
1

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

2ID00: Database Models2ID00: Database Models

Beyond the Relational Database Model
New Ways to Store, Exchange and

Manipulate Data

Prof. dr. Paul De Bra
Prof. dr. Jan Paredaens

2

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

TopicsTopics

Why is the relational model insufficient?
Object-Oriented Databases
Object-Relational Databases
Semi-Structured Data and XML
Data Definition and Data Manipulation in XML
XML Databases or storing XML in Databases

Part of this course is based on “Database Systems Concepts” by
Silberschatz, Korth and Sudarshan (4th edition)

3

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Limitations of the Relational ModelLimitations of the Relational Model

Basic assumption is First Normal Form: each value of a tuple for
an attribute is atomic (e.g. a number, a string)

Sometimes we need attributes with an internal structure, e.g. an
address, a date;
Sometimes we need multivalued attributes (set-valued), e.g. the
keywords of a book, a person's children;
Sometimes we need a simple way to refer to a tuple, e.g. to refer to a
book, a publisher, a part, a component, a webpage.
Sometimes we have similar but differently structured objects (like with
specialization/generalization);

Structured and multivalued attributes are offered in the nested
relational model
Identifiers (instead of artificial primary key attributes) are offered
by the object-oriented model
Storing objects with different structure together is possible in
semi-structured databases (represented using XML)

4

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object-Oriented Data ModelObject-Oriented Data Model

Loosely speaking, an object corresponds to an entity in the
E-R model.

The difference is that objects have an internal identifier.

The object-oriented paradigm is based on encapsulating code
and data related to an object into single unit.

The interface between an object and the rest of the world is
through messages. Messages are sent through method calls.

The object-oriented data model is a logical data model
(like the E-R model).

However, implementation is typically based on an adapted
(extended) version of an object-oriented programming language.
Data manipulation is thus typically done through a procedural
language, but a declarative language is also available.

5

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object StructureObject Structure

An object has associated with it:
A set of variables that contain the data for the object. The value of
each variable is itself an object (at least conceptually).

A set of messages to which the object responds; each message may
have zero, one, or more parameters.

A set of methods, each of which is a body of code to implement a
message; a method returns a value as the response to the message

The physical representation of data is visible only to the
implementor of the object.
Messages and responses provide the only external interface to an
object. (i.e. there are no “public” data fields)
The term message does not necessarily imply physical message
passing. Messages can be implemented as method invocations.

6

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Messages and MethodsMessages and Methods

Methods are programs written in general-purpose language
with the following features:

only variables in the object itself may be referenced directly.
data in other objects are referenced only by sending messages.

Methods can be read-only or update methods
Read-only methods do not change the value of the object

Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, one to read and
the other to update the attribute

e.g., the attribute address is represented by a variable address
and two messages get-address and set-address. (This
corresponds to the convention for JavaBeans.)
For convenience, many object-oriented data models permit direct
access to variables of other objects.
(This gives the performance of pointer indirection.)

7

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object ClassesObject Classes

Similar objects are grouped into a class; each such object is
called an instance of its class
All objects in a class have the same

Variables, with the same types
message interface
methods

They may differ in the values assigned to variables.
Two objects with identical values assigned to their variables are
still distinct objects.

Example: Group objects for people into a person class.
Classes are analogous to entity sets in the E-R model.

8

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Class Definition Example (pseudocode)Class Definition Example (pseudocode)

class employee {
/*Variables */

string name;
string address;
date start-date;
int salary;

 /* Messages */
int annual-salary();
string get-name();
string get-address();
int set-address(string new-address);
int employment-length();

};
Methods to read and set the other variables are also needed with
strict encapsulation.
Methods are defined (implemented) separately

E.g. int employment-length() { return today() – start-date;}
 int set-address(string new-address) { address = new-address;}

9

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

InheritanceInheritance

E.g., class of bank customers is similar to class of bank
employees, although there are differences

both share some variables and messages, e.g., name and address.
But there are variables and messages specific to each class e.g.,
salary for employees and credit-rating for customers.

Every employee is a person; thus employee is a specialization of
person
Similarly, customer is a specialization of person.
Create classes person, employee and customer

variables/messages applicable to all persons associated with class
person.
variables/messages specific to employees associated with class
employee; similarly for customer

10

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Inheritance (Cont.)Inheritance (Cont.)

Place classes into a specialization/IS-A hierarchy
variables/messages belonging to class person are
inherited by class employee as well as customer

Result is a class hierarchy

Note analogy with ISA Hierarchy in the E-R model

11

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Class Hierarchy DefinitionClass Hierarchy Definition

class person{
string name;
string address:
};

class customer isa person {
int credit-rating;
};

class employee isa person {
date start-date;
int salary;
};

class officer isa employee {
int office-number,
int expense-account-number,
};

12

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Class Hierarchy Example (Cont.)Class Hierarchy Example (Cont.)

Full variable list for objects in the class officer:
office-number, expense-account-number: defined locally

start-date, salary: inherited from employee

name, address: inherited from person

Methods inherited similar to variables.

Substitutability — any method of a class, say person, can be invoked
equally well with any object belonging to any subclass, such as subclass
officer of person.

Class extent: set of all objects in the class. Two options:
1. Class extent of employee includes all officer, teller and secretary objects.

2. Class extent of employee includes only employee objects that are not in a
subclass such as officer, teller, or secretary

This is the usual choice in OO systems

Can access extents of subclasses to find all objects of
subtypes of employee

13

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Multiple InheritanceMultiple Inheritance

With multiple inheritance a class may have more than one superclass.
The class/subclass relationship is represented by a directed acyclic graph
(DAG)
Particularly useful when objects can be classified in more than one way,
which are independent of each other

E.g. temporary/permanent is independent of Officer/secretary/teller
Create a subclass for each combination of subclasses

– Need not create subclasses for combinations that are not possible in
the database being modeled

A class inherits variables and methods from all its superclasses
There is potential for ambiguity when a variable/message N with the
same name is inherited from two superclasses A and B

No problem if the variable/message is defined in a shared superclass
Otherwise, do one of the following

flag as an error,
rename variables (A.N and B.N)
choose one.

14

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Example of Multiple InheritanceExample of Multiple Inheritance

Class DAG for banking example.

15

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

More Examples of Multiple InheritanceMore Examples of Multiple Inheritance

Conceptually, an object can belong to each of several
subclasses

A person can play the roles of student, a teacher or footballPlayer,
or any combination of the three

 E.g., student teaching assistant who also play football
Can use multiple inheritance to model “roles” of an object

That is, allow an object to take on any one or more of a set of types
But many systems insist an object should have a most-specific
class

That is, there must be one class that an object belongs to which is a
subclass of all other classes that the object belongs to
Create subclasses such as student-teacher and
student-teacher-footballPlayer for each combination
When many combinations are possible, creating
subclasses for each combination can become cumbersome

16

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object IdentityObject Identity

An object retains its identity even if some or all of the values
of variables or definitions of methods change over time.
Object identity is a stronger notion of identity than in
programming languages or data models not based on
object orientation.

Value – data value, typical for relational databases; e.g.
primary key value used as object identity (often artificial).
Name – supplied by user; used for files in a file system and for
variables in procedures.
Built-in – identity built into data model or programming
language.

no user-supplied identifier is required.
this is the form of identity used in object-oriented systems.

17

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object IdentifiersObject Identifiers

Object identifiers used to uniquely identify objects
Object identifiers are unique:

no two objects have the same identifier
each object has exactly (only) one object identifier

E.g., the spouse field of a person object may be an identifier of
another person object.
Can be stored as a field of an object, to refer to another object.
Can be

system generated (created by database) or
external (such as social-security number)

System generated identifiers:
Are easier to use, but cannot be used across database systems
May be redundant if unique (value) identifier already exists

18

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object ContainmentObject Containment

Each component in a design may contain other components
Can be modeled as containment of objects. Objects containing;
other objects are called composite objects.
Multiple levels of containment create a containment hierarchy

 links interpreted as is-part-of, not is-a.

Allows data to be viewed at different granularities by different
users.

19

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object-Oriented LanguagesObject-Oriented Languages

Object-oriented concepts can be used in different ways
Object-orientation can be used as a design tool, and be
encoded into, for example, a relational database

analogous to modeling data with E-R diagram and then
converting to a set of relations

The concepts of object orientation can be incorporated into a
programming language that is used to manipulate the
database.

Object-relational systems – add complex types and
object-orientation to relational language.

Persistent programming languages – extend object-
oriented programming language to deal with databases
by adding concepts such as persistence and collections.

20

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Persistent Programming LanguagesPersistent Programming Languages

Persistent Programming languages allow objects to be created
and stored in a database, and used directly from a programming
language

allow data to be manipulated directly from the programming language
No need to go through SQL.

No need for explicit format (type) changes
format changes are carried out transparently by system
Without a persistent programming language, format changes
becomes a burden on the programmer
– More code to be written
– More chance of bugs

allow objects to be manipulated in-memory
 no need to explicitly load from or store to the database
– Saved code, and saved overhead of loading/storing large

amounts of data

21

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Persistent Prog. Languages (Cont.)Persistent Prog. Languages (Cont.)

Drawbacks of persistent programming languages
Due to power of most programming languages, it is easy to make
programming errors that damage the database.

It is harder to define transactions and commit/rollback
operations. (A bad update is harder or impossible to undo.)

Complexity of languages makes automatic high-level optimization
more difficult.

Data manipulation is through a procedural language that is
harder to optimize than SQL. Especially changing the order of
operations into an equivalent one is difficult.

Do not support declarative querying as well as relational databases.

22

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Persistence of ObjectsPersistence of Objects

Approaches to make transient objects persistent include
establishing

Persistence by Class – declare all objects of a class to be
persistent; simple but inflexible.
Persistence by Creation – extend the syntax for creating objects to
specify that that an object is persistent.
Persistence by Marking – an object that is to persist beyond
program execution is marked as persistent before program
termination.
Persistence by Reachability - declare (root) persistent objects;
objects are persistent if they are referred to (directly or indirectly)
from a root object.

Easier for programmer, but more overhead for database system
Similar to garbage collection used e.g. in Java, which
also performs reachability tests

23

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object Identity and PointersObject Identity and Pointers

A persistent object is assigned a persistent object identifier.
Degrees of permanence of identity:

Intraprocedure – identity persists only during the executions of a
single procedure
Intraprogram – identity persists only during execution of a single
program or query.
Interprogram – identity persists from one program execution to
another, but may change if the storage organization is changed
Persistent – identity persists throughout program executions and
structural reorganizations of data; required for object-oriented
(database) systems.

24

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object Identity and Pointers (Cont.)Object Identity and Pointers (Cont.)

In O-O languages such as C++, an object identifier is
actually an in-memory pointer.
Persistent pointer – persists beyond program execution

can be thought of as a pointer into the database
E.g. specify file identifier and offset into the file

Problems due to database reorganization have to be dealt
with by keeping forwarding pointers

25

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Storage and Access of Persistent ObjectsStorage and Access of Persistent Objects

Name objects (as you would name files)
Cannot scale to large number of objects.
Typically given only to class extents and other collections of
objects, but not objects.

Expose object identifiers or persistent pointers to the objects
Can be stored externally.
All objects have object identifiers.

Store collections of objects, and allow programs to iterate
over the collections to find required objects

Model collections of objects as collection types
Class extent - the collection of all objects belonging to the
class; usually maintained for all classes that can have persistent
objects. (This brings OO closer to relational.)

How to find objects in the database:

26

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Persistent C++ SystemsPersistent C++ Systems

C++ language allows support for persistence to be added without
changing the language

Declare a class called Persistent_Object with attributes and methods
to support persistence
Overloading – ability to redefine standard function names and
operators (i.e., +, –, the pointer deference operator –>) when applied
to new types
Template classes help to build a type-safe type system supporting
collections and persistent types.

Providing persistence without extending the C++ language is
relatively easy to implement
but more difficult to use

Persistent C++ systems that add features to the C++ language
have been built, as also systems that avoid changing the
language.

27

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG ODMG

The Object Database Management Group is an industry
consortium aimed at standardizing object-oriented databases

in particular persistent programming languages
includes standards for C++, Smalltalk and Java
ODMG-2.0 defines C++ binding
ODMB-3.0 adds Java binding

ODMG C++ standard avoids changes to the C++ language
provides all functionality via template classes and class libraries

ODMB Java standard requires a post-processor
object code changed to ensure persistence (see later)

28

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Object Definition LanguageObject Definition Language

Programming-language-independent form
translated to language bindings by preprocessor.

General form of the declaration of a class:
interface <name> { < list of properties > } ;

Example:
interface Person {

Attribute string name;
Attribute struct address(string street, short nr);
Attribute enum sex{male,female} sex;
Relationship set(Car) owns inverse Car::owner;
Short age();

};

29

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG Types (for C++ ODL)ODMG Types (for C++ ODL)

Template class d_Ref<class> used to specify references
(persistent pointers)

Template class d_Set<class> used to define sets of objects.
Methods include insert_element(e) and delete_element(e)

Other collection classes such as d_Bag (set with duplicates
allowed), d_List and d_Varray (variable length array) also
provided.
d_ version of many standard types provided, e.g. d_Long and
d_string

Interpretation of these types is platform independent
Dynamically allocated data (e.g. for d_string) allocated in the
database, not in main memory

30

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG C++ ODL: ExampleODMG C++ ODL: Example

class Branch : public d_Object {
 ….

}
class Person : public d_Object {
 public:

d_String name; // should not use String!
d_String address;

};

class Account : public d_Object {
 private:

d_Long balance;
 public:

d_Long number;
d_Set <d_Ref<Customer>> owners;
int find_balance();
int update_balance(int delta);

};

31

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG C++ ODL: Example (Cont.)ODMG C++ ODL: Example (Cont.)

class Customer : public Person {
public:

d_Date member_from;
d_Long customer_id;
d_Ref<Branch> home_branch;
d_Set <d_Ref<Account>> accounts;

};

32

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Implementing RelationshipsImplementing Relationships

Relationships between classes implemented by references
Special reference types enforce integrity by adding/removing
inverse links.

Type d_Rel_Ref<Class, InvRef> is a reference to Class, where
attribute InvRef of Class is the inverse reference.
Similarly, d_Rel_Set<Class, InvRef> is used for a set of references

Assignment method (=) of class d_Rel_Ref is overloaded
Uses type definition to automatically find and update the inverse
link
Frees programmer from task of updating inverse links
Eliminates possibility of inconsistent links

Similarly, insert_element() and delete_element() methods of
d_Rel_Set use type definition to find and update the inverse link
automatically.

33

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Implementing RelationshipsImplementing Relationships

E.g.

extern const char _owners[], _accounts[];
class Customer : public Person {
 ….

d_Rel_Set <Account, _owners> accounts;
};

 class Account : public d_Object {
 ….

d_Rel_Set <Customer, _accounts> owners;
};
 // .. Since strings can’t be used in templates …
const char _owners= “owners”;
const char _accounts= “accounts”;

34

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG C++ Object Manipulation LanguageODMG C++ Object Manipulation Language

Uses persistent versions of C++ operators such as new(db)
d_Ref<Account> account = new(bank_db, “Account”) Account;

new allocates the object in the specified database, rather than in
memory.
The second argument (“Account”) gives typename used in the
database.

Dereference operator -> when applied on a d_Ref<Account>
reference loads the referenced object in memory (if not already
present) before continuing with usual C++ dereference.
Constructor for a class – a special method to initialize objects
when they are created; called automatically on new call.
Class extents are maintained automatically on object creation
and deletion

Only for classes for which this feature has been specified
Specification via administrative user interface, not C++ code

Automatic maintenance of class extents was not supported in
earlier versions of ODMG

35

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG C++OML: Database and Object ODMG C++OML: Database and Object
FunctionsFunctions

Class d_Database provides methods to:
open a database: open(databasename)

give names to objects: set_object_name(object, name)

look up objects by name: lookup_object(name)

rename objects: rename_object(oldname, newname)

close a database: close()

Class d_Object is inherited by all persistent classes.
provides methods to allocate and delete objects
method mark_modified() must be called before an object is
updated.

Is automatically called when object is created

36

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG C++ OML: ExampleODMG C++ OML: Example

int create_account_owner(String name, String Address) {

d_Database bank_db_obj;
d_Database * bank_db= & bank_db_obj;
bank_db->open(“Bank-DB”);
d_Transaction Trans;
Trans.begin();
d_Ref<Account> account = new(bank_db, “Account”) Account;
d_Ref<Customer> cust = new(bank_db, “Customer”) Customer;
cust->name - name;
cust->address = address;
cust->accounts.insert_element(account);

 account->owners.insert_element(cust);
... Code to initialize other fields
Trans.commit();

 bank_db->close();

}

37

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG C++ OML: Example (Cont.)ODMG C++ OML: Example (Cont.)

Class extents maintained automatically in the database.
To access a class extent:
 d_Extent<Customer> customerExtent(bank_db);

Class d_Extent provides method
 d_Iterator<T> create_iterator()
to create an iterator on the class extent

Also provides select(pred) method to return iterator on objects that
satisfy selection predicate pred.
Iterators help step through objects in a collection or class extent.

Collections (sets, lists etc.) also provide create_iterator() method.

38

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG C++ OML: Example of IteratorsODMG C++ OML: Example of Iterators

int print_customers() {
d_Database bank_db_obj;
d_Database * bank_db = &bank_db_obj;
bank_db->open (“Bank-DB”);
d_Transaction Trans;
Trans.begin ();
d_Extent<Customer> all_customers(bank_db);
d_Iterator<d_Ref<Customer>> iter;
iter = all_customers.create_iterator();
d_Ref <Customer> p;
while (iter.next (p)) {

print_cust (p); // Function assumed to be defined elsewhere
 }

Trans.commit();
 bank_db->close();

}

39

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Making Pointer Persistence TransparentMaking Pointer Persistence Transparent

Drawback of the ODMG C++ approach:
Two types of pointers
Programmer has to ensure mark_modified() is called, else
database can become corrupted

ObjectStore approach
Uses exactly the same pointer type for in-memory and database
objects
Persistence is transparent in applications

Except when creating objects
Same functions can be used on in-memory and persistent objects
since pointer types are the same
Implemented by a technique called pointer-swizzling (which is
described in Silberschatz Chapter 11).
No need to call mark_modified(), modification detected
automatically.

40

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Persistent Java SystemsPersistent Java Systems

ODMG-3.0 defines extensions to Java for persistence
Java does not support templates, so language extensions are
required

Model for persistence: persistence by reachability
Matches Java’s garbage collection model
Garbage collection needed on the database also
Only one pointer type for transient and persistent pointers

Class is made persistence capable by running a post-processor
on object code generated by the Java compiler

Contrast with pre-processor used in C++
Post-processor adds mark_modified() automatically

Defines collection types DSet, DBag, DList, etc.
Uses Java iterators, no need for new iterator class

41

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ODMG JavaODMG Java

Transaction must start accessing database from one of the root
objects (looked up by name)

finds other objects by following pointers from the root objects

Objects referred to from a fetched object are allocated space in
memory, but not necessarily fetched

Fetching can be done lazily
An object with space allocated but not yet fetched is called a hollow
object
When a hollow object is accessed, its data is fetched from disk.

42

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

OQL: Object Query LanguageOQL: Object Query Language

Declarative language, similar to SQL (based on O2SQL)

Can make use of methods in classes
Can query complex types of data and navigation
Does not support recursive queries
Two modes of usage: interactive and embedded
Functional (closure), composition of queries
No explicit updates (use of methods instead)

43

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

OQL embedded in C++ OQL embedded in C++

Form query as a string, and execute it to get a set of results
(actually a bag, since duplicates may be present)
d_Set<d_Ref<Account>> result;
d_OQL_Query q1("select a

 from Customer c, c.accounts a
 where c.name=‘Jones’

 and a.find_balance() > 100");
d_oql_execute(q1, result);
Provides error handling mechanism based on C++ exceptions,
through class d_Error.
Provides API for accessing the schema of a database.

44

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Some differences between SQL and OQLSome differences between SQL and OQL

Bag or list of tuplesAny Type of dataOutput

Bags of tuplesAny kind of collectionInput

WhereSelect, From, WhereNesting

SQLOQL

Bag or list of tuplesAny Type of dataOutput

Bags of tuplesAny kind of collectionInput

WhereSelect, From, WhereNesting

SQLOQL

1980BMW

1990Fiat

DateCompany

1980BMW

1990Fiat

DateCompany

1995Volvo

1985Renault

YearFirm

1995Volvo

1985Renault

YearFirm

1980BMW

1990Fiat

DateCompany

1980BMW

1990Fiat

DateCompany

Volvo1995

Renault1985

CompanyDate

Volvo1995

Renault1985

CompanyDate

∪

∪

SQL: Yes
OQL: No

SQL: No
OQL: Yes

45

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

Examples of OQLExamples of OQL

Find the names of customers with an account in branch “SBC”
Select c.name
From Customer c, c.home_branch b
Where b.branch_name = “SBC”
Find the names of customers with more than three accounts
Select c.name
From Customer c
Where COUNT(c.accounts) > 3
Find pairs of customers having the same address
Select distinct struct(name1:c1.name, name2:c2.name)
From Customer c1, Customer c2
Where c1 != c2 and c1.address = c2.address

46

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ExercisesExercises

1. In the bank example, write OQL queries for the following
questions:
1. Give the names of customers with their total balance (for all their

accounts together).
2. Give pairs of (different) customers with the same customer id and

different home branch.
3. Give the names of customers who have two accounts with the same

number and with a different balance.
4. Give the addresses of branches of customers with an account with a

balance of over 1.000.000.

47

©De Bra, Paredaens, Silberschatz, Korth, Sudarshan2ID00: Database Models

ExercisesExercises

2. Define an OODB scheme for a car-rental company vehicle
database. Each vehicle has an identification number, license
number manufacturer, model, date of purchase and color. Special
data are included for certain types of vehicles:

• Trucks: cargo capacity
• Sports cars: horsepower, renter age requirement
• Vans: number of passengers
• Off-road vehicles: ground clearance, drivetrain (two- or four-wheel

drive)

 Use inheritance where appropriate.

