
Using UML Class Diagrams for a Comparative Analysis
of Relational, Object-Oriented,

and Object-Relational Database Mappings

Susan D. Urban and Suzanne W. Dietrich
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-5406

s.urban@asu.edu dietrich@asu.edu

Abstract
This paper illustrates the manner in which UML can be used to
study mappings to different types of database systems. After
introducing UML through a comparison to the EER model, UML
diagrams are used to teach different approaches for mapping
conceptual designs to the relational model. As we cover object-
oriented and object-relational database systems, different features
of UML are used over the same enterprise example to help
students understand mapping alternatives for each model.
Students are required to compare and contrast the mappings in
each model as part of the learning process. For object-oriented
and object-relational database systems, we address mappings to
the ODMG and SQL99 standards in addition to specific
commercial implementations.

Categories & Subject Descriptors
H.2.1 [Database Management]: Logical Design – Data
Models, Schema and Subschema.

General Terms
Design.

Keywords
Entity-Relationship Model, Unified Modeling Language,
Relational Model, Object-Oriented Data Model, Object-Relational
Data Model, Database Design, Schema Mappings.

1 Introduction
An important topic to address when teaching database concepts to
undergraduates is the mapping of conceptual database designs to
specific database implementation models. For example, a
traditional course on relational database systems typically covers
the Entity-Relationship (ER) model and how to use an ER design
to generate a relational schema with primary key and foreign key
constraints [4]. With recent advances in object-based technology,
however, it is important for undergraduates to understand object-
oriented techniques for modeling conceptual designs. As a result,
it is also important to teach techniques for mapping object-
oriented designs to traditional relational technology as well as
object-oriented and object-relational database systems.
At Arizona State University, we have developed an advanced
database course for undergraduates (CSE 494,
http://www.eas.asu.edu/~cse494db) that begins with
coverage of object-oriented database modeling using the
Enhanced Entity Relationship (EER) model [4] and the Unified
Modeling Language (UML) class diagrams [7]. Assuming a
prerequisite course on relational database systems
(http://www.eas.asu.edu/~cse412), we also cover advanced
database topics related to object-oriented database systems [3],
object-relational database systems, Web access to databases [2],
and professionalism and ethics. The focus of this paper is on our
approach to using UML as the basis for a comparative approach to
teaching database mapping techniques for relational, object-
oriented, and object-relational database designs.
Since students already have a basic understanding of the ER
model, CSE 494 first introduces the EER model and its features
for modeling inheritance, constraints on inheritance, and
categories. We then introduce the equivalent modeling notation in
UML, as well as additional features that UML provides for
modeling behavior, aggregation, and abstract classes. Because of
these additional modeling features in UML that do not exist in the
EER model, we focus on the use of UML for a comparative
analysis of mappings to different data models. We initially use
UML to illustrate different mapping options for relational designs.
As we introduce object-oriented and object-relational database
technology, we use different features of UML over the same
enterprise example to illustrate the mapping techniques that are
specific to each model. This approach provides a basis for
comparison of the relational, object-oriented, and object-relational
technologies in terms of features, design issues, and constraint
enforcement.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.

Copyright 2003 ACM 1-58113-648 -X/03/0002…$5.00.

21

In the remainder of this paper, Section 2 provides an overview of
the School Database Enterprise that is used as a running example
to illustrate mapping techniques. The example is introduced using
the EER model. Section 3 then describes the equivalent UML
notation and the manner in which we teach conceptual mapping to
the relational model. Sections 4 and 5 address mapping issues for
the object-oriented model and the object-relational model,
respectively. Section 6 concludes the paper with a discussion of
the advantages of our approach.

2 The School Database Enterprise
Figure 1 gives the EER diagram of the School Database
Enterprise. In an EER diagram, rectangles represent classes,
diamonds denote relationships between classes, and ovals are
attributes, which are linked by edges to the class or relationship
that they describe. Edges are also used to denote the participation
of the classes in a relationship. A double edge indicates that an
instance of the class must participate in that relationship. The
numbers 1, M or N on the edges indicate the cardinality or
number of times that an instance of the class may participate in
the relationship. A circle represents a specialization/generalization
relationship between classes. A circle annotated with a ‘d’
indicates a disjoint specialization – an instance of the superclass
can not be an instance of more than one of its subclasses. An ‘o’
annotation with the specialization circle denotes a possibly
overlapping specialization.
In Figure 1, the Student and Faculty classes are generalized into a
Person class. The specialization of Person into the Student and
Faculty subclasses is disjoint, meaning that a person in this
enterprise is either a student or a faculty but not both. The double
edge from Person to the specialization circle indicates that every
Person must participate in the specialization. Therefore, a Person
in the enterprise must be either a student or a faculty member. The
Student and Faculty classes inherit the properties from Person and
have additional attributes of their own.
A Student has a status attribute, indicating whether the Student is a
freshman, sophomore, junior, or senior. A Student also participates
in two relationships: major and clubs. A Student must have exactly
one major and a Department has many students that declare that
department as a major. A Student may be a member of several
Campus Clubs. A CampusClub has a unique identifier (cID) and is
further described by its name, location and phone. A Campus Club
has at most one Faculty advisor.
A Faculty has a rank attribute and participates in three
relationships: advises, worksIn, and chair. A Faculty may be the
faculty advisor for many CampusClubs but may not be the advisor
of any club. A Faculty must be associated with the Department in
which the Faculty works. A Faculty is associated with exactly one
Department, and a Department has many Faculty working in that
department. A Department is simply described with a unique code
and name. There is at most one chair of a Department.

3 The Relational View
Figure 2 presents the UML version of the School Database
Enterprise. In UML, classes are represented as rectangles with a
name and a list of attributes. A class may also have a list of
operations that define the behavior of the class.
Subclasses such as Student and Faculty are connected by a line that
points to the Person superclass with an open arrowhead.

Specialization constraints are enclosed in curly braces. In Figure
2, the constraints on the specialization of Person into its subclasses
Student and Faculty indicate that the specialization is disjoint and
mandatory (i.e., participation in the subclasses is required).
Relationships in UML, which are referred to as associations, are
drawn as lines between classes. Lines can be enhanced with
relationship names, role names, and multiplicities. In Figure 2,
clubs is a relationship name, with the black arrow indicating the
direction in which the relationship is read. Role names provide
additional semantics to the association. For example, members
represents the role of students when traversing the clubs
association from CampusClub to Student. Multiplicities are the
same as cardinalities in the EER model. A star (*) represents the
many side of a 1:N or M:N association. The number 1 indicates
the one side of a total 1:1 or 1:N association. The notation 0..1
denotes partial participation in the association.
An association in UML can be refined by placing an arrow at one
end of an association line. The use of an arrow is referred to as
navigation and represents a uni-directional association, indicating
that the association can only be traversed in the direction shown
by the arrow. By default, an association without an arrow is bi-
directional.
Figure 2 provides a UML diagram that represents one approach to
implementing the School Database Enterprise in the relational
data model, where the dog-eared rectangles are notes that
summarize the mapping techniques used to design the
corresponding relational schema shown in Figure 3. Relations are
created for the main classes of Person, Student, Faculty, Department
and CampusClub. The bi-directional clubs association is mapped to
the separate Clubs table, allowing a user to traverse the
association in either direction through queries over the Clubs
relation.
The remaining associations (advises, chair, worksIn, majorsIn) are
uni-directional, illustrating the mapping technique of embedding
the primary key of one relation into the other relation of the
association as a foreign key. For example, the majorsIn association
is implemented by embedding the primary key of Department into

Figure 0: EER Diagram of the School Database

22

Student as a foreign key (i.e., the major attribute). This mapping
rule emphasizes the concept of a uni-directional mapping,
illustrating how a user can directly navigate from Student to
Department using the major attribute. In the opposite direction from
Department to Student, navigation is not directly supported and
must be indirectly achieved through a query over the Student
relation. As a student exercise, the use of navigation can be
removed from Figure 2 for the 1:1 and 1:M relationships so that
students can experiment with different relational mappings.
Removing navigation from majorsIn in Figure 2, for example,
would require that the association be modeled as a separate
relation.
Mapping techniques also address support for class hierarchies.
The approach shown in Figure 3 creates a separate relation for
each superclass and subclass, with the subclasses containing the
key of the superclass. Views can then be created for Student and
Faculty that join each relation with Person to access inherited
attributes. Other approaches include flattening the hierarchy into
one relation and creating relations for the subclasses only [4]. The
constraints of the hierarchy must be considered when choosing the
most appropriate mapping.

4 The Object-Oriented View
The coverage of object-oriented databases in the advanced
database concepts class includes the Object Data Management
Group (ODMG) [1] standard using the Object Definition
Language (ODL) to specify object-oriented schemas. The students
also have a hands-on assignment using the Objectivity/DB [6]
object-oriented database product to reinforce the theoretical
concepts.
Figure 4 provides a UML diagram that represents one approach to
implementing the School Database Enterprise in an object-
oriented data model. Specifically, the UML diagram illustrates an
implementation of the application in Objectivity/DB. The choices
of implementation for the associations are based on providing
students with illustrations of the various alternatives that are
available in mapping a conceptual model to an OODB.

Figure 5 provides an ODL specification for the UML diagram of
Figure 4. The clubs and advises associations are modeled as bi-
directional relationships, which are inherently supported in an
OODB. For example, the memberOf relationship in Student
represents the clubs association and its inverse is the members
relationship in CampusClub. The relationship and its inverse are
explicitly defined, and the consistency of the relationship instance
is automatically maintained by the database system. A
modification to one side of the relationship results in the
automatic maintenance of the data on the other side of the
relationship. The chair association illustrates a uni-directional
relationship, which is specified as the deptChair attribute in
Department. There is a method getChairOf() associated with a
Faculty member to derive the chairOf role of the chair association.
The majorsIn and worksIn associations are bi-directional in the
UML diagram but they are not mapped to relationships in the
ODL specification. Instead, these associations are represented as
attributes on both sides of the associations. For example, the
major of a Student is stored as the major attribute whose type is a
single instance of the Department class. The students attribute of
Department is a collection of Student. This alternative illustrates

Figure 2: UML for Relational Implementation

Person (pID, dob, firstName, lastName)
Student (pID, status, major)

foreign key (pID) references Person(pID),
foreign key(major) references Department(code)

Faculty (pID, rank, dept)
foreign key(pID) references Person(pID),
foreign key(dept) references Department(code)

Department (code, name, chair)
 foreign key (chair) references Faculty(pID)
CampusClub (cID, name, phone, location, advisor)
 foreign key(advisor) references Faculty(pID)
Clubs(pID, cID)

foreign key(pID) references Student(pID),
foreign key(cID) references CampusClub(cID)

Figure 3: Relational Schema of School Database

Figure 4: UML for Object-Oriented Implementation

23

that the many side of a 1:N or M:N relationship can be
represented explicitly in an OODB, which has the ability to store
collections. Using two attributes to store an association also
illustrates the advantages of the automatically maintained
relationship feature provided by an OODB. The example
implementation provided to the student illustrates that the
application programmer must maintain the consistency of an
association that is not stored as an explicit binary relationship.

5 The Object-Relational View
In the object-relational section of the course, we begin with
coverage of the object extensions that have been incorporated into
the SQL99 standard [5] as well as advanced features of SQL99
such as triggers and stored procedures. We then provide a case
study of how the School Database Enterprise can be mapped to
the object-relational model of Oracle 8i. Figure 6 presents the
SQL99 schema, demonstrating the object-relational features that
must be considered in the mapping process. The corresponding
UML diagram is shown in Figure 7. The notes in Figure 7
describe implementation details that are specific to Oracle 8i [8].
The object-relational features of SQL99 include the use of object
tables, references between object tables to represent object
relationships, and the use of arrays to represent multi-valued

associations. Object tables are created by first creating an object
type, such as person_udt in Figure 6. Object types are user-defined
types that establish the attributes, object relationships, and
methods of a class. A type such as person_udt is then used to
create the person table. Instances of the person table will have
object identifiers as in the object-oriented model. Object types can
be formed into hierarchies that support inheritance. In the
faculty_udt type, the phrase "UNDER person_udt" defines
faculty_udt to be a subtype of person_udt. The corresponding faculty
object table will then be a subclass of the person object table,
inheriting the attributes, relationships and methods from person.
References between objects are called REFs in SQL99. For
example, the campusClub table contains a REF to objects of type
faculty_udt to implement the advisor of a club. In the inverse
direction, an array of REFs is used in faculty_udt to store the clubs
that a faculty member advises. Since the array stores REFs to club
objects, the getClubsAdvised method is used to return the names of

class Person
(extent people
 key pID)
{ attribute string pID;
 attribute date dob;
 attribute string firstName;
 attribute string lastName;
 . . . }
class Student extends Person
(extent students)
{ attribute string status;
 attribute Department major;
 relationship set<CampusClub> memberOf inverse CampusClub::members;
 . . . }
class Faculty extends Person
(extent facultyMembers)
{ attribute string rank;
 attribute Department dept;
 relationship set<CampusClub> advisorOf inverse CampusClub::advisor;
 Department getChairOf();
 . . . }
class CampusClub
(extent campusClubs
 key cID)
{ attribute string cID;
 attribute string name;
 attribute string location;
 attribute string phone;
 relationship set<Student> members inverse Student::memberOf;
 relationship Faculty advisor inverse Faculty::advisorOf;
 . . . }
class Department
(extent departments
 key code)
{ attribute string code;
 attribute string name;
 attribute Faculty deptChair;
 attribute set<Student> students;
 attribute set<Faculty> deptFaculty;
 . . . }

Figure 5: ODL Specification of the School Database

Figure 6: SQL99 Schema for the School Database

CREATE TYPE person_udt AS (
 pID VARCHAR(11),
 dob DATE,
 firstName VARCHAR(20),
 lastName VARCHAR(20))
 NOT FINAL
 REF IS SYSTEM GENERATED;
CREATE TABLE person OF person_udt (
 CONSTRAINT person_pk PRIMARY KEY(PID),
 REF IS oid SYSTEM GENERATED);
CREATE TYPE faculty_udt UNDER person_udt AS (
 rank VARCHAR(20),
 advisorOf REF(campusClub_udt) SCOPE campusClub ARRAY[20],
 worksIn REF(department_udt) SCOPE department,
 chairOf REF(department_udt) SCOPE department)
 NOT FINAL
 METHOD getClubsAdvised() RETURNS VARCHAR(25) ARRAY[20];
CREATE TABLE faculty OF faculty_udt under person;
CREATE TYPE student_udt UNDER person_udt AS (
 status VARCHAR(20),
 clubs REF(campusClub_udt) SCOPE campusClub ARRAY[20],
 major REF(department_udt) SCOPE department)
 NOT FINAL
 METHOD getClubs() RETURNS VARCHAR(25) ARRAY[20];
CREATE TABLE student OF student_udt under person;
CREATE TYPE campusClub_udt AS (
 cID VARCHAR(11),
 name VARCHAR(25),
 location VARCHAR(25),
 phone VARCHAR(25),
 advisor REF(faculty_udt) SCOPE faculty,
 members REF(student_udt) SCOPE student ARRAY[100])
 NOT FINAL
 REF IS SYSTEM GENERATED;
CREATE TABLE campusClub OF campusClub_udt (
 CONSTRAINT campusClub_pk PRIMARY KEY(cID),
 REF IS oid SYSTEM GENERATED);
CREATE TYPE department_udt AS (
 code VARCHAR(3),
 name VARCHAR(40),
 deptChair REF(faculty_udt) SCOPE faculty)
 NOT FINAL
 REF IS SYSTEM GENERATED
 METHOD getStudents() RETURNS VARCHAR(40) ARRAY[1000],
 METHOD getFaculty() RETURNS VARCHAR(40) ARRAY[50];
CREATE TABLE department OF department_udt (
 CONSTRAINT department_pk PRIMARY KEY(code),
 REF IS oid SYSTEM GENERATED);

24

the club objects that are referenced in the array. The getClubs
method in the student_udt is used for a similar purpose.
Although not shown in this paper, we teach the use of triggers for
maintaining inverses in object-relational technology and compare
this manual approach to maintaining inverses to the automatic
approach provided by object-oriented databases. Also notice that
in Figure 7, the majorsIn and worksIn relationships are uni-
directional. As a result, methods are added to the department_udt to
provide stored procedures that use queries over object tables to
calculate the inverse of each relationship.
After students understand mapping to the object-relational
features of SQL99, we then present a case study together with an
implementation assignment using Oracle 8i. Oracle 8i does not
directly support inheritance using the UNDER clause as in
SQL99, so students must apply techniques that they learned from
relational mappings to simulate inheritance. Oracle 8i also
provides varrays (i.e, fixed-sized arrays) and nested tables (i.e.,
variable-sized collections) as alternatives for the implementation
of arrays from SQL99. Figure 7 points out the way in which we
use these features in the School Database Enterprise.

6 Summary
This paper has presented an approach for using UML as the basis
for a comparative analysis of mappings to relational, object-
oriented, and object-relational database designs. We have used
this approach with success in three different offerings of the
course. Students learn the intricacies of UML as a modeling
alternative to the EER model. They also learn how the navigation
feature of UML can be used to communicate implementation
directives to the mapping process. Students experience the
advantages of automatic maintenance of relationships in an
object-oriented database model, compared to implementation
alternatives in the relational and object-relational models that
require the development of code to maintain inverse relationships.
Students also address the mapping techniques from the point of
view of the ODMG and SQL99 standards as well as specific
commercial implementations of each standard.

We are currently updating the object-relational case study to the
use of Oracle 9i. We are also revising the material to provide
greater emphasis on the role that constraints play in the mapping
and implementation process and the differences that exist between
the enforcement of constraints in each model.

Acknowledgments
We would like to thank the students that supported this work:
Yang Xiao, Nilan Yang, Mei Zheng, Arleen Wiryo, and Pablo
Tapio. This research was supported by NSF Grant No. DUE-
9980417.

References
[1] Cattell, R. G. G. The Object Database Standard: ODMG 3.0,

Morgan Kaufmann, 2000.
[2] Dietrich, S. W. and Urban, S. D., and Kyriakides, I., "JDBC

Demonstration Courseware Using Servlets and Java Server
Pages," ACM SIGCSE Conference, Kentucky, Feb. 2002, pp.
266-270.

[3] Dietrich, S. W., Suceava, D., Cherekuri, C., and Urban, S.
D., "A Reusable Graphical Interface for Manipulating
Object-Oriented Databases Using Java and XML," ACM
SIGCSE Conference, North Carolina, Feb. 2001, pp. 362-
366.

[4] Elmasri, R. and Navathe, S. Fundamentals of Database
Systems, 3rd ed., Addison Wesley, 2000.

[5] Gulutzan, P. and Pelzer, T., SQL-99 Complete: Really!,
R&D Books, Lawrence, Kansas, 1999.

[6] Objectivity/DB Version 7, Objectivity, Inc., Mountain View,
CA.

[7] Rumbaugh, J., Jacobson, I., and G. Booch, The Unified
Modeling Language Reference Manual, Addison Wesley,
Upper Saddle River, New Jersey, 1999.

[8] Sunderraman, R., Oracle 8 Programming: A Primer,
Addison Wesley, 2000.

Figure 7: UML for Object-Relational Implementation

25

