
n(Pi) is {oi1, . . .}. Then type constraints are that each t ij is of type t i and each
n(oij) of type t9i.

More precisely, the partial function n associates o-values to the oids in the
instance (i.e., the oids occurring in the range of p). When n is defined for o, n(o)
denotes the value of o; ô is a useful alternative notation for n(o). From
Conditions (1) and (2) of Definition 2.3.2, it follows that the sets named in the
schema “contain” (for relations) and “contain pointers to” (for classes) o-values
of the appropriate type. Condition (3) is a technical one that will be justified
below. For an illustration of the definitions, see the Genesis example in the
introduction.

It is important to note that each oid occurring in I (i.e., in the ranges of r, p,
n) must belong to some p(P) (where P [ P). This easily follows from Conditions
(1) and (2) of Definition 2.3.2 and from the semantics of types.

Let I 5 (r, p, n) be an instance of a schema S 5 (R, P, T). A set valued oid
in I is an oid belonging to a class P, where T(P) 5 {t} for some t. Since an oid
can only belong to one class, this is a well-defined notion. The information
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contained in I can be represented in a “logic programming” notation as follows:

ground-facts~I! 5 $R~v! u v [ r~R! , R [ R%

ø $P~o! u o [ p~P! , P [ P%

ø $ô~v! u v [ n~o! , o set valued%

ø $ô 5 v u v 5 n~o! , o non-set valued% .

It is easy to see that ground-facts(I) is an alternative representation of I. By
Condition (3) in Definition 2.3.2, n must be total for set valued oids. Based on
this, we follow the convention that if for some set valued oid o, there is no
ground fact ô(v), then n(o) 5 { }, and if for some nonset valued oid o there is
no ground fact ô 5 v then n is undefined at o.

Finally, we use the terminology: instances(S) for the set of all instances of
schema S; objects(I) for the set of all oids occurring in I; constants(I) for the set
of all constants occurring in I. By Definitions 2.1.1 and 2.1.2, the sets ground-
facts(I), constants(I), objects(I) are finite.

The structural part of the model generalizes that of many previously intro-
duced data models:

—The relational data model is the special case of our model with types only of the
restricted form [A1: D, . . . , Ak: D], k $ 0, and schemas of the form (R, À,
T).

—Our model generalizes most complex-object4 data models, where their schemas
are of the form (R, À, T) with types more general than for the relational case.

—The logical data model (LDM) is also a special case of our model. It
corresponds to schemas of the form (À, P, T) where the types are trees of
bounded depth. (For instance, the value of an object cannot be a tuple where
one component is itself a tuple.) In Appendix B of Kuper [1985], an attempt is
made to formulate LDM in a fashion closer to our model. A problem with that
approach is the requirement of having only classes and forcing some of them
to behave like relations, through semantic restrictions. The resulting restric-
tions for duplicate elimination are quite involved. Directly expressing duplicate
elimination is one motivation for the dichotomy of R and P.

Finally, we have already commented on the relationship of this work with the O2
data model and system. We conclude with two remarks.

Remark 2.3.3. Incomplete information can be modeled using oids with unde-
fined value. So our model has some capability for expressing incomplete data,
even without complex machinery as in, e.g., Bancilhon and Khoshafian [1986].
Besides this, there is an important technical reason for having oids with
undefined values. The language IQL builds objects in stages, and oids with
undefined values are needed in the intermediate stages. So, during the construc-
tion of the value of an object, that value will often be incomplete even if

4 Unfortunately object is an overloaded word. The objects of object-oriented programming are
qualitatively different and less rigorously defined from what is commonly referred to in the database
literature as complex-objects. We reserve the term complex-object for the later case.
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eventually it does become complete. When we know nothing about a set-valued
object, we assume here that it is the empty set. This is the rationale for the
simplifying assumption we make in Condition (3) in the instance definition. Of
course, as standard with incomplete information, one could choose a more
refined model that would allow to distinguish between knowing nothing about a
set and knowing that it is empty. Since incomplete information is not the focus of
the present paper, we will ignore this here.

Remark 2.3.4. From the point of view of semantic data modeling, we provide
types and some functional constraints through the n mapping. In Section 6, we
add inheritance. More applications can be modeled by adding dependencies to
the schema (e.g., relational functional dependencies or statements like for each x
the spouse of the spouse of x is x). A first-order-logic in the style of Kuper and
Vardi [1993] and Abiteboul and Beeri [1988] and others can be used. Indeed, the
language IQL can form the basis of such a logic.

3. The Identity Query Language

We first need to define projections of schemas and instances, in order to describe
the inputs and outputs of programs. A schema S9 5 (R*, P*, T*) is the projection
of schema S 5 (R, P, T) if we have R* # R, P* # P, and T* is the mapping T on
R* ø P*. Given an instance I of S, its projection on S9, denoted I[S9], is defined
in the obvious way and is an instance of S9.

An Identity Query Language (IQL) program G(S, Sin, Sout) consists of rules
over schema S and expresses a binary relation on instances. This relation is
between instances over the input schema Sin and instances over the output schema
Sout, where Sin, Sout are two projections of S. Intuitively, the input to a program
is an instance I over Sin, the computation of the program defines an instance J
over S, and the output is J[Sout].

3.1. SYNTAX. The syntax for a program G(S, Sin, Sout) is a finite set of rules
over S 5 (R, P, T), where terms, literals and rules are defined as follows:

Terms. Assume that there are pairwise disjoint, countably infinite sets of
variables for each t in type-exp(P). The terms and their types are (k $ 0):

—each variable x of type t is a term of type t,
—each R in R is a term of type {T(R)} and each P in P is a term of type {P},
—for each P in P and variable x of type P, x̂ is a term of type T(P),
—for t1, . . . , tk terms of type t, {t1, . . . , tk} is a term of type {t},
—for t1, . . . , tk terms of types t1, . . . , tk, [A1: t1, . . . , Ak: tk] is a term of type

[A1: t1, . . . , Ak: tk].

Literals. Let t1, t2 be terms, then t1 5 t2, t1(t2) are positive literals, and t1 Þ
t2, ¬ t1(t2) are negative literals. A literal (positive or negative) is typed when:

—for literals t1(t2) or ¬ t1(t2), the term t1 is of type {t} and the term t2 of type
t,

—for literals t1 5 t2, t1 Þ t2, the terms t1 and t2 are both of type t.

A fact is any typed positive literal of the following forms:
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—R(t) for R in R, P(t) for P in P,
—x̂(t) where x̂ is of set type, or x̂ 5 t where x̂ is not of set type.

Rules. A rule r is an expression of the form L 4 L1, . . . , Lk (k $ 0), where
L is a literal called head(r) and L1, . . . , Lk is a sequence of literals called
body(r) and:

(1) head(r) is a fact and thus is typed,
(2) each literal in body(r) is either typed; or is of the form t1 5 t2 with t1 of type

t and t2 of type t ~ t9,
(3) each variable occurring in head(r) and not in body(r) has type P for some P

in P.

Remark 3.1.1. Terms, literals and rules as defined here are pretty much
standard, with some important additions. These are: (1) the typing for R, P, x̂ in
terms, (2) the relationship of the syntax of heads or facts with the ground facts of
an instance, (3) the more liberal typing of equality in the bodies that will allow
coercion with respect to the union of types, and (4) the type restriction for
variables in the heads and not in the bodies. Finally, note that we have not
included among the terms any constants for the elements of D. This is in order to
simplify the presentation as in Chandra and Harel [1980]. Constants can be
added easily without changing the framework (see Abiteboul and Vianu [1987]).

3.2. SEMANTICS. The semantics of program G(S, Sin, Sout) is a binary relation
g(G) on instances. The pair (I, I9) is in g(G) if: I is in instances(Sin), I9 is in
instances(Sout), and I9 5 J[Sout] for some J in instances(S) where (I, J) is in the
program’s inflationary fixpoint operator g`(G).

We now formally define the inflationary fixpoint operator of a program using
valuations, satisfaction, and the one step inflationary operator. These notions are
straightforward extensions of those used for the semantics of detDL in Abiteboul
and Vianu [1988]. They are slightly complicated by two aspects of the language:
(1) the particular mechanism used for oid invention, and (2) the weak assignment
of o-values to nonset valued oids based on Condition (p) below.

Valuations. Given an instance I 5 (r, p, n), a valuation u is a partial
function from variables to o-values such that: if ux is defined and x is of type t,
then (1) ux is in t’s interpretation given p, and (2) the constants occurring in ux
are from constants(I). A valuation (given I) can be extended to terms t as ut
defined below. Note that u is a partial mapping on variables, so ut may be
undefined for some variables and some terms.

—uR 5 {v u R(v) [ ground-facts(I)} and uP 5 {o u P(o) [ ground-facts(I)},

—u x̂ 5 {v u ux̂~v! [ ground-facts(I)} where x̂ is of set type,

—u x̂ 5 v if ux̂ 5 v is in ground-facts(I) where x̂ is not of set type,
—u{t1, . . . , tk} 5 {ut1, . . . , utk}, u[A1: t1, . . . , Ak: tk] 5 [A1: ut1, . . . , Ak:

utk] (k $ 0).

Satisfaction and Valuation-Domain. Let I be an instance and u a valuation
(given I) that must be defined on terms t1, t2. We say that (1) I ?5 u[t1(t2)] if
ut2 [ ut1, (2) I ?5 u[t1 5 t2] if ut1 5 ut2, (3) I ?5 ¬u[t1(t2)] if ut2 [y ut1, (4)
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I ?5 u[t1 Þ t2] if ut1 Þ ut2. In addition, let r be a rule. We say that I ?5 body(r)
if I satisfies (?5) all the literals in body(r).

Given a program G and an instance I, the valuation-domain, denoted val-
dom(G, I), is defined as follows:

val-dom~G, I! 5 $~r, u ! u r [ G, I ?5 ubody~r! ,

u is a valuation exactly on variables in body~r! ,

and there is no extension u# of u such that I ?5 u# head~r!%

By the extension u# of u, we mean a valuation (given I) that agrees with u on
the variables occurring in body(r) and that is also defined on the variables
occurring in head(r) but not in body(r).

The significance of the valuation-domain is that if one thinks of I as the
“current state,” then each (r, u ) contributes to augmenting I. Thus, the
valuation-domain is the set of valuations that participate in the derivation of new
ground facts. New ground facts can be added to I either using old oids and
constants, or inventing new oids. Here are the laws governing the invention of
oids:

Invention and Valuation-Map. A valuation-map h, for program G and instance
I, is a function defined on val-dom(G, I) with the following properties. For each
(r, u ) we have that h(r, u ) is a valuation of the variables in r such that:

—if x in body(r), then h(r, u ) x 5 ux
(i.e., h(r, u ) is an extension of u),

—if x in head(r) and not in body(r), then h(r, u ) x is in (O 2 objects(I))
(i.e., h(r, u ) x is new, recall that x has type P for some P in P),

—if x in head(r) and not in body(r), and x9 in head(r9) and not in body(r9), then
r Þ r9 or u Þ u9 or x Þ x9 implies h(r, u ) x Þ h(r9, u9) x9
(i.e., all inventions happen in parallel, producing distinct oids for each parallel
branch).

Inflationary Operators. Given a program G, the inflationary one-step operator
g1(G) is a binary relation on instances. The pair of instances (I, J) is in g1(G) if
there exists a valuation-map h for G and I and:

ground-facts~ J! 5 ground-facts~I! ø $h~r, u !head~r! u

for some r, u subject to ~p! below% ø $P~o! u

for some r, u and x of type P, o 5 h~r, u !x and o is invented%

where

(p) Let o be non-set valued. If ô is undefined in I and a single new ground fact
ô 5 v is derived, then it is added to ground-facts( J). If ô is defined in I or
if two distinct new facts ô 5 v and ô 5 v9 are derived, then the new
derived ground facts about ô are ignored.
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The statements in (,) are motivated as follows: We want to achieve a
deterministic, inflationary semantics. So, we cannot modify a value for an object
o when one has already been determined. Furthermore, we cannot choose
between several alternative values when they are derived at the same step of the
computation.

Given a program G, its inflationary fixpoint operator g`(G) is a binary relation
on instances. The pair of instances (I, J) is in g`(G) if for some finite sequence
I0 5 I, . . . , In 5 J, we have: (1) for all i . 0, (Ii21, Ii) [ g1(G), and (2) for
all J9 if ( J, J9) [ g1(G) then J 5 J9.

Programs are determinate. Because of the quantification over valuation-maps
h in the definition of g1(G), the binary relation g1(G) contains (I, J) pairs for all
possible legal choices of invented oids. (Note that, if the valuation-domain is
empty, there is only one trivial valuation-map and J 5 I). It follows that, there
could be many J associated to a single instance I in g1(G), g`(G), and g(G).
However, as we shall see in Theorem 4.1.3, all these J are isomorphic to each
other. Also, by the definition of g`(G), there may be no finite sequence leading
to a fixpoint. Therefore, IQL programs are determinate; they define partial
functions up to renaming of oids. For a more formal treatment, see Section 4.

Naive inflationary evaluation. It is easy to define an algorithm for evaluating
IQL programs, based on the semantics above. This naive inflationary evaluator
proceeds in iterations: in each iteration, it determines the valuation-domain and
picks a valuation-map; it stops if no ground fact is added. The output is
independent of the choice of valuation-map made by this evaluator, up to
renaming of invented oids. The semantics in terms of binary relations can be
thought of as: all the possible outputs that one would get by naive inflationary
evaluation of the rules on the input.

3.3. TYPE CHECKING. The syntax and the semantics of IQL impose a number
of typing restrictions on programs. Typing restrictions, verifiable through type
checking, may be introduced in a database language for a variety of reasons. In
IQL, one goal of type checking is to guarantee the soundness of programs. In
other words, type checking is used to guarantee that the result is a correct
instance. Another goal of type checking in IQL is to increase the efficiency of
evaluation, for example, to decrease the size and the cost of computing the
valuation-domain. This latter use is a major justification for the separate notions
of schema and instance in data models: “the schema contains the type informa-
tion that is used to make retrieval efficient.”

IQL programs can be type-checked. In order to justify our claim, consider the
naive inflationary evaluator of the rules. Before the evaluation is started, the type
of each variable is known. Thus, there is an upper bound on the values each
variable can be instantiated to. The only side-effects of the program involve the
derivation of new ground facts. These side-effects will produce legal instances
because of the well-typedness condition on heads of rules. This condition and all
other typing restrictions can be easily checked.

There is one exception. Namely, the treatment of ground facts ô 5 v involves
some checking during the evaluation; see (p) in the definition of the one-step
inflationary operator. However, this exception does not invalidate our claim. The
dynamic check performed here is of very small cost and does not entail checking the
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whole type. We check only if an oid has a value or is undefined. The cost is less than
even recording the derived facts. Unfortunately, deciding at this inexpensive check is
needed in some evaluation is not recursive; see Abiteboul and Hull [1988].

All terms of the IQL language are typed. Having to declare the type information
for each term would make the programs tedious to write and would hide the
simplicity of the rules. As will be made clear from the examples in the next
subsection, most of the type information can be omitted. Automatic partial type
inference, based on a number of shorthand conventions, can replace explicit declara-
tions.

3.4. SHORTHANDS AND EXAMPLES. We accept R(t1, . . . , tk) as an alternative
notation for R([A1: t1, . . . , Ak: tk]), when some implicit ordering on the attributes is
understood. It is now clear that each Datalog program can be viewed as a valid IQL
program on a relational schema, and that its Datalog and IQL semantics are
identical. The same applies to Datalog with negation and inflationary semantics.

Continuing with relational schemas, other relational languages can be viewed
as IQL sublanguages, for example detDL [Abiteboul and Vianu 1988]. The
differences between detDL and IQL restricted to relations are: slightly different
semantics for valuation-domains and invented constants in detDL versus in-
vented oids in IQL. However, it is very simple to simulate detDL in IQL.

It is shown in Abiteboul and Vianu [1988] that control mechanisms such as
composition, if-then-else, and while-statements can be simulated in detDL (using
negation and inflationary semantics). These mechanisms can now be used as
shorthands. In particular, we use “;” to denote composition. The transformation
expressed by an IQL program G1;G2 is the composition of the transformations
expressed by G1 and G2. Using composition, it is easy to see that relational calculus
queries and Datalog with stratified negation are expressible in IQL almost verbatim.

Now consider complex-objects. The most famous operations on complex-
objects are nest and unnest. Nest/unnest in IQL resembles the expression of these
operations in the language COL [Abiteboul and Grumbach 1988; Abiteboul et al.
1989]. The next example shows the IQL realization. For better clarity, we use
capital letters, for example, X, Y, for set variables.

Example 3.4.1. Let (R, P, T) be a schema, R1, R2, R3 [ R,

T~R1! 5 T~R3! 5 @A1 : D, A2 : $D%# , and T~R2! 5 @A1 : D , A2 : D# .

We want to unnest R1 into R2, and then nest R2 into R3. For unnesting, we use
the single rule:

R2~ x, y! 4 R1~ x, Y! , Y~ y! .

For nesting, we use an auxiliary class P associated with T(P) 5 {D}, and
auxiliary relations R4, R5 associated with T(R4) 5 D, T(R5) 5 [A1: D, A2: P].

Nesting is realized with G1;G2 where G1 is:

R4~ x! 4 R2~ x, y!

R5~ x, z! 4 R4~ x!

ẑ ~ y! 4 R2~ x, y! , R5~ x, z!
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and G2:

R3~ x, ẑ ! 4 R5~ x, z! .

G1 creates one oid z per x in the A1-column of R2. The value of the oid z is the
set of values paired to its x in the A2-column of R2. The program G2 starts after
G1 completes and constructs the result. Note how attributes were omitted from
the rules, without any ambiguity. e

It should be noted that no invention is required in COL to perform the
nesting: it is realized using data functions. A data function can be viewed as a
parameterized relation and is therefore based on a more elaborate concept than
the relations in IQL. However, data functions can be simulated in IQL using
invented oids. We chose here to have oid invention, since such a feature serves
many other purposes as well in our context.

One can show that each COL query can be computed using an IQL program.
The proof is easy given the above programs for nest/unnest. As a consequence,
all algebraic operations on complex objects of Thomas and Fischer [1986],
Jaeschke and Schek [1982], Schek and Scholl [1986], and Abiteboul and Beeri
[1988] and the calculus queries of Abiteboul and Beeri [1988] and Korth et al.
[1985] are expressible in IQL. Also, it is easy to show that all calculus and
algebra queries in LDM can be simulated in IQL.

One important operation found in the algebra for LDM and the algebra for
complex-objects of Abiteboul and Beeri [1988] is powerset. This operation is
expensive: it is exponential in the input size. Indeed, we will emphasize sublan-
guages of IQL that cannot express the powerset, but can express important
classes of queries evaluable in time polynomial in the input instance size. The
powerset operation is considered in the next example. This example will provide
all the necessary guidelines for the restrictions that will be imposed on IQL to
obtain efficiently evaluable sublanguages.

Example 3.4.2. First suppose that the input consists of a single relation R of
type D and the output, of a single relation R1 of type {D}. The powerset of R is
computed in R1 by:

R1~X! 4 X 5 X ,

where X is a variable of type {D}. Indeed, since R is the single input relation, by
the definition of valuation (given I), the variable X will range only over the
subsets of R, and R1 will contain the powerset of R.

The obvious problem is that the variable X is not range-restricted in the
program (see Section 5 for a formalization of range-restriction). However, the
powerset can also be computed in a range-restricted manner using oids. Let R
and R1 be the input and output as above. We also use a class P with type {D},
and an auxiliary relation R2 with type [A1: {D}, A2: {D}, A3: P].

The powerset program consists of the rules:

R1~$ %! 4

R1~$ x%! 4 R~ x!
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R2~X, Y, z! 4 R1~X! , R1~Y!

ẑ ~ x! 4 R2~X , Y, z! , X~ x!

ẑ ~ y! 4 R2~X , Y, z! , Y~ y!

R1~ ẑ ! 4 P~ z! .

One can check that this computes the powerset in a constructive way. Suppose
that relation R is {d1, d2, d3}. Then { }, {d1}, {d2}, {d3} are first obtained,
then {d1, d2}, {d2, d3}, etc. In this computation, some subsets are obviously
derived more than once.

Note that in this second way of computing the powerset, invention of oids
occurs in a “loop.” Such recursion with invention of oids may clearly be the cause
of nonterminating computations. For instance, let R3 be a relation with T(R3) 5
[A1: P, A2: P]. Then, the rule

R3~ y, z! 4 R3~ x, y!

may cause the nontermination of the computation.

As illustrated by the graph example of the introduction, IQL also allows the
creation of objects and the sharing of objects. We refer to that example for many
features of IQL such as: Datalog rules, set manipulation, invention of oids
bounded by a polynomial in the size of the input, composition, and weak
assignment to non-set oids.

The union of types is treated in IQL in a special fashion. This is based on
allowing the use of a less constrained typing condition in the rule bodies. This
condition (2 in the syntax of rules) can be viewed as equality modulo coercion.
The following is an example involving union types.

Example 3.4.3. Consider the two schemas:

S has only one class P with T~P! 5 P ~ @A1 : P, A2 : P# and

S9 has only one class P9 with T*~P9! 5 @B1 : $P9% , B2 : $@A1 : P9, A2 : P9#%# .

We use one temporary relation R with T(R) 5 [C1: P, C2: P9] and omit the
attributes, when there is no ambiguity.

The first program we describe encodes an instance with union types into an
instance without union types. Applying the second program on the output of the
first produces an instance identical (up to renaming of the oids) with the input of
the first program. Thus, no information is lost when using the first program.

S instances can be “losslessly” transformed to S9 instances using the rules:

R~ x, x9! 4 P~ x!

x̂ 9 5 @$ y9% , À# 4 R~ x, x9! , R~ y, y9! , y 5 x̂

x̂ 9 5 @À, $@ y9, z9#%# 4 R~ x, x9! , R~ y, y9! , R~ z, z9! , @ y, z# 5 x̂ .
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An “inverse” mapping from S9 to S can be realized using the rules:

R~ x, x9! 4 P9~ x9!

x̂ 5 w 4 R~ x, x9! , R~ y, y9! , y 5 w, x̂ 9 5 @$ y9% , À#

x̂ 5 w 4 R~ x, x9! , R~ y, y9! , R~ z, z9! , @ y, z# 5 w, x̂ 9 5 @À, $@ y9, z9#%# .

Note the use of coercions in the bodies. For instance, in the first program, x̂ is of
type P ~ [A1: P, A2: P], whereas y, z are of type P. In the second program, w
has type P ~ [A1: P, A2: P], different from the types of y and [ y, z]. We use w
in order to have typed heads.

4. On the Expressive Power of IQL

Only some binary relations on instances can be transformations defined by
database programs. For example, instances must be well typed. To formalize
what the meaningful binary relations are, we extend the notion of database (db-)
transformation of Abiteboul and Vianu [1988] and, thus, the notion of comput-
able relational query of Chandra and Harel [1980]. The only departure from the
classical notion is that functionality is weakened by allowing transformations that
are determinate up to renaming of oids.

In this framework, we investigate the expressive power of IQL. We show that
each IQL program expresses a db-transformation. For disjoint input– output
schemas, we show that all db-transformations are expressible, up to copy elimina-
tion, in IQL. We show that copy elimination cannot be expressed in general. This
surprisingly demonstrates that the concept of determinate transformations intro-
duced here affects in a nontrivial manner the standard notion of query comput-
ability.

Finally, we show how completeness can be obtained using a “deterministic-
choice” primitive and consider the case of nondisjoint input– output schemas.

4.1. DB-TRANSFORMATIONS. In this section, we extend the standard notion of
database computability.

Consider a one-to-one mapping h from D ø O onto D ø O that maps D to
D and O to O. Such a mapping can be extended to o-values and instances in the
obvious manner. It transforms an instance into an isomorphic instance. We call
such a mapping, a DO-isomorphism. A bijection h over O can be viewed as a
DO-isomorphism by extending it with: hd 5 d for each d in D. We call such
bijections O-isomorphisms. Clearly, an O-isomorphism can also be viewed as an
isomorphism over o-values and instances. Similarly, one can consider D-isomor-
phism.

The following definition states the four conditions that a binary relation on
instances should satisfy, in order to qualify as a db-transformation. The first
three conditions are standard and capture well-typedness, effective computability,
and genericity. The justification for genericity is that a query language should not
“interpret” atomic elements, such as constants and oids, see Chandra and Harel
[1980] and Hull [1986]. The fourth condition is new and expresses a form of
functionality.
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Definition 4.1.1. A binary relation g on instances is a db-transformation if:

(1) ?S, S9 such that g # instances(S) 3 instances(S9),
(2) g is recursively enumerable,
(3) for each DO-isomorphism h, (I, J) [ g implies that (hI, hJ) [ g, and
(4) (I, J1), (I, J2) [ g imply that there exists an O-isomorphism h9 such that

h9J1 5 J2.

Let us now comment on Condition (4) above. Observe that it can be replaced
with the seemingly more general condition: “(I1, J1), (I2, J2) [ g and I1, I2 are
O-isomorphic imply that J1, J2 are O-isomorphic.” One can show that the
resulting definition is equivalent with the one used here.

It follows from Conditions (3)–(4) that no new constants can appear in the
output. More precisely,

if ~I, J! is in a db-transformation g, then constants~ J! # constants~I! .

In contrast, the kind of functionality enforced by Condition (4) allows the
presence of oids in the output that were not in the input. This is a significant
addition to the frameworks of Abiteboul and Vianu [1988/1998] and Chandra
and Harel [1980]. It is important to be able to create new oids in the output, if
one wishes to manipulate in a general fashion the types available in the data
model.

Another intuition formalized by (4) is that the oids as atomic elements are
irrelevant, only their interrelationships matter. Consider the IQL example of the
introduction. The oids of the nodes of the output instance do not matter: “if two
instances are O-isomorphic they contain the same information.”

We now prove a soundness theorem: IQL programs define only db-transforma-
tions. It follows that IQL programs are determinate in the sense of Condition
(4). We first illustrate by an example why, if one is to guarantee soundness, the
disjointness of oid assignments is important.

Example 4.1.2. Consider a schema with two classes P1, P2 with T(P1) 5 {D}
and T(P2) 5 {{D}}. For example, an object in P1 has value a set of strings and
an object in P2 has value a collection of sets of strings. Suppose nondisjoint oid
assignments were allowed in legal instances. It is possible to have an oid o
belonging to both p(P1) and p(P2), and n(o) 5 { } in a legal instance I. Now
consider an IQL program with a rule x̂( z) 4 . . . , and a rule ŷ({ z, z9}) 4 . . . ,
where x has type P1, y has type P2, and z, z9 have type D. Clearly such a
program has well-typed heads of rules but, if x and y are both instantiated to o, it
produces an illegal instance. The main problem here is that for nondisjoint oid
assignment, we cannot be sure of the type of the terms x̂ and ŷ, when they are
instantiated during evaluation.

One could argue that the problem highlighted in this example is due to the
polymorphism of the empty set. But it is possible to create more involved
examples. Also, similar problems would arise if instead of one “base” type D,
many, nondisjoint ones were allowed.

The use of the disjointness simplifies the task of type checking. Note however
that a weaker restriction could have been used. For instance, one could have
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allowed the same oid to be assigned to two distinct classes P1, P2 if T(P1) 5
T(P2). e

THEOREM 4.1.3. The semantics of an IQL program is a db-transformation.

PROOF. Let g be the semantics of an IQL program G. We have to show that g
is a db-transformation. First, Condition (2) of Definition 4.1.1 is obviously
satisfied.

Condition (1) is satisfied because of the typing of the heads of rules. A fine
point is that this satisfaction does depend on the fact that the oid assignment is
disjoint. The disjointness guarantees that each oid belongs to a unique class and
that, when it is assigned a value, the value is of the correct type.

Consider Condition (3). Let (I, J) be in g, h be a DO-isomorphism, and I0 5
I, . . . , In 5 I9, J 5 I9[S] be a derivation of J on input I. Each derivation step
corresponds to one application of the one-step operator g1, except for the last
one which is a projection. It is easy to see that hI 5 hI0, . . . , hIn 5 hI9, hJ 5
hI9[S] is a derivation of hJ on input hI. Therefore Condition (3) is satisfied.

Finally, let (I, J1) and (I, J2) be in g. A straightforward induction on
derivation length suffices to show that the derivations of J1 and J2 are isomor-
phic. Thus, Condition (4) is also satisfied. e

This soundness theorem raises a natural completeness question: are all
db-transformations expressible in IQL? Consider a relation name R belonging to
both the input and output schemas. A problem is that the inflationary semantics
of IQL does not allow the deletion of ground facts from R, even if the
db-transformation that we are trying to compute specifies that they are not in the
output. A Turing Machine (TM) analog for the inflationary semantics could be a
nonerasing TM. Following Abiteboul and Vianu [1987; 1988], we first consider
only disjoint input-output schemas. This simplifies the task since we can ignore
the problem of deletion: we introduce a fact in the output only when we are sure
that this fact belongs to the answer.

4.2. DISJOINT INPUT-OUTPUT SCHEMAS: QUERIES AND INSERTIONS. In this
section, we focus on nonerasing transformations and disjoint input– output
schema. We show that IQL is complete “up to copy elimination.”

The disjoint input– output db-transformations (dio-transformations) are all
db-transformations

g # instances~Sin! 3 instances~Sout! ,

where: for some schema S with disjoint projections Sin, Sout and for every (I, J)
[ g we have that I, J are projections of one instance of S on Sin, Sout. Note that
this implies that the set of oids in the input and output are disjoint. So, for
example, having as output the input itself is not a dio-transformation, but having
as output an O-isomorphic copy of the input is a dio-transformation.

For relational schemas, the dio-transformations (by definition) are the same as
the graphs of computable queries as defined in Chandra and Harel [1980]. For
acceptors (programs that answer yes, no, or loop for ever) we use the set of yes/no
db-transformations: these are all db-transformations with an output schema
consisting of a single relation of type the empty tuple. Two propositions about
IQL easily follow from the literature, when IQL programs are limited either to
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(1) query programs for the relational data model or to (2) acceptors for arbitrary
inputs.

PROPOSITION 4.2.1. Each dio-transformation for relational schemas is the se-
mantics of some IQL program.

PROOF. The proof follows the proof of Abiteboul and Vianu [1988] for
showing that each relational transformation can be expressed in the language
detDL. The differences between the languages detDL and IQL restricted to
relations do not affect the essence of the proof. e

PROPOSITION 4.2.2. Each yes/no db-transformation is the semantics of some
IQL program.

PROOF. The instance is first encoded by an IQL program in a relational
schema. Oids are invented to denote more structured o-values. The encoding
performed is an obvious representation of ground facts and is easy to realize in
IQL. Then, Proposition 4.2.1 is used to conclude. e

For dio-transformations, we use Proposition 4.2.2 to obtain completeness of
IQL “up to copy elimination.” We show that given a dio-transformation g, there
is an IQL program which on input I0 constructs finitely many copies of images of
I0 through g. These copies are guaranteed to be identical up to renaming of the
oids and are distinguishable from each other.

In the next definition, note how the different copies are separated by using
distinct sets of oids, given explicitly in a new relation.

Definition 4.2.3. Let S be a schema with classes {P1, . . . , Pn} and I an
instance of S. We define S# , the schema for copies of S by augmenting S with a
single new relation name R# with associated type {P1 ~ . . . ~ Pn}. An instance
I# of S# is an instance with copies of I if there are O-isomorphic copies I1, . . . , In

of I such that:

(1) ground-facts(I#[S]) 5 ground-facts(I1) ø . . . ø ground-facts(In),
(2) I#(R# ) 5 {objects(I1), . . . , objects(In)}, where objects(Ii) (i 5 1, . . . , n)

are pairwise disjoint.

We say that a binary relation g is the binary relation g# up to copy when we have
that:

(a) if (I0, I) [ g, then for some I# , (I0, I#) [ g# and I# is an instance with copies
of I,

(b) if (I0, I#) [ g# , then for some I, (I0, I) [ g and I# is an instance with copies
of I.

We now come to the principal result of this section:

THEOREM 4.2.4. Each dio-transformation is the semantics of some IQL pro-
gram up to copy.

To prove this theorem, we use two lemmas:

LEMMA 4.2.5. Each dio-transformation, whose output schema has a single class
and no union types, is the semantics of some IQL program up to copy.
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PROOF. Let g be a dio-transformation, (I0, I) [ g, and let S 5 ({R1, . . . ,
Rn}, {P}, T) be the output schema.

Let P9 be a new class and T* be such that for each i in 1 . . . n, T*(Ri) is
obtained from T(Ri) by substituting P by P9 everywhere. An instance (r, p, n)
over S can be represented (up to oid renaming) by a tuple

@A0 : p9~P9! , A1 : r9~R1! , . . . , An : r9~Rn! ,

A: $@A1 : o, A2 : n9~o!# u o [ P9, n9~o! defined}]

of type

t 5 @A0 : $P9% , A1 : $T*~R1!% , . . . , An : $T*~Rn!% , A: $@A1 : P9, A2 : T~P9!#%# .

where (r9, p9, n9) is O-isomorphic to (r, p, n). A finite set of instances over S can
be represented (up to oid renaming) by a relation whose elements have type t.

By Proposition 4.2.2, there is a program Gy/n which given an instance I0 and a
tuple of type t representing an instance I, checks whether (I0, I) [ g.

The computation of g# (such that g is g# up to copy) is realized by an IQL
program G# as follows. The program G# consists of three parts and on input I0
proceeds as follows.

Consider the total ordering of pairs of positive integers (1, 1), (2, 1), (2, 2), (3,
1), (3, 2), (3, 3) . . . The first part of G# visits each pair of integers in the above
order; this exhaustive enumeration can be done as in Chandra and Harel [1980]
and Abiteboul and Vianu [1987] by realizing counters over a unary alphabet. For
a pair (i, j), this part first invents i oids. Then, it constructs a relation of
elements of type t representing the set 7 i of all instances over S, that can be
constructed using the i oids and constants from the input. This “encoding”
construction is possible, because the finite sets of o-values to be constructed are
just the interpretations of types restricted to the constants from the input. This
encoding is easily seen to be realizable in IQL, using terms for finite tupling and
finite subsetting. (Note that the union of types requires a different treatment.)

Let us come to the second part of G# . The idea of the ordered visiting of integer
pairs above is that the first component represents the number i of oids in the
output instance, and the second one, the number j of steps taken by program Gy/n
to accept. So in this part G# uses Gy/n to compute the set 7 i, j of tuples in 7 i

representing instances that are images of I0 by g, validated by Gy/n in j steps. Two
cases occur:

(1) 7 i, j is empty. Then G increments (i, j) and does another iteration of the first
part.

(2) 7 i, j is not empty. Then relation 7 i, j contains the tuple representations of
some of the images of I0 by g and the third part is used.

By the fact that g is a dio-transformation, one has that the tuples in 7 i, j are all
O-isomorphic representations of I. The third part of G# transforms these tuples
into I# an instance with copies of I. The oid invention and the weak assignment of
IQL suffice for this “decoding.”
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Now the two conditions for g to be g# up to copy are satisfied: the first
condition because of the exhaustive enumeration of instances, and the second
because Gy/n provides the only halting condition. e

LEMMA 4.2.6. Each dio-transformation, whose output schema has a single
class, is the semantics of some IQL program up to copy.

PROOF. In the definition of union types, we have used a binary ~ constructor.
Assume here that the parse trees of types have been put in a canonical form,
where ~-nodes have arbitrary arity, but only non-~ nodes as children. This does
not change the semantics because of the associativity and commutativity of ø.

Consider the schema S9 obtained from S by replacing the class P by a class P9
everywhere in S and by replacing (inductively) each union of types t 5 t1 ~ . . .
~ tm by [A1: {t1}, . . . , Am: {tm}]. Our intention is to represent an o-value v
of type t by tuple [A1: a1, . . . , Am: am], where for each i in 1 . . . n, a i is {v}
when v is of type t i and is À otherwise. Let rep be the one-to-one function, which
maps an instance over S to an instance over S9 that represents S in the above
fashion. Let g be a dio-transformation, (I0, I) [ g and also let,

g9 5 $~I0 , rep~I!! u ~I0 , I! [ g% .

Clearly, g9 is a dio-transformation without the union of types and without
multiple classes in the output schema. By Lemma 4.2.5, there is an IQL program
G1 computing it up to copy. Consider the transformation g0 defined as follows:

g0 5 $~rep~I! , I9! u I9 an O-isomorphic copy of I with objects~I9! ù objects~I!

5 À% .

It is easy to see that g0 is a dio-transformation and that there is a simple IQL
program G2 computing this “decoding” transformation. For an example of such a
decoding program, see Example 3.4.3. Note that here, in treating union, we use
untyped equality literals in bodies.

The program G1;G2 computes g up to copy. We use the fact that composition
can be simulated in IQL, so “;” can be viewed as a meta construct of the
language. e

PROOF OF THEOREM 4.2.4. Let g be in a dio-transformation with output
schema S 5 (R, P, T) and where P 5 {P1, . . . , Pn}. Let R1, . . . , Rn be new
relation names, for each R in R let R̂ be a new relation name, and let P be a new
class name. Consider the schema S9 5 (R*, {P}, T*) where:

(1) R* 5 {R1, . . . , Rn} ø {R̂ u R [ R}
(2) T*(Ri) 5 P, for each i in 1 . . .n,
(3) T*(R̂), for each R [ R, is obtained from T(R) by replacing each P1, . . . , Pn

by P,
(4) T*(P) 5 t1 ~ . . . ~ tn where for each i in 1 . . . n, t i is obtained from

T(Pi) by replacing each P1, . . . , Pn by P.

An instance I 5 (r, p, n) over S can be coded by an instance rep9(I) 5 (r9, p9,
n) over S9 as follows:

(1) p9(P) 5 p(P1) ø . . . ø p(Pn),
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(2) for each R in R, r9(R̂) 5 r(R),
(3) for each i in 1 . . . n, r9(Ri) 5 p(Pi).

Assume that (I0, I) [ g. Like in Lemma 4.2.6, the dio-transformation g can be
decomposed into two transformations:

g9 5 $~I0 , rep9~I!! u ~I0 , I! [ g% .

g0 5 $~rep9~I! , I9! u I9 an O-isomorphic copy of I with objects~I9!

ù objects~I! 5 À% .

To conclude, it suffices to notice that g9 can be computed up to copy by an
IQL program by Lemma 4.2.6, and the decoding involved by g0 can also be
realized in IQL. Again here there is a need for untyped equality literals in rule
bodies. e

We will show in Section 4.3 that copy elimination cannot be expressed in IQL,
and present solutions to that limitation in Section 4.4. However, the previous
result allows us to conclude that for many interesting cases, IQL has a quite
sufficient power. Natural programs, such as the graph example of the introduc-
tion or the examples from Section 3, do not require copy elimination. More
specifically, we can show the following propositions.

PROPOSITION 4.2.7. If g is a dio-transformation, such that the output schema
contains no class, then g is the semantics of some IQL program. In particular, each
query in the calculus/algebra of the complex-objects model of Abiteboul and Beeri
[1988] is expressible in IQL.

PROOF. The important observation is that, because there are no oids in the
output, the copy elimination is automatic. More specifically, in the proof of
Lemma 4.2.5, there is no P and all tuple representations are identical. e

PROPOSITION 4.2.8. If g is a dio-transformation, such that D does not occur in
the output schema, then g is the semantics of some IQL program.

PROOF. By inspection and modification of the proof of Lemma 4.2.5. Since
the output instance contains only oids, we can enumerate instances instead of
sets of instances like in Lemma 4.2.5. To do that, in step (i, j), the i oids that are
considered are invented in some precise order and this order is remembered.
Using this order, the tuples of type t representing instances of S with i oids can
be enumerated. Thus, there is no need for copy elimination. e

PROPOSITION 4.2.9. Each query in the calculus/algebra of the Logical Data
Model of Kuper and Vardi [1993] is the semantics of some IQL program.

PROOF. In LDM, there is limited invention of oids, but output schemas are
constrained. It is simple to simulate all the algebraic operators of LDM in IQL
directly, that is, without any exhaustive enumeration of instances or copies. Thus,
copy elimination is not necessary for simulating LDM. e
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4.3. COPY ELIMINATION

Did the hen make the egg, or was it the egg that made the hen?
In this section, we show that copy elimination cannot be realized in IQL.
The intuition is as follows:

The input is a set of two elements a, b. The output is a directed quadrangle of
new objects with a connected to the two objects of a diagonal and b to those of
the other one. Consider two adjacent vertices of the quadrangle, o1 (the hen)
and o4 (the egg). Intuitively, which one should have been created first? The
conclusion is that they must have been created at the same time. Then how can
we choose a direction for the arrow between them without violating genericity?

THEOREM 4.3.1. There is a dio-transformation whose output has a single class
that is not the semantics of any IQL program.

PROOF. Consider the two schemas: S has a single relation R of type D; S9
consists of a single class P9 of type À, and a single relation R9 of type [B: P9, C:
D ~ P9].

The dio-transformation g is defined by: for each (I, I9) in g, I 5 (r, À, À),
I9 5 (r9, p9, n9), and the following hold:

(a) if #(r(R)) Þ 2, r9(R9) 5 p9(P9) 5 À;
(b) otherwise, let r(R) 5 {a, b}. Then (see Figure 1), p9(P9) 5 {o1, o2, o3,

o4} for some o1, o3, o2, o4 and r9(R9) is the relation:

$^o1 , a& , ^o3 , a& , ^o2 , b& , ^o4 , b& , ^o4 , o1& , ^o3 , o4& , ^o2 , o3& , ^o1 , o2&%

We first show:

CLAIM 4.3.2. g is a dio-transformation.

PROOF OF CLAIM 4.3.2 (SKETCH). Clearly, g satisfies (1, 2, 4) of the definition
of db-transformation. Let (I, I9) be in g and h a DO-isomorphism. Clearly, in
case (a), (hI, hI9) [ g, so (3) holds. To see that (3) also holds in case (b), it
suffices to note that there is an automorphism h0 on I9: h0(a) 5 b, h0(b) 5 a,
h0(o1) 5 o4, h0(o3) 5 o2, h0(o4) 5 o3, h0(o2) 5 o1. e

Suppose that some IQL program P computes g. We focus on case (b) to derive
a contradiction. Let I, I9 be as in (b) above. We use a “naming scheme” for the
created objects. Consider a computation of P on input I. We associate with each
created object a term called “v-term” as follows. Each rule has an associated
symbol. We define the function j from created objects to v-terms as follows.

FIG. 1. A query not expressible in IQL.
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Consider, for instance, the ground instance of a rule r creating a new object o:

H~o! 4 R1~t1 , t2 , t3! , R2~t3 , t4! .

Then the v-term of o is j(o) 5 r( z1, z2, z3, z4) where each zi is obtained by
replacing in t i each object o9 by its corresponding v-term j(o9).

Remark 4.3.3. A v-term is a tree with internal nodes labelled by: set or tuple
constructors, or by rule symbols. The order of the children of a set vertex is
considered here as irrelevant. The leaves are labelled by a or b.

CLAIM 4.3.4. If o, o9 are two distinct objects created in the computation of P on
input I, j(o) Þ j(o9).

PROOF OF CLAIM 4.3.4 (SKETCH). By definition of the semantics of IQL, the
same instantiation of variables occurring in the body of a rule cannot be used
twice. e

Returning to the proof of the theorem, consider an enumeration T1, . . . , Tk,
. . . of the v-terms using two constants {a1, a2} when it is chosen that a1 , a2.
For each i, let val(oi) be the smallest integer such that Tval(oi

) is isomorphic to
j(oi). To conclude the proof, it suffices to show:

CLAIM 4.3.5. For each i, j, val(oi) 5 val(oj).

For suppose that Claim 4.3.5 holds. Let val 5 val(o1) 5 . . . 5 val(o4). For each
i, let hi be a bijection from {a1, a2} to {a, b} with hi(Tval) 5 j(oi). Since there
are only two such bijections, it is easy to see that the set {j(o1, . . . , j(o4)} has
at most 2 elements. Thus, by Claim 4.3.4, the set {o1, . . . , o4} has at most two
elements, a contradiction. Hence, g is not realizable in IQL. By Claim 4.3.2, g is
a dio-transformation, which concludes the proof of the theorem.

We next show:

PROOF OF CLAIM 4.3.5 (SKETCH). The proof is by contradiction. Suppose that
Claim 4.3.5 does not hold and consider the following query: for o91, . . . , o94 the
four objects in the answer,

(1) If val(o91) , . . . , val(o94), select the constant (a or b) connected to o91.
(2) If val(o91) 5 val(o92) and val(o93) , val(o94), select the constant connected to

o93.
(3) If val(o91) 5 val(o92) , val(o93) 5 val(o94),

(a) if o91 and o92 are connected to the same constant, select that constant,
otherwise,

(b) select the constant connected to the source of the edge between o91 and
o92 (there is such an edge since o91 is connected to a constant and o92 to
the other).

(4) If val(o91) 5 val(o92) 5 val(o93) Þ val(o94), select the constant connected to o94.

One can write an IQL program that computes the query. The program computes
an internal representation of the val(oi) for each i [ [1 z z 4], enumerates
T1, . . . , Tk, . . . , and selects one of the constants. However, this query is not a
db-transformation (it is not generic), which is a contradiction by Theorem 4.1.3. e
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This concludes the proof of the theorem. e

We conclude this section with an analogy between TMs and IQL programs.

Remark 4.3.6. A function is TM computable if and only if its graph is TM
acceptable. To show this, one uses the fact that: a TM can easily enumerate the
integers. The enumeration of instances in IQL is not as simple. So unfortunately
(unlike TMs) from the fact that yes/no db-transformations are expressible one
cannot derive the fact that arbitrary db-transformations can be computed by IQL
programs. Note that a simplistic enumeration of all the instances using constants
from the input would violate genericity, and so is clearly not realizable. But one
could imagine more sophisticate (generic) enumerations. Consider for instance a
program that would do the following: On some input I, enumerate sets of
instances X1, X2, . . . such that:

(1) the only constants occurring in those sets are constants from I;
(2) each instance with constants from I occurs in the sequence; and
(3) in each set Xi no two instances are O-isomorphic.

Assuming such a program exists, one would be able to use the fact that yes/no
db-transformations are expressible, to show that IQL is complete. By Theorem
4.3.1, such sophisticate enumeration cannot be realized in IQL.

Remark 4.3.7. Since we observed the incompleteness of IQL in 1989, the
issue of completeness of languages with object creation has generated a lot of
research.5 In particular, an elegant characterization of the determinate queries
expressible in IQL was shown in Van den Bussche [1992]. The characterization is
as follows (see Van den Bussche [1992] for details). For an instance K, let
Aut(K) denote the set of DO-automorphisms of K. For a pair of instances K, K9,
Aut(^K, K9&) denotes the bijections on D ø O that are automorphisms of both
K and K9. A determinate query q is expressible in IQL iff for each input-output
pair ^I, J& in q there exists a mapping h from Aut(I) to Aut(^I, J&) such that for
each t, m [ Aut(I),

(i) t and h(t) coincide on I;
(ii) h(t + m) 5 h(t) + h(m); and,

(iii) h(idI) 5 id^I,J&.

where id denotes the identity mapping.
The “only if” part of the theorem is in the style of the technique developed in

the proof of Theorem 4.3.1. The “if” part is considerably more complex, and is
based on a group-theoretic argument.

4.4. ACHIEVING COMPLETENESS. As shown above, there exist dio-transforma-
tions that are not expressible in IQL. There are various ways of “completing”
IQL:

(1) As in Abiteboul and Vianu [1988/1998], one can introduce nondeterministic
dio-transformations and a nondeterministic variant of IQL that expresses all

5 See, for example, Andries and Paredaens [1992], van den Bussche and van Gucht [1992], van den
Bussche et al. [1992], van den Bussche and Paredaens [1991], and Denninghoff and Vianu [1991;
1993].
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of them: with nondeterminism, selection of one out of a set of copies is easy.
(See Remark N-IQL below.)

(2) Copy elimination is possible if an ordering of the constants of the input is
explicitly provided. (This is important from a practical point of view, because
a lexicographic order is usually provided.) For the precise definition of
ordered database, one can use that of Abiteboul and Vianu [1988/1998].
Intuitively, the order on the finite set of constants of the input together with
the order of creation of oids allows the enumeration of instances.

However, these two solutions present inelegances. The first one yields trans-
formations that are nondeterministic and are therefore not dio-transformations
as defined above. The second one assumes that the input constants are ordered
and so, takes us also out of the original framework. However, from Theorem
4.2.4, little is needed to “complete” IQL. To conclude this section, we present
IQL1 that yields exactly the desired class of transformations. The primitive that
we introduce is related to the (nondeterministic) witness operator of Abiteboul
and Vianu [1989] and the choice of Naqvi and Krishnamurthy [1988]. However, it
is essentially different in that it is not causing any nondeterminism.

The syntax of IQL1 is that of IQL augmented as follows: The new symbol
choose is a literal that may occur in a rule body. We have to reconsider the
definition of valuation-map. Variables that occur in the head and not in the body
of a rule are interpreted differently depending on the presence of choose or not
in the body: let x be a variable in head(r) and not in body(r),

(1) if choose is absent from the body, the interpretation is as before,
(2) if choose is present in the body, h(r, u ) x is one of the existing objects that

has the same type as x, assuming that this choice does not violate the
genericity condition. (This is not complicated but possibly expensive to
check.)

Note that “one of the . . .” would potentially introduce nondeterminism. How-
ever, we guarantee that the inflationary one-step operator remains generic, so
that the entire computation does not violate the genericity condition. Now we
have:

THEOREM 4.4.1. The semantics of an IQL1 program is a db-transformation.
Each dio-transformation can be expressed by an IQL1 program.

PROOF (SKETCH). To see the first sentence, consider the transformation g
corresponding to an IQL1 program. Property (1,3) of db-transformations are
clearly satisfied. Note that it is easy to decide whether a choice made at one step
introduces nondeterminism. Thus, g is clearly r.e., so (2) holds. Finally, (†)
guarantees (4).

Consider the second sentence. Let g be a dio-transformation. An IQL1

programs computing g proceeds as follows:

(1) Several copies of the result are first computed in some temporary relations
and classes (see Theorem 4.2.4).

(2) Each of these copies is marked by an object in a new class P1.
(3) One object v in P1 is selected (unique use of choose).
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(4) The copy marked by v is copied to the output relations and classes. e

We conclude this section by a remark on “nondeterministic IQL.”

REMARK N-IQL. Let N-IQL be the language obtained by not enforcing the
determinism of the choose; that is, a computation is indeed allowed to choose
one object out of a set even if that violates genericity. The notion of nondeter-
ministic transformations of Abiteboul and Vianu [1987/1998] can be extended to
the data structure considered here, and one can show that N-IQL is “nondeter-
ministic complete.” One can also obtain a nondeterministic complete version of
IQL along the lines of the “N-” languages of Abiteboul and Vianu [1988/1998] by
firing one instantiation of a rule at a time instead of firing all rules that are
applicable in parallel as done in this paper.

4.5. ARBITRARY INPUT–OUTPUT SCHEMAS: DELETIONS. IQL has inflationary
semantics and is a simple and elegant model for queries and insertions. However,
because of monotonicity, it cannot express deletions of ground facts from the
input. Let IQL* be the language obtained by allowing negative facts in heads of
rules and interpreting them as deletions in the style of the “*”-languages of
Abiteboul and Vianu [1988/1998]. IQL* allows the manipulation of arbitrary
input– output schemas.

One can show that: (1) the semantics of an IQL* program is a db-transforma-
tion and (2) each db-transformation is the semantics of some IQL* program up
to copy. All the results of the previous subsections (and in particular, Theorem
4.3.1) can be extended analogously, from disjoint to arbitrary input-output
schemas.

We omit the formal treatment, since the additional techniques are well known
(see Abiteboul and Vianu [1987/1998; 1988/1998]).

We should note that some of the simplicity of the IQL semantics has to be lost
in IQL*. Deleting an oid forces deletion of other objects that have this oid in
their o-value. This of course leads to more complex, but still tractable, definitions
(see the treatment of update propagation in Abiteboul and Hull [1987]). From a
practical standpoint, it requires more involved evaluation mechanisms, for
example, with reference counts or garbage collection.

5. On the Sublanguages of IQL

Queries can be written directly in IQL, they can be type checked, optimized via
standard techniques and evaluated bottom-up. IQL combines such high level
features, together with the power and simplicity of the general mathematical
model of computation presented in the previous section. Let us concentrate here
on its use as a high-level query language.

A major strength of IQL is that it contains, as syntactically defined sublan-
guages, many popular, declarative database query formalisms. For example, with
small modifications of the syntax: on relations, we can identify Datalog, rela-
tional calculus and Datalog with negation (stratified or inflationary); on complex-
objects, we can identify the restricted calculus of Abiteboul and Beeri [1988] and
COL with range-restriction [Abiteboul et al. 1989]. All these sublanguages have
PTIME data-complexity: each fixed program can be evaluated in time that is
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polynomial in the input instance size. (The size of I is assumed to be the size of
some standard encoding of ground-facts(I).)

In this section, we use syntactic conditions to obtain the sublanguages IQLrr

and IQLpr, where IQLrr , IQLpr , IQL. These sublanguages have PTIME
data-complexity. Also, all the above popular query formalisms are contained in
IQLpr.

In IQLpr, we guarantee program termination and polynomial data-complexity.
However, from a practical standpoint, this is not enough since, for instance,
searching over set-free type interpretations built from the constants in the
database is in theory polynomial, but in practice it is too expensive. This
additional requirement leads naturally to the definition of range-restriction and
to IQLrr. We next define ptime-restricted and range-restricted; their difference is
in Condition (1) of their respective definitions.

Definition 5.1. A program is ptime-restricted if all its rules are ptime-re-
stricted. A rule is ptime-restricted if all variables occurring in its body are
ptime-restricted. Let r be a rule.

(1) Each variable of type without the set constructor is ptime-restricted in r.
(2) If all variables in t1 are ptime-restricted and t1(t2), t1 5 t2, t2 5 t1 is a

positive literal in the body of r, then all variables in t2 are also ptime-
restricted.

For instance, Example 3.4.1 is ptime-restricted.

Definition 5.2. A program is range-restricted if all its rules are range-re-
stricted. A rule is range-restricted if all variables occurring in its body are
range-restricted. Let r be a rule and P a class.

(1) Each variable of type P is range-restricted in r.
(2) If all variables in t1 are range-restricted and t1(t2), t1 5 t2, t2 5 t1 is a

positive literal in the body of r, then all variables in t2 are also range-
restricted.

Such restrictions are not sufficient to obtain languages in PTIME. Invention
must also be controlled as illustrated by Example 3.2: A program is invention-free
if no variable occurs in the head and not the body of a rule. “Invention-freedom”
is too drastic, it disallows new oids. To control invention, we use “recursion-
freedom.”

Let G be a program such that (*) the leftmost symbol of each rule is a relation
name.6 G is recursion-free if the directed graph G(G) is acyclic, where: the nodes
of G(G) are the relation and class names of the program; there is an arc in G(G)
from a node n to a node n9 if in some rule r,

(1) (a) n is a relation or class name occurring in body(r), or
(b) n is a class name and for some variable x occurring in body(r), n appears

in the type of x;
(2) (a) n9 is the leftmost symbol of r, or

6 This technical restriction is imposed to simplify the presentation. The extension to the general case
is a straightforward, although tedious task.
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(b) n9 is a class name and some variable x of type n9 occurs in head(r) and
not in body(r).

Based on “invention-freedom,” “recursion-freedom” and composition “;”, we
define:

Definition 5.3. An (IQLpr) IQLrr program G is an IQL program if it is of the
form G1; . . . ; Gk where for each i in 1 . . . k, G i is (ptime) range-restricted and
is either recursion-free or invention-free.

Clearly, IQLrr , IQLpr by Definitions 5.1 and 5.2.
We could have chosen more involved criteria. The rationale for our definitions

is that they are simple, subsume most popular query languages and suffice to
show the principal result of this section.

THEOREM 5.4. Each query expressed by an IQLpr program can be answered in
time polynomial in the size of the input instance.

To prove this theorem, three lemmas are used: one deals with ptime-restricted
programs; the other two treat respectively the recursion-free and the invention-
free cases.

We first show that given an input database I and a ptime-restricted program G,
the image by g1(G) of I can be computed in polynomial time with respect to the
size of I. The computation that we consider is the computation by naive
evaluation.

LEMMA 5.5. Let G be a ptime-restricted program and I an instance. Then some J
such that (I, J) is in g1(G) can be computed in time polynomial in the size of I.

PROOF. Let r be a rule in G. We claim that:

The set of valuations u of the variables in r such that I ?5 ubody(r) can be
computed in time polynomial in the size of I.

Suppose that this is the case. Then it is easy to see that the valuation-domain
and one map in the valuation-map can be computed in polynomial time, so an
instance J satisfying the conditions of the lemma can be constructed.

The proof of the claim is by induction on the rank of the variables in r. For
each variable x in r, if x is ptime-restricted by Condition (1) of Definition 5.1,
then rank( x) 5 0. Now consider a shortest proof of ptime-restriction of the
variable x in r (based on Definition 5.1): rank( x) is the maximum rank of the
variables used to show that x is ptime-restricted plus one.

The range of each variable can be constructed in PTIME by induction on
variable rank k. For k 5 0, the claim is obvious. Now suppose that it is true for
k and that x is of rank k 1 1. Suppose (the other cases are treated similarly) that
x occurs in some term t2, t1 5 t2 is in body(r), and all variables in t1 are of rank
less or equal to k. The range for t1, that is, a set X of o-values, can be
constructed in PTIME. Now by matching t2 with each o-value in X, one can
construct a range for x in PTIME. e

The second lemma deals with recursion-free programs.
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LEMMA 5.6. Let G be a recursion-free, ptime-restricted program and I an
instance. Then some J such that (I, J) is in g`(G) can be computed in time
polynomial in the size of I.

PROOF. Let j be the length of the longest path in G(G). For each relation or
class name n, let order(n) denote the length of the longest path leading to n plus
one. (This is well defined by acyclicity.) We show by induction that

(1) for each sequence {Ii 5 (r i, p i, n i)} with (Ii, Ii11) [ g1(G) for each i,

—for each R, k $ order(R), rk(R) 5 rorder(R)(R).
—for each P, k $ order(P), pk(P) 5 porder(R)(P) and

nk(pk(P)) 5 norder(P)(porder(P)(P)).

For suppose that (1) holds. Then, g`(G) 5 g1
j11(G) and Lemma 5.5 suffices to

conclude.
Note first that, by (*), n i 5 n1 for each i, so only r i, p i vary. The proof is by

induction on the order of nodes.

Basis. Let R be a relation name with order(R) 5 1. Suppose that R is the
leftmost symbol of some rule r; that is, r is a rule that may contribute to the
modification of the extension of R. Consider the sets

J i 5 $u u u a valuation of the variables in body~r! and Ii ?5 ubody~r!% .

Since order(R) 5 1, and R satisfies (2-a), there is no symbol in body(r) satisfying
(1-a) or (1-b). Therefore, body(r) contains no relation or class name, and the
type of each variable in body(r) is free of any class name. It is now easy to see
that J i 5 J1 for each i. Thus, the sets

J9i 5 $u u ~r, u ! [ val-dom~Ii!%

are empty for i . 1. Hence, r is not used to derive a new fact after the first step.
Similarly, consider a class P with order(P) 5 1. The extension of P can only be

modified by rules r where some variable of type P occurs in the head and not the
body of r. In such cases, P satisfy (2-b). Like in the relational case, one can show
that such rules saturate after one step since order(P) 5 1, which concludes the
proof of the basis.

Induction. Suppose that (1) holds for each symbol of order less or equal to
k. Let n be a symbol of order k 1 1 and r a rule which, potentially, modifies the
extension of n. By an argument similar to that used in the basis, the sets

J i 5 $u u u is a valuation of the variables in body~r! and Ii ?5 ubody~r!%

is constant for i . k 1 1, and the set

J9i 5 $u u ~r, u ! [ val-dom~Ii!%

are empty for i . k 1 1. Hence r is not used to derive a new fact after step
k 1 1. Thus (1) holds for k 1 1 and by induction, (1) holds. e

The third lemma deals with invention-free programs. To prove it, we need the
auxiliary concept of branching factor. The set o-values(I), for instance I, is the
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set of v such that v occurs in ground-facts(I) in one of the following ways: R(. . . ,
v, . . .), ô 5 v, or ô(v) for some R or some o. The branching factor of an o-value
v is the maximum outdegree of a node in the finite tree representing v. The
branching-factor of I is the maximum branching factor of an element in o-
values(I).

LEMMA 5.7. Let G be an invention-free, ptime-restricted program and I an
instance. Then some J such that (I, J) is in g`(G) can be computed in time
polynomial in the size of I.

PROOF. We will show the following two facts:

(1) Let S be a schema. Then there is a polynomial polS such that for each set C
of constants and oids and for each integer m, the size of each instance J over
S with constants and oids in C, and with branching factor k # m is less than
polS(#(C), m).

(2) Let n be the branching factor of I and m the maximum number of symbols in
a rule of G. Then the branching factor of some image J of I is less than
Max{m, n}.

For suppose that (1) and (2) hold. Then, the size of J is a polynomial in the size
of I. Thus, the number of facts in J 2 I is a polynomial in I, so there is a
polynomial bound on the number of iterations of the one-step operator. By
Lemma 5.5, the computation of some J is in PTIME.

First consider (1). The proof is by induction on the depth of the types of S and
uses the fact that although the powerset is exponential, the powerset with
bounded set size is polynomial. Now consider (2). The proof is by induction on
the steps of the iteration. The argument for the basis k 5 1 and the induction
are similar.

Induction Hypothesis. Suppose that for some k, for each Jk such that (I, Jk) [
g1

k(G), Jk has a branching factor less than Max{m, n}.

Let Jk11 be an instance with ( Jk, Jk11) [ g1(G) and v in o-value( Jk11). If v
is in Jk, its branching factor is less than Max{m, n} by the hypothesis. Otherwise,
v is inferred by some rule in G. Consider a node in the tree v and the subtree
rooted at that node. Two cases occur:

—a similar subtree occurs in Jk, so the branching factor of n is less than
Max{m, n}, by the hypothesis.

—the node corresponds to an o-value construction of the rule, so the branching
factor of n is less than m, by construction.

Thus, Jk11 has branching factor less than Max{m, n}. This completes the proof
of the lemma. e

Theorem 5.4 follows directly from Lemmas 5.6 and 5.7. It also implies that
IQLrr, which is a practical and implementable fragment of IQL, has PTIME
data-complexity.
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6. Type Inheritance

In this section, we add type inheritance to our object-based data model. First, we
need to reconsider the notions of oid assignment and of types.

To model inheritance, one would like to consider nondisjoint oid assignments
and to regard as equivalent the two type expressions:

@A1 : D, A2 : D# ` @A2 : D, A3 : D# and @A1 : D , A2 : D , A3 : D# .

The intuitive reason is that, if [A1: D, A2: D] (respectively, [A2: D, A3: D])
were to describe all the records with at least A1, A2 (respectively, A2, A3) fields,
then the intersection would be all the records with at least A1, A2, A3 fields.
Unfortunately, under the semantics previously defined [A1: D, A2: D] ` [A2:
D, A3: D] is equivalent to À.

This example motivates the definition of the alternative p-interpretations vzbpp,
which express the desired equivalences [Cardelli 1988]. In all cases, replace v. . .bp

by v. . .bpp except for tuples where,

v@A1 : t1 , . . . , Ak : tk#bpp

5 $@A1 : v1 , . . . , Ak : vk , Ak11 : vk11 , . . . , Al : vl# u for some Ak11 , . . . , Al ,

~l $ k! distinct from A1 , . . . , Ak and vi [ vt ibpp , i 5 1, . . . , k% .

Observe that, in this definition, vk11, . . . , vl are o-values of totally uncon-
strained types.

Like before: two type expressions t1, t2 are p-equivalent (over disjoint oid
assignments) if for each (disjoint) oid assignment p, they have the same
p-interpretations. One can also show an analog to Proposition 2.2.1:

PROPOSITION 6.1. For each type expression, (1) there is an intersection reduced,
p-equivalent type expression and (2) there is an intersection-free, p-equivalent over
disjoint oid assignments type expression.

Let us now extend the definition of schema as follows:

Definition 6.2. A schema S is a quadruple (R, P, T, #), where R is a finite set
of relation names, P is a finite set of class names, T is a function from R ø P to
type-exp(P) and # is a partial order on P called isa hierarchy.

A common use of type inheritance is to specify, by the addition of an isa
hierarchy to the schema, that certain classes share certain structural properties.
As we shall see, it is possible to express this intended meaning of isa statements,
by schemas and instances without isa. The main reason is the presence of union
types in our type system. So, given union types, one can think of isa as a
convenient shorthand.

We proceed in two steps. As a first step, we reexamine one of our basic
assumptions, namely, the disjointness of oid assignments. To understand isa, we
relax this assumption. We have already encountered some of the typing problems
caused by nondisjoint oid assignments (see Example 4.1.2). We must resolve
these problems while still being able to type check programs. This leads us to
introduce inherited oid assignments, which can be described using union types. As
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a second step, we add type inheritance, via the p-interpretation of types and
inherited oid assignments.

A consequence is that, in the presence of type inheritance, we can use IQL in
order to express all computable database queries. Our approach is intended to
show the existence, in the presence of inheritance, of a typable and complete
database query language. This is interesting, because it is not obvious that typing,
inheritance, and completeness are all compatible notions.

Also, our precise definition of type inheritance allows the precise formulation
of a number of important, new database query language problems. What happens
to typing, inheritance, and completeness if union types are not provided?
Practical languages make direct use of inheritance, by allowing some forms of
value coercions. What is a good coercion strategy, that does not trade off typing
or completeness?

6.1. INHERITED OID ASSIGNMENTS. To preserve type checking, it seems nec-
essary to know a priori what type of result we get at evaluation time, when we
evaluate terms such as x̂ (see Example 4.2). This means static knowledge of
which classes oids can belong to. We formalize this static knowledge using a
common engineering intuition: “oids are created in a single class and automati-
cally belong to the ancestors of this class in the isa hierarchy.”

Definition 6.1.1. Let P be a set of class names and # a partial order on P. An
inherited oid assignment p# for P is an oid assignment for which there exists a
disjoint oid assignment p such that:

p# ~P! 5 ø $p~P9! u P9 [ P, P9 # P%~for each P in P! .

At this point, we must deal with the meaning of T (the types in the schema)
given inherited oid assignments. Let us first examine a frequently quoted
example.

Example 6.1.2. Let our schema contain four classes P1 [ person with
T(P1) 5 [name: D], P2 [ student with T(P2) 5 [name: D, course-taken: D],
P3 [ instructor, with T(P3) 5 [name: D, course-taught: D], and P4 [ ta, with
T(P4) 5 [name: D, course-taught: D, course-taken: D].

With a disjoint oid assignment, we can capture the meaning of tas (these are
p(ta)), of instructors who are not tas (these are p(instructor)) etc.

But we would also like to say that every ta isa student and instructor, every
student isa person, and every instructor isa person. This is expressed by the partial
order P4 # P3, P4 # P2, P3 # P1, P2 # P1 and can be realized by using the
inherited oid assignment p# .

Now the type information in T must apply to p# and not to p. For instance, if R
is a relation of type [A1: student, A2; instructor], we expect to find in R tuples
[o, o9] where o is in p(student) and o9 in p(instructor), but also such tuples with
o in p(ta) and o9 in p(instructor), etc. e

In the previous example, there is no restriction on the types of classes related
via the isa relationship. Namely, isa and types are declared separately and
independently. Given p# , the type interpretations (as defined in Section 2)
determine what are the possible o-values. Thus, instances can be defined by a
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single modification of Definition 2.3.2; in Conditions (1) and (2) of Definition
2.3.2, use

vT[bp# instead of vT[bp

where p# is the oid assignment inherited from p.
Wherever p# (P) appears in the modified definition it can be replaced by

ø {p(P9) u P9 # P}. This corresponds to replacing, in the types, a class P by
the disjunction of its “smaller-or-equal” classes, for example, replacing student by
student ~ ta. With the modified instance definition and using union types,
querying is reduced to the case of disjoint oid assignments, and IQL can be used
directly.

6.2. ON THE *-INTERPRETATION OF TYPES. As mentioned above, the purpose
of type inheritance is to specify structure sharing. So we cannot reasonably
assume that isa and types are declared separately and independently. Interest-
ingly, their interaction does not significantly complicate things and can be
captured using the p-interpretation of types from Section 2. Let us come back to
the canonical example.

Example 6.2.1. A more succinct specification of the schema of Example 6.1.2
is as follows:

person has-type t1 5 @name: D# ,

student has-type t2 5 @course-taken: D# and student isa person,

instructor has-type t3 5 @course-taught: D# and instructor isa person

ta isa student and ta isa instructor.

The intention here is to have the isa hierarchy force a certain structural
similarity. For this, interpret the types using p-interpretations of types given p# ,
where p# is the inherited oid assignment. The type of person is t1, the type of
student is t1 ` t2, the type of instructor is t1 ` t3, and the type of ta is t1 ` t2 `
t3. Using Proposition 6.1, we can eliminate the intersection and get the type
expressions explicitly given in Example 6.1.2.

Clearly, the p-interpretation forces some compatibility of the types of classes
connected via isa. Otherwise, their conjunction may end up being the empty type
or some trivial type. e

Following through with this kind of approach, one can find a serious drawback
with exclusive use of p-interpretations. It leads to legal instances with attributes
that do not appear in the schema. Thus, there is insufficient information in the
schema to describe the instance and, consequently, little hope of finding a
complete query language according to our requirements.

This suggests a blend of the two possibilities. One would like to use the starred
interpretation to force inheritance of structure. But, one would also like to use
the unstarred interpretation on the disjoint oid assignment p that generates p# .
For instance, the value of an object in p(ta) in Example 6.1.2 should have exactly
type [name: D, course-taught: D, course-taken: D], and no other attributes.
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In this spirit, let P be in P. We construct tP such that:

vtPbp# p 5 ù $vT~P9!bp# p u P # P9% .

Such a type expression tP exists by Proposition 6.1. Now we can put everything
together in a new definition that gives meaning to isas.

Definition 6.2.2. An instance I of schema (R, P, T, #) is a triple (r, p, n),
where r is an o-value assignment for R, p is a disjoint oid assignment for P, and
n is a partial function from the set of oids ø {p(P) u P [ P} to o-values, such
that:

(1) r(R) # vT(R)bp# (for each R [ R),
(2) n(p(P)) # vtPbp# (for each P in P).
(3) n is total on p(P), for each P [ P with T(P) 5 {t}.

where p# is the oid assignment inherited from p.
We insist on the use of unstarred interpretations here to have the schema fully

specify the structure of o-values in legal instances.
Instance I of S 5 (R, P, T, #), in Definition 6.2.2, is also an instance of a

schema without isa’s S9 5 (R, P, T*). The new types T* are obtained from T by:
first using tP (as defined above) instead of T(P) and then replacing every
occurrence of P by the disjunction of its “smaller-or-equal” classes (in #). The
language IQL can now be used with no modification.

Remark 6.2.3. In our treatment of inheritance, we have made two important
design choices: (1) the oid assignments are inherited, and (2) the value of an
object has exactly the type specified by the least class in the isa hierarchy, where
it belongs. We believe that both design choices are natural restrictions to impose.
Clearly, they can be enforced by constraining the creation of oids in a precise
class with the exact type of that class (e.g., this form of creation is implicitly
enforced in the implementation of Bancilhon et al. [1988]).

7. A Value-Based Data Model

In this section, we introduce a value-based data model and relate it to the
object-based model of the previous sections. We use a simplified framework: only
class names P and v-type-exp(P). The set v-type-exp(P) consists of all type
expressions in type-exp(P) constructed without ~, `, À; that is, we assume only
base, finite set, and tuple construction. Clearly, this is too restrictive for practical
applications. But, this is sufficient to allow us to focus of the essence of the
difference between a value-based and an object-based model.

The value-based schemas have the form (P, T) and should be compared to
object-based schemas of the form (À, P, T). For simplicity both are denoted (P,
T).

We only consider here IQL programs from input schema S to output schema
S9, where S, S9 are disjoint value-based schemas. We use IQLv for this subset of
IQL.

7.1. PURE VALUES. The pure values that are considered here can be defined
as trees, in the style of o-value representations. They have the same kinds of
nodes (base, finite set, finite tuple), but there are two differences: (1) no oids
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occur in them, (2) they might have infinite depth. These infinite trees are variants
of the infinite trees in Courcelle [1983]. The only difference is that set nodes do
not have a fixed arity and the order of their children is not significant, whereas
all functions in Courcelle [1983] do have a fixed arity. However, using the fact
that the sets that are considered are finite, it is an easy but tedious exercise to
show that: properties of the infinite trees in Courcelle [1983] also hold for pure
value infinite trees.

The assignments and type interpretations of Section 2 have analogs in the
value-based case. Given a set of class names P, a finite assignment I for P is a
function from P to finite sets of pure values. Each finite assignment I defines a
function from v-type-exp(P) to sets of pure values, called the type interpretation
given I.

The function v zbI is analogous to vzbp of Section 2. More precisely, for each P in
P, vPbI 5 I(P), and v zbI extends to v-type-exp(P) by structural induction.

Definition 7.1.1. A v-schema S is a pair (P, T), where P is a finite set of class
names and T is a function from P to v-type-exp(P) such that:

~1! for each P [ P, T~P! is not a class name.

Definition 7.1.2. A v-instance I over (P, T) is a finite assignment for P such
that:

I~P! # vT~P!b I for each P [ P .

Note the simplicity of these definitions, that generalize complex-object data
models by adding cyclicity to both schemas and instances. The technical condi-
tion on the T of a v-schema is imposed to avoid pathological cases, such as
T(P1) 5 P2, which does not specify any structure for P1.

A regular tree is a tree with a finite number of subtrees [Courcelle 1983]. An
important consequence of the finiteness of assignments is that each value
occurring in a v-instance is a regular tree.

PROPOSITION 7.1.3. Each pure value occurring in a v-instance is a regular tree.

PROOF. Let I be a v-instance. Let {v1, . . . , vn} 5 ø I(P). By Definition
7.1.2, ^v1, . . . , vn& can be viewed as a solution of a system of equations {vi 5
t i(v1, . . . , vn)} where each t i is a finite tree with leaves in {v1, . . . , vn}. Since
the sets are finite, we can view this system as an extended regular Greibach
system [Courcelle 1983]. (The technical condition (1) is also imposed in these
systems). By Courcelle [1983], the solution is unique and each component of the
solution, that is, each vi, is regular. e

Now let us compare object-based and value-based instances over schema
(P, T).

From values to objects. Let I be a v-instance over (P, T). For each P in P, let
fP be a one-to-one mapping from I(P) to O with fP(I(P)) ù fP9(I(P9)) 5 À if
P Þ P9. Let p be the oid assignment such that for each P, p(P) 5 fP(I(P)). We
have defined things so that for each P in P and o in p(P), we have that o 5
fP(v) for some v in I(P). By definition of v-instances, I(P) is a subset of the
interpretation of T(P) given I.
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We next define the function n. We can show by structural induction on types
that, for each v in the interpretation of T(P) given I, there is a unique wv in the
interpretation of T(P) given p, such that: v is obtained from wv by the
simultaneous substitution

v 5 wv@fP
21~o9!/o9 ; o9 [ p~P! , P [ P# .

Uniqueness is guaranteed, because the induction is constrained to one choice of
type constructor at each step (union types would complicate things here). Let
n(o) 5 wv. It is easy to verify that (p, n) is an instance over (P, T). This instance
clearly depends on the choice of the fP. However, all the instances thereby
obtained are O-isomorphic. Let us call w(I) one of these instances.

From objects to values. Let I 5 (p, n) be an instance over (P, T) with n
defined for each oid occurring in p. Consider the set of equations

$o 5 n~o! u ' P [ P , o [ p~P!% .

The oids can be viewed as unknowns. Like in the proof of Proposition 7.1.3, the
solution is unique. Let o1, . . . , on be the oids in p, and v1, . . . , vn the solution
of the system of equations. Let c(I) be the v-instance defined by: c(I)(P) 5 {vi

u oi [ p(P)}. Note that for oi and oj distinct, vi and vj may be the same (i.e.,
duplicates are eliminated).

We have defined translations of pure values into objects and vice-versa: w can
be thought of as producing o-values by adding oids and c as producing pure
values by loosing oids. It is easy to show that these translations preserve
information in the following sense:

PROPOSITION 7.1.4. For each v-instance I, c(w(I)) 5 I.

Propositions 7.1.3 and 7.1.4 have some interesting consequences about com-
putable queries in the value-based model. Regularity guarantees the existence of
a simple encoding of v-instances on Turing-machine tapes, so it is possible to
compute. Genericity is defined in the usual way.

A vdio-transformation is a transformation from v-instances over a v-schema S
to v-instances over a disjoint v-schema S9, which is recursively enumerable and
generic. A language is vdio-complete if it expresses exactly the vdio-transforma-
tions.

Let G be an IQLv program from v-schema S to disjoint v-schema S9. Consider
a v-instance I over S. Consider the mappings illustrated in Figure 2. G transforms
w(I) into some instance J. So, by using G for the value-based model we mean

FIG. 2. Using IQL for the value-based model.
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that it is preceded by the fixed transformation w and followed by the fixed
transformation c. We shall also say that G transforms I into c( J). First, note that
this defines a mapping. It is easy to check that this mapping is recursively
enumerable and generic. Recall that IQL can express all dio-transformations (up
to copy). Using this completeness theorem, and noticing that automatic copy
elimination is performed in c we have:

THEOREM 7.1.5. IQLv is vdio-complete.

Remark 7.1.6. One can define the pure structure of a class as constrained by
a given schema. To do that, one needs to use the regularity of the values in the
class. An example of such an approach can be found in Ohori [1990].

8. Conclusions

We have extended the techniques of database theory in order to understand the
concepts of “object-identity, types and type inheritance” in object-oriented
databases. “Methods, method inheritance and encapsulation” are also important
elements of an object-oriented database system and have parallels in program-
ming languages, for example, abstract types. However, our techniques, with their
emphasis on finite structures and concrete types, were not intended to deal with
methods as programs or with the dynamics of method inheritance.

The language IQL is based on a logic programming paradigm. We believe that
any typable language, based on a different paradigm but expressing the same
database transformations, would have many fundamental similarities with IQL.
In particular, the following features appear as central.

(1) Types. The concrete types used here are present in most object-oriented
databases. Their type constructors largely determine what terms must be
available in the language. Typing the language serves both for correctness
and for efficiency. Efficiency is the main justification for the separation of
database schema and instance, as well as for the requirement of type
checking.

(2) Basic query and update capabilities. The means must be there to easily extract
information from the database and modify its state. It should be easy to
express common queries, for example, sets of conjunctive queries on com-
plex-objects. It should be possible to both: find the value-of-oids and to
assign-values to oids. Weak forms of assignment suffice for queries and
insertions, but deletions introduce a certain amount of complexity.

(3) Flow of control capabilities. The means must be available for realizing
sequential composition and looping. In rules, this can be provided by
inflationary semantics and negation.

(4) Cyclicity and oids. There is some subtlety in the use of oids to code and
manipulate cyclic structures, since these are represented in an acyclic manner
by o-values. To deal with cyclicity, controlled use of typed pointers should be
a key component of the language.

(5) Invention of oids. A primitive for oid invention must be in the language. We
believe that this is necessary, if unbounded structures are to be constructed.
Invention is a powerful mechanism; it is crucial if arbitrary computations are
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to be simulated and it should be carefully restricted. Also, oid invention can
be very useful for manipulating set types.

(6) Relation vs. classes. We believe that this dichotomy is essential for being able
to express simple queries in a simple manner. We think that without this (in
some sense) redundancy, the language will have difficulties in maintaining
temporary results and eliminating duplicates, and it will use indirection
excessively.

(7) Incomplete information. Incomplete information is important for a variety of
database applications. The (benign) form of incomplete information that we
use seems fundamental if complex cyclic structures have to be created in
stages.

(8) Type inheritance and coercions. For union types, our language employs
coercion and inheritance is handled indirectly, through union types. If a
language is to use inheritance directly, it will need sophisticated coercion
strategies. Finally, inheritance and union types need not be the only means to
specify structure sharing. One might use other forms of polymorphism, for
example, parametric types, abstraction over types.

To conclude this paper, it should be observed that the field of object databases
has been quite active since IQL was first proposed. Most notably, as already
mentioned, a standard model (ODL) and a standard query language (OQL) have
been proposed by the ODMG [Cattell 1994]. The relative resemblance with the
model used in IQL is an a-posteriori motivation for the present paper. The
modelisation of data using objects and graph structures has become one of the
major directions of research for modern databases notably influenced by the
problem of accessing data on the World Wide Web. A number of languages have
been proposed.7 An important difference with the present work is that typing is
in general much more flexible. (See Abiteboul [1997] for a survey on “semistruc-
tured data.”) The extension of IQL to semistructured data and the study of
complete languages in that new setting are interesting open issues.
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