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Abstract

Universal programming languages are an old dream. There is the computability sense of Turing-
universal; Landin and others have advocated syntactically universal languages, a path leading to
extensible syntax, e.g., macros. A stronger kind of universality would reduce the need for domain-
specific languages — they could be replaced by ‘active libraries’ providing not just the abstractions
for a problem domain but also domain-specific optimizations and safety requirements. Experience
suggests that much domain-specific optimization can be realized by staging, i.e., doing computations
at compile time to produce an efficient run-time. Rudimentary computability arguments show that
languages with a ‘Turing-complete kernel’ can be both stage-universal and safety-universal. But
making this approach practical requires compilers that find optimal programs, and this is a hard
problem.

Guaranteed Optimization is a proof technique for constructing compilers that find optimal pro-
grams within a decidable approximation of program equivalence. This gives us compilers whose
kernels possess intuitive closure properties akin to, but stronger than, languages with explicit stag-
ing, and can meet the ‘Turing-complete kernel’ requirement to be stage- and safety-universal. To
show this technique is practical we demonstrate a prototype compiler that finds optimal programs
in the presence of heap operations; the proof of this is tedious but automated. The proof ensures
that any code ‘lying in the kernel’ is evaluated and erased at compile-time. This opens several inter-
esting directions for active libraries. One is staging: we can synthesize fast implementation code at
compile-time by putting code-generators in the kernel. To achieve domain-specific safety checking
we propose ‘proof embeddings’ in which proofs are intermingled with code and the optimizer does
double-duty as a theorem prover. Proofs lying in the kernel are checked and erased at compile-time,
yielding code that is both fast and safe.
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Preface

The ideas in this dissertation had their early origins in the years I spent working on the Blitz++
library for numerical arrays. Rather than relying on the compiler to optimize arrays, it performed
these optimizations itself using template techniques (‘expression templates’ and ‘template metapro-
grams’). The fact this could be done made me wonder about the general problem of domain-
specific code optimization. From reading the literature it seemed a widespread debate: where ought
domain-specific optimizations be performed? In compilers? Compiler plug-ins? Metalevel code?
Preprocessors? Libraries? The C++ experience indicates that with a sufficiently powerful language
and compiler, libraries can define their own optimizations, and we can package abstractions and
optimizations together as a coherent library. Template metaprogramming is, let’s be frank, a rather
miserable programming environment — its popularity suggests a real need in this area. The def-
inition of Active Libraries [55] helped turn these vague thoughts into a concrete goal: to realize
compilers and languages to support such libraries in earnest.

This dissertation proposes one possible direction for this.
Chapter 1 is an essay on the general problem of providing programming languages tailored to

particular problem domains. We ask some basic questions: How might such languages be realized?
Why are ‘active libraries’ an attractive route? Why did C++ (and other languages) turn out to
have useful features that no-one anticipated? What fundamental properties do compilers need to
support active libraries? This discussion winds up at a fairly simple result: compilers with what
we call ‘Turing-complete kernels’ have the ability to do any sort of domain-specific optimization
and safety checking. In this sense they can support ‘universal languages’ suitable for any problem
domain.

To make such languages practical, there is a crucial hurdle: we need compilers that actually
produce good code. The performance of libraries like Blitz++ is critically tied to the ability of
the optimizer. Without an excellent optimizing compiler, performance can be unacceptably bad,
because of the ‘abstraction penalty.’ Performance-tuning Blitz++ was endlessly frustrating, because
optimizers – even the very best – are black-boxes whose behaviour is unpredictable. Getting good
performance often requires long days of fiddling with source code and looking at the assembler
output.

The core of this dissertation defines a new approach to designing compilers that guarantee what
optimizations they perform. Such compilers can find optimal programs, in a certain restricted sense.
That is, the compiler solves a constrained optimization problem of the form: “Find the program that
minimizes a criterion function J (where J measures, for example, operation counts), while having
the same behaviour as the original program.” Although optimality has been proven for individual
compiler passes in isolation, this is the first time such results have been proven for a whole compiler.
In addition to finding optimal programs, such compilers also have a well-defined ‘kernel’ of code
they will evaluate and erase at compile time. This can be exploited to perform domain-specific
optimizations and reliably eliminate abstraction penalty. Another aspect of interest is that such
compilers act as complete decision procedures for a certain set of axioms. This opens an intriguing
research direction of “optimizers as theorem provers” – that is, using the optimizer to prove theorems
about programs, check theorems embedded in source code, and so on.

Chapter 2 reviews the problem of phase ordering in compilers, and studies ‘superanalysis’ —
simultaneous program analyses. It draws connections between superanalysis and simultaneous coin-
duction, and between the problem of combining program analyses and that of combining decision
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procedures for logical theories.
Chapter 3 introduces and develops the proof technique of Guaranteed Optimization.
Chapter 4 shows that the proof technique ‘scales’ by demonstrating it on a realistic set of

compiler optimizations.
Chapter 5 shows some early results on how compilers like this might realize some of the goals

of ‘active libraries,’ in particular realizing domain-specific safety checks.
Chapter 6 provides a summary and comparison with related work.
It is clear from reading over this dissertation one last time that these are still new ideas in their

infancy. There are more ideas than concrete results here, and perhaps more new questions raised
than answers given. But I hope the ideas are promising, and the questions interesting.

Göteborg, Sweden — May 14, 2004

Note on this version

This is a reformatted version of the official dissertation submitted to Indiana University. This
version has wider margins and is single-spaced. The text is otherwise unchanged.
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1
Universal Languages and Active Libraries

What’s this chapter about?

This chapter revisits the idea of Active Libraries described in [55]: libraries that take an active
role in compilation. The motivation is that rather than creating special-purpose programming
languages for every purpose, we should instead build active libraries that provide domain-specific
syntax, optimizations and safety checking. Unfortunately current languages and compilers lack some
important capabilities needed to realize such libraries. This chapter tries to answer the question:
What are the fundamental properties compilers need to support active libraries?, and the remainder
of this dissertation describes a practical route to realizing such compilers.

What’s new here?

The question of how to realize domain-specific languages has been dealt with at length in the
literature in the early sections of this chapter we summarize these ideas but use them to argue
in favour of an ‘active library’ approach. The term ‘active library’ was originally coined by David
Vandevoorde, and the concept introduced by Krzysztof Czarnecki, et al [55]. We extend Czarnecki’s
definition to encompass domain-specific safety checking. The distinction between generative and
transformational optimization was previously described by the author and Dennis Gannon in [236].
The characterization of languages as having ‘emergent’ properties is new, as is the use of the kernel
of a compiler to measure its staging power. Stage- and safety-preserving embeddings, and the
corresponding notions of stage- and safety-universality, are new, although they build closely on
related ideas from partial evaluation.

How this chapter is organized

In Sections 1.1-1.2 we describe domain-specific programming and assess different approaches to
realizing it. We are interested in the active library approach; in Section 1.2.4 we describe the
characteristics of such libraries and the universal languages (Section 1.2.5) needed to realize them.

5



6 CHAPTER 1. ACTIVE LIBRARIES

In Section 1.3 we give some examples of active libraries. We then explore in more detail the
important considerations for active libraries: performance (Section 1.4), safety (Section 1.5) and
their interaction (Section 1.6). Based on these, we sketch in Section 1.7 possible design criterion for
active library compilers. In Section 1.8 we argue that rather than trying to implement these criterion
directly, one can instead try to design languages in which these properties might be ‘emergent’
(Section 1.8.2). In Sections 1.8.3-1.8.5 we introduce some theoretical tools for this: embeddings
and kernels, that allow us to investigate languages which are stage-universal (Section 1.8.5) and
safety-universal (Section 1.8.6). Finally, Section 1.9 gives the thesis statement and overviews how
the rest of the dissertation is structured in support of it.

1.1 Domain-specific programming

Let’s start by clarifying what we mean by domain-specific languages, in contrast to languages that
are general-purpose. A problem domain is simply some field of endeavour, for example, scientific
computing, linguistics, databases, and computer graphics. A domain-specific language (DSL) is
a language whose purpose is to simplify writing programs for that problem domain. DSLs are
not a contemporary innovation. Quite the opposite, many of the earliest programming languages
were domain-specific: for scientific computing there was Grace Hopper’s MATH-MATIC (1951),
John Backus’ FORTRAN (1957), Kenneth Iverson’s APL (1962); for artificial intelligence, John
McCarthy’s LISP (1958); for business applications, COBOL (1959).

A general-purpose language is then, by default, one not targeted at a specific problem domain.
Some of the earliest such languages were ALGOL (1958) and PL/I (1963); some contemporary
examples are C++ , Haskell, and Java.

The primary appeal of DSLs is that they ought to increase productivity by letting programmers
deal with concepts at the level of the problem domain (for example, fields in physics) and avoid
getting mired in the details of how these concepts are expressed in a general-purpose language (for
example, by arrays and loops). There is also a long history to the idea that a better language can
help us think about problems differently. In the study of natural language, the linguistic relativity
hypothesis1 [222] is that language influences the ways in which we may think; this claim has been
occasionally invoked in the context of programming languages [108, 150, 219, 253], though never
rigorously studied. In an introductory textbook on mathematics, Alfred North Whitehead writes:

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate
on more advanced problems, and in effect increases the mental power of [humanity].
Before the introduction of the Arabic notation, multiplication was difficult, and the
division even of integers called into play the highest mathematical faculties... our modern
power of easy reckoning with decimal fractions is the almost miraculous result of gradual
discovery of a perfect notation. [254]

Whitehead was speaking of mathematics, but the argument applies to software, too: the right
notations — or more generally, abstractions — effectively make programmers smarter.

The goal of DSLs, then, is to find such abstractions and put them in the hands of programmers
who can, one hopes, wield them to do great things. Domain-specific languages play an analogous

1Also known variously as the Sapir-Whorf hypothesis, Whorfism, cultural relativism, ontological relativism, men-
talist linguistics.
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role to jargon in natural language: jargon establishes a linguistic rapport between two experts,
allowing them to communicate quickly and precisely in their realm of shared expertise. So too do
DSLs create a rapport between programmers and their computers — a shared set of notations and
abstractions that can make programs crisp and precise. In this thesis we investigate technologies
for realizing two further hopes for DSLs:

1. That they can provide higher performance by exploiting domain-specific optimizations;

2. That they can provide higher levels of safety by enforcing domain-specific safety requirements.

Roughly speaking, this thesis addresses the question: How might we provide DSLs that are fast
and safe? The challenge here is that abstraction and safety tend to be antagonistic to performance:
abstraction — hiding details — can mask opportunities for optimization, leading to a phenomenon
called the abstraction penalty (Section 1.4.1); and enforcing safety properties often leads to run-time
checks that reduce performance.

A great deal of work on domain-specific languages has been done by others, stretching back to
the very earliest days of computing. The goal of this chapter is to explore some of the surrounding
issues, categorize the previous work, and argue for the approach we favour — that of active libraries.
We start by surveying the main approaches to providing languages with domain-specific capabilities.

1.2 How to realize domain-specific programming?

Domain-specific languages were historically identified as complete programming languages, each
having its own grammars, compilers, and so forth — what we call one-off languages. Asking
“How can we implement DSLs?” would presume one-off languages to be the solution. Instead,
we ask “How can we provide languages with domain-specific capabilities?” This widens the field of
possible solutions, in particular encompassing libraries that provide some programming environment
— we use the term vaguely — that is domain-specific. For example, the Berkeley Socket Library
provides subroutines for managing a network connection; in our view this provides domain-specific
capability, though a somewhat lame specimen of the genre. The choice of question lets us focus
on the goal of providing a domain-specific programming environment, without presuming some
particular technology for achieving that goal.

In the following sections we cover the major approaches, assessing their strengths and weak-
nesses.

1.2.1 Extend mainstream languages

An appealing approach to providing domain-specific capabilities is to get mainstream languages
to incorporate whatever domain-specific features are needed. Examples of this approach include
efforts by the Numerical C Extensions Group (NCEG) to get scientific features into the C language
[183], which have met with some success, and similar efforts to extend Java [111]. In this approach,
achieving good performance is at least plausible, since the same folks who implemented the optimizer
for the general language are responsible for the domain-specific optimizations, and these two tasks
can be integrated. Ultimately this approach doesn’t scale for reasons of economics: the costs
of compiler development are high, and particular domains (e.g. scientific computing) tend to be
comparatively small segments of the market [194]. Even Fortran, whose bread and butter is scientific
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computing, is showing signs of hitting economic limits to its size. A controversial 60-page proposal to
add interval arithmetic to Fortran 2000 was eventually discarded after much debate. The committee
had to balance the limited demand for interval arithmetic against the large implementation costs for
vendors. Although users may succeed in getting mainstream languages to incorporate basic domain-
specific features such as numeric arrays and complex numbers, the likelihood of these languages
providing rarefied features such as interval arithmetic and sparse arrays is small.

There are other disadvantages to building abstractions into mainstream languages: feature
turnaround is slow, since language extensions require championing a proposal through years of
standards committee meetings. Experimental features must be prematurely standardized, before
experience can produce a consensus on the “right way” to implement them, if indeed a single right
way exists.

It seems, then, that the approach of loading up mainstream languages with features for specific
domains can meet with only limited success, and we’d best look to other solutions.

1.2.2 One-off languages

New languages are appealing because they are fun to design and allow radical departures in syntax
and semantics from existing languages. For non-programmers, a simple language that does exactly
what they need can be more expressive and less intimidating than a general-purpose language. For
implementors, the allure of the blank canvas and the ready availability of compiler-construction tools
makes this route especially tempting. New languages particularly shine in domains where problems
can be described as declarative specifications, and automatic programming (e.g., [13, 76]) used to
realize the specification; a popular example here is lexer and parser generators. New languages,
however, have substantial drawbacks.

Compilers require ongoing support to keep up with changing operating systems and architec-
tures. One-off languages requiring special compilers are often research projects that founder when
students graduate and professors move on to other interests.

One-off languages carry software-engineering risks, since they tend to lack the tool support
(optimizing compilers, debuggers, development environments) of mainstream languages. To go
down this road is to expose programmers to the prospect of a hundred thousand lines of misbehaving
legacy code in an obscure language with no debugger. For this reason, many people prefer to work
in mainstream languages for the wealth of tool support and libraries available.

Users have to learn a new programming language, which can discourage adoption. A popular
method to avoid this problem is to extend an existing language; this also reduces the workload
of the language implementor [105]. DSLs are often implemented as preprocessors for mainstream
languages such as C, Fortran, C++ or Java.

Features of multiple DSLs cannot usually be used in one source file, since each DSL has its
own compiler. For example, there currently exist Fortran-like DSLs that provide sparse arrays [31]
and interval arithmetic [200]. However, if one wants both sparse arrays and intervals, there is no
compiler that supports both at once. We adopt the term composability to mean that features from
two or more DSLs can be used simultaneously in the same source file in some non-atrocious way
[56]. Languages that cannot be composed will be called monolithic.

One-off languages tend to lack many of the features one finds in mainstream languages, such as
exceptions, language interoperability, threads, support for graphical interfaces, and general-purpose
I/O. Lacking these amenities, they can either languish in a limited niche, or their users will recreate
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what’s missing to make them more generally useful. There is a connection to be drawn between
the feature creep that has turned Matlab, Perl, and Fortran into general-purpose languages and the
process of creolization in linguistics [144]. In creolization, a pidgin developed for communication
between two cultures (and here we might view the popular scientific language Matlab as a “pidgin” of
linear algebra notation and Basic) acquire native speakers who enlarge it into a full-fledged language.
If people are forced to communicate within an impoverished system, they will of necessity enrich
it enough to express everything that needs saying, no matter how awkwardly. In the New Guinea
pidgin Tok Pisin, which lacks the word moustache, the phrase gras bilong maus (grass belong
mouth) conveys a visual impression of grass growing from someone’s lip. Such circumlocutions
are akin to idioms developed by programming language communities to emulate missing language
features. For example recursion, modules and dynamic memory management are all features absent
from Fortran 77 and awkwardly emulated by users. These features were added to the language by
Fortran 90. Instead of introducing a wholly new language which, if it becomes popular, is bound to
evolve haphazardly toward general-purposeness, it makes more sense to start with a general-purpose
language powerful enough to encompass domain-specific uses.

So: unless one truly needs a language with radically new semantics or syntax, it seems prudent to
work with a well-supported, general-purpose language. Perhaps a good direction is domain-specific
libraries, then, rather than one-off languages.

1.2.3 Traditional libraries

Arguably, the most common method of providing domain-specific capability is to produce libraries.
The concept of a ‘library’ is somewhat rubbery. In its most primitive form, a library is merely
a collection of subroutines. This can go a surprisingly long way to achieve the goals of domain-
specific programming: subroutines can hide details and provide high-performance implementations
of selected algorithms. With macros or other vehicles for syntactic abstraction, libraries can also
supply domain-specific notations, and languages that provide data abstraction (e.g. object-oriented
languages) provide a convenient way to represent domain-specific concepts. Here we arbitrarily
draw a line and call libraries of subroutines with syntactic abstraction traditional libraries.

Where traditional libraries tend to fall short is in performance and safety. Safety checking
in such libraries is usually limited to run-time checking, which is inadequate in many situations.
Performance, too, is restricted, since libraries are hard to optimize. Compilers have difficulty because
they lack semantic knowledge of the abstractions: instead of seeing array operations, they see loops
and pointers. Libraries also tend to have layers of abstraction and side effects which confound
optimizations. Heroic optimizers may offer some hope, but even then, every problem domain has
its own special optimization tricks, and it is unrealistic to expect general-purpose compilers to
implement these, for the same economic reasons we outlined earlier. Although traditional libraries
can provide high-performance implementations of selected algorithms, it is not possible or practical
for authors of such libraries to anticipate every possible need of their users. For example, the popular
BLAS library (Basic Linear Algebra Subroutines) supplies high-performance versions of common
vector and matrix expressions [62]. If one needs the vector expression z = αx + y, there is a
subroutine (DAXPY) doing exactly this. However, there’s no implementation of z = αx+βy+γw,
since that’s not needed as commonly. Coding such expressions manually can result in inferior
performance, since good BLAS implementations are highly-tuned.
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Traditional libraries lack the adaptability needed for high safety and performance, so something
better is clearly needed.

1.2.4 Active libraries

The term active library was coined to describe libraries that take an active role in compilation,
rather than being passive collections of subroutines [55]. Their description was motivated by the
appearance of libraries for assorted problem domains that seemed to go beyond the typical role
of a library. Such libraries may generate components, specialize algorithms, optimize generated
code, configure and tune themselves for a target machine, and describe themselves to tools (such
as profilers and debuggers) in an intelligible way. Some existing libraries that fit this term are
described in Section 1.3. In this thesis we widen the concept of active libraries slightly to include
checking of static safety requirements. A serviceable definition is:

An active library provides in one package both domain-specific abstractions and the
know-how needed to optimize them and check their safety requirements. Moreover,
active libraries are composable: programmers may combine them in a single source file.

A closely related idea is domain-specific embedded languages (DSELs) [68, 105, 106, 121, 205], in
which the problems of one-off languages are avoided by leveraging an existing host language, often
a functional language such as Scheme, ML, or Haskell.2 This differs from ‘extending mainstream
languages’ (Section 1.2.1) in that the original language is not modified, but built upon. The litera-
ture on DSELs spans a variety of ideas, from providing DSLs as traditional libraries [121] to having
a translation layer that performs domain-specific optimizations as it translates domain-specific code
into the host language [68]. In the latter case the implication seems to be that DSELs are monolithic
— you can’t use multiple DSELs at once. On the other hand, composability is apparently also a
goal [105]. Some recent work has looked at domain-specific safety checking — specifically, type
safety [224]. It seems safe to say that exactly what a DSEL is, and is not, is still an active area of
research. We prefer the term “active library” since, basically, we are free to define it to be exactly
what we mean; it is clear, though, that the goals of DSELs and active libraries are overlapping.

Unfortunately current languages provide only limited support for active libraries. A fruitful
direction for research, then, is to extend the reach of general-purpose languages; in this, we pursue
the old dream of a universal language.

1.2.5 Universal languages

The term “universal language” is used in several contexts to mean rather different things. One
such use is as a synonym for Turing-complete language. We mean it differently: as a programming
language suitable for any purpose. A working definition is:

A universal language is one that may be used for any problem domain with expressive-
ness, performance and safety competitive with that of a one-off language.

2 In creole terminology, the host language might be called a “superstrate” language and the DSL a “substrate”
language [144].
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A shortcoming of this definition is that it doesn’t lend itself to testing claims that a given language
is universal. The difficulty is that expressiveness (and to a lesser extent, performance and safety) is
difficult to quantify. Because of this difficulty, we content ourselves with this vague definition, and
view it as more of a direction of research, rather than an achievable goal.

The idea that we should focus on providing “universal languages” rather than producing many
one-off languages is not new. As far back as 1971 it was already considered old news:

One of the classic ideas for resolving the problem due to programming language prolif-
eration, is to design a universal language. [156]

Although the author of the above quote had in mind what we choose to call general-purpose
languages. We’ll distinguish the two by making the following definition:

A general-purpose language is one that may be used for any problem domain with
expressiveness acceptable to a substantial number of programmers.

A universal language, then, is a general-purpose language capable of providing domain-specific
syntax, performance, and safety.

The dream of universal languages predates even the modern conception of computers, namely
the universal language movement of the 17th century [210]. This movement, whose enthusiasts
included some of the most prominent scientists of the day, aimed to develop formal writing systems
with unambiguous semantics. The quest for universal language seems to have been sparked by
a misapprehension about the Chinese written language, or hanzi. Europeans of the period saw
that each hanzi ideograph had a meaning independent of its pronunciation, and that speakers of
mutually incomprehensible languages shared and communicated in this written form.3 They also
perceived (wrongly) that this written language was immutable, and saw in this the potential to
develop a writing system for science that would be precise and timeless. For many this goal meant
developing elaborate taxonomies and notation systems that together would provide a universal
character to precisely describe the natural world; the most ambitious of these was John Wilkins’
Essay Towards a Real Character and a Philosophical Language4, later used by Roget as source
material for his famous thesaurus. Such systems were a distant forebear to contemporary efforts to
develop ontologies for machine reasoning. More relevant is the direction taken by Gottfried Leibniz
and Robert Hooke, who sought formal systems that would allow combination of these symbols and
function as an algebra of thought [210, 225]:

It should be possible to set up a kind of alphabet of human thoughts, and to invent and
to decide everything by a combination of its letters and by the analysis of the words
composed from them. – Leibniz, translated in [225]

Ultimately this line of research reached a partial realization in the proof calculi of the twentieth
century: the truth or falsehood of certain statements could be ascertained by symbol manipulations,
as Leibniz and Hooke anticipated. Proof calculi play a fundamental role in program verification, type
systems, and (in general) checking safety properties of programs. The quest for symbol systems with

3 “...besides what is commonly reported of the men of China, who do now, and have for many Ages used such a
general Character, by which the Inhabitants of the large Kingdom, many of them of different Tongues, do communicate
with one another, every one understanding this common Character, and reading it in his own Language.” [256]

4 Available online at http://reliant.teknowledge.com/Wilkins/

http://reliant.teknowledge.com/Wilkins/
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unambiguous meaning, championed by the universal language advocates of the 17th century, counts
among its descendants programming language semantics. Universality in programming languages
originates with Landin’s landmark 1966 paper The Next 700 Programming Languages [138] to which
we return in Section 1.8.3. In this dissertation we attempt to tie together these two traditions,
of universal proof systems and programming language universality. Remembering Fred Brooks’
characterization of programs as almost “pure thought-stuff” [26], it seems appropriate to recognize
the position of such research in that grand (and grandiose) tradition of Leibniz and Hooke: a
thought-calculus.

1.3 Some examples of active libraries

In the following sections, we highlight existing software packages that illustrate some characteristics
of Active Libraries. These examples are from scientific computing, a domain where performance is
highly prized.

Blitz++

The Blitz++ library [231] provides dense arrays for C++ similar to those in Fortran 90, but with
many additional features. In the past, C++ array libraries were 3-10 times slower than Fortran, due to
the temporary arrays that result from overloaded operators. Blitz++ solves this problem using the
expression templates technique [228] to generate customized evaluation code for array expressions.
That is, users can write the array expression “x = w + y + z” and the library at compile time
produces a new procedure that evaluates exactly that expression, containing (in simplified form)
the code:
for (int i=0; i < n; ++i)

x[ i ] = w[i] + y[ i ] + z[ i ];

This is in contrast to traditional libraries, like BLAS (Section 1.2.3), which contain a fixed set of such
procedures rather than generating them on demand. Blitz++ does this by exploiting the staging
capabilities of C++ to parse expressions at compile time and then manipulate these parse trees
to generate an efficient implementation. Blitz++ also performs many loop transformations (tiling,
reordering, collapsing, unit stride optimizations, etc.) that have traditionally been the responsibility
of optimizing compilers.

For operations on small vectors and matrices, Blitz++ uses the template metaprogram technique
[229] to generate specialized algorithms. This avoids the performance penalty often associated with
small objects by completely unrolling loops and inlining code.

Despite its achievements, Blitz++ also has serious shortcomings. Its dependence on esoteric
template techniques — which C++ compilers were not designed to support — causes slow compile
times. Template metaprogramming, though powerful, makes for painfully obscure code, with the
result that it is almost prohibitively difficult for users to understand or extend the core machinery.

POOMA

POOMA [122] and its affiliated libraries PETE [96] and SMARTS [227] pioneered the use of C++
template techniques for parallel physics computations. POOMA achieves an exceptional level of
abstraction without sacrificing performance. Programmers write simple array expressions, such
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as “A = B + C ∗ D”, which trigger the generation of data-parallel implementation routines us-
ing threads and message passing for, say, a thousand-processor supercomputer. The A,B,C,D
might each represent physics fields with complicated geometry. POOMA was an early trailblazer
in ambitious component generation among C++ libraries: it used template techniques to generate
components such as fields using a variety of types, geometries, addressing schemes, data distribution
and communication parameters.

Generative Matrix Computation Library

The Generative Matrix Computation Library (GMCL) [56, 165] provides heavily parameterized
matrix classes. Users can specify the element type, whether the matrix is dense or sparse, the storage
format (including several sparse formats), dynamic or static memory allocation, error checking, and
several other parameters. The GMCL uses template metaprograms to examine the parameters
and verify their compatibility (for example, sparse matrices cannot use static memory allocation);
it then instantiates a matrix class with the desired characteristics. The implementation is roughly
7500 lines of C++ code, yet covers more than 1840 different kinds of matrices. Despite this flexibility,
the authors report performance on par with manually implemented code.

Matrix Template Library

The Matrix Template Library (MTL) [209] is a C++ library whose initial goal was to extend the
ideas of STL [160] to linear algebra, and evolved into an interesting library in its own right. MTL
handles both sparse and dense matrices. For dense matrices, MTL uses template metaprograms
to generate tiled algorithms. Blocking is a crucial technique for obtaining top performance from
cache-based memory systems; MTL uses template metaprograms to tile on both the register and
cache level. For register tiling, it uses template metaprograms to completely unroll loops. MTL
provides generic, high-performance algorithms that are competitive with vendor-supplied kernels.

1.4 Performance

A goal of active libraries is to provide high-performance domain-specific abstractions. Some general
comments about performance and how it may be achieved are in order.

Performance is intimately tied to where abstractions are realized. Abstractions that are realized
in hardware (for example, floating-point arithmetic) can run much faster than abstractions provided
at the language level. Economics generally governs where abstractions are realized: commodity
CPUs provide integer and floating-point arithmetic in hardware, since almost every computer user
runs software that needs these. Sine and cosine calculations are needed in a variety of applications
from scientific computing to gaming, so these are sometimes realized in hardware also. Bessel
functions are not as widely desired, but still needed by enough people to make it a worthwhile
commercial project to provide these; so these are provided by high-quality commercial libraries.
Figure 1.1 illustrates this idea: there are many levels at which abstractions can be realized, from
hardware through to a particular programmer’s own source code. With each level, there is generally
a loss in efficiency: abstractions realized in hardware are much faster than those in software; those
integrated into programming languages can be faster than those in libraries, and so forth.
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The Abstraction... Where provided?Who needs it?

integers, floating
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− dense 1D arrays,
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Figure 1.1: An inverted pyramid illustrating different methods of providing abstractions (in hard-
ware, languages, etc.), and how abstractions tend to be provided at a level governed by how much
in demand they are.

Ideally we could achieve great performance even for very obscure abstractions needed by few
people. Reconfigurable computing raises this hope (e.g., [42]); but that day is not here quite yet.
A goal of active libraries is to raise the performance of library-provided abstractions to that of
abstractions coded into the language.

1.4.1 The abstraction penalty

In software engineering, abstraction means hiding details so programmers can focus on ideas. The
history of programming languages is largely one of increasing the level of abstraction: from machine
opcodes to assembler to structured languages to functional and object-oriented languages and so
forth. An obvious but important observation is that for every increase in abstraction, an optimiza-
tion is needed to preserve performance. For example, in going from assembler to the C language,
one abstracts away from registers and machine instructions; and thus optimizations such as register
allocation, instruction selection and scheduling are needed.

Abstraction is commonly subdivided into: syntactic abstraction (i.e., notation), procedural
abstraction (i.e., subroutines, methods, higher-order functions), and data abstraction (i.e., abstract
data types and encapsulation). Domain-specific abstractions often require a combination of all of
these.

With current compilers there is often a tradeoff between the expressiveness of code and its
performance: code written close to the machine model will perform well, whereas code written at
a high level of abstraction often performs poorly. This loss in performance associated with writing
high-level code is often called the abstraction penalty [159, 193, 217]. The causes for this penalty are
various: for example, code resulting from expansion of macros (syntactic abstraction) is often quite
naive, and abstractions often introduce temporary objects (e.g. boxes) and function calls. Active
libraries are intended to introduce abstractions and yet at the same time achieve high performance;
for this reason, compilers for active libraries must minimize this abstraction penalty. Traditional
compiler optimizations are an obvious remedy: disaggregation, virtual function elimination, and
the like can greatly reduce the abstraction penalty. The overhead from naively written macros, for
example, can be reduced with suitably designed optimizers [245]. Unfortunately, current optimizing
compilers are unpredictable, with the result that performance-tuning is a fickle and frustrating art
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rather than a science. In Chapter 3 we propose a possible solution: optimizers that provide proven
guarantees of what optimizations they will perform, thus making performance more predictable.

1.4.2 Levels of optimization

In this section we introduce a rough classification for program optimizations, as a prelude for arguing
that each kind ought to be addressed in a different manner. As a start, let us draw a distinction
between domain-specific and domain-independent optimizations.

Domain-independent optimizations are those that can be applied without appealing to special
properties of the problem domain, for example copy propagation, dead code elimination, instruction
scheduling, loop pipelining, and so forth.

Domain-specific optimizations target a particular problem domain, and are often justified by
some special characteristics of that domain. In scientific computing, for example, we sometimes find
it expedient to pretend that floating-point arithmetic is associative (though this is usually not the
case), and to reorganize the distribution of data in a parallel computation even though this changes
the messages that processes send to one another.

We find it convenient to separate optimizations into three levels, to be addressed separately:

• Low-level optimizations are domain-independent and machine-specific, for example register
allocation and instruction scheduling.

• Mid-level optimizations are independent of both the problem domain and the machine, and
result from software engineering abstractions. They are optimizations that will usually im-
prove performance for most architectures and problem domains: reducing operation counts,
removing dead code, unboxing, and so forth.5

• High-level optimizations are domain-specific.

We do not suggest these as absolute concepts, but rather as useful distinctions that apply more-
or-less. There are marginal cases. For example, are loop transformations low-level (since they deal
with machine-specific cache properties), or high-level (since they deal with the domain of numerical
array operations)? Both viewpoints have validity.

1.4.3 Domain-specific program equivalence

The distinction between domain-independent and specific optimizations can be clarified by intro-
ducing the notion of program equivalence, an informal definition of which is: two programs are
equivalent if they are understood to do the same thing.6 We’ll use the symbol ∼ for such an equiv-
alence, and write p1 ∼ p2 to mean that programs p1 and p2 are equivalent. Now, the definition of
equivalence clearly hinges on what it means for two programs to ‘do the same thing.’ In the context
of a particular problem domain there are two relevant flavours of program equivalence:

5There are situations where redundant computations can improve performance on some architectures, so that
removing them might hurt performance. This confuses our hierarchy a bit, since we view removing redundant com-
putations as a mid-level optimization, but it is actually machine-dependent! However, if one takes the view that the
low-level optimizer is responsible for introducing redundancy when needed, there is no problem with the mid-level
optimizer removing it.

6 A precise definition of equivalence is not important for this discussion.
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• An equivalence associated with the semantics of the implementation language. In practice
equivalences of this sort are quite restrictive and forbid changes that might cause any ‘ob-
servable’ difference in the behaviour of a program, although making programs run faster is
considered acceptable.7 For example, changing a floating-point computation x+ (y + z) into
(x+y)+z, or aggregating messages in message-passing parallel programs is forbidden because
such changes might or would cause an observable difference in the behaviour of the program.

• The program equivalence we choose to associate with the problem domain, for example scien-
tific computing. This is usually a much larger equivalence relation, and allows more aggressive
optimizations to be performed.

This gives us a distinction between mid- and high-level optimizations: any optimization requiring
the domain’s notion of program equivalence is a high-level optimization. Compilers as a general
rule are only aware of the implementation language’s program equivalence. This poses a challenge
for accomplishing domain-specific languages.

1.4.4 The notion of Ur-language

As a conceptual tool it is useful to suppose that for any problem domain there exists some ideal
language in which problems can be concisely expressed and run with utmost performance and safety.
We will call such a hypothetical language an ur-language for the problem domain.8

As an example, consider the problem domain of scientific computing, and more specifically
finite difference methods for solving partial-differential equations (PDEs). In incompressible fluid
dynamics, an equation for updating the velocity field at each time step is:

Vi+1 = Vi + δt

(
1
ρ

(
η∇2Vi −∇P i + Fi

)
−Ai

)
(1.1)

We can view Eqn. (1.1) as an expression in some ur-language for PDEs.9 The importance of
domain-specific abstractions can be illustrated by considering its realization in Fortran 77:

DO i=3,N-2
DO j=3,N-2
DO k=3,N-2
VX2(i,j,k) = VX(i,j,k)+delta_t*(recip_rho*(eta*

. c1 * (-90*VX(i,j,k)-VX(i-2,j,k)+16*VX(i-1,j,k)

. +16*VX(i+1,j,k)-VX(i+2,j,k)-VX(i,j-2,k)+16*VX(i,j-1,k)

. +16*VX(i,j+1,k)-VX(i,j+2,k)-VX(i,j,k-2)+16*VX(i,j,k-1)

. +16*VX(i,j,k+1)-VX(i,j,k+2))+c2*(P(i-2,j,k)

. -8*P(i-1,j,k)+8*P(i+1,j,k)+P(i+2,j,k))+FX(i,j,k))

. -AX(i,j,k))
VY2(i,j,k) = VY(i,j,k)+delta_t*(recip_rho*(eta*

7So long as they do not run infinitely faster, e.g., turning non-terminating computations into terminating ones.
8 Ur-language was a mythical common root of all spoken languages; the German prefix ur is often used to indicate

an archetypal or primordial object, for example ur-elements in some versions of set theory.
9 The particulars of this equation are tangential to the discussion, but for the curious: V is the velocity field, P is

the pressure field, F is the forcing function, and A is advection (bold face indicates a vector field, non-bold a scalar
field). We use an O(h4) finite difference approximation that yields a 63-point stencil over 13 scalar arrays.
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. c1 * (-90*VY(i,j,k)-VY(i-2,j,k)+16*VY(i-1,j,k)

. +16*VY(i+1,j,k)-VY(i+2,j,k)-VY(i,j-2,k)+16*VY(i,j-1,k)

. +16*VY(i,j+1,k)-VY(i,j+2,k)-VY(i,j,k-2)+16*VY(i,j,k-1)

. +16*VY(i,j,k+1)-VY(i,j,k+2))+c2*(P(i,j-2,k)

. -8*P(i,j-1,k)+8*P(i,j+1,k)+P(i,j+2,k))+FY(i,j,k))

. -AY(i,j,k))
VZ2(i,j,k) = VZ(i,j,k)+delta_t*(recip_rho*(eta*

. c1 * (-90*VZ(i,j,k)-VZ(i-2,j,k)+16*VZ(i-1,j,k)

. +16*VZ(i+1,j,k)-VZ(i+2,j,k)-VZ(i,j-2,k)+16*VZ(i,j-1,k)

. +16*VZ(i,j+1,k)-VZ(i,j+2,k)-VZ(i,j,k-2)+16*VZ(i,j,k-1)

. +16*VZ(i,j,k+1)-VZ(i,j,k+2))+c2*(P(i,j,k-2)

. -8*P(i,j,k-1)+8*P(i,j,k+1)+P(i,j,k+2))+FZ(i,j,k))

. -AZ(i,j,k))
END DO
END DO
END DO

By introducing appropriate abstractions such as vector fields and stencil operators, we can come
somewhat closer to the ur-language version; this example is from Blitz++ [231]:

BZ_DECLARE_STENCIL5(timestep, V, nextV, P, advect, force)
nextV = *V + delta_t * ( recip_rho * (
eta * Laplacian3DVec4(V,geom) - grad3D4(P,geom)
+ *force) - *advect);

BZ_END_STENCIL
...

applyStencil(timestep(), V, nextV, P, advect, force);

This is still not ideal, but at least the abstractions introduced by the library bestow a passing
resemblance to Eqn. (1.1). The underlying operations carried out are identical to those in the
Fortran 77 version.

These two pieces of code differ significantly in the mode of optimization that is appropriate. In
the Fortran 77 version, many decisions about how precisely the operations are to be performed are
explicitly stated in the code: the order in which the loops are to be traversed, the associativity of
various sums, the layout of the data in memory, and so forth. Hence any attempt to optimize must
proceed by analyzing the code that is already there and transforming it into something better. In
the Blitz++ version the operation to be performed is specified at a high level, and the library is
free to generate any number of possible implementations. This leads to an important distinction
between two modes of optimization: transformational and generative.

1.4.5 Transformational vs. generative optimization

Transformational optimization

In transformational optimization, low-level code is transformed into an equivalent (but hopefully
faster) implementation. Loop-nest transformations are a well-understood example of this approach
[259].
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Figure 1.2: The recognition problem in transformational optimization. Each small circle represents
a program realizing a particular expression (top) in the ur-language. The compiler is presented with
a particular program A. In order to reach some ‘best’ implementation, it must examine A to infer
what ur-language operation it realizes, to justify violating the implementation language’s program
equivalence (large circles).
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Transformational approaches present several challenges. The foremost is that the compiler lacks
information about the intent of the code, i.e., what ur-language operation is being performed. For
example, a compiler presented with the Fortran 77 code of the previous section does not see an array
stencil operation, but a mass of loops, arrays, and variables. To apply interesting optimizations,
the optimizer must recognize that this low-level code represents some common pattern of loops that
it knows how to optimize, and that (for example) it might benefit from tiling. More generally, the
optimizer must infer the intent of the code to apply aggressive optimizations — sometimes called
idiom recognition [186]. To this end, sophisticated optimizers employ automated theorem proving
and pattern matching techniques. If the optimizer does not recognize the intent of the code, then
few optimizations can be applied. Optimizations for dense arrays are reliably applied, because
their use is very common; for programs using less common abstractions, such as tensors or interval
arithmetic, the likelihood of achieving optimal performance is smaller.

Once the intent of the code has been determined, the second problem is knowing what op-
timizations to apply; Figure 1.2 illustrates a problem that arises here. Interesting optimizations
require that the optimizer violate the implementation language’s program equivalence (for example,
by changing associativities). This must be justified by appealing to the domain-specific notion of
program equivalence.

Several researchers have considered the problem of how to make transformational optimization
extensible (e.g. [71, 93, 201]). There are roughly two main approaches. One is to have modules that
plug into the compiler and directly apply transformations. This is a somewhat fragile approach,
since it exposes possibly implementation-dependent compiler innards and assumes optimization
modules will be well-behaved. Less troublesome is the approach of conveying to the compiler what
optimizations are permissible (for example, using rewrite rules), and relying on the compiler to
perform them. In the latter approach there is no problem of inferring what high level operation is
meant by the code — it is a matter of simple pattern matching — but the kinds of optimizations
are necessarily limited, too.

Generative optimization

In a generative optimization approach, operations are specified in the code at a high level of ab-
straction; code is then generated to fulfill the “specification,” in a manner reminiscent of automatic
programming and program synthesis (e.g., [13, 192]). This approach is applicable to Fortran 90
[109], which uses high-level array syntax, and is used in the Blitz++ library to synthesize effi-
cient array operations [231], in OpenC++ [34], and also in a Java compiler for scientific computing
[157] (where the technique is called semantic expansion). Several of the active library examples in
Section 1.3 also use this approach.

Generative optimization can be a simpler approach than transformational optimization, since
there is no problem of inferring what operation is being performed by a piece of code, and the
problem of violating the implementation language’s program equivalence also disappears. Because
of this, generative optimization can make it simpler to apply radical, high-level optimizations.

Although generative optimization can produce good code for individual operations, it may miss
optimizations which depend on context. For example, one problem encountered in libraries which
use expression templates [228] is that while individual array statements can be optimized well,
opportunities for between-statement optimizations are missed. For example, in the array statements
A=B+C; D=B-C; there is a substantial gain if the two expressions are evaluated simultaneously, since
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they share the same operands. Attempts to solve this problem have focused on increasing the
granularity of abstraction, so that code is generated for basic blocks of array statements, rather
than individual statements.

Transformation or generation?

Few absolute statements about the power of transformational vs. generative optimization are pos-
sible, but a few general observations can be made. The recognition problem — figuring out what
ur-language operation is intended by some piece of implementation code — is a hard one, since
it effectively requires inverting the mapping from ur-language to implementation language. It has
been solved for many useful cases in the setting of array operations represented by loop nests (cf.
[186, 259]). However, even in this case, successful recognition is usually limited to loop nests ex-
pressed in a style more or less resembling Fortran code (such as that shown in Section 1.4.4). Many
of the results showing decent performance for Java on scientific computing, for example, did so for
code that looked like Fortran enclosed in Java classes — sometimes called “JavaTran” to distin-
guish it from a more object-oriented style. Because of the difficulty of this recognition problem,
transformational optimization has been limited to a few highly-in-demand problem areas, such as
loop nests.

Generative optimization, with its focus on synthesizing implementations rather than transform-
ing them, has found somewhat broader applicability. It seems fundamentally easier to generate
code, and the technologies for doing this (staging, partial evaluation, automatic programming, gen-
erative programming) are well-developed. And, importantly, the generative approach is compatible
with providing domain-specific syntax: both require that operations be expressed at a high level of
abstraction. The generative approach can capture performance-tuning expertise, providing better
performance for average users, while still allowing experts to “roll-their-own.” This idea is similar in
spirit to ongoing work by the parallel skeletons community (e.g. [23]) who seek to capture patterns
of parallel computing in reusable libraries of “skeletons.”

It seems, then, that although transformational approaches have excellent theoretical power, in
practice generative optimization has better pragmatic power and wider applicability, and this is the
course we choose to follow.

1.5 Safety

Opinions on what it means for a program to be safe are are diverse (and firmly held!). The question
is what makes programs safe enough, absolute safety being unattainable in practice. The pragmatic
approach is to recognize the existence of a wide spectrum of safety levels, and allow users to choose
a level appropriate to their purpose, avoiding a “one size fits all” mentality. At the low end of the
spectrum are languages such as Matlab that do almost no static checking, deferring even syntactic
checking of functions until they are invoked. At the other end is full-blown deductive verification
that aims to prove correctness with respect to a specification. Since our aim is for universality, we
would like a single language capable of spanning this spectrum, and in particular allow different
levels of safety for different aspects of a program. For instance, it is common to check type-
correctness statically but defer array bounds-checking until run time; this clearly represents two
different standards of safety. Even program verification is typically applied only to some critical



1.5. SAFETY 21

properties of a program, rather than attempting to exhaustively verify every aspect. Thus it is
important to allow a mixture of safety levels within a single program.

Safety checks may be dynamic, as in (say) Scheme type checks [123] or Eiffel pre- and post-
condition checking [151]. Dynamic checking can detect the presence of bugs at run-time; static
checking can prove the absence of some bugs at compile time. A notable difference between the two
is that fully automatic static checking must necessarily reject some correct programs, due to the
undecidability of most nontrivial safety conditions. Within static checking there is a wide range of
ambition, from opportunistic bug-finding as in LCLint [72] and Metal [70], to lightweight verification
of selected properties as in extended static checking [139] or SLAM [12], to full-blown deductive
verification (e.g. PVS [174], Z [214], VDM [113]).

A recent trend has been to check static safety properties by shoe-horning them into the type
system, for example checking locks [24, 77, 82], array bounds [260], and security properties [242].
Systems that check programs using static analysis can be distinguished by the style of analysis
performed: whether it is flow-, path-, or context-sensitive, for example. Type systems are generally
flow- and context-invariant, whereas many of the static safety properties one would like to check are
not. Thus it is not clear if type-based analyses are the best option, since the approximations one
gets with present-day type systems are so coarse as to be of limited use in practice. The solution of
constructing every-more-powerful type systems exists, of course, but the important question is: are
typing properties a special case of safety properties, or is any safety property a typing property?
We prefer the former approach, since it maintains the useful distinction between arbitrary safety
properties and “type safety” as grounded in the type theory tradition from mathematics of values
having types.

We can also distinguish between approaches in which safety checks are external to the program
(as annotations, additional specifications, etc.) versus approaches in which safety checks are part of
the program code (for example, run-time assertions, pre- and post-condition checking). Any artifact
maintained separately from the source code will tend to diverge from it, be it documentation, models
or proofs. The “one-source” principle of software engineering suggests that safety checks should be
integrated with the source code rather than separate from it. Some systems achieve this by placing
annotations in source code comments (e.g. ESC/Java [79]). However, this approach does not appear
to integrate easily with staging; for example, can a stage produce customized safety checks for a
later stage, when such checks are embedded in comments? Comments are not usually given staging
semantics, so it’s unclear how this would work. Having safety checks be part of the language ensures
that they will sensibly interact with other language features (e.g. staging).

Rather than rely solely on “external” tools such as model checkers or verification systems, it
makes sense to integrate safety checking with compilation. Why? First, for expedience: many
checking tools rely on the same analyses required for optimization (points-to, alias, congruence), so
there are gains to be made by combining these efforts. But our primary reason is that by integrating
safety checking with compilers, we can provide libraries with the ability to perform their own static
checks and emit customized diagnostics — thus opening the way to domain-specific safety.

The approach we advocate is to define a general-purpose safety-checking system which subsumes
both type-checking and domain-specific safety checks. Types are not given any special treatment,
but treated the same as “domain-specific” safety properties. Another important goal is extensible
type systems, since many abstractions for problem domains have their own typing requirements (cf.
[224]). For example, deciding that a tensor expression has a meaningful interpretation requires a
careful analysis of indices and ranks. In scientific computing, dimension types (e.g., [124]) have been
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used to avoid mistakes such as assigning meters-per-second quantities to miles-per-hour variables.
It is hoped that handling type checking with a general-purpose safety-checker system will make it
easier to develop extensible type systems.

Yet another aspect of safety checking is whether it is fully automatic (static analysis, model
checking) or semi-automatic (e.g. proof assistants). There are many intriguing uses for a compiler
supporting semi-automatic checking. By this we mean that a certain level of automated theorem
proving takes place, but when checking fails, users can provide supplemental proofs of a property
in order to proceed. This opens the way for libraries to issue proof obligations that must be
satisfied by users (for example, to remove bound checks on arrays). Interesting safety properties are
undecidable: any safety check must necessarily reject some safe programs. Thus, proof obligations
would let users go beyond the limits of the compiler’s ability to automatically decide safety. This
is particularly important for problem domains that must simultaneously satisfy both performance
and safety requirements.

1.6 Safety vs. Performance

Performance and safety are antagonistic. In this section we explore how the two interact and see
what this suggests about compiler design for active libraries. First, some background. The goal of
safety, for our purposes, is to prevent the occurrence of some set of “failure conditions”, for example,
clobbering an important piece of data with an out-of-bounds array access. There are four common
approaches to safety:

• Static checks that accept only those programs that can be proved to never reach a failure
condition.

• Dynamic checks that, at run-time, detect and avoid any failure conditions, for example by
raising an exception.

• Dynamic checks with “proving-away-checks”: dynamic checks are used, but are removed
when the compiler can prove they are unnecessary.

• No checking whatsoever, where one assumes blindly that no failure state is reachable, or that
the consequences of such a failure are unimportant.

Clearly static checks offer the highest guarantee of safety, and no checking the least. By a safety
policy for a language, we mean the decisions made by its designers as to what failure conditions will
be avoided by static checks, dynamic checks, etc.

Clearly safety is a desirable thing – so why not just check all safety properties statically? In short,
because this is impossible: most any safety property of programs is undecidable (more specifically,
the set of safe programs is Π0

1-complete).10 Since the set of safe programs is Π0
1-complete, a compiler

performing static checking must limit itself to accepting some ∆0
1 subset of safe programs – this

necessarily means some safe programs are rejected. More importantly, decision procedures for these
problems tend to be nontrivial to devise and often computationally expensive to run due to, for
example, state space explosion. If compilers were to check array bounds statically, a great many
interesting programs would have to be rejected.

10 The symbols Π0
1 and ∆0

1 are a fastidious way of saying co-recursively enumerable and decidable (see, e.g., [9, 22]).
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For this reason, programming languages usually fix some policy that does some simple checking
statically — for example, types — and defers harder checks to run-time or performs no checking.
The “no-checking” approach is rather controversial: many academics find the lack of dynamic
checking in C++, for example, inexcusable, since a minor misstep with a pointer can corrupt data
and crash programs. The rationale for not performing dynamic checks in languages like C, Fortran,
and C++ is simply performance. The cost of array bounds checking is often quoted at 50%, and
a recent study [14] shows this loss persists even when using superscalar and VLIW architectures
with predicated instructions, where bounds checks can in principle be done in parallel with array
computations.

A surprisingly common attitude is that performance does not matter in practice.11 It is true
that for a great many applications performance is not crucial. However, there are many areas where
performance matters a great deal. Two examples are:

• Scientific computing. Performance is important because it directly affects the turnaround
time of numerical experiments. A team whose software takes a month to run a simulation is
at a big disadvantage to a team whose software takes only a week.

• Embedded systems. Microprocessors for embedded systems come in a variety of configurations
of speed and memory, each with a different price point. If you cannot meet the time constraints
of your application with a given chip, you have to move up to a faster (and more expensive)
model. For this reason, programmers working on embedded systems for certain applications
— for example, telephony and networking — tend to care very much about performance.

Another common response to claims that dynamic safety checks hurt performance is that checks can,
in practice, be proven away. This is worth examining in more detail; let’s take array bounds checking
as an example, since this is a problem that has been tackled in depth [20, 29, 92, 134, 143, 175]. To
preserve type safety, some languages (notably Java) check all array indices at run-time. Without
such checks, programs could rewrite arbitrary locations in memory. First, it is immediately clear
that not all bound checks can be proven away, since the set of programs whose bound checks may
be safely removed is Π0

1-complete. It is often argued, though, that checks can be removed in all
or most practical situations. Such claims are bolstered by a wide literature of results on removing
bound checks for ‘loop nests’ such as in this example of dense matrix-vector multiplication:

for (int i=0; i < N; ++i)
for (int j=0; j < N; ++j)

for (int k=0; k < N; ++k)
C[i ][ j] += A[i][k ] ∗ B[k][ j ];

Harder, though, is the case of sparse matrix-vector multiplication, the workhorse of many meth-
ods for solving partial differential equations (for example, finite element methods). The inner loop
of such a matrix product, using compressed sparse-row format, looks like this:

for (int col= firstcol ; col < nextfirstcol − 1; ++col)
tmp = tmp + csr nz[col] ∗ x[csr cols [ col ]];

The challenge here is the term x[ csr cols [ col ]], which requires proving that every element of the
csr cols array is in range of the x array – a relation that must be proven where the csr cols and x arrays

11At a recent workshop, one speaker asked the audience, to appreciative laughter, “When was the last time you
heard about a company not shipping a piece of software because it was too slow?”
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are assembled. This may be easy in some situations, but if these arrays are produced by a large mesh
generation package, the problem becomes much harder. Or consider ‘adaptive mesh refinement,’
where these arrays are being changed on the fly in response to error characteristics. Or still more
challenging, parallel adaptive mesh refinement, where a proof would have the added challenge of
understanding communications between processes that are cooperatively causing changes to the
csr cols and x arrays. Impossible? No, just improbable that someone would find it worthwhile to
produce automated proof tools to handle these scenarios. As usual, it is less a question of technical
feasibility than of economics.

The point, then, is that there are large classes of problems where dynamic checks hurt perfor-
mance, and it is not practical to automatically prove away these checks.

What, then?

So: static safety checks can be too restrictive; dynamic checks cause overhead that cannot always
be removed by proving away checks. Any fixed safety policy will hurt the goal of universality.
For example, mandatory dynamic checks are bad for high-performance applications; no checking
is bad for safety-critical applications. Since any fixed policy will leave some class of programmers
unsatisfied, what is needed is flexibility: safety policies should be set by applications, not languages.

1.7 Design Criteria

Having surveyed many issues related to performance and safety, we are now in a position to propose
design criteria. We divide these into three sections: performance, safety, and syntax.

Compilers for active libraries should support:

• Performance.

1. Minimization of the abstraction penalty;

2. Generative optimization and component generation;

• Safety.

1. Letting libraries enforce their own safety properties;

2. Extensible type systems;

3. A mixture of safety levels within a program;

4. Semi-automated safety checking;

• Syntax.

1. Domain-specific syntax;

2. Implementation of active libraries that are composable with each other (as opposed to
monolithic languages);

3. Specialization of functions, and (more generally) provide mechanisms for component
generation;
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This is a rather long shopping-list of capabilities. Is there a simpler way to realize it than adding
these features to a compiler one by one? One of the surprises of the C++ experience was that
the language was designed to achieve only a few of the above but ended up achieving more than
intended. In the next section we explore these surprising capabilities, and what this suggests about
how the above goals might be realized.

1.8 In search of universality

1.8.1 Surprising capabilities

C++ has enjoyed success in providing domain-specific programming environments, and deserves
attention as a case study. What distinguishes it is its staging mechanism (template metaprogram-
ming), which has made possible the generation of highly efficient implementations for domain-
specific abstractions. The key to this success is C++ ’s template mechanism [81, 220], originally
introduced to provide parameterized types: one can create template classes such as List〈T 〉 where T
is a type parameter, and instantiate it to particular instances such as List〈int〉 and List〈string〉. (This
idea did not originate with C++ — a similar mechanism existed in Ada, and of course parametric
polymorphism is a near cousin.) This instantiation involves duplicating the code and replacing the
template parameters with their argument values — similar to polyvariant specialization in partial
evaluation (cf. [232]). In the development of templates it became clear that allowing dependent
types such as Vector〈3〉 would be useful (in C++ terminology called non-type template parameters);
to type-check such classes it became necessary to evaluate expressions inside the 〈〉 brackets, so
that Vector〈1 + 2〉 is understood to be the same as Vector〈3〉. The addition of this evaluation step
turned C++ into a staged language: arbitrary computations could be encoded as 〈〉-expressions, and
thereby guaranteed to be evaluated at compile time. Template specialization could be leveraged to
do control-flow specialization. These capabilities were the basis of template metaprogramming and
expression templates. A taste for these techniques is given by this definition of a function pow to
calculate xn (attribution unknown):

template<unsigned int N>
inline float pow(float x)
{ return pow<N % 2>(x) * pow<N / 2>(x*x); }

template<> inline float pow<1>(float x) { return x; }
template<> inline float pow<0>(float x) { return 1; }

The code y=pow<5>(x) expands at compile time to something like t1=x*x; t2=t1*t1; y=t2*x.
C++ developers have used such techniques to provide high-performance domain-specific libraries, for
example POOMA [122] and Blitz++ [231] for dense arrays, MTL [208] and GMCL [165] for linear
algebra (Section 1.3). Blitz can do many of the dense array optimizations traditionally performed
by compilers, such as loop fusion, interchange, and tiling. POOMA generates complicated parallel
message-passing implementations of array operations from simple user code such as “A=B+C*D.”
GMCL generates elaborate components at compile time, producing a concrete matrix type from
a specification of element type, sparse or dense, storage format, and bounds checking provided by
the user. In short, C++ is interesting because these libraries have been able to provide capabilities
previously provided only by optimizing compilers or component generation systems.

For syntactic abstraction, C++ provides only a fixed set of overloadable operators, each with a
fixed precedence. This makes it a rather poor cousin of custom infix operators or general macro
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systems. However, people get surprising mileage out of this limited capability: one of the lessons
learned from C++ is that the combination of staging and overloadable operators can be parlayed
into customized parsing by turning a string of tokens into a tree and then traversing the tree in the
compile-time stage to transform or ‘compile’ the expression.

Another useful lesson from the C++ experience is that staging can be used to provide domain-
specific safety checking. Examples of this include ‘concept checking’ in C++ [149, 207], which essen-
tially retrofits C++ with bounded polymorphism; SIUnits [27], which realizes the idea of dimension
types [124] in C++ to check type safety with respect to physical units; also, MTL and Blitz check
conformance of some matrices and arrays at compile time. And as a more general example, we point
to the ctassert<> template [103] which provides a compile-time analogue of dynamic assert()
statements.

C++ was not intended to provide these features; they are largely serendipitous, the result of a
flexible, general-purpose language design. Even now — a good decade after the basic features of
C++ were laid down — people are still discovering novel (and useful!) techniques to accomplish
things that were previously believed impossible. Just recently it was discovered that compile-time
reflection of certain type properties was possible [110], something no-one had anticipated.

1.8.2 Can languages exhibit emergence?

So: it turns out that C++ had many capabilities beyond those envisioned by its designers. A
similar phenomenon can be seen with Scheme, where a small core of powerful language features —
continuations, macros, quasiquotation — have made it possible to do many extraordinary things
not apparent from the language specification. In the case of Scheme this is by design, rather than
accident; the language developers worked hard to achieve this power.

The lesson to be taken is that programming languages can have emergent properties, in the
sense of surprising capabilities that could not be anticipated from the basic rules of the language.
Such languages have an exuberance that makes them both fun and powerful; unanticipated features
are bursting out all over! That emergent properties have proven so useful in practice suggests it
worthwhile to understand their origin and how one might foster languages with such potential.

Let me state up front that I am not entirely comfortable with the term emergence. It suffers from
many meanings and, frankly, overexposure. Nonetheless, it does seem to capture some important
intuitions about how and why ‘surprising’ capabilities appear in programming languages, and we
propose it as a metaphor.

Emergence as a term dates back to the 1870s [148], and its various meanings are an active topic
of debate in philosophy of science [52, 128]. Here is the common gist of its meanings:

Emergence is generally understood to be a process that leads to the appearance of
structure not directly described by the defining constraints and instantaneous forces
that control a system. [51]

Of relevance to us is weak emergentism (see, e.g., [218] for an accessible discussion of flavours
of emergence). As applied to programming languages, the crucial premise of weak emergence is
that of systemic properties.12 A property is said to be systemic if none of the component parts

12 The other premises are physical monism, which rejects supernatural explanations for emergent properties; and
synchronic determination, that a system’s properties depend solely (nomologically) on its microstructure [218].
Supernatural explanations are more relevant to questions of consciousness than programming languages.
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of a system have it, but the system as a whole possesses it. Weak emergentism takes the position
that emergent properties are systemic properties. In the context of programming languages, this
suggests that emergent properties are capabilities of the language that cannot be attributed to a
specific language feature. And indeed this appears to be the case; for example, the ability to do tem-
plate metaprogramming in C++ cannot be attributed solely to “template instantiation” or “partial
specialization” or “evaluation of template arguments”, but rather is a systemic property resulting
from an interaction between these. Similarly, the capability of Scheme to cleanly express (for ex-
ample) logic programming [84] cannot be attributed solely to “continuations” or “quasiquotation”
or “macros,” but is systemic.

This notion of emergence is a bit too broad, though: should anything you can do with a com-
bination of language features, no matter how trivial, to be considered ‘emergent’? We ought to
restrict the definition to include some measure of novelty, so the emergent properties of a language
are restricted to those whose existence would not be anticipated from the language features be-
ing combined. We will follow McLaughlin [148], who suggests narrowing the term emergence to
exclude properties that are obvious from ‘compositional principles’ that apply to the parts of a
system in combination.13 For programming languages, an obvious choice of compositional principle
presents itself: the ability to intermingle the syntactic constructs associated with language features.
Considering addition and multiplication as two separate language features, the ability to write the
polynomial x ∗ x+ y ∗ y is not to be considered an emergent property, but rather obvious from the
composition principle.

We’ll use the term semantic components to mean the basic language features from which a
programming language is constructed. We propose the following definition for emergent properties
of programming languages:

A capability of a programming language is emergent with respect to the language’s
semantic components if it is a systemic property (i.e. results from an interaction of the
components), and novel with respect to syntactic composition of those components.

Can the meaning of ‘novel’ be formalized? Here we run into the problem that the capabilities of a
language follow logically from the semantics of its components, just as theorems follow from axioms.
What distinguishes novel theorems from uninteresting ones? It is easy to write programs that crank
out correct theorems (1+1 = 2, 1+2 = 3, . . .); and yet some theorems we take as interesting (Gödel’s
incompleteness theorems, Andrew Wiles’ proof of Fermat’s last theorem). Both dull and interesting
theorems follow from the same set of axioms, and efforts to formalize “interestingness” necessarily

13 This is a shameless simplification. McLaughlin [148], p. 15:

If P is a property of w, then P is emergent if and only if P supervenes with nomological necessity, but
not with logical necessity, on properties the parts of w have taken separately or in other combinations
together with compositional principles that apply to the parts in other combinations.

Relating the philosophy literature on emergence to programming languages is challenging. It bristles with terms of
art — supervenience signifies something rather different from its dictionary meaning here, and logical necessity is
apparently not what we understand by material implication or provability. This literature deals with problems arising
primarily from physics and mind, where the issues are markedly different from ours. In programming languages we
have determinism: properties follow from semantic definitions. The fields of agent systems and artificial life have
evolved their own notions of “computational emergence” and “emergent computation” (two different things), but
again, they have their own goals that are hard to relate to programming languages. In the end, our aim is not to
develop a rigorous theory of how or why emergence seems to happen in programming languages, but rather to suggest
it as a useful point of view that provides intuition.



28 CHAPTER 1. ACTIVE LIBRARIES

amount to searching for heuristics that capture rather subjective human ideals [41]. Formalizing
what constitutes a ‘novel’ capability of a programming language seems equally challenging. A
defensible position is that a language capability’s novelty is simply a matter for opinion; we are
content to let the matter rest there.

We suggest adopting the term exuberant for languages that are rich with emergent features.14

While some languages are exuberant, it seems clear that others are not. (This is, let’s be clear,
a subjective opinion since we have chosen to duck the ‘novelty’ question.) Java, for instance, has
been the primary implementation language for this thesis. It is a well-engineered language: it has
excellent safety properties, extensive library support, and is in practice utterly reliable; yet after
five years of use it seems rather stolid and strait-laced when compared to C++ or Scheme. One is
left with the impression that every aspect of the language has been pinned down: there are few
surprises to be discovered, and if an unexpected feature appeared it would be seen as a failure of the
language specification. One can see this in the recent addition of generics, whose capabilities are
so tightly circumscribed as to be of marginal use. That C++ has so many unintentional capabilities
seems to be a result of throwing together many semantic components without thinking too carefully
about how they might interact. So, a recipe for exuberant languages would seem to be: throw
together many features. On the other hand, this can often lead to semantic difficulties: there is
a long history of language features interacting in an undesirable way, for example breaking type
safety.15

1.8.3 Capabilities, embeddings and subsumption

Some of these issues can be clarified by examining more carefully what it means for a language to
have such-and-such a capability. First of all, we know that in a theoretical sense most languages are
equally powerful. Recall Turing-reducibility: a language LA is Turing-reducible to LB if there is a
computable mapping LA → LB that preserves the behaviour (for simplicity, output and termination
properties) of programs. In that case we write LA ≤T LB, and say that language LA is reducible
to LB, or that LB subsumes LA. If LA ≤T LB and LB ≤T LA then we say the languages are
interreducible. Most programming languages are interreducible, for example by interpretation.
By this measure, then, most languages are equally powerful, and some languages that are wholly
impractical — insert your favourite improbable computing model here, for example, simulations of
Turing machines in Conway’s Game of Life [189] — are by this metric every bit as good as Haskell.
This quandary is often referred to as the “Turing tar pit.”

How then can it make sense to speak of a language’s capabilities if all languages are equally
powerful? The key here is that we are measuring power via a particular reducibility relation (Turing-
reducibility), and that by introducing different reductions we can get more suitable notions of
language ‘power’. To avoid confusion we will switch to the term “embedding,” and reserve reduction
for its Turing-reducible sense. Researchers seeking to formalize what it means for two languages to
be equally expressive have explored embeddings that preserve program structure [59, 74, 146, 155].
In this approach, a language LB can be said to be more expressive than a language LA if there is
an embedding of LA into LB that preserves the ‘structure’ of programs, but not of LB into LA.

14 “Luxuriantly fertile or prolific; abundantly productive.” (Oxford English Dictionary, second edition.)
15 A recent thread on the TYPES forum mentioned as examples subroutines and object initialization in Java

bytecode [83], and inheritance and subtyping [43].
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Structure-preserving embeddings shed light on why being able to do logic programming in
Scheme, for example, matters: there is a structure-preserving embedding from some (hypotheti-
cal) logic programming ur-language into Scheme. This says something far stronger than the fact
that logic programming is Turing-reducible to Game-of-Life simulations: the first implies a useful
programming environment, while the second does not. Structure-preserving embeddings avoid the
Turing tar pit.

They do, however, create new tar pits all their own: any language with a sufficiently powerful
macro mechanism becomes an “über-language” in which all other (structurally similar) languages
can be embedded. This was the eventuality forseen by Landin [138] and subsequently developed
by many others e.g., [105, 123, 205, 245]. The key insight was that a language need not have every
possible feature to be useful; instead, it needs only a sufficiently powerful core of essential features.
Nonessential features become “syntactic sugar” expressed in terms of that core. This approach is
clearly articulated in the opening sentences of the R5RS, the de-facto Scheme standard:

Programming languages should be designed not by piling feature on top of feature,
but by removing the weaknesses and restrictions that make additional features appear
necessary. Scheme demonstrates that a very small number of rules for forming expres-
sions, with no restrictions on how they are composed, suffice to form a practical and
efficient programming language that is flexible enough to support most of the major
programming paradigms in use today. [123]

The important insight of Felleisen [74] is that structure-preserving embeddings provide a tool for
studying the capabilities of programming languages. (This is of course part of a larger current
in modern mathematics: morphisms to study algebras, reductions to study computability and
complexity, semantic embeddings to study decidability of logical theories, homeomorphisms for
topology, functors for category theory, and so forth.) Researchers in agent systems use subsumption
and embedding to study emergent behaviour — for example, the ability of simple agent systems to
collectively perform computations. So, too, we can use embeddings to study ‘emergent’ capabilities
of programming languages, effectively giving us a tool to ‘engineer emergence,’ as it were: we can
use embeddings to study language cores and see whether they have the necessary properties for
‘emergence’ (or realizability) of capabilities we desire.

Our interest lies in languages for active libraries. Do “syntactic über-languages” fit the bill?
They do not necessarily meet the performance and safety requirements we laid out for active li-
braries; being able to realize surface syntax says nothing about the ability to achieve domain-specific
optimizations and safety. Clearly, structure-preserving embeddings aren’t everything we need. We
remedy this by introducing two new classes of embeddings: safety-preserving embeddings and stage-
preserving embeddings. We can use these embeddings to assess candidate languages for realizing
active libraries, by determining whether they admit embeddings of hypothetical languages for com-
ponent generation, metaprogramming, extensible type systems, domain-specific safety, and so forth
— any capability we deem useful for active libraries.

1.8.4 Stage-preserving embeddings and kernels

To describe these embeddings we must state some simple conditions about the translation of pro-
gramming languages to implementation languages such as machine code. For simplicity we will
assume a class of languages that are all being compiled to the same implementation language LM
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— the subscript M here standing for machine. A compiler for some source language LA is a partial
map φA : LA ⇀ LM ; partial because for many interesting staged languages (e.g., C++ , MetaML)
the compiler may not terminate. To speak of embeddings being semantics-preserving, we will stip-
ulate some relation ∼ over programs in LM such that p1 ∼ p2 means “programs p1 and p2 are
equivalent.” An exact definition of equivalence is not needed for our purposes, but we have in mind
some behavioural equivalence appropriate to a view of programs as processes, reactive systems, or
interactive algorithms, i.e., programs whose equivalence is judged based on their interaction with
the operating system and other processes, rather than a “programs as algorithms” view based on
input-output equivalence (cf. [153, 154, 177, 197]).

Definition 1.1. An embedding e : LA → Lu is a total, decidable function that is semantics-
preserving: φA(p) ∼ φu(ep) for all p ∈ LA.

The typical scenario we want to consider is illustrated by this diagram:

LA

φA

��4
44

44
44

44
44

44
e // Lu

φu

��























LM

We have two languages LA and Lu, compilers φA and φu for them, and we consider an embedding
e : LA → Lu. In particular we ask when embeddings that preserve properties of interest (semantics,
staging, safety) exist. The scenario of special interest is when LA is an ur-language for some problem
domain, and Lu is some language purporting to be ‘universal.’

The kernel of a compiler

We use the concept of staging to address compile-time computations (cf. [115, 118, 223]). We
are interested in embeddings that are stage-preserving: if a computation occurs at compile time in
language LA, then it occurs at compile time in language Lu. This can be conveniently addressed
using the kernel of the compiler. Recall that the kernel of a mapping φ is:

ker(φ) = {(p1, p2) | φ(p1) = φ(p2)}

(See, e.g., [28]; in linear algebra, the kernel defines the nullspace of a linear operator.) The kernel is
an equivalence relation on programs; every program in an equivalence class is compiled to the same
program.

To illustrate how the kernel can capture staging, consider a trivial language fragment consisting
of variables, integer literals, addition, and the escape operator ˜(·) [167, 223] that forces evaluation
of an expression at compile time. For example, the expression x + ˜(1 + 1) must be reduced to
x+ 2 at compile time, whereas x+ (1 + 1) can be left as is. One way to formalize escapes is to give
compile-time evaluation semantics for the language, for example by defining a rewrite relation →
that applies to escaped terms:16

n1 + n2 → n where n = Jn1 + n2K
n1 − n2 → n where n = Jn1 − n2K

16The notation J·K here means semantic interpretation in some structure, for example the integers Z where J1+1K = 2.
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Source language programs Compiled programs

x+ 2
φ

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x+ ˜(1 + 1)
φ // IADD x 2

x+ ˜(1 + (2− 1))

φ
33ffffffffffffffffffffffff

y + 2
φ // IADD y 2

y + ˜(4− 2)

φ
33fffffffffffffffffffffffff

Figure 1.3: Illustration of the kernel of a compiler φ for a fragment of a staged language. Expressions
enclosed by ˜() are evaluated at compile time. The kernel simply gives equivalence classes of source
programs that map to the same compiled program.

Some example derivations using this rewrite are:

x+ ˜(1 + 1)→ x+ ˜(2)
x+ ˜(1 + (2− 1))→ x+ ˜(1 + 1)

→ x+ ˜(2)

The reflexive, transitive closure of such a rewrite relation is typically written ∗→. Now consider a
hypothetical compiler φ that claims to correctly implement the staging semantics. If this is true,
then p1

∗→ p2 must imply φ(p1) = φ(p2), or equivalently that ∗→⊆ ker(φ).17 Figure 1.3 illustrates.
We can think of the kernel as a staging specification.18 We will say informally that code ‘lies in

the kernel’ to mean that it will be evaluated at compile-time.

Stage-preserving embeddings

We can use the kernel to formalize the notion of a stage-preserving embedding.

Definition 1.2. An embedding e : LA → Lu is stage-preserving when it satisfies (p1, p2) ∈
ker(φA) ⇒ (ep1, ep2) ∈ ker(φu).

17 Recall that
∗→ is a relation, so the use of ⊆ here, while vaguely disquieting at first, is correct and proves to be a

useful notation. Similar abuses of notation are common in the rewriting literature (cf. [120]).
18The kernel is related to, but different from, binding-time specifications (cf. [115, 116]): the kernel indicates

which programs will compile to the same target program, whereas binding-times indicate which terms are replaceable
by constants. These two ideas coincide in some situations, e.g., when programs are terms, the compilation map is
compositional, and only partial evaluation is taking place.
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L L

L

e
eA u

M

Figure 1.4: Illustration of stage-preserving embedding. If two programs in LA compile to the same
program in LM , then after embedding in Lu they must still compile to the same program.

Figure 1.4 illustrates this idea. The kernel of a compiler gives us a measure of its staging power, that
is, its ability to perform computations at compile time. If one language has greater staging power
than another, then it can subsume more languages with staging capabilities. Defn. 1.2 effectively
says: to increase the staging power of a language, make its kernel larger. (Chapters 3-4 develop
techniques for constructing compilers with large, well-defined kernels.)

Adopting the kernel to represent staging loses the sense of reduction in rewriting. In above
example of the rewrite relation ∗→, there is a clear direction: 1 + 1 ∗→ 2, but it is not the case
that 2 ∗→ 1 + 1. The kernel is an equivalence relation, and is comparable to convertibility ∗↔,
the symmetric closure of ∗→. A compiler can satisfy the literal requirements of Defn. 1.2 and yet
replace all integer literals n with any computation producing n. For instance, it might replace 5
with 1 + (1 + (1 + (1 + 1))), and so forth for every integer. Is this a problem? Compiler writers
are, after all, guided by common sense. Adopting the kernel as a measure of staging power provides
useful intuition, and so long as we keep in mind its limitations, there is little danger of confusion.

1.8.5 Stage-universal languages

Let us write LA ≤S LB to mean there exists a stage-preserving embedding e : LA → LB. This
relation ≤S is a preorder, that is, reflexive and transitive, but not necessarily anti-symmetric. Given
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languages LA, LB, LC , LD we might have the following diagram of ≤S :

...

LD

OO

LB
((

=={{{{{{{{
LChh

aaCCCCCCCC

LA

aaCCCCCCCC

=={{{{{{{{

where arrows indicate the presence of stage-preserving embeddings. The obvious question is whether
there might exist maximal elements; we call such languages stage-universal.

Definition 1.3. A language is stage-universal when there is a stage-preserving embedding of any
other language into it.

The term stage-complete would do equally well. It will come as no surprise to readers familiar with
computability theory that the usual notion of Turing-completeness can be used to give necessary
conditions for such languages. From here on, we will stipulate that all languages and compilers
under discussion are Σ0

1, i.e. computably enumerable (a.k.a. recursively enumerable) under suitable
coding. That is, we rule out languages that cannot be realized by computers, assuming the strong
Church-Turing thesis. We make the standard assumption that there is an effective coding p·q of the
languages LA, LM as terms of Lu (e.g., [9, 22]). If p ∈ LA is a program then ppq may be thought
of as a representation of p by its parse tree, as a string of characters, or (more traditionally) a
very large natural number; the particulars do not matter so long as the encoding is unique and
computable. We will moreover assume that Lu permits the construction of functions over codes
(e.g., parse trees), and will write F (c) to mean the application of such a function F to a code c.

It is useful to distinguish between functions implemented in Lu, e.g., maps over codes, and
programs that can take such codes and produce behaviour. For a program P taking as argument
some code x, we write P [x].

Definition 1.4. An interpreter for the machine language LM in the language Lu is a program IM [·]
such that for every machine-language program pm ∈ LM , the interpreted version of pm is equivalent
to pm:

φu(IM [ppmq]) ∼ pm

That is, if we take some machine-language program pm and ‘code’ it as (for example) a syntax tree
ppmq and give it to the interpreter IM , then IM running ppmq behaves the same way as the program
pm. What, you may well ask, is the point of this useless construction? The first is just expedience;
it will shortly let us prove something interesting. The second is to ensure that the language Lu does
not lose basic capabilities of the language LM , such as the ability to interact with the operating
system and so forth. This is of concern when dealing with interactive systems (a.k.a. processes,
reactive systems, etc.) rather than purely functional programs. More formally, it guarantees that
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φu is onto the equivalence classes Lu/ ∼ giving the possible behaviours (e.g., [136]) of LM programs.
That is, for every “machine-language” program pm ∈ LM , there is a program pu ∈ Lu such that
φu(pu) ∼ pm, i.e., pm and φu(pu) have the same behaviour.

What we need next is some vocabulary to discuss compile-time computations.

Definition 1.5. A partial function f is realizable in the kernel of φu if there exists an Lu-language
function F such that for any program P taking as argument a code, and x, y such that y = f(x):

φu(P [F (pxq)]) = φu(P [pyq])

Or, equivalently, (P [F (pxq)], P [pyq]) ∈ ker(φu).

This means, more or less, that the partial function F is evaluated at compile time.
We now give a sufficient condition for stage-universality, inspired by ideas from partial evalua-

tion, in particular Jones-optimality [116] and the Futamura projections [86]. The proof is boilerplate
computability theory and partial evaluation. We rely on the assumption (stated earlier) that com-
pilers are Σ0

1 functions.

Theorem 1.1. If (1) there is an interpreter IM [·] for LM in Lu; and (2) any Σ0
1 function f is

realizable in the kernel of φu, then the language Lu is stage-universal.

Proof. Pick a language and compiler LA and φA. Since φA is Σ0
1, by (2) there is a Lu-function

ΦA realizing it such that if pm = φa(pa) then φu(P [ΦA(ppaq)]) = φu(P [ppmq]) for any program P
taking a code-argument.

Consider the embedding e : LA → Lu given by:

e(pa) = IM [ΦA(ppaq)]

where IM [·] is the Lm interpreter whose existence is ensured by (1). Recall from Defn. 1.2 that
e is stage preserving when (p1, p2) ∈ ker(φa) ⇒ (ep1, ep2) ∈ ker(φu). Choose p1, p2 such that
(p1, p2) ∈ ker(φa). Then there is a pm such that φa(p1) = φa(p2) = pm, and from the choice of ΦA,

φu(IM [ΦA(pp1q)]) = φu(IM [ppmq]) and
φu(IM [ΦA(pp2q)]) = φu(IM [ppmq])

Therefore φu(ep1) = φu(ep2), or (ep1, ep2) ∈ ker(φu), and the embedding e is stage-preserving.
Since such an embedding exists for any language LA, the language Lu is stage-universal. �

We will be sloppy henceforth and refer to a “Turing-complete kernel” to mean the properties listed
in Theorem 1.1.

The construction in the proof above is not of immediate practical use; there is no guarantee
that an interpreted program φu(IM [ΦA(ppq)]) will run anywhere near as fast as φA(p) (cf. Jones-
optimality [116]). What is of interest is the following observation it yields:

A language with a Turing-complete kernel can, in principle, subsume any staged lan-
guage.
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This is not a surprising result; the ability of C++ templates, for example, to provide many useful
capabilities stems from the fact that the template system is Turing-complete in the absence of
template instantiation limits [226, 232, 234]. However, it does confirm the obvious research direction
of developing compilers with Turing-complete kernels.

It suggests a further direction, also: the construction above would be useful if φu found programs
that were ‘optimal.’ That is, if the compiler φu were to find fastest, smallest, etc. programs, then the
construction φu(IM [ΦA(ppq)]) would be practical. Finding optimal programs is hard — ∆0

2-hard,
to be pedantic — so this goal is not reachable.19 However, if we find programs that are near to
optimal, then approaches nearing the construction of Theorem 1.1 might be practical. In Chapters
3-4 we show how such compilers can be realized.

1.8.6 Safety-universality

Safety-preserving embeddings

For convenience, we require that the compiler have a designated output unsafe ∈ LM signifying an
“unsafe program.” Then unsafe can indicate programs that fail safety checks: a compiler φ judges
a program p to be unsafe exactly when φ(p) = unsafe. (Most compilers output nothing when a
program fails safety checks; we introduce unsafe just for convenience. Equating unsafe with “no
output” is reasonable.)

Definition 1.6. A safety-preserving embedding e : LA → Lu is a semantics-preserving embedding
that preserves the set of programs judged unsafe, i.e., φu(ep) = unsafe if and only if φA(p) = unsafe.

For convenience, we will assume no programs in LM are equivalent to unsafe except unsafe itself
(i.e. unsafe has a singleton equivalence class under ∼). This means, incidentally, that semantics-
preserving (Defn. 1.1) implies safety-preserving.

Just as the kernel of a compiler gave us a method to assess its staging power, the properties of
the set {p ∈ LA | φA(p) = unsafe} give us a tool to measure the ability of a compiler to check safety
properties. Next we turn to safety-universality. There are two approaches we might take here. The
first is to note an obvious, but unenlightening, corollary of Theorem 1.1:

Corollary 1.1. Any language meeting the criteria of Theorem 1.1 is safety-universal.

This follows because stage-preserving embeddings are semantics-preserving, and from the way
we defined the special compiler output unsafe, any semantics-preserving transformation is safety-
preserving (Defn. 1.6).

A more informative scenario is to consider compilers that make no safety judgments, but rely
on a preliminary “safety checking” phase. We take this safety checking phase to implement a proof
calculus ` making judgments of the form safe(p). This is a general framework that subsumes,
for example, type systems and so forth; we can augment a typical type inference system with an
additional rule of the form:

` p : τ
` safe(p)

19 Consider for example the class of programs whose only observable behaviour is whether they halt or not. It is
easy to define languages in which there is a unique optimal program that halts, and a unique optimal program that
does not halt. A procedure that found optimal programs could therefore decide the halting set, which is exactly the
set ∅(1) obtained by applying the ‘jump’ function to the empty set. This set is ∆0

2-complete (see, e.g., [9] §2.1, §2.5).
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This states that if a program p can be given a type τ , then it is safe. We limit ourselves to effective
proof calculi, i.e., those whose deductions are computably enumerable, and in particular to relations
safe(p) that are decidable. We will write 6` safe(p) to mean “safe(p) is not a valid deduction of `.”

Theorem 1.2. Let LA, φA be a language and its compiler, and ` be an proof calculus with judgments
of the form ` safe(p) for some p ∈ LA, such that the set {p | ` safe(p)} is decidable. Let Lu, φu
be a language and compiler meeting the criteria of Theorem 1.1. Then there is a stage-preserving
embedding e : LA →  Lu such that φu(ep) = unsafe if and only if 6` safe(p).

Proof. Consider the function φ′A : LA → LM given by:

φ′A(p) =

{
φA(p) if ` safe(p)
unsafe if 6` safe(p)

Since the set {p | ` safe(p)} is decidable, i.e. ∆0
1, and φA is Σ0

1, the function φ′A is Σ0
1. By the

conditions of Theorem 1.1, there exists a u-function Φ′
A realizing φ′A in the kernel of φu. Consider

the embedding

e(pa) = IM [Φ′
A(ppaq)]

Following the reasoning given in the proof of Theorem 1.1, e(pa) = unsafe if and only if 6` safe(p),
and e is a stage-preserving embedding. �

A key requirement, implicit in the above proof, is that the function Φ′
A must be able to produce

punsafeq, i.e., the code of an unsafe program. The intuition we can draw from this is the following:

Any language with a Turing-complete kernel and the ability to construct at compile-time
a condition signifying “unsafe program” is safety-universal.

Then when a safety condition is found to fail, a program can announce that it is unsafe. In
Chapter 5 we introduce a primitive check(·) that plays exactly this role. This approach turns out to
be a practical route to realizing safety-checking: in [233] we demonstrate a compiler for a realistic
subset of C++ that realized type-checking in this manner. We overview this work, and give further
examples of safety-checking in Chapter 5.

1.9 Thesis statement

Let us briefly recap the major arguments of this chapter. We started by advocating for an ‘ac-
tive library’ approach to providing domain-specific programming, and embarked on a survey of
requirements. This led to the design criteria of Section 1.7.

In Section 1.8 we argued that rather than attempting to directly implement the shopping-list of
features described in Section 1.7, we should instead follow the lead of languages such as Scheme and
C++ which offer surprising universality. We proposed embeddings of ur-languages as a conceptual
tool for studying what capabilities might be ‘emergent’ in a language, and introduced stage- and
safety-preserving embeddings for this purpose. A key concept was the kernel of a compiler —
we showed that the ability of a language to provide staging-related capabilities (e.g., generative
optimization) can be related to how large its kernel is. This led to the demonstration of Section 1.8.5
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that languages with “Turing-complete kernels” (Theorem 1.1) are, in a theoretical sense, stage- and
safety-universal. However, the construction used in this proof was impractical, since it offered no
performance guarantee whatsoever.

What is needed, then, are compilers that can realize the ambition of stage- and safety-universality
while still providing practical guarantees of performance. This dissertation describes a technique
for building such compilers, and exhibits a working prototype. We call the technique ‘guaranteed
optimization,’ and this dissertation argues the thesis:

Guaranteed optimization offers a practical path to compilers for stage- and safety-
universal languages suitable for implementing active libraries.

This dissertation concerns itself only with the criteria for performance and safety given in Sec-
tion 1.7; we do not address issues of how to provide domain-specific syntax since, frankly, the
literature is already chock-full of excellent work on this topic and it seems largely orthogonal to
issues of safety and performance.

The remainder of this dissertation presents the guaranteed optimization technique and shows
applications of it:

• Chapter 2 describes some necessary background and insights leading up to guaranteed opti-
mization, mainly that the “superanalysis” technique lets compilers decide program properties
by simultaneous coinduction.

• Chapter 3 describes the guaranteed optimization technique in depth

• Chapter 4 shows the technique to be practical by describing an implementation for a realistic
optimizing compiler

• Chapter 5 shows how guaranteed optimization can be leveraged to provide domain-specific
safety checking.
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2
Superanalysis: Combining Optimizations, Combining

Theories

What’s this chapter about?

This chapter considers the problem of how best to combine optimizations in compilers. It is known
anecdotally that combined optimizations (or superanalysis) can be strictly better than separate
improvement passes. We explore this idea by drawing connections from program analysis to the
literature on coinduction, bisimilarity and combinations-of-systems. In retrospect, it is clear that
classical ‘optimistic’ analyses decide coinductively-defined relations, and ‘pessimistic’ analyses de-
cide inductively-defined relations. We relate combining program improvements to the problem of
deciding combinations of theories. Iterating program improvements is similar to the Nelson-Oppen
method of deciding combined theories: in Nelson-Oppen decision procedures communicate equali-
ties, and iterated improvement passes implicitly communicate equalities via term replacements. To
decide combinations of coinductively-defined relations, one needs to use simultaneous coinduction,
which is realizable by superanalysis.

What’s new here?

The observation that combined analyses can be stronger than separate analyses goes back at least to
early work of Cousot and Cousot [48, 50] who considered combined abstract interpretation domains
and introduced ‘reduced products’ that combined abstract interpretations. More recent treatments
of the abstract interpretation approach can be found in [40, 44]. In the imperative world, Click and
Cooper [37] took Wegman and Zadeck’s pioneering CCP analysis [248] as inspiration and developed a
general approach to combining analyses. In their approach, one formulates each analysis as a system
of lattice equations, and encodes interactions between them using special terms. The equations
are then solved simultaneously using a global optimistic assumption. Click also demonstrated an
efficient combined analysis for unreachable code, constant propagation and global value numbering.
More recent efforts at combined analyses can be found in [30, 140, 181].

39
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Mostly this chapter is a tutorial on superanalysis, and lays the groundwork for the proof tech-
nique of Chapter 3. There are some new contributions, however. We use results on nonfinite
axiomatizability to explain why traditional term rewriting is insufficient in the presence of loops
and recursion. We relate the optimizing compiler terms of ‘pessimism and optimism’ to ‘induc-
tion and coinduction,’ which is somewhat obvious in retrospect but so far as we can determine
never before discussed in the literature. We describe a new correspondence between the Nelson-
Oppen method and iterating improvement passes. Lastly, we prove that under certain reasonable
assumptions, different combinations of program improvements can be arranged in an ‘effectiveness
hierarchy,’ shown in Figure 2.12 (p. 54).

How this chapter is organized

We start by reviewing phase ordering problems in compilers (Section 2.1.1), the inadequacy of
(classical) term rewriting in the presence of cycles and recursion (Section 2.1.2), and combined im-
provements (Section 2.1.3). We then use the example of unreachable code elimination (Section 2.2.1)
to introduce induction and coinduction (Section 2.2.2) and illustrate how these relate to pessimism
and optimism (Section 2.2.3). In Section 2.3, we describe a correspondence to the Nelson-Oppen
procedure. Lastly, we sketch an ‘effectiveness hierarchy’ of methods of combining improvements
(Section 2.4).

2.1 Introduction

The literature on compiler optimizations is vast, but the ‘big-picture’ problem of how best to
combine individual optimizations in a full-fledged compiler is only rarely addressed. Should one
do constant propagation before or after dead code elimination, or both? A crucial problem is
that no one sequence of improvement passes works well for all input programs: this is called the
phase ordering problem. There are two well-known approaches to avoiding this problem: iterating
improvement passes, or performing improvements simultaneously. It is known from the literature
that in the presence of loops and recursion, simultaneous improvements can be strictly better than
iterating improvement passes. This has led to a recent spate of research into combined analyses, or
superanalysis.1 In this chapter we put forward an explanation of why superanalysis is superior. In
short, our answer is the following:

Optimistic program analyses decide coinductively-defined relations. To best combine
optimistic analyses, one must use simultaneous coinduction, which can be realized by
superanalysis.

We consider a class of program improvements that fit the following model: the improvement decides
some relation (for example, def-use, congruence, must-alias) and then transforms the program based
on this relation. Within this model the following correspondences hold:

1We adopt this term from [140].
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Program 1

x := 1
if false then

x := 2
return x

Program 2

y := false
if y then

return 2
return 1

Figure 2.1: Two programs to illustrate a phase-ordering problem.

Pessimistic Optimistic
Improvement Improvement

Intermediate results are sound unsound
Relations are defined inductively coinductively
Effective method of iterating improvement superanalysis
combining improvements passes

We use these correspondences to draw connections between combining improvements and the
theorem-proving literature on deciding combinations of theories.

2.1.1 Phase ordering problems

Consider two improvement passes A and B, and for a specific example take A to be unreachable code
elimination and B to be constant propagation. These improvements can be conveniently modelled
as maps A,B : Program→ Program. We can sequence these improvements either as A ◦B or B ◦A.
These two compositions are generally not equal. For example, both the programs of Figure 2.1 are
equivalent to “return 1.” For the first program, the best strategy is to perform unreachable (or
dead) code elimination first (to remove the if), then apply constant propagation:

x := 1
if false then

x := 2
return x

unreachable code

elimination // x := 1
return x

constant

propagation // return 1

For the second program, the best strategy is to do constant propagation first (to propagate y = false)
followed by unreachable code elimination:

y := false
if y then

return 2
return 1

constant

propagation //
if false then

return 2
return 1

unreachable code

elimination // return 1
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In general improvement passes are not commutative: for some programs p, (B ◦A)(p) 6= (A◦B)(p).
This is commonly called the phase ordering problem. One solution is to keep iterating the passes
until a fixpoint is reached, using a structure as in this diagram:

A B

We will refer to this approach as iterating improvement passes.

2.1.2 Term rewriting

Term rewriting systems (e.g., [10, 137, 141, 240, 241]) are often proposed as a model for program
improvement. In the term rewriting approach, one applies semantics-preserving rules such as:

if true then a else b → a

if false then a else b → b

The problem of combining rewrite systems is reasonably well-understood. Why not just build
optimizers based on rewrite systems?

Since rewrite systems can be Turing complete — even one-rule systems [57] — every effective
combination of optimizations can, in theory, be realized by a rewriting system. What we would like
to discuss here is a stronger claim sometimes made about rewrites:

Programs can be optimized by a finite set of semantics-preserving rewrite rules.

This claim fails to be true for many interesting optimizations. The reasons for this are well-known in
the rewriting community, and have led to more powerful methods of rewriting: conditional rewrites,
stratification [10], and coinductive rewriting, for example. Outside of the rewriting community,
though, and particularly in the programming languages community, a vague belief like the above
persists, and we want to address that briefly here.

Rewrite systems shine as decision procedures for theories with a finite number of equational
axioms. For example, given the axiom x + 0 = x, we can turn this into a rewrite rule x + 0 → x
and use it to put terms in normal form: (z+ 0) + 0→ z+ 0→ z. There are well-known completion
procedures such as Knuth-Bendix for turning a system of axioms into a set of rewrite rules [133].

Classical rewrite rules can be viewed as ‘oriented axioms.’ It is known that several classes of
cyclic structures lack finite equational axiomatizations, for example regular expressions [2, 188],
process calculi [204], and iteration algebras [18]. Since there is no finite equational axiomatization
of these classes, there can be no (classical) rewrite system to put them in canonical form.

Recursion is an integral part of most interesting programming languages, and since any of the
above structures may be embedded in programs, naive rewriting ought to be inadequate for program
optimization, and this does turn out to be the case. We offer here a brief example of this.

Consider the logic circuit of Figure 2.2. The D box delays its input signal by one step, and the
OR gate simply takes the logical OR of its inputs. Taking the signals x and y as infinite streams
xi, yi for i < ω, the circuit of Figure 2.2 has as its behaviour this stream equation:

y = D(x ∨ y) (2.1)
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D
x y

Figure 2.2: A stateful logic circuit. With the delay element value initially zero, the output remains
zero until the input becomes one, after which the output is always one.

where (Dα)i+1 = αi, and delay elements are assumed to initially hold zero, i.e., (Dα)0 = 0. The
individual elements of the y stream are given by yi+1 = xi ∨ yi =

∨
j<i xj – that is, the value of y at

time i is just the logical OR of all values of x up to time i. This equation Eqn. (2.1) can be realized
by a program, for example:
previous y = 0;
while (true)
{

x = read(); // Get input signal to circuit
y = x || previous y;

// Clock tick
previous y = y;
}

Now consider the problem of optimizing programs such as this. Suppose, for example, that we
introduced some redundancy into the circuit, as in Figure 2.3. The equations for this circuit are:

y = D(x ∨ z)
z = D(y ∨ x)

The signals yi and zi are the same: yi = zi =
∨
j<i xj .

A suitable framework for rewriting structures with cycles is equational term graph rewriting [7].
We can specify rewrite rules that have ‘circular’ redexes, using systems of equations. For example,
to turn Figure 2.3 into Figure 2.2, we can apply the rule:{

α = x ∨ β
β = β ∨ x →

{
α = x ∨ α
β = α

A similar rule could be constructed that would apply to a program realizing Figure 2.3. Now the
question is: does there exist a finite set of rules that allow us to minimize such circuits?

The answer is no, because we can construct circuits that contain arbitrarily large cycles and yet
have behaviour equivalent to that of Figure 2.2. For example, Figure 2.4 shows a circuit that would
require a circular redex of three equations to minimize. No semantics-preserving two-equation rule
applies to this circuit. Any finite set of rewrite rules would have a largest cycle size n that it could
minimize; and we can always construct a circuit along the lines of Figure 2.4 containing a cycle of
size n+ 1.

On the other hand, there is a well-known program analysis that can minimize circuits and
programs like this [4]; we describe it briefly in Section 2.2.4.

This offers a brief illustration of why classical rewriting is inadequate for structures containing
cycles. In general, when there are cycles present — as in programs — an analysis is required to
support rewriting with a finite number of rules.
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Figure 2.3: A circuit with the same behaviour as Figure 2.2.
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Figure 2.4: Another circuit with the same behaviour as that of Figure 2.2.

2.1.3 Combining improvements

Surprisingly, iterating improvement passes is not always the optimal solution. Wegman and Zadeck
[248] describe a combination of unreachable code elimination with constant propagation they called
conditional constant propagation (CCP). CCP achieves results strictly better than iterating the
two passes separately. Consider this code fragment:

x := 0
loop : if x = 0 then

return x
else

x := 1
goto loop

Neither unreachable code nor constant propagation (in their usual versions) can improve this code:
unreachable code cannot eliminate the if branch because the value of x = 0 is not decided, and
constant propagation cannot decide x = 0 at the branch because both the assignments x := 0 and
x := 1 might reach the use of x. However, CCP is able to transform this program to “return 0”
because it performs both analyses simultaneously using optimistic assumptions.

2.2 Pessimism and Optimism

The distinction between pessimistic and optimistic program analyses is one that has proven use-
ful in the compilers literature (see, e.g., [38]). In pessimistic analysis, intermediate results are
semantics-preserving. An optimistic analysis starts from an assumption that a program may be
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B C D

EAStart

Figure 2.5: A simple example for unreachable code elimination. Basic blocks are represented by
vertices. The vertex Start is reachable, as is B; the remaining vertices are unreachable.

transformed maximally; intermediate results are not sound — if one stops the analysis prematurely
the resulting program may behave nothing like the original. Optimism corresponds to least fixpoints
in abstract interpretation. In dataflow analyses, optimism often corresponds to greatest fixpoints,
but sometimes to least fixpoints also.2

The common approach is to perform a program analysis followed by a transformation. Analyses
are often lattice-based, as in abstract interpretation and dataflow analysis.

2.2.1 Unreachable code elimination

To contrast pessimism and optimism we consider unreachable code elimination: removing code that
is unreachable in any execution of a program. For the purposes of unreachable code elimination
a program can be modelled as a graph G = (V,E) whose vertices represent sequential code (ba-
sic blocks) and edges model control flow; Figure 2.5 shows an example. We define a set U? of
unreachable vertices by x ∈ U? if and only if vertex x is unreachable in any execution. The set
U? is undecidable for a Turing-complete language; instead we decide a conservative approximation
U ⊆ U?, and delete all program points x ∈ U found by analysis to be unreachable.

Assume a distinguished start node Start ∈ V , and define pred(x) and succ(x) to be the predeces-
sors and successors of x (i.e., pred(x) = {y | (y, x) ∈ E}). We write U = V \ U for the complement:
the set of reachable vertices.

Here are two approaches to defining the set U . In each case we define a sequence Ui that
converges to an answer.

1. The pessimistic approach. Initially assume all vertices are reachable, i.e., U0 = ∅ and
U0 = V . To define U we use the rule: A vertex is unreachable if all its predecessors are
unreachable:

Ui+1 = {v | pred(v) ⊆ Ui} (2.2)

This iteration converges to a set U of unreachable vertices. We can equivalently say that
U is the least fixpoint of Eqn. (2.2); or that U is the set defined inductively by the rule.
Intermediate results of the analysis are semantics-preserving: we can halt the analysis at any
point, delete the vertices in U and have a correct program. Figure 2.6(a) illustrates this
approach for the graph of Figure 2.5.

2 For example, optimistic def-use analysis uses least fixpoints; optimistic congruence analysis uses greatest fixpoints.
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Figure 2.6: Unreachable code analysis for the graph of Figure 2.5. (a) Results of the pessimistic
approach: all vertices are initially assumed reachable and are moved into the unreachable set if they
have no reachable predecessors. This allows E and then A to be moved into the set U . (b) The
optimistic approach, in which vertices are initially assumed unreachable; Start is moved into the
reachable set, as are any vertices with reachable predecessors. In the end only Start and B are in
the set U .

2. The optimistic approach. Initially assume all vertices are unreachable i.e., U0 = V and
U0 = ∅. We construct the set of reachable vertices U from the rules: (i) Start is reachable; (ii)
All successors of a reachable vertex are reachable; or:

U i+1 = {Start} ∪ {succ(v) | v ∈ U i}

from which we can inductively define the set U of reachable vertices. Intermediate results are
not semantics-preserving, since we start by assuming we can throw out all the code in the
program. Figure 2.6(b) illustrates this approach for the graph of Figure 2.5.

These two approaches are not always equivalent, as seen in Figure 2.6: the vertices C and D are
marked as reachable by the pessimistic algorithm, even though they are not. For any graph with
unreachable cycles, the optimistic approach defines a set of unreachable vertices strictly larger than
the pessimistic approach. For acyclic graphs, both approaches give the same answer.

One might wonder whether we could strengthen the pessimistic approach to make it equivalent
to the optimistic approach. We could make the pessimistic approach stronger by adding new rules to
handle, for example, pairs of mutually reachable vertices (such as vertices C and D in Figure 2.5).
However, as in Section 2.1.2, a finite number of graph replacement rules that replace finite-size
subgraphs can never remove all unreachable vertices: if the rules allow replacement of a subgraph
of size at most k vertices, then a clique of size k + 1 is not removable.
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2.2.2 Induction and Coinduction

We can better understand the difference between the pessimistic and optimistic approaches by
introducing the distinction between inductive and coinductive definitions (cf. [3]). Consider the
definition of a subset of some universe X; for example, in the previous section the universe was the
set of vertices V .

Induction. To define a set inductively we start with an empty set and apply rules to add elements
until no more rules can be applied. That is, we have an increasing function f : ℘(X)→ ℘(X) that
given some subset of X, gives us a larger subset: A ⊆ f(A). The least fixpoint lfp f is the set
defined inductively by f .

Coinduction. To define a set coinductively we start with the full set X and use rules to remove
elements until everything that ought not to be in the set is gone.3 That is, we have an decreasing
function g : ℘(X)→ ℘(X) that given some subset of X, gives us a smaller subset: g(B) ⊆ B. The
greatest fixpoint gfp g is the set defined coinductively by g.

Compare these to the unreachable code analyses:

• In the pessimistic approach, we initially assumed U0 = ∅ and had rules by which we added
vertices to U . Thus, U was defined inductively.

• In the optimistic approach, we initially assumed U0 = V and had rules by which we moved
vertices out of U and into U . Thus, U was defined coinductively.

The opposite view, that U is defined coinductively by the pessimistic analysis and inductively by
the optimistic analysis, is also valid. Induction and coinduction are duals: since the subsets of X
under ∪,∩ and complementation form an ortholattice, we can define dual operators

f?(A) = X \ f(X \A)
g?(A) = X \ g(X \A)

that give a coinductive construction of X \ lfp f and an inductive construction of X \ gfp g:

X \ lfp f = gfp f?

X \ gfp g = lfp g?

This duality is illustrated in Figure 2.7. The crucial point is:

If a set is defined inductively, its complement is defined coinductively.

If a set is defined coinductively, its complement is defined inductively.

3“Il semble que la perfection soit atteinte non quand il n’y a plus rien à ajouter, mais quand il n’y a plus rien à
retrancher.” (It seems that perfection is attained not when there is nothing more to add, but when there is nothing
more to take away.) – Antoine de Saint-Exupéry
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Figure 2.7: Illustration of induction-coinduction duality. Each diamond represents the lattice
〈℘(X),∪,∩〉. Shown at left is some function g satisfying g(A) ⊆ A; it defines the set gfp g
coinductively. By duality, the function g?(A) = X \ g(X \ A) is an inductive definition of the
complement of the set; that is, lfp g? = X \ gfp g. The dotted arrows between the two lattices
indicate complementation operations (A→ X \A).

2.2.3 Coinduction and optimism

A general model for analysis-based program improvements is that they first decide a relation R,
then use this relation to transform a program p. We can argue that the relation an analysis decides
is inductive or coinductive depending on whether we choose to talk about R or its complement
R. There is no fundamental reason to choose one over the other; both work equally well. But to
make some points about how to best combine analyses, we will for this discussion choose relations
so that larger relations cause more program improvement. So, for example, in the unreachable
code analysis of Section 2.2.1 we would choose U as the relation, rather than its complement U ,
since the larger the set U of unreachable code, the more the program is improved (by removing the
unreachable code).

We can model a program improvement as a function that maps a program p to a ‘better’ version
of p. We formalize this by assuming a preorder ≤ capturing some notion of better (faster, smaller,
less abstract) programs. If p is a program and A is an improver, then we require A p to be better:

p ≤ A p (2.3)

Two plausible definitions of ≤ are (i) p1 ≤ p2 only if p2 is textually smaller (or the same size as) p1;
(ii) p1 ≤ p2 only if p2 requires fewer (or as many) computational steps than p1 in any execution.

We use the notation p′ = T (R, p) to indicate transformation of a program p using a relation R.
The convention that a larger relation causes more improvement can be cleanly expressed by this
rule:

R1 ⊆ R2 ⇒ T (R1, p) ≤ T (R2, p) (2.4)

In order-theory terminology, this means T is order-preserving (monotone) in its first argument (R).
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improvement

all programs

program p

semantic−preserving

coinductive

rewrites (inductive)

improvement

equivalent to p

Figure 2.8: Coinductive (optimistic) program improvement. The shaded region represents the set
of programs equivalent to p. More improved versions of p are higher; less-improved versions are
lower, and the shaded region extends infinitely downwards. Inductive program improvement, based
on semantics-preserving steps, follows a path from p upwards. Coinductive program improvement
starts from a ‘maximally improved’ program and retreats until a program is found in (a decidable
approximation of) the equivalence class of p.

We could equally well choose as a convention that smaller R cause more improvement; due to
induction-coinduction duality it does not matter per se. However, by choosing the ‘larger R, more
improvement’ convention we can show a useful correspondence between pessimism and induction,
optimism and coinduction. For some analyses this choice of relation is counterintuitive — but we
do this just to argue about combining analyses in an abstract way.4

Using the convention of Eqn. (2.4), ‘optimistic’ program improvement coincides with coinduc-
tively defined relations. In optimistic analysis one starts from an assumption that allows the program
to be improved maximally; thus if an optimistic improvement decides a relation R, by our convention
of Eqn. (2.4), R is defined coinductively. An intuitive view of coinductive program improvement is
shown in Figure 2.8.

2.2.4 Example: congruence analysis

For a more obvious example of the correspondence between optimism and coinduction, we turn to
the problem of removing redundant computations. This is an old and well-studied improvement,

4 For example, def-use information is conveniently thought of in terms of a binary relation reaches(x, y) which is
true only if some definition x might reach a use y. (In the program “a ← (1)2; return (2)a”, the program point (1)

is a definition, and (2) is a use, and we would say reaches(1, 2)). However, the larger the reaches relation, the less
improvement we can perform; thus, for this argument we would think instead about a relation notreaches(x, y) – the
more reaching definitions we can rule out, the more we can improve a program.
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known in various incarnations as common subexpression elimination [39], value numbering [25],
lazy code motion [132] and partial redundancy elimination [125] (see, e.g., [158] for a survey). The
inductive approach is straightforward: given some straight-line code such as:

w := +(b, c)
x := +(a,w)
y := +(b, c)
z := +(a, y)

one wishes to eliminate redundant computations — in this example, y and z are redundant since
y = +(b, c) = w and z = +(a, y) = x. The classical inductive approach to this problem is congruence
closure [64], based on algebraic congruence in term algebras. In congruence closure, one represents
an equivalence relation over variables by its equivalence classes, for example {{w, y}, {x, z}}. Ini-
tially, one assumes that no variables are congruent, e.g., the partition {{w}, {x}, {y}, {z}}, and
proceeds by merging partitions as variables are found to be congruent. The relation R in this case
is an equivalence, and one starts from R = ∅ and adds to R as congruences are discovered; therefore
this is an inductive (pessimistic) approach.

The inductive approach fails to find all congruences in the presence of loops and recursion.
There is a corresponding literature on optimistic, or what we would call coinductive approaches,
exemplified by the Alpern-Wegman-Zadeck (AWZ) algorithm [4]. In this approach, variable defini-
tions in an SSA-form program are viewed as a set of mutually recursive definitions, and Hopcroft’s
DFA-minimization algorithm [102] is used to find a maximal ‘congruence.’ This approach is based
on partition refinement (e.g., [176]), in which all variables are initially assumed equal and are moved
into separate partitions as inequalities are discovered. The relation R in the AWZ algorithm is ini-
tially taken to be the largest possible equivalence on the variables — for example, {{w, x, y, z}} —
and as analysis proceeds, one removes equivalences from the relation. This is therefore a coinductive
approach. In fact, DFA minimization is the canonical example of bisimulation in coalgebra, e.g.,
[136, 196]; the ‘congruence’ found by the AWZ algorithm is clearly a bisimulation.

2.3 Combining Optimizations, Combining Theories

In this section we draw connections between the problem of combining program improvements and
the theorem-proving literature on deciding combinations of theories. This leads to an interesting
view of superanalysis as deciding combinations of theories with coinductively-defined relations,
which in turn sheds light on why iterated improvements are not as good as superanalysis.

Recall that a first-order language consists of logical symbols ∀,∃,¬,∧,∨,→, relation symbols
such as =,≤ and function symbols such as +,−; and that a structure gives semantic interpretation
to the relation and function symbols in some universe. For example, the integers (Z; =,≤,+,−)
are a structure for a first-order language with relations =,≤ and function symbols +,−. The
theory of a structure Z is the set Th(Z) of all sentences true in the structure. For example,
∀x(x ≤ x + 1) ∈ Th(Z), but ∀x(−x ≤ x) 6∈ Th(Z) since −(−2) 6≤ −2. A decision procedure
for Z decides whether or not a sentence ϕ is in Th(Z). (See, e.g., [15, 22, 53])

A useful viewpoint is that optimizing compilers behave much like, and to some extent are,
decision procedures. That is, optimizers decide a theory about programs. This theory is usually
chosen to be simple and easily decidable—for example, whether certain variables always hold some
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constant value. This correspondence between optimizers and theorem provers is apparent when one
compares the literature on combining optimizations with that of combining decision procedures.

Combining decision procedures

Suppose we have decision procedures for several separate theories and wish to combine them into
one. For example, following [163], we might have a theory Th(Functions) of unevaluated function
symbols, a theory Th(List) of lists under car, cdr and cons, and a theory Th(Z) of the integers, and
decision procedures for each of these. The problem of deciding combined theories is to decide sen-
tences that mix symbols from the various theories; for example, does f(z+1) = f(1+car(cons(z, w)))
hold?

There are several well-known approaches, of which the two most widely used are Nelson-Oppen
[163] and Shostak’s [206]. Of these, the Nelson-Oppen method [163] has an interesting correspon-
dence to combining program improvements. The main idea behind Nelson-Oppen is to split a mixed
sentence such as f(z+1) = f(1+car(cons(z, w))) into smaller sentences, each of which contain func-
tion and relation symbols of a single theory (here, we introduce new variables a, d, e to split the
sentence into fragments):

Th(Z) Th(List) Th(Func)
a = z + 1
e = 1 + d

d = car(cons(z, w)) f(a) = f(e)

Each decision procedure is responsible for finding equalities implied by their theories; these equal-
ities are then propagated to the other decision procedures. Nelson-Oppen applies only when there
are no predicate symbols shared between theories. Each decision procedure may decide things about
its own predicate symbols, but this information only becomes visible to other decision procedures
when it implies an equality. (For example, the decision procedure for Th(Z) may deduce from x ≥ y
and y ≥ x that x = y).

In the above example, the decision procedure for Th(List) can deduce car(cons(z, w)) = z and
therefore d = z. The equality d = z is then propagated to the other theories. The decision procedure
for Th(Z) can then deduce z+1 = 1+d (since 1+d = 1+z = z+1) and therefore a = e. Since a = e,
the decision procedure for Th(Func) deduces f(a) = f(e). Therefore f(z+ 1) = f(1 + car(cons(z)))
is true in the combined theory. Nelson-Oppen uses an inductively-defined equality, and follows a
partition merging approach (cf. Section 2.2.4).

Combining optimizations

Nelson-Oppen behaves very similarly to an optimizing compiler composed of separate program
passes. For example, consider a program containing the expression f(z + 1) = f(1 + car(cons(z))).
In a typical intermediate language this expression would be lowered to a set of simple definitions
in flat form (also known as A-normal [80] or quad/triple form [158]), much as the Nelson-Oppen
procedure splits expressions. Figure 2.9 illustrates how an optimizing compiler might improve the
code.

There is a straightforward correspondence between Nelson-Oppen and iterated improvement
passes: in Nelson-Oppen, decision procedures communicate by propagating equalities they discover.
In iterated improvement passes, there is an implicit communication of equalities between passes via
term rewriting and replacement.
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(1) (2) (3)

a := z + 1
b := f(a)
c := cons(z, w)
d := car(c)
e := 1 + d
g := f(e)
h := b = g

a := z + 1
b := f(a)
e := 1 + z
g := f(e)
h := b = g

a := z + 1
b := f(a)
g := f(a)
h := b = g

. . .

. . .

(4) (5)
a := z + 1
b := f(a)
h := b = b

h := true

Figure 2.9: Example of how a compiler might optimize the expression f(z + 1) = f(1 +
car(cons(z, w))) in a sequence of improvement passes: (1) the initial program in lowered form;
(2) after list optimizations; (3) after an integer arithmetic pass; (4) after common subexpression
elimination (assuming the function f is free of side-effects); (5) after dead variable elimination,
assuming h is needed at later program points but a, b are not.

Both approaches are based on an inductively-defined equality relation across theories, and both
approaches require that we iteratively apply decision procedures (improvement passes) to decide a
combined theory (combined improvement).

Term graphs (e.g., [7, 184]) provide a useful view of this problem. Figure 2.10 represents the
expression f(z + 1) = f(1 + car(cons(z, w))) as a term graph, and we have grouped vertices into
subgraphs corresponding to their appropriate theory. Note that this term graph is acyclic; because
of this, the equality relation for the symbols a, b, c, d, e, g, z, w can be decided inductively.

If there were cycles in the graph, then coinduction would be required, e.g., a bisimulation.
Neither Nelson-Oppen nor iterated improvement passes are suitable for deciding equivalence of
cyclic definitions that span theories, since this requires coinduction.

We can generalize diagrams of the sort shown in Figure 2.10 to show dependence between ele-
ments of arbitrary relations being decided. Consider for example two relations RA and RB defined
in terms of each other. We can illustrate these with graphs in which each element of RA and RB is
a vertex, and edges indicate a definitional dependence, e.g., given a definition a1 ↔ a2 ∧ b3 (where
a1, a2 ∈ RA and b3 ∈ RB), we include an edge (a1, a2) and (a1, b3). There are several possibilities,
illustrated in Figure 2.11. In the case there are no cycles in the graph (Figure 2.11(a)), the rela-
tions can be decided inductively, for example with a pessimistic assumption and iterating suitable
improvement passes. When there are cycles, but only within a relation, one can iterate separate
optimistic passes (Figure 2.11(b)). But when there are cycles across relations (Figure 2.11(c)),
simultaneous coinduction is required, and this can be achieved by superanalysis.
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Figure 2.10: Term graph of the expression f(z+ 1) = f(1 + car(cons(z, w))); Refer to Figure 2.9(1)
for the definitions of the variables a . . . g. Subgraphs represent the theories of (from left to right)
unevaluated function symbols Th(Func), integers Th(Z), and Th(List).

(a) Acyclic definitions: decid-
able by iterating pessimistic
improvement passes.

RA RB

(b) Cycles within theories: de-
cidable by iterating optimistic
improvement passes. Coin-
duction within theories, induc-
tion between theories.

RA RB

(c) Cycles across theories: re-
quires simultaneous coinduc-
tion across theories.

BRAR

Figure 2.11: Effectiveness of combined-theory deciders at deciding equivalences. The figures illus-
trate several cases of cyclic definitions in term graphs (Section 2.3).
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Figure 2.12: An effectiveness hierarchy of combined improvements. This is a Hasse diagram of ≤
on combined improvements. We use ; for sequencing, (·)∗ for iteration, and ⊗ for superanalysis. If
an improvement is higher than another in this diagram, then it improves every program at least as
well as the other. At the top (most effective) is superanalysis A⊗B; at the bottom (least effective)
is an identity function I.

2.4 An effectiveness hierarchy

In this section we prove an ‘effectiveness hierarchy’ of methods of combining improvements, and
show that superanalysis sits at the top of this hierarchy. For simplicity we consider only two
improvements, A and B, and we assume that we have both inductive (pessimistic) and coinductive
(optimistic) versions of each. There are so many possible ways to combine improvements that we
adopt some shorthands:

A pessimistic/inductive version of A
A? optimistic/coinductive version of A
A;B apply A then B
(A;B)∗ iterate A;B
A? ⊗B? superanalysis

Recall that in Section 2.2.3 we assumed some preorder ≤ on programs, so that if p ≤ p′ then p′

was considered ‘better.’ We can extend this preorder to improvements and their combinations in a
straightforward way: we define A ≤ B if and only if ∀p . Ap ≤ Bp. That is, B is better only if it
improves every program more than A. For example, we would expect A ≤ (A;B), since doing both
A and B ought to be better than just doing A alone.

Figure 2.12 summarizes the results of this section. We compare all the interesting methods of
combinations using ≤, and see which combinations can be better than others. Not surprisingly,
superanalysis turns out to be the best.

To avoid the complication of reasoning about both analyses and transforms, we assume that
instead of applying transforms we can use a relation R to ‘record’ what transformations would
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be applied. This is only for mathematical modelling; we do not assume such an implementation.
Rather, this is just to bring analysis and transformations ‘under the same roof,’ so to speak. For
example, to model constant propagation, instead of doing transforms such as

+(x,+(0, 1)) → + (x, 1)

we could instead label program points, for example, i + (jx, k + (l0,m1)), and construct a relation
such as {(k, 1), (l, 0), (m, 1)}, where (k, 1) records “the value at program point k is always the
constant value 1.” Subsequent analyses can then take into account this relation and act as if
the corresponding transformations had taken place. By doing this, we can model combinations of
improvements strictly in terms of relations.

To reason about a combination of analyses A and B, we assume they decide relations RA and
RB, respectively. Each of these is assumed to be defined with respect to some universe UA or UB:

RA ⊆ UA
RB ⊆ UB

If the relations RA and RB are defined independently of one another, then the question of how
to combine the analyses is moot — they do not affect each other in any way, and the choice of
combination does not matter as long as each optimization is performed. A more interesting case is
when the definitions of RA and RB refer to each other in such a way that cycles such as those in
Figure 2.11(c) are possible. For example, this is the case with CCP — unreachable code elimination
and constant propagation (Section 2.1.3 (p. 44)), and numerous other analyses, e.g., those defined
in Chapter 4.

We stipulate a ‘combined transformation’ T that uses the pair of relations (RA, RB), and carries
out the transformations recorded as valid in the relations:

T : (UA, UB)× Program→ Program

This transformation is assumed to follow the convention of Eqn. (2.4) that larger relations mean
more improvement:

(RA, RB) ⊆ (R′A, R
′
B) ⇒ T ((RA, RB), p) ≤ T ((R′A, R

′
B), p) (2.5)

Proving the relationships shown in Figure 2.12 is straightforward but tedious, and requires intro-
ducing many symbols. To keep this orderly we adopt the convention that f, F are always associated
with inductive definitions (pessimistic analyses), and g,G are always coinductive definitions (opti-
mistic analyses).

Pessimistic analyses

By the convention of Eqn. (2.4), pessimistic analysis implies inductively-defined relations. We
assume functions f0

A and f0
B that provide inductive definitions of the relations RA and RB, re-

spectively. Since the definition of RA depends on RB and vice versa, we give the functions these
signatures:

f0
A : (UA, UB)→ UA

f0
B : (UA, UB)→ UB
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Figure 2.13: Illustration of some combinations of pessimistic analyses. The size of the relations
decided is illustrated by plotting (|RA|, |RB|), where (0, 0) is at the bottom of the diamond, the
|RA| axis goes diagonally left, and the |RB| axis diagonally right. From left to right: (a) the
combination A;B finds some elements of RA first, then some RB; (b) the combination B;A does B
first, then A; (c) the iteration (A;B)∗ zigzags up to a least fixpoint.

For these functions to qualify as inductive, they must satisfy:

RA ⊆ f0
A(RA, RB) (2.6)

RB ⊆ f0
B(RA, RB) (2.7)

We also assume monotonicity:

RB ⊆ R′B ⇒ f0
A(RA, RB) ⊆ f0

A(RA, R′B) (2.8)

RA ⊆ R′A ⇒ f0
B(RA, RB) ⊆ f0

B(R′A, RB) (2.9)

For convenience we extend these to functions over the combined domain UA × UB:

fA(RA, RB) ≡ (f0
A(RA, RB), RB)

fB(RA, RB) ≡ (RA, f0
B(RA, RB))

Note that fA leaves RB untouched, and vice versa. Real analyses are designed so they infer as
much as possible in one go. To model this we define FA and FB to be functions that construct
the relations as a least fixpoint. Recall that lfp f =

⋃
i<κ f

i(∅) where κ is a closure ordinal. For
convenience, we adopt the following notation for function exponentiation:5

fλ(x) =
⋃
i<λ

f i(x) for limit ordinals λ

fκ+1(x) = f(fκ(x)) successors

f0(x) = x

This lets us specify the least fixpoint of fA as fωA(∅, ∅), for example. We assume that all analyses
have finite closure ordinals, i.e., that some finite number of iterations n ∈ ω are sufficient to reach

5This is a standard notation for definition by transfinite recursion (cf. [95]).
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Figure 2.14: Some combinations of optimistic analyses, similar to Figure 2.13. From left to right:
(a) A?;B? does coinduction of RA with respect to RB = ∅, then coinduction of RB with respect to
RA. (b) (A?;B?)∗ alternates coinduction of RA and RB, while holding the other relation fixed; (c)
superanalysis does simultaneous coinduction to reach a greatest fixpoint.

the least fixpoint. This is equivalent to assuming the analysis terminates in a finite number of steps.
Now we define functions FA and FB that compute fixpoints:

FA(RA, RB) ≡ fωA(RA, RB) (2.10)
FB(RA, RB) ≡ fωB(RA, RB) (2.11)

Now we can characterize one-pass optimizations:

Combination Relation decided
A;B (FB ◦ FA)(∅, ∅)
B;A (FA ◦ FB)(∅, ∅)

To characterize iteration of optimizations, we again use the exponent notation:

Combination Relation decided
(A;B)∗ (FB ◦ FA)ω(∅, ∅)

An intuitive diagram of these combinations is given in Figure 2.13.

Optimistic analyses

By our convention, optimistic analyses imply coinductively-defined relations. The following defini-
tions are much the same as the previous section, except for a few minor differences we will point out.
The functions g0

A and g0
B provide coinductive definitions of the relations RA and RB, respectively:

g0
A : (UA, UB)→ UA

g0
B : (UA, UB)→ UB
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Since these are coinductive definitions, they satisfy:

g0
A(RA, RB) ⊆ RA
g0
B(RA, RB) ⊆ RB

Assume monotonicity:

RB ⊆ R′B ⇒ g0
A(RA, RB) ⊆ g0

A(RA, R′B) (2.12)

RA ⊆ R′A ⇒ g0
B(RA, RB) ⊆ g0

B(R′A, RB) (2.13)

As before we extend these to the combined universe:

gA(RA, RB) ≡ (g0
A(RA, RB), RB)

gB(RA, RB) ≡ (RA, g0
B(RA, RB))

We use the ω exponent notation again, but with a slightly different meaning for coinduction:

gλ(x) =
⋂
i<λ

gi(x) for limit ordinals λ

gκ+1(x) = g(gκ(x)) successors

g0(x) = x

With this notation, we define the optimistic analyses to be:

GA(RA, RB) ≡ gωA(UA, RB) (2.14)
GB(RA, RB) ≡ gωB(RA, UB) (2.15)

An important difference between Eqn. (2.14) and Eqn. (2.10) is that the GA version discards each
time any initial knowledge about RA, and performs coinduction anew.

Assumption 2.1. We assume that GA and GB are improvements, that is:

(RA, RB) ⊆ GA(RA, RB) (2.16)
(RA, RB) ⊆ GB(RA, RB) (2.17)

Assumption 2.1 is justified because we are modelling program improvements, and don’t consider
analyses that would decrease our knowledge of a program.
Combinations of optimistic analyses can be characterized as follows:

Combination Relation decided
A?;B? (GB ◦GA)(∅, ∅)
B?;A? (GA ◦GB)(∅, ∅)

(A?;B?)∗ (GB ◦GA)ω(∅, ∅)

Note that in the combination (A?;B?)∗, the relation is decided as an induction combination of
coinductive relations, so the exponent in (GB ◦GA)ω is interpreted as a union, not intersection.

We will equate superanalysis with simultaneous coinduction, following Section 2.3).

Combination Relation decided
A? ⊗B? (superanalysis) (gB ◦ gA)ω(UA, UB)
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Lemma 2.1. Any fixpoint of GB ◦GA is a fixpoint of gB ◦ gA.

Proof. Suppose (α, β) is a fixpoint of GB ◦ GA. Then (α, β) is also a fixpoint of GB and GA
individually — otherwise, one of GB or GA would contradict Assumption 2.1. We have GA(α, β) =
gωA(UA, β) by definition, and GA(α, β) = (α, β) since it is a fixpoint. Putting these together and
applying gA to each term, we obtain

gA(GA(α, β)) = gA(gωA(UA, β)) = gA(α, β)

Since gA ◦ gωA = gωA, we have gωA(UA, β) = gA(α, β); and since gωA(UA, β) = (α, β), we obtain
gA(α, β) = (α, β). Therefore (α, β) is a fixpoint of gA. Similarly, (α, β) is a fixpoint of gB. �

Comparing combinations

The analysis combinations described and the relations they decide are summarized in the following
table.

Combination Informal meaning Relation decided
I identity map (RA, RB) = (∅, ∅)
A;B one-pass pessimism (RA, RB) = (FB ◦ FA)(∅, ∅)
B;A one-pass pessimism (RA, RB) = (FA ◦ FB)(∅, ∅)
(A;B)∗ iterated pessimism (RA, RB) = (FB ◦ FA)ω(∅, ∅)
A?;B? one-pass optimism (RA, RB) = (GB ◦GA)(∅, ∅)
B?;A? one-pass optimism (RA, RB) = (GA ◦GB)(∅, ∅)
(A?;B?)∗ iterated optimism (RA, RB) = (GB ◦GA)ω(∅, ∅)
A? ⊗B? superanalysis (RA, RB) = (gB ◦ gA)ω(UA, UB)

We make one major assumption about the analyses: that the coinductively-defined relations are
at least as large as the inductively-defined ones:

Assumption 2.2. For every RA and RB,

RB ⊆ R′B ⇒ FA(RA, RB) ⊆ GA(RA, R′B) (2.18)
RA ⊆ R′A ⇒ FB(RA, RB) ⊆ GB(R′A, RB) (2.19)

The following theorem depends on the previously stated assumptions.

Theorem 2.1. Combinations of program improvements, ordered by how much they improve pro-
grams, have the partial order of Figure 2.12.

Proof. We consider each edge in the left half of Figure 2.12 in turn. Edges for the right half have
similar proofs, with A and B interchanged.

1. I ≤ (A;B).

This is trivial: I computes (RA, RB) = (∅, ∅), and (A;B) computes (R′A, R
′
B) = (FB◦FA)(∅, ∅).

Since (∅, ∅) ⊆ (FB ◦ FA)(∅, ∅), by Eqn. (2.5), I ≤ (A;B).
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2. (A;B) ≤ (A;B)∗.

For (A;B), (RA, RB) = (FB ◦ FA)(∅, ∅).
For (A;B)∗, (R′A, R

′
B) = (FB ◦ FA)ω(∅, ∅).

Since FA and FB are both increasing, FB ◦ FA is increasing, and therefore (RA, RB) ⊆
(R′A, R

′
B). Then by Eqn. (2.5), (A;B) ≤ (A;B)∗.

3. (A;B) ≤ (A?;B?).

For (A;B), (RA, RB) = FB ◦ FA(∅, ∅).
For (A?;B?), (R′A, R

′
B) = GB ◦GA(∅, ∅).

From (∅, ∅) ⊆ (∅, ∅) and Eqn. (2.18), FA(∅, ∅) ⊆ GA(∅, ∅). By Eqn. (2.19), FB ◦ FA(∅, ∅) ⊆
GB ◦GA(∅, ∅).
Then (RA, RB) ⊆ (R′A, R

′
B) and by Eqn. (2.5), (A;B) ≤ (A?;B?).

4. (A?;B?) ≤ (A?;B?)∗.

For (A?;B?), (RA, RB) = GB ◦GA(∅, ∅).
For (A?;B?)∗, (R′A, R

′
B) = (GB ◦GA)ω(∅, ∅).

Since GA and GB are both increasing by Eqn. (2.16) and Eqn. (2.17), GB ◦GA is increasing,
and therefore (RA, RB) ⊆ (R′A, R

′
B). Then by Eqn. (2.5), (A?;B?) ≤ (A?;B?)∗.

5. (A;B)∗ ≤ (A?;B?)∗.

For (A;B)∗, (RA, RB) = (FB ◦ FA)ω(∅, ∅).
For (A?;B?)∗, (R′A, R

′
B) = (GB ◦GA)ω(∅, ∅).

From Eqn. (2.18) and Eqn. (2.19) and induction, (RA, RB) ⊆ (R′A, R
′
B). Then by Eqn. (2.5),

(A;B)∗ ≤ (A?;B?)∗.

6. (A?;B?)∗ ≤ (A? ⊗B?).
For (A?;B?)∗, (RA, RB) = (GB ◦GA)ω(∅, ∅).
For (A? ⊗B?), (R′A, R

′
B) = (gB ◦ gA)ω(UA, UB).

From Lemma 2.1, (RA, RB) is also a fixpoint of gB ◦gA. Since (R′A, R
′
B) = (gB ◦gA)ω(UA, UB)

is the maximal fixpoint, (RA, RB) ⊆ (R′A, R
′
B). Then by Eqn. (2.5), (A?;B?)∗ ≤ (A? ⊗B?).

�



3
Guaranteed Optimization

What’s this chapter about?

This chapter describes a new technique for designing optimizers that provide proven guarantees of
what optimizations they perform. We use rewrite rules to capture common patterns of “adding
abstraction” to programs, and develop a proof technique for compilers based on superanalysis
(Chapter 2) to prove that any sequence of rule applications is undone in a single step. Such
compilers address the problem of “abstraction penalty” — see Section 1.4.1 (p. 14) — and offers
programmers an intuitive guarantee of what improvements the compiler will perform. We also show
that compilers based on this approach find “optimal programs” in a carefully defined sense.

What’s new here?

This chapter shows how compilers based on superanalysis can compute optimal “normal forms”
of programs with respect to an approximate program equivalence. Although optimality results
are known for some specific optimizations (Section 3.2), so far as we know this is the first time
optimality results have been described for superanalysis. Using de-optimizing rewrites to capture
transformations the compiler is guaranteed to undo is also novel.

How this chapter is organized

The early sections of this chapter provide a broad overview of the motivation, proof technique,
optimality results, and related work, at a level readable by a general audience. In Section 3.3 we
give a more detailed overview, and in Section 3.4 we introduce a simple example to which we return
throughout the chapter. To prove properties of a compiler, we need to formalize its structure slightly;
this we do in Section 3.5.2, laying out an idealized view of program analyses, fixpoint equations
and transformations. Section 3.6 surveys techniques for proving that systems of equations have the
same solution, a problem that lies at the core of the proof technique. In Section 3.7 we formalize the
transformation phase of superanalysis-based compilers, and finally in Section 3.8 we tie everything

61



62 CHAPTER 3. GUARANTEED OPTIMIZATION

together and illustrate the proof technique in full for the running example. Section 3.9 proves results
about finding “optimal” programs.

3.1 An overview of guaranteed optimization

Guaranteed Optimization is a method for designing compilers that have proven guarantees of what
optimizations they will perform. In this overview we give a quick taste for the method, deferring
details to later sections.

Guaranteed optimization is a “design-by-proof” technique: in attempting to prove a compiler
has a certain property one uncovers failures in its design, and when at last the proof succeeds
the compiler has the desired property. The basic inspiration comes from canonical forms. Recall
that a canonical form provides a way to test equivalence of two terms: we put the two terms into
canonical form and compare them, and if their canonical forms are equal then they are equivalent.
(For example, we can compare the polynomials 2 + x and 1 + x + 1 by putting them each into
the canonical form x + 2, at which point their equivalence is obvious.) Ideal optimizing compilers
would compute canonical forms of programs: every program would be reduced to some “optimal”
program in its semantic equivalence class. This goal is of course out of reach since useful notions
of program equivalence are undecidable. Although we might be able to achieve optimality for some
classes of programs, there can be no effective procedure to do so for all programs. The best we
can hope for are compilers that find normal forms of programs within some large, well-defined but
still computable approximation of program equivalence, and this is what guaranteed optimization
achieves.

We limit our attention to mid-level optimizations. Reprising the rough taxonomy described in
Section 1.4 (p. 13), low-level optimizations are machine-specific (for example, register allocation and
instruction scheduling); mid-level optimizations are those that can be applied without appealing
to special properties of the problem domain and have a general flavour of minimizing redundant
computations; and high-level optimizations are domain-specific, such as loop-nest optimizations for
arrays. In this chapter we are only concerned with mid-level optimizations — we do not address
optimizations such as register allocation or loop transformations.

To motivate guaranteed optimization, let’s consider the goal that optimizing compilers ought
to undo transformations we might apply to programs to make them “more abstract” for software-
engineering purposes, for example replacing “1 + 2” with

x = new Integer(1);
y = new Integer(2);
x.plus(y).intValue();

Not that anyone would write that exactly, but similar code is routinely written to further software
engineering goals like encapsulation and modularity. We can represent transformations that make
programs “more abstract” by rewrite rules. Some trivial examples of rewrites are:

R1. x → x+ 0
R2. x → car(cons(x, y))
R3. x → if true then x else y

...
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These rules are, of course, completely backward from the usual approach: they are rules that
de-optimize a program. The obvious question is: why not devise an optimizer by reversing the
direction of the arrows, using (say) Knuth-Bendix completion [133]? The answer is that we work
with infinite sets of such rules, some of which are conditional; thus we violate two requirements of
Knuth-Bendix (which applies to a finite number of unconditional axioms.) Moreover, reversing the
direction of the arrows can turn unconditional rewrites into conditional rewrites with undecidable
conditions; and sensible approximations to the conditions require global analysis. In Chapter 2 we
explain that useful program equivalences don’t have finite equational axiomatizations, which makes
equational reasoning (of which rewriting is an example) problematic.

It turns out that the unusual approach of considering de-optimizing rules leads to a usable proof
technique: we can prove that certain compilers undo any sequence of rule applications in a single
application of the optimizer, yielding a program that is “minimally abstract.” Figure 3.1 illustrates.

Furthermore, these rewrite rules provide users with a fairly intuitive set of guarantees of what
optimizations will be performed by the compiler.

The proof technique

In what follows, we use some standard notations for rewrites: we use → for a “de-optimizing”
rewrite and x ↔ y (“convertible”) if x → y or y → x. We write ∗→ and ∗↔ for the reflexive,
transitive closure of → and ↔, respectively. Some relevant background on rewrites can be found in
the surveys [60, 120, 129, 182].

The proof technique applies to optimizers based on the superanalysis approach (Chapter 2):
instead of separate optimizing passes, there is instead a single, combined analysis followed by one
transformation step. Superanalysis-based optimizers consist of three steps:

1. The program text is examined to produce a system of analysis equations;

2. These equations are solved to a least fixpoint;

3. Using this fixpoint solution, the program is transformed.

We can represent this process graphically for some program p as:1

p
(1)// analysis

equations
(2) // solution

(3) // transformed
program

where the numbers (1), (2), (3) refer to the steps above. The essence of the proof technique is to
consider a de-optimizing rewrite p→ p′, and compare what happens to both p and p′ in each step of
the optimizer. We can illustrate this by stacking two of the above diagrams, one for p and another
for p′:

p
(1)//

rewrite
��

analysis
equations

(2) //

��

solution
(3) // transformed

program

p′
(1)// analysis

equations
(2) // solution

(3) // transformed
program

1 We’re not going to trot out commutative diagrams or category theory here; this is merely a simple diagram to
give intuition.
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Figure 3.1: A simplified sketch of Guaranteed Optimization. Each point represents a program and
thin arrows indicate de-optimizing rewrites. The optimizer guarantees that it will undo any sequence
of de-optimizing rewrites (bold arrows) in a single step (dashed arrow). Each circle represents an
equivalence class of programs judged to have the same behaviour by the optimizer. Every program
in an equivalence class is transformed to the same program.
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Now the crucial observation is that a rewrite p → p′ on programs can be viewed as inducing a
rewrite on the analysis equations, shown above by a dotted line. For example if one replaces x
by x + 0 in a program, there will be corresponding changes in the analysis equations to add and
alter equations. By reasoning about this “induced rewrite” on the analysis equations one can prove
properties of the solution that imply the transformed programs are equal (hence the double vertical
line in the above figure.)

It is convenient to think of the rewrite in terms of its context and redex: suppose z → z+ 0 is a
rewrite rule, and is applied to the expression x+ y so that x+ y → x+ (y+ 0). Here we have the
context x+ [ ] and the redex y, where [ ] denotes a hole. The context is the portion of the program
unchanged by the rewrite. We’ll refer to the ‘de-optimizing’ rewrite rules as R1, R2, etc. For each
rewrite rule one proves a lemma, an informal example of which we give here for some rule R1:

Lemma 3.1. If p→ p′ by rule R1, then (i) the analysis equations for p′ have the same solution as
the equations of p for program points in the rewrite context, and (ii) the transformed version of p′

is the same as the transformed version of p.

The effect of a rewrite on the solution of a system of equations is reasoned about using fixpoint-
preserving transformations and bisimilarity (Section 3.6). We use these techniques to prove that
analysis equations for program points in the context of p are bisimilar to those in p′, and thus the
solution is unchanged for analysis variables in the context; and we prove enough about the solution
to the p′ equations to show that the additional code introduced by the rewrite is removed by the
transformation step.

Proving these lemmas requires adjusting the design of the analysis and transformation so that
the proof can succeed; so, as we stated earlier, the proof technique is really a design technique for
optimizing compilers. Once the lemmas are established, we can show that any sequence of rewrites
is undone by the optimizer using a straightforward induction over rewrites, which we again illustrate
by stacking diagrams (Figure 3.2). For any sequence of rewrites p → p′ → p′′ → . . ., we have that
the transformed versions of p, p′, p′′, . . . are all equal. Writing O : Program → Program for the
optimizer, a guaranteed optimization proof culminates in a theorem of the form:

Theorem 3.1 (Guaranteed Optimization). If p ∗→ p′, then Op = Op′.

This theorem simply states that any sequence of “de-optimizing” rewrites is undone by the opti-
mizer. Note that the proof structure is highly modular: one can add rewrite rules by adding a new
lemma, and the rest of the proof is unaffected.

Theorem 3.1 has some useful implications, which we now describe.

Optimizers as decision procedures for program equivalence

Recall that the kernel of O is ker(O) = {(p1, p2) | Op1 = Op2}. If the optimizer is sound, then
(p1, p2) ∈ ker(O) implies that p1 and p2 are behaviourally equivalent. Thus, one can view the
optimizer O as computing a normal form of programs with respect to a decidable approximation
of program equivalence. Guaranteed optimization gives ker(O) a closure property: if p1 → p2, then
(p1, p2) ∈ ker(O).

The kernel of an optimizer captures the “staging power” of a compiler, i.e., the ability of a
compiler to perform certain computations at compile time (Section 18 (p. 32)). If OA and OB
are two optimizing compilers and ker(OA) ⊆ ker(OB), we can conclude that OB has more staging
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p
(1)//

rewrite
��

analysis
equations

(2) //

��

solution
(3) // transformed

program

p′
(1)//

rewrite
��

analysis
equations

(2) //

��

solution
(3) // transformed

program

p′′
(1)//

��

analysis
equations

(2) //

��

solution
(3) // transformed

program

...
...

...
...

Figure 3.2: A diagram illustrating induction over rewrites: any sequence of de-optimizing rewrites
is undone by the optimizer.

power, in the sense that it performs more reductions at compile time. The fact that ker(O) has a
closure property gives formal meaning to what we might casually call “optimizing predictably and
thoroughly.”

Optimal programs (in some sense)

In Section 3.9 we prove that compilers with guaranteed optimization can find ‘optimal’ programs
within the approximate program equivalences they decide.

We also show that guaranteed optimization can be used to prove a “zero abstraction” property:
if one defines an abstraction level AL(p) of a program p as the length of the longest chain p0 →
. . .→ p, (i.e., how far away p is from a ‘minimal’ program p0) then by imposing a few requirements
on the optimizer one can attain AL(Op) = 0. Such optimizers find a minimal program with
respect to the metric AL. Thus with appropriate “de-optimizing” rules→, guaranteed optimization
can address the abstraction penalty (Section 1.4.1): optimized programs are guaranteed to be
“minimally abstract” with respect to the rewrites →. The eventual goal is to make the set of
rewrites large enough to capture the usual patterns of software engineering abstraction, so that
such compilers will effectively eliminate abstraction penalty, making performance and abstraction
orthogonal issues.

3.2 Related work

The notion of finding normal forms for programs is very old and occurs as early as [169], and of
course much earlier in work on the λ-calculus.

The idea of guaranteeing certain optimizations is also not unknown in compilers, although the
proof technique described here is novel. Compilers for functional languages often guarantee tail-
call optimization; staged languages such as MetaML [223] guarantee that expressions annotated as
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static will be evaluated fully at compile time; deforestation [246] can reliably eliminate intermediate
representations for certain expressions [89]. Sands [198] in his work on ‘improvement theory’ de-
scribes optimization algorithms that offer strong guarantees. Waddell [245] describes an optimizer
for Scheme that aims to reliably optimize away overhead from macros.

Compilers that produce optimal code in some sense are also known. The use of rewrite rules for
optimization can guarantee (in restricted cases) the existence of normal forms [60, 129]. However,
as discussed in Chapter 2, there are doubts as to the adequacy of semantic-preserving rewrites for
program optimization.

A fair amount is known about optimal programs at a low level, and for individual optimizations:
machine code generation [179], optimal instruction sequences [119, 145] code motion [94, 132],
scheduling [255], software pipelining [262] and register allocation [90].

The unique aspect of guaranteed optimization is that it provides a technique to produce com-
pilers that combine multiple optimizations to find programs that are optimal, with respect to an
approximate program equivalence.

3.3 Abstraction and kernels

The early motivation for guaranteed optimization came from experiences with performance tuning
Blitz++, a library for high-performance arrays [230]. A major source of frustration was that
the industrial compilers being used failed to eliminate abstraction reliably. The best optimizing
compilers, while sometimes achieving remarkably good performance, are often capricious, achieving
that performance only when some unpredictable phrasing of the program is presented. Performance
tuning with such compilers requires a great deal of patience: one has to basically enumerate different
ways of expressing a program, hoping to stumble upon one which the compiler will optimize well.
In this chapter we devise a method for constructing compilers that achieve guaranteed, predictable
optimization.

To introduce the basic ideas we use an analogy between compilers and linear algebra. Optimizing
compilers map programs to programs. It is useful to ask as one does in linear algebra: what is the
kernel (or nullspace) of the mapping? The nullspace of a linear transform A is the set of vectors
transformed to the zero vector: null(A) = {x | Ax = 0}. For compilers, a sensible analogy to
nullspace in linear algebra is the set of programs reduced by the optimizer to an “empty program”
which we denote by ∅. For the empty program we might pick, say, a minimal program generating
the value 0; in C, it is the program int main() { return 0; }.

For our purposes, program code may be loosely divided into two categories: “useful” code
that implements desired semantics of the program, and “abstraction” code that does not change
observable properties but is introduced to further software engineering goals such as encapsulation
and modularity. The performance drop that results from abstraction is often called the abstraction
penalty [159, 193, 217]: the performance price paid for using abstraction (such as encapsulation,
virtual functions, and exceptions). Abstraction penalty is a real concern when attempting to meld
good software engineering practice with high performance. Ideally, optimizing compilers would
eliminate abstraction while preserving semantics. In other words, we would like the nullspace of
compilers to encompass typical patterns of software engineering abstraction.

Taking the analogy further, in linear algebra we have the property that if A is a linear transform,
then z ∈ null(A) implies A(x+ z) = Ax; that is, adding something from the nullspace has no effect.
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What does it mean to “add” abstraction to a program? By way of example, consider this fragment
of Java code in which c is an integer variable:

return 1 + c;

Lacking more information about variable c, there are no simplifications we can make – this is a
minimal program. We could “add” abstraction by (say) putting all integers in boxes:

Integer x = new Integer(1);
Integer y = new Integer(c);
return x.intValue() + y.intValue();

This is a semantic-preserving transformation. We might further increase the level of abstraction
by putting the block of code inside a try−catch block:

try {
Integer x = new Integer(1);
Integer y = new Integer(c);
return x.intValue() + y.intValue();
} catch(ArithmeticException e) {

System.err.println(”oops”);
}

This, too, is semantic-preserving, since the Java language standard guarantees that integer addition
will not throw an ArithmeticException [91]; thus, the try−catch has no effect. Furthermore, we can
place the block of code inside a while loop to keep attempting the operation until it succeeds:

while (true) {
try {

Integer x = new Integer(1);
Integer y = new Integer(c);
return x.intValue() + y.intValue();
} catch(ArithmeticException e) {

System.err.println(”oops”);
}
}

This preserves semantics since the operation will always succeed the first time the loop body is
executed.

We can formalize this idea of “adding abstraction” using rewrite rules. Rewrites (or, more
formally, term rewrite systems) have a long history of use in program optimization (e.g., [10, 137,
141, 240, 241]). We consider an application opposite to their usual use: as rules that de-optimize a
program, introducing abstraction, rather than optimizing it. Some examples we listed earlier were:

R1. x → x+ 0
R2. x → car(cons(x, y))
R3. x → if true then x else y

...

These are just for example — in practice we do guaranteed optimization proofs with respect to the
intermediate representation used by the compiler, so the rewrites in question are not this clean; see
Chapter 4 for the real thing.
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De-optimizing rules fill a role similar to that of a basis for the nullspace in linear algebra —
they “span” the nullspace, so to speak. We write p1

Ri→ p2 to mean that a program p1 can be
transformed to program p2 by applying the rewrite rule Ri. Here, Ri→ is a binary relation — a subset
of Program × Program. Given n rewrite rules, we write →= R1→ ∪ R2→ ∪· · · ∪ Rn→, and use ∗→ to
mean the reflexive, transitive closure of →. We want that if p1

∗→ p2, then Op1 = Op2. This is our
analogy to “additivity” in linear algebra.

To build an optimizer capable of undoing any application of such rules, it is necessary to avoid
phase ordering problems – problems that arise when optimizers are constructed from discrete opti-
mizing passes. We do this by adopting a superanalysis approach in which all analyses are performed
simultaneously, followed by a single transformation step — see Chapter 2 (p. 39). This approach is
known to be more powerful than applying individual optimizations in sequence (even iteratively),
since optimizations are synergistic ([37, 248]). It also enables a proof of the guaranteed optimiza-
tion property: any sequence of rule applications is undone by a single application of the optimizer.
The proof is by induction over rule applications: for each rule we consider the changes made to
the analysis equations, show the resulting system of equations has a “compatible” solution (defined
later), and that the transformation step erases the code added by the rule.

This is not a proof for proof’s sake. Rather, the proof guides the design of the optimizer. To
enable the guaranteed optimization proof one is obliged to make many changes to the structure
of the optimizer; and once the proof is complete, one has an optimizer design with the desired
property.

To avoid bludgeoning the reader with too many definitions and proofs, we introduce the proof
technique in parallel with a very simple running example that illustrates the main points. In
Chapter 4 we give a proof for a more substantial optimizer.

3.4 A running example

Consider a tiny programming language: arithmetic expressions built from integers, variables and
addition. A grammar for this language is:

e ::= n Integer literal
| x Variable
| +(e, e)

We study two “de-optimizing” rewrite rules:

R1 : n→ +(n1, n2) where n1 + n2 = n
R2 : e→ +(e, 0)

The rule R1 splits an integer literal into a sum of literals (for example, 3 → 2 + 1); the second
adds zero to any expression. For example, starting from the variable reference a, here is a valid
derivation:

a
R2→ +(a, 0)
R1→ +(a,+(4,−4))
R1→ +(a,+(+(1, 3),−4)).
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The expression +(a,+(+(1, 3),−4)) is still clearly equivalent to a. We will define an optimizer, then
prove it undoes any sequence of applications of R1 and R2 in a single step. This is not an impressive
result, but serves to introduce the proof technique.

For each rewrite rule, the proof technique has two parts:

1. show that the rewrite induced on the analysis equations has no effect on the solution to
analysis variables associated with the context; and

2. show that the transformation step eliminates the code added by the de-optimizing rewrite.

3.5 Background and definitions

To prove properties of compilers, it is necessary to formalize their structure somewhat. In the
next sections we give a framework suitable for reasoning about optimizing compilers based on the
superanalysis approach.

Much of this chapter hinges on systems of lattice equations and whether certain transformations
on equations preserve their solution. To give a taste for the specimens under discussion, here is a
typical system of lattice equations:

x = ⊥
y = g(x, z)
z = y t x

There are several useful ways to formalize a system of equations. The approach we take is that
a system of equations is a set of variables X (e.g. X = {x, y, z}) and a mapping E from variables
to the terms on the right-hand-side of their equations (e.g. E(y) = g(x, z)). By defining systems
of equations using terms over a signature (rather than, say, functions or operations in a particular
algebra) we can draw on useful properties of term algebras. To actually solve a system of equations,
we will use some particular algebra.

3.5.1 Signatures and algebras

We review here some basic notions from universal algebra. Readers familiar with signatures, algebras
and term algebras may wish to skip ahead to Section 3.5.2 (p. 73). For a thorough introduction to
these topics, Burris and Sankappanavar [28] is recommended.

Signatures

A signature F is a set of function symbols. Each f ∈ F is assigned an arity : a natural number
n indicating how many arguments the operation requires. It is common to write Fn to mean the
subset of arity n function symbols in F , and to view constants as nullary function symbols of arity
0.2

2 A signature is also called a ranked alphabet or stratified alphabet in the computer science literature and a type of
algebras or language of algebras in universal algebra. Often an explicit arity function ρ : F → N is given. The term
rank for arity is also used.
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For example, a suitable signature for groups is F = {�,−1, I}— a function symbol for multipli-
cation, inverse, and identity, respectively. Similarly, for rings we might choose F = {⊕,�,−, 0, 1},
and here F2 = {⊕,�} (the binary operations), F1 = {−} (the unary operation), and F0 = {0, 1}
(the nullary operations).

A signature says nothing about the properties of an algebra. It merely indicates what operations
must be present, not whether they must be associative, commutative, and so forth. The analogous
concept in programming languages is an interface in Java, a signature in ML, or type class in
Haskell.

Algebras

An algebra provides an implementation of a signature. If F is a signature, then an F-algebra A
(also called an algebra of type F) is a tuple A = 〈A,F 〉, where A is a nonempty set (called the
universe or underying set or carrier of A), and F is a family of operations on A indexed by F
such that for each n-ary f ∈ F , there is a corresponding n-ary fA ∈ F .

For an example take the signature F = {⊕, 0} where ⊕ is a binary operator and 0 a constant
symbol. The integers Z under addition are an F-algebra 〈Z,+Z, 0Z〉. Here we use 0Z to distinguish
“the integer 0” from the function symbol 0 which it implements, a convention we’ll drop when
unambiguous. Another F-algebra is 2x2 matrices with the ⊕ operator taken to be matrix multipli-
cation and 0 indicating the identity matrix. When the number of operations F = {f1, f2, . . . , fk}
is finite and small, it is common to write 〈A, f1, f2, . . . , fk〉, where the operations {fi} are listed in
decreasing order of arity. It is common to use infix notation when it is unambiguous, writing (for
example) a⊕ b for ⊕(a, b).

The relationship between signatures and algebras is similar to the programming language con-
cepts of interface and concrete class (Java), signature and structure (ML), type class and instance
(Haskell).

Terms and term algebras

Definition 3.1 (Terms over a signature F and variables X). Let X be a countable set of
variables, e.g. X = {x0, x1, . . .}, and let F be a signature. The terms of type F , written T (F), is
the smallest set such that:

• X ⊆ T (F)

• F0 ⊆ T (F)

• If p1, . . . , pn ∈ T (F) and f ∈ Fn then f(p1, . . . , pn) ∈ T (F).

The notations TF (X) and T (F , X) are sometimes used in the literature instead of T (F). We always
assume a countable set of variables X.

Example 3.5.1. Let X = {a, b, c, . . .} and F = {·,+,−, 0, 1}. Then the following are terms:
+(x, 1), −(1), +(·(x, y), ·(x, z)). As usual, when unambiguous we omit parentheses and use infix
notation: x+1, −1; and sometimes we will be sloppy and write x ·y+x ·z, implicitly assuming that
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· has precedence over +. Note, though, that this is notation only, and that x+ 1 is still understood
to represent the term +(x, 1). The terms of T (F) can be specified by the BNF grammar:

t ::= x (x ∈ X)
| 0
| −(t)
| ·(t, t)
| +(t, t)

❑

Definition 3.2 (Term algebra). The term algebra of type F over X has as its universe (or
underlying set) the terms T (F), and the fundamental operations simply build terms. 3

Example 3.5.2. Consider the ring signature F = {⊕,�,−, 0}. In the ring of integers 〈Z,+, ·,−, 0〉,
the nullary operation 0 yields the value 0 ∈ Z, and +(0, 0) yields the value 0 ∈ Z. In the term
algebra 〈T (F),⊕,�,−, 0〉, the nullary operation 0 yields the term “0”, and ⊕(“0”,“0”) yields the
term “⊕(0,0)”. (We just use quotation marks here to emphasize that the things inside of them are
terms; it’s not a convention).

❑

Term algebras are sometimes called algebras of unevaluated function symbols.

Substitutions

A substitution replaces occurrences of variables in a term with other terms. Let σ0 : X → T (F) be
a mapping from variables to terms. We extend σ0 to a function from terms to terms by defining:

σf(a0, . . . , an) ≡ f(σa0, . . . , σan) for each n-aryf ∈ (F − F0)
σc ≡ c for c ∈ F0

σx ≡ σ0x for x ∈ X

When there are finitely many variables xi not mapped to themselves, substitutions are written:

{x1 7→ t1, . . . , xm 7→ tm}

where the ti = σ0(xi) are terms.

Ground substitution A substitution σ is ground if σx ∈ F0 for all x ∈ X; that is, all variables
are replaced by constants (nullary function symbols).

3For readers familiar with quasiquotation in Scheme or LISP, the following distinction might clarify the difference
between an algebra and term algebra: we could define a term algebra operation f(x, y) as:

f ≡ λ(x, y) . ‘(+ , x , y)

whereas in a non-term algebra we’d have something like

f ≡ λ(x, y) . (+ x y)
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Example 3.5.3. Let F = {+, 0, 1} where + ∈ F2 and 0, 1 ∈ F0. Let X = {x, y}. Then, the
substitution {x 7→ 0, y 7→ 1} is a ground substitution. The substitution {x 7→ +(0, y), y 7→ 1} is
not.

❑

3.5.2 Systems of equations

Definition 3.3 (System of Equations). A system of equations over a signature F is a pair
(X,E) where X is a set of variables, and E : X → T (F) maps variables to terms.

Definition 3.4 (Flat system). A system of equations over unknowns X and signature F is called
flat (also called uniform) if every equation right-hand side is of the form f(x1, . . . , xn) for some
f ∈ Fn and x1, . . . , xn ∈ X.

If additionally equations of the form x1 = x2 are allowed (i.e. right-hand sides may be variables)
then it will be called quasi-flat. Bruno Courcelle [45, 47] calls this property uniform (and,
respectively, quasi-uniform if equations x1 = x2 are permitted). We favour the term flat since
it is more descriptive; the term flat is used in the graph rewriting community (cf. [7]). In the
compilers literature on intermediate representations there is a closely related idea of quad(ruple)
form, in which every operation is of the form r1 ← r2 ⊕ r3 (cf. [158]). In the functional language
community this style of representation is closely associated with A-normal form [80].

Since we’ve defined equations in terms of a signature, we need some way to connect equations
to a particular algebra in which we want to solve them. This connection is provided by valuations.

Valuations

Consider a term algebra T (F) and an F-algebra A. Let ρ : X → A be a map from variables to the
universe of A, called a valuation. Define an evaluation function AJtKρ that evaluates a term t in
the obvious way:

AJf(t1, . . . , tk)Kρ = fA(AJt1Kρ, . . . ,AJtkKρ) for f ∈ Fk (3.1)
AJxKρ = ρ x for x ∈ X (3.2)

A valuation differs from substitutions in that ρ : X → A is a map from variables to the universe of
A, whereas a substitution is constructed from a map X → T (F) from variables to terms.

If A has an associated partial order v, we can define a natural partial order on valuations: let
σ1, σ2 : X → A. Then we define σ1 v σ2 if and only if σ1x v σ2x for all x ∈ X.

Proposition 3.1. If A is a lattice, then for a finite set of variables X, valuations X → A under
v form a lattice.

Proof. (Sketch) Valuations are simply AX , which is isomorphic to the |X|-fold direct product A⊗
A⊗ . . .⊗A. The direct product of two lattices is itself a lattice by Birkhoff’s variety theorem.4 �

4Birkhoff’s variety theorem says in part that varieties — classes of algebras satisfying equational identities — are
closed under direct product. Lattices are a variety, and therefore the direct product of two lattices is itself a lattice.
See, e.g., [28].
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Solutions

A solution to a system of equations is simply a valuation that satisfies all the equalities.

Definition 3.5. A solution to a system of equations (X,E) in an algebra A is a map σ : X → A
satisfying σx = AJE(x)Kσ for all variables x ∈ X.

That is, equality holds when we evaluate the system of equations under the valuation σ in the
algebra A.

Example Consider this system of equations over the signature F = {+,−, 0, 1}:

a = b+ c
b = −c
c = 1

Using the algebra Z = 〈Z,+,−, 0, 1〉, the value assignment σ = {a 7→ 0, b 7→ −1, c 7→ 1} is a
solution, since:

σa = 0 and ZJE(a)Kσ = ZJb+ cKσ = +Z(−1, 1) = 0
σb = −1 and ZJE(b)Kσ = ZJ−cKσ = −Z(1) = −1
σc = 1 and ZJE(c)Kσ = ZJ1Kσ = 1Z = 1

3.5.3 Analysis equations and their solution

The analysis step of a superanalysis-based compiler involves constructing systems of lattice equa-
tions. We use lattices in which ⊥ is associated with contradiction or “absent,” and > with tautology
or “no information.”5 We use the usual notations of v for a partial order relation and t for lattice
join.

Program analyses are often presented in the literature as special-purpose solvers that simulta-
neously build and solve lattice equations. To better reason about analyses, we take the view that a
program analysis builds a system of equations such as:

x1 = e1(x1, x2, . . . , xn)
x2 = e2(x1, x2, . . . , xn)
...

...
xn = en(x1, x2, . . . , xn)

where the xi are analysis variables and the ei are monotone functions. Following the conventions
set out in Section 3.5.2 (p. 73), we write (X,E) for the above system, where X = {x1, . . . , xn} is the
set of analysis variables and E : X → T (F) is a map from variables to terms on the right-hand side
of equations. Here, F is the signature of some algebra supporting the operations that might appear
in our equations. As in Section 3.5.2 we have in mind to solve the equations in some particular

5This is consistent with algebraic logic and the literature on abstract interpretation, and is often opposite from
the imperative language literature on compilers e.g. dataflow analysis, where lattices are related to sets of inferences.
The element ⊥ corresponds to an optimistic assumption.
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Figure 3.3: A lattice for constant propagation

algebra A, and take EA : AX → AX to be a function that evaluates all of the right-hand side
equations given a valuation σ : X → A:6

EAσ ≡ {xi 7→ AJE(xi)Kσ}

We use the notation lfp EA to mean the least fixpoint of the function EA, and as a shortform use
the ? symbol to indicate the least fixpoint solution: σ? = lfp EA is the solution, x?i = σ?xi is the
solution for a particular variable xi.

When not ambiguous, we will use E in place of EA, so that lfp E is understood to mean lfp EA,
i.e. the least fixpoint solution of the equations X = E(X) in some particular algebra A.

Example 3.5.4. For the running arithmetic example, a single analysis suffices — constant propa-
gation. We use the lattice shown in Figure 3.3.

The analysis takes an expression and constructs (1) a system of analysis equations; and (2) a
mapping between analysis variables and program points. We represent the mapping by annotating
an expression with analysis variables, such as c0 + (c11, c22). The analysis rules are:

Expression Equation
Literal c0n c0 = n
Variable use c0x c0 = >
Operation c0 + (c1e1, c2e2) c0 = +̂(c1, c2)

where the abstract version of +̂ is:

+̂(x, y) ≡


⊥ if x = ⊥ or y = ⊥; else
x+ y if x ∈ Z and y ∈ Z; else
>

(3.3)

6 This definition of equations using algebras and terms might strike the reader as overly finicky when compared
to other approaches in the fixpoint solver literature (e.g., [32, 33, 66, 73, 171, 239]). Later in Section 3.6 we use
properties of terms and algebras to derive sufficient conditions for rewrites on equations to preserve fixpoints. So,
there is a rationale here beyond obfuscation.
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Here is an analysis of the term +(a,+(−2, 2)):

Expression c0 + (c1a, c2 + (c3 − 2, c42))

Equations


c0 = +̂(c1, c2)
c1 = >
c2 = +̂(c3, c4)
c3 = −2
c4 = 2

The solution to this system of equations is:
c?0 = >
c?1 = >
c?2 = 0
c?3 = −2
c?4 = 2

From c?2 = 0 we infer the value of the term +(−2, 2) is 0. Since c?0 = >, we have “no information”
about the value of the whole term.

❑

3.5.4 Optimizers

Here we lay out the basic formalism for reasoning about optimizers based on the superanalysis
approach.

Definition 3.6. An optimizer O consists of two steps:

1. An analysis that examines a program p and produces a system of lattice equations S = (X,E)
and a mapping M between locations in the source code (program points) and analysis variables
X;

2. T is a transformation from programs to programs which uses the least fixpoint solution σ? to
the system of equations S, and mapping M .

3.5.5 Mappings, program points, and compositionality

A program point is simply some location in a program, for example a particular operation, function
entry point, node in the syntax tree representation, and so forth. Mapping from program points
to analysis variables is a simple thing in practice — for example, one can simply include analysis
variables in data structures for the language’s intermediate representation, or have some hash table
that maps from program code locations to analysis variables. To make this notion proof-worthy,
though, a bit more formalism is needed. If the program is treated as a term — e.g., a big abstract
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syntax tree — then term positions (e.g., [45, 60]) can be used as program points. Intermediate
representations based on graphs can simply use node labels to identify program points. In any case
a mapping for our purposes is simply a function M : ProgramPoint → X from program points to
analysis variables.

There may be several mappings, one for each analysis: recall that in superanalysis one is com-
bining multiple analyses, for example, constant propagation, escape analysis, store analysis, and so
forth. So one needs to distinguish between “the constant propagation analysis variable at program
point α” and the escape analysis variable for the same program point.

To reason about de-optimizing rewrites, we need to distinguish between the context and redex
of the rewrite. The redex is the code that gets changed; the context is what is left unaltered.
In a representation where programs are terms, one can use the standard definitions from rewrite
systems: contexts and holes, or if the rewrite modifies several areas of a program simultaneously,
a multi-hole context. For graph-based representations one can use the analogous ideas from graph
rewriting, where contexts and redexes are sets of nodes (cf. [10]). More abstractly, we can think of
a context as simply a subset of program points.

For simplicity we are going to assume that analysis variable names are unaffected by rewrites.
For example, if we carried out the rewrite +(5, b) → +(+(3, 2), b), it may well be that in a real
implementation we get different variables names for the program point b. For example, we might
analyze +(5, b) and get the mapping c0 +(c15, c2b), whereas in analyzing +(+(3, 2), b) one might get
c0 +(c1 +(c23, c32), c4b) so that b gets the variable c2 before the rewrite and c4 after. To avoid having
to do bookkeeping for this, we will simply assume there is always a renaming that puts things to
right, and assume that it has been applied: we will just write c0 + (c1 + (c33, c42), c2b) so that every
program point in the context has the same analysis variable before and after the rewrite.

An analysis is compositional for a rewrite p1 → p2 if for every program point α in the context
of the rewrite,

E1(M1α) = E2(M2α)

That is, the equations for program points in the context are unchanged by the rewrite.

Example 3.5.5. Consider this rewrite on arithmetic expressions:

+(a, 0) R1→ +(a,+(4,−4))

It is convenient to think of the rewrite in terms of its context and redex: here we have the context
C = +(a, [ ]) and the redex 0, where [ ] denotes a hole. The analysis of the two expressions is:

Expression c0 + (c1a, c20) c0 + (c1a, c2 + (c34, c4−4))

Equations c0 = +̂(c1, c2)
c1 = >
c2 = 0

c0 = +̂(c1, c2)
c1 = >
c2 = +̂(c3, c4)
c3 = 4
c4 = −4
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In the above table one can see how the de-optimizing rewrite R1 induces a rewrite on the analysis
equations: the equations c0, c1 associated with the context +(a, [ ]) are unchanged; the equation c2
for the redex 0 has been altered, and new equations have been added for the subexpression +(4,−4).

❑

3.6 Compatibility of equations

A crucial part of a guaranteed optimization proof is showing that de-optimizing rewrites, when
applied to programs, result in changes to the analysis equations that will preserve every fact we
gleaned about the original program. We define a notion of compatibility between systems of analysis
equations to formalize this idea. Informally, a system Sa is compatible with a system Sb if the system
of equations Sb has some extra variables compared to Sa, but the variables they have in common
have the same lfp solution. We use σ?a and σ?b for the solutions to the systems Sa and Sb, respectively.

Definition 3.7. Let Sa = (Xa, Ea) and Sb = (Xb, Eb) be two systems of equations. We say Sa is
compatible with Sb, and write Sa � Sb exactly when Xa ⊆ Xb and σ?ax = σ?bx for all x ∈ Xa.

Example 3.6.1. Consider the systems of equations below.

Sa

{
x = ⊥
y = > Sb


x = ⊥
y = z t ⊥
z = >

Sc


x = > u w
y = >
w = ⊥

Then Sa � Sb, and Sa � Sc, but there are no other compatibilities.

❑

The compatibility relation � is transitive and reflexive, i.e., a preorder. The question of when
two systems of equations have the same solution (or more specifically, the least fixpoint) has been
studied extensively (e.g., [45–47, 152, 249]). We discuss here a few of the techniques we have found
most useful for proving compatibility. This is a survey of existing work and does not constitute a
new contribution.

In practice when doing compatibility proofs we don’t have the whole system of equations at
hand — we only know a subset of equations that have changed, and that the remaining equations,
which are unknown, are the same in each system. To represent unknown equations we will introduce
a tuple notation, using x for a tuple of unknown variables, and a function α for the right-hand sides
of the unknown equations, for example:

Sa


x = α(x,w)
w = z t >
z = ⊥

Here, x is a tuple of variables, and α represents the right-hand sides of their equations.

Example 3.6.2. Consider the following system of equations:
x1 = >
x2 = y1 t x1

x3 = x1

y1 = ⊥
y2 = >
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Using the tuple notation, we could represent this system using x = (x1, x2, x3) and α(x, y1) =
(>, y1 t x1, x1) as: 

x = α(x, y1)
y1 = ⊥
y2 = >

❑

In the remainder of this section we describe five techniques for proving compatibility.

3.6.1 Proving compatibility: term graphs and subsystems

Term graph representations (e.g., [211]) of equations provide useful intuitions about the structure
of a system of equations. Recall the definition of a flat system from Section 3.5.2 (p. 73): every
right-hand side is of the form f(e1, . . . , ek) where f is a function symbol, and e1 . . . ek are variables
or constant symbols. Every system of equations we deal with can be put into flat form.

We use a slightly different (but equivalent) formulation of term graphs from what is standard in
the literature. In particular our representation is unrooted, and assigns labels to edges instead of
using tuples. This representation is closer to term automata (cf. [135]), which makes dealing with
cyclic term graphs easier.

Definition 3.8. A term graph for a system of equations (X,E) is a labelled, directed graph with:

• A vertex for each variable x ∈ X, labelled with the function symbol that appears on the
right-hand side of its equation;7

• For every variable xj that appears on the right-hand side of an equation xi = f(. . . , xj , . . .)
as the jth argument of f , an edge from xi to xj labelled j.

Example 3.6.3. Consider this system of equations:
w = F (x)
x = G(y, x,⊥)
y = G(x, y, z)
z = ⊥

The term graph representation is:

F
0 // G

0
%%

1
��

G
2 //

0

ee

1
��

⊥

w x y z

7We use the convention from universal algebra that constants like > and ⊥ are ‘nullary’ function symbols taking
no arguments (e.g., [28]).
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❑

Of particular interest are strongly-connected components (or simply strong components) in the
dependence graph (cf. [168]). Recall that two vertices a, b are strongly connected if there is a path
from a to b and also one from b to a. For example, x and y are strongly connected in Example
3.6.3. Define x < y if y appears on the right-hand side of the equation for x, and let . be the
reflexive, transitive closure of <. Then . is a preorder, and its equivalence classes ∼ (where a ∼ b
if a . b and b . a) are simply the strong components of the term graph. In Example 3.6.3, the
strong components are {w}, {x, y}, and {z}.

Strong components have a well-known application to solving fixpoint equations: they let us
decompose a system of equations into separate systems which can be solved separately. For example,
in Example 3.6.3 we could solve z first, then do a fixpoint iteration to solve x and y simultaneously,
then solve w. The condensation graph of a graph G = (V,E) is a graph (V ′, E′) with vertices
V ′ = V/ ∼ (i.e., the strongly connected components), and if (v1, v2) ∈ E is an edge, and [v1] 6= [v2],
then there is an edge ([v1]∼, [v2]∼) ∈ E′. For our purposes, we construct a condensation graph by
dropping the labels from the term graph; this yields an acyclic graph in which each vertex represents
a fixpoint iteration, and edges show the order in which fixpoints must be constructed.

Example 3.6.4. The condensation graph of Example 3.6.3 is:

{w} // {x, y} // {z}

❑

It is convenient to define a subsystem of a set of equations: a subset of the equations that have no
free variables.

Definition 3.9. A subsystem of a system of equations (X,E) is a system (X ′, E′) with X ′ ⊆ X and
E′ the restriction of E to X ′, such that no variable of X \X ′ appears in any equation of (X ′, E′).

Example 3.6.5. Consider the following systems:

Sa


x = G(y, x,⊥)
y = G(x, y, z)
z = ⊥

Sb
{
z = ⊥ Sc

{
x = G(y, x,⊥)
y = G(x, y, z)

Systems Sa and Sb are a subsystem of the equations in Example 3.6.3, but Sc is not since the
variable z is free. System Sb is a subsystem of Sa.

❑

If S′ = (X ′, E′) is a subsystem of S = (X,E), then we can solve S′ first, substitute its values into
S, then solve the modified S system.8 That this is correct follows from the following lemma.

Lemma 3.2. Let S be a system of monotone equations of the form:

S

{
x = f(x, y)
y = g(y)

Let y? be the lfp of y = g(y). Then, in any ω-continuous lattice, the system x = f(x, y?) has the
same lfp for x as the system S.

8 To be fussy, we note that since E : X → T (F) maps variables to terms, such a substitution is possible only if
the solution of S′ consists of constant symbols in T (F). We implicitly assume this whenever necessary.
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Proof. Let H(x, y) = (f(x, y), g(y)) and H∗(x, y) =
⊔
i<ωH

i(x, y). Then H∗ is monotone and has
as its range the fixpoints of H. Whether the solution to the system x = f(x, y?) is x? is equivalent
to asking whether H∗(⊥, y?) = (x?, y?).

From

(⊥,⊥) v (⊥, y?) v (x?, y?)

and monotonicity, we have

H∗(⊥,⊥) v H∗(⊥, y?) v H∗(x?, y?)

Since H∗ = (x?, y?) and H∗(x?, y?) = (x?, y?), we have

(x?, y?) v H∗(⊥, y?) v (x?, y?)

from which H∗(⊥, y?) = (x?, y?) by antisymmetry. �

Solving subsystems is a useful technique for proving compatibility.

Example 3.6.6. Here we prove compatibility for the rule R1 of the running example. Consider
the rewrite n → +(n1, n2) where n, n1, n2 ∈ Z and n1 + n2 = n. Let t = C[n] be a term, where C
is a context (some surrounding term) and n ∈ Z; the rewrite will change t to t′ = C[+(n1, n2)]. We
use the mapping from term positions to variables shown by t = C[c0n] and t′ = C[c0 + (c1n1,

c2n2)].
The analysis equations are:

S

{
x = α(x, c0)
c0 = n

S′


x = α(x, c0)
c0 = +̂(c1, c2)
c1 = n1

c2 = n2

Clearly c0 = n is a subsystem of S; solving, c?0 = n. Similarly,
c0 = +̂(c1, c2)
c1 = n1

c2 = n2

is a subsystem of S′, and itself has subsystems c1 = n1 and c2 = n2. We have c?1 = n1 and c?2 = n2,
so therefore c?0 = +̂(n1, n2) = n from the assumption n = n1 + n2 and Eqn. (3.3) (p. 75).

Since c?0 = n in S, and c?0 = n in S′, then by Lemma 3.2 S � S′, i.e., S is compatible with S′.

❑

3.6.2 Infinite unrolling and substitutions

An important approach to reasoning about systems of equations was pioneered by Bruno Courcelle,
Gilles Kahn, and Jean Vuillemin [47]. Their insight was that one can compare systems of equations
by solving them in a term algebra that allows infinite terms. For example, the solution to the
equation

x = ⊥ t x
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in such an algebra is taken to be the infinite term ⊥ t (⊥ t (⊥ t . . .)), often called the infinite
unrolling (or unraveling). A detailed exposition of unrollings and their relation to initial algebras
may be find in [45, 46]. The practical application is that if two equations have the same infinite
unrolling, they have the same solution in any ω-continuous algebra. This justifies several proof
principles. The simplest of these is that one can do partial unrolling — substituting right-hand
sides into equations — to prove systems of equations are compatible.

Example 3.6.7. Consider these two systems of equations:

Sa
{
x = f(g(x)) Sb

{
x = f(y)
y = g(x)

In Sb, if we substitute y = g(x) into the equation for x, this system results:

S′b

{
x = f(g(x))
y = g(x)

Since the equation for x is the same as that in Sa, we have Sa � Sb.

❑

In the next section we cover a strong proof technique also justified by infinite unrolling.

3.6.3 Bisimulation

Sometimes we will need to prove compatibility of systems of equations where cycles in the term
graph make it impossible to peel off a subsystem. In this case bisimulation may come to the rescue.
Bisimulation plays a similar role in the theory of transition systems and coalgebra as congruence
does in universal algebra. It was pioneered by Park [177], and popularized by Milner [153]. We
consider bisimulation here in the special context of systems of equations. In retrospect this use
of bisimulation was discovered by Courcelle et al [47] in 1974, almost a decade before the term
‘bisimulation’ was coined. (The concept of bisimulation also occurs as far back as 1957: the famous
Myhill-Nerode theorem on equivalence of states in discrete finite automata [161, 164]). The use of
bisimulation in reasoning about cyclic term graphs has been pioneered by Ariola, Klop, and Plump
[7, 8].

Definition 3.10. Let S = (X,E) be a system of equations. A bisimulation ∼⊆ X × X is an
equivalence relation such that if x, x′ ∈ X with equations

x = f(x1, . . . , xk)
x′ = f ′(x′1, . . . , x

′
k)

then x ∼ x′ if and only if f = f ′ and xi ∼ x′i for i = 1 . . . k.

Note there are usually multiple relations that satisfy these conditions; for example, the relation
∼ given by x ∼ y ↔ x = y is a bisimulation. Any congruence is also a bisimulation. A maximal
bisimulation is a bisimulation ∼ such that if ∼′ is a bisimulation then ∼′⊆∼.

We will frequently specify a bisimulation by stating the equivalence classes it induces on vari-
ables, i.e., a partition such as {{x, y}, {z}}: here x ∼ y, y ∼ x, x ∼ x, y ∼ y, and z ∼ z.
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Example 3.6.8. Consider this system: 
x = f(y, x)
y = f(x, y)
w = g(x)
z = g(y)

Let ∼ be the equivalence given by the partition {{x, y}, {w, z}}. This is a bisimulation, since:

• x ∼ y is valid since x = f(y, x) and y = f(x, y) and their first arguments are bisimilar (y ∼ x)
and their second arguments are bisimilar (x ∼ y);

• y ∼ x is valid since y = f(x, y) and x = f(y, x) and x ∼ y and y ∼ x;

• w ∼ z is valid since w = g(x) and z = g(y) and x ∼ y;

• z ∼ w is valid since z = g(y) and z = g(x) and y ∼ x.

❑

The usefulness of bisimulation is this: if x ∼ y, then at the least fixpoint x? = y?.

Lemma 3.3. Let X = E(X) be a system of equations over a signature F , and ∼ a bisimulation on
X = E(X). Suppose x, y ∈ X. If x ∼ y, then x? = y? in any ω-continuous F-algebra.

Proof. (Sketch) The definition of bisimilarity ensures that if x ∼ y, then the infinite unrolling of
the equations for x and y are equal. Therefore x? = y? from the results of [45]. �

We can use bisimilarity as a proof technique for compatibility. Suppose Sa = (Xa, Ea) and Sb =
(Xb, Eb). To use bisimilarity we can lump Sa and Sb together into one system of equations; to do
this we systematically rename the variables in Xb = Eb(Xb) to get a system X ′

b = E′b(X
′) such that

Xa ∩X ′
b = ∅, then define a bisimulation on the system (Xa ∪X ′

b, Ea ∪ E′b).

Example 3.6.9. Consider these two systems of equations.

Sa


x = f(y, x)
y = f(z, y)
z = f(x, z)

Sb


x = f(x, y)
y = f(x, z)
z = f(z, x)

This is quite a rat’s nest; proving compatibility by unrolling and substitution would be rather messy.
Instead, rename the variables of Sb to x′, y′, z′. Let ∼ be the bisimulation given by the equivalence
classes {{x, y, z, x′, y′, z′}}, i.e., all variables are bisimilar. Verifying this to be a bisimulation is
simple (but tedious); for example x ∼ x′ checks since x = f(y, x) and x′ = f(x′, y′) and y ∼ x′ and
x ∼ y′. The remaining cases check by similar reasoning. By Lemma 3.3, x? = x

′? and y? = y
′? and

z? = z
′?. Therefore Sa � Sb.

❑
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3.6.4 Bisimulation with equational theories

A further refinement on bisimulation is to bring equational axioms into play. Background for this
approach can be found in [46].

An equational identity is an equation of the form t1 ≈ t2, where t1, t2 ∈ T (F) are terms.9 For
example, a t b ≈ b t a is a lattice identity. If AJσt1K = AJσt2K for every ground substitution σ,
then we say A is a model of t1 ≈ t2 and write A |= t1 ≈ t2. If Σ is a set of equational axioms, and
A is a model of every identity in Σ, then we write A |= Σ. The class of algebras for which a set of
equational identities Σ hold is called a variety (see, e.g., [28]).

A suitable logic for proving equivalence of terms modulo a set of identities Σ is equational
reasoning, whose axioms are:

t ∼Σ t
Reflexivity

s ∼Σ t
t ∼Σ s

Commutativity s ∼Σ t t ∼Σ u
s ∼Σ u Transitivity

x1 ∼Σ x′1 . . . xn ∼Σ x′n
f(x1, . . . , xn) ∼Σ f(x′1, . . . , x

′
n)

Congruence
s ∼Σ t

σ s ∼Σ σ t
Substitution

In the substitution rule, σ0 : X → T (F) is any substitution, extended as usual to a function
σ : T (F)→ T (F). In addition, for every identity t1 ≈ t2 ∈ Σ, one adds an axiom:

t1 ∼Σ t2
Equational Identity

Remark 3.1. If t, t′ ∈ T (F) are terms and t ∼Σ t′, then

AJσtK = AJσt′K

for any ground substitution σ and algebra A such that A |= Σ.

Definition 3.11 (Equational Bisimulation). Let Σ be a set of equational identities and S =
(X,E) a system of equations. An equational bisimulation modulo Σ is an equivalence relation
∼⊆ X ×X such that for x, x′ ∈ X with equations x = t and x′ = t′ where t, t′ ∈ T (F), then x ∼ x′
if and only if t ∼Σ t′, i.e., there is a proof of t ∼ t′ in equational logic.

Now, as before if x ∼ y then x? = y?:

Lemma 3.4. Let X = E(X) be a system of F-equations, Σ a set of equational axioms in F , and
∼ an equational bisimulation modulo Σ on X = E(X), and A an ω-continuous F-algebra. If:

1. A |= Σ; and

2. E has a finite closure ordinal n in A, i.e., En+1(⊥) = En(⊥) for some n < ω;

then for any x, y ∈ X, if x ∼ y then x? = y?.

We do not give a proof for this; interested readers are referred to [45, 46]. The restriction to finite
closure ordinals, however, is crucial, since there are apparently counterexamples in the infinite case.

9The symbol ≈ here is used to be fastidious: when speaking of terms, writing a t b = b t a would be incorrect,
since a t b and b t a are clearly different terms (i.e., represent different trees). The symbol ≈ is used to mean “equal
under an interpretation.”
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Example 3.6.10. Given the set of identities Σ = {a t b ≈ b t a}, we can prove compatibility of
the following systems:

Sa
{
x = g(x) t f(x) Sb

{
x = f(y) t g(x)
y = g(y) t f(x)

As usual rename Sb to have variables x′, y′:

Sa
{
x = g(x) t f(x) S′b

{
x′ = f(y′) t g(x′)
y′ = g(y′) t f(x′)

Consider the equivalence ∼ given by the partition {{x, x′, y′}}. This is a bisimulation modulo Σ,
since:

• x ∼ x′: we have x = g(x) t f(x). Using equational reasoning:

g(x) t f(x)
= f(x) t g(x) from a t b ≈ b t a
= f(y′) t g(x′) from x ∼ y′ and x ∼ x′

which is the equation for x′.

• x ∼ y′: we have x = g(x) t f(x):

g(x) t f(x)
= g(y′) t f(x′) from x ∼ y′ and x ∼ x′

which is the equation for y′.

The remaining cases x′ ∼ y′, x′ ∼ x, etc. follow from symmetry and transitivity of ∼. Then by
Lemma 3.4, Sa � Sb.

❑

3.6.5 Equational reasoning below the least fixpoint

There are cases when even equational bisimulation is not sufficient to show compatibility between
two systems of equations. For example, the following predication operator is commonly used in
program analysis:

(x w c)⇒ y ≡

{
y if x w c
⊥ otherwise

(3.4)

where c is a constant. Any monotone function f : L1 → L2 where L1 is a finite lattice can be
represented by a join of such operators:

f(x) =
⊔

ck,yk:f(ck)=yk

(x w ck)⇒ yk
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In practice ⇒ is useful to define functions by cases. We frequently run into situations where to
prove compatibility we must show:

(x w c)⇒ y ∼ y

or

(x w c)⇒ y ∼ ⊥

These hold if we can prove x? w c or x? < c, respectively. In this case we can introduce equational
axioms that are valid only beneath the least fixpoint, for example:

(x w c)⇒ y ∼ ⊥ if x? < c

The following lemma provides the justification.

Lemma 3.5. Consider systems Sa and Sb of the form:

Sa

{
x = f(x)
y = g(x, y)

Sb

{
x = f(x)
y = g′(x, y)

If g(x, y) = g′(x, y) for x v x?, then Sa � Sb.

Proof. Let

H(x, y) = (f(x), g(x, y))

and

K(x, y) = (f(x), g′(x, y))

Let κ be the closure ordinal of H or K, whichever is greater, and define the functions H∗,K∗ as
usual:

H∗(x, y) =
⊔
i<κ

H i(x, y)

K∗(x, y) =
⊔
i<κ

Ki(x, y)

Since g(x, y) = g′(x, y) for x v x?, we have H∗(x, y) = K∗(x, y) for x v x?. So lfp H = H∗(⊥,⊥) =
K∗(⊥,⊥) = lfp K. Therefore Sa � Sb. �

(In the proof of Lemma 3.5, it is also the case that Sb � Sa, since both systems have the same
fixpoint solution.)

This ends our summary of techniques for proving compatibility. Every situation encountered
so far in practice (in particular, for the implementation of Chapter 4) can be handled by these
methods.
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3.7 Formalizing the transformation step

After a program is analyzed, the optimizer transforms it. By design we try to put the complicated
aspects of the optimizer in the analysis; the transformation is intended to be simple and easy to
reason about. We use the notation T J·K : Program → Program for the transformation. As implicit
arguments, T J·K takes the mapping from program points to analysis variables and the least fixpoint
solution of the analysis equations.

The transformation T J·K must be compositional in the sense that contexts are transformed
independently of what fills their holes. That is, if t = C[e] is a term where C is a context and e
a term, and e′ is another term such that the analysis variables of e′ visible to T have the same
solution as those of e, then T JC[e]K and T JC[e′]K must transform the context identically.

There are several workable approaches to specifying the transform. One is to state the transform
as a function from terms to terms, for example given as a recursive procedure. An alternative is
to specify the transform as a conditional rewrite system, where the conditions are given in terms
of the analysis results. In this case compositionality is ensured, but one must prove confluence and
termination. In the implementation of Chapter 4 we take a rewriting approach.

Example 3.7.1. For the arithmetic example, we use a transformation T J·K given by the following
rules.

T Jc0nK = n (3.5)
T Jc0xK = x (3.6)

T Jc0 + (c1e1, c2e2)K =


c?0 if c?0 < >; else
T Je1K if c?2 = 0; else
T Je2K if c?1 = 0; else
+(T Je1K, T Je2K)

(3.7)

The rule Eqn. (3.7) says: if an addition expression always has a constant value, replace it by
that constant; otherwise, if one of the arguments is always zero, replace the addition by the other
argument.

❑

Example 3.7.2. One could also give the transformation for the arithmetic example in terms of
rewrite rules. To avoid confusion between the de-optimizing rewrites→ (which add abstraction to a
program) and the transformation rewrites (which transform a program after the analysis equations
have been solved), we use � for a ‘transformation rewrite.’ Here are some transformation rewrites
for arithmetic expressions:

c0 + (e1, e2) � n if c∗0 = n with n ∈ Z
+(c1e1, e2) � e2 if c∗1 = 0
+(e1, c2e2) � e1 if c∗2 = 0

Note that each rewrite rule has associated ‘side conditions’ (expressed in terms of analysis results)
that must be met before the rewrite rule may be applied.

❑
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Specifying transformations by rewriting

If the transformation step is defined by rewrite rules, then one is obligated to prove these rewrites
can be applied to achieve a unique optimized program. One way to do this is to prove confluence
and termination of the rewrite system (see, e.g., [60, 120]), which together imply the rewrites �
define a function (rather than a nondeterministic process with multiple possible outcomes). Proving
termination can be straightforward: in Example 3.7.2, for example, each term is finite and each
rewrite rule strictly decreases the size of a term, so the rewriting clearly terminates.

Proving confluence is more challenging. There is a well-known result due to Newman that
reduces proving confluence to proving ‘local confluence’ when the rewrite system is known to be
finitely terminating (also called Noetherian). A complication is that we work with rewrites that
apply only when certain side conditions expressed in terms of analysis results apply; thus it is not
immediately evident that Newman’s result applies. Huet [107] gives a more general result in terms
of relations, rather than rewrite systems, that applies to our situation.

Definition 3.12 (Local confluence). A relation � is locally confluent if whenever x � a and
x � b, then there is a c such that a

∗
� c and b

∗
� c.

Lemma 3.6 (Newman-Huet [107, 166]). A Noetherian relation is confluent if and only if it is
locally confluent.

Newman’s lemma is often called the diamond lemma, because the elements x, a, b, c of Defn. 3.12
form the following diagram:

x

������
��

��
��

�� ��>
>>

>>
>>

>

a

∗ �� ��?
??

??
??

? b

∗������
��

��
��

c

We do not give a proof here for the confluence of the rewrites of Example 3.7.2; instead we use the
functional definition of T J·K given in Example 3.7.1. In Chapter 4 we use a rewriting approach to
defining the transformation, and invoke Lemma 3.6 to show confluence.

3.8 Full proof for the arithmetic example

In this section we give a full proof of guaranteed optimization for the arithmetic example discussed
in Section 3.4, Examples 3.5.4 and 3.7.1.

The guaranteed optimization proof is structured as follows: (1) a lemma for each rewrite rule that
proves compatibility of equations and that newly introduced code is erased by the transformation
step; and (2) a theorem that any number of rewrites is undone in a single step by the optimizer.
For each lemma we consider a rewrite e → e′, and use S = (X,E) for the analysis equations of e,
and S′ = (X ′, E′) for the analysis equations of e′.
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Recall the two rewrite rules we are considering are:

R1 : n→ +(n1, n2) where n1 + n2 = n
R2 : e→ +(e, 0)

Lemma 3.7. If e R1→ e′ then S � S′ and T JeK = T Je′K.

Proof. Let C be the context of the rewrite. We use these variables:

C[c0n]→ C[c0 + (c1n1,
c2n2)] where n1 + n2 = n

The equations for the context are some unknown set of equations x = α(x, c0). Following the
analysis rules described in Example 3.5.4 (p. 75), the systems S and S′ are:

S S′

x = α(x, c0)
c0 = n

x = α(x, c0)
c0 = +̂(c1, c2)
c1 = n1

c2 = n2

Compatibility. In the system S, we have the equation c0 = n, so clearly c?0 = n. In the system
S′, we have c?1 = n1 and c?2 = n2 and hence c?0 = +̂(n1, n2) = n1 + n2 = n. Therefore S � S′. (This
was shown in greater detail in Example 3.6.6.)

Transformation. To show T JeK = T Je′K, we start with the redex. In the original expression e
we have T Jc?0nK = n by Eqn. (3.5). In the rewritten expression e′, we have T Jc?0 +(n1, n2)K = c?0 = n
by Eqn. (3.7). Then since S � S′, the two systems have the same solutions for the context’s analysis
variables, and by compositionality of the transform, T JeK = T Je′K. �

Lemma 3.8. If e R2→ e′ then S � S′ and T JeK = T Je′K.

Proof. Let C be the context of the rewrite. We use these analysis variables:

C[cae] R2→ C[c0 + (cae, c10)]

Equations in the original system S which refer to ca will refer to c0 after rewriting. We use the
notation [ca 7→ c0] for this substitution.

S S′

x = α(x) x = α(x)[ca 7→ c0]
c0 = +̂(ca, c1)
c1 = 0

Consistency. In S′ we have the equation c1 = 0. Therefore c?1 = 0. From the definition of +̂
(Eqn. (3.3)), we have +̂(ca, 0) = ca. By reasoning under the fixpoint (Section 3.6.5), c?0 = c?a, and
S � S′.

Transformation. For T JeK and T Je′K we consider cases over c?a:
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• Case c?a = >: then c?0 = > by Eqn. (3.3), and T Jc?0 + (c
?
ae, c

?
10)K = T Jc?aeK by Eqn. (3.7).

• Case c?a < >: then T Jc?0 + (c
?
ae, c

?
10)K = c?a by Eqn. (3.7). Next we show T Jc?aeK = c?a by cases

over e:

– Case e = can: then c?a = n and T Jc?anK = n = c?a by Eqn. (3.5).

– Case e = cax: then c?a = > which contradicts the assumption c?a < >, so this case does
not apply;

– Case e = ca + (e1, e2): then T Jc?a + (e1, e2)K = c?a by Eqn. (3.7).

Since S � S′, the rewrite context will be transformed identically in both e and e′; therefore T JeK =
T Je′K.

�

We now prove that any sequence of rewrites is undone in a single step by the optimizer, taking
→=R1→ ∪ R2→.

Theorem 3.2. If e ∗→ e′, then T JeK = T Je′K.

Proof. Consider a rewrite sequence e0 → e1 → . . . → en with e0 = e and en = e′. Let Si
be the analysis equations for ei. By Lemmas 3.7 and 3.8 and induction over rule applications,
S0 � S1 � . . . � Sn and T Je0K = T Je1K = . . . = T JenK. Therefore T JeK = T Je′K. �

3.9 On finding optimal programs

In the compilers literature use of the term “optimization” is often discouraged in favour of “im-
provement”, in recognition of the fact that most compilers do not find optimal programs. Whether
finding optimal programs is possible depends very much on the choice of criterion function. For
example, producing programs of minimal size is undecidable.10 However, there is room to manoeu-
vre: by relaxing either the program equivalence or choosing the criterion function judiciously, we
can find programs that are optimal. This lets us make the grandiose claim that compilers with the
guaranteed optimization property are true optimizers, not mere improvers-of-programs!

Recall that we are using→ for the “de-optimizing” rewrites, and x↔ y (“convertible”) to mean
x → y or y → x, and ∗↔ for the reflexive, transitive closure of ↔. Then ∗↔ is an equivalence
relation and partitions the set of programs into equivalence classes. We use the notation [p] for the
equivalence class of a program p under ∗↔. (These equivalence classes correspond to the circles in
Figure 3.1.)

Remark 3.2. A guaranteed optimization theorem implies Op = Op′ for all p′ ∈ [p].

Recall that ker(O) = {(p1, p2) | Op1 = Op2}. It is not necessarily the case that ∗↔= kerO.
In particular we allow ∗↔ to be a strict subset of kerO, i.e., that the optimizer might do more
improvement than required for the guaranteed optimization proof. (The guaranteed optimization
proof is in fact equivalent to proving ∗↔⊆ ker(O).)

10 Consider for example a class of C programs that either halt and return zero, or loop forever. Every program in
this class is equivalent to either a program “return 0” or “for (;;) ;”. If we could write a compiler that transformed
every program in the class to one of these two minimal programs, then we’d have solved the halting problem.
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In order to talk meaningfully of “optimal” programs, we need some criterion function against
which programs can be measured. One such criterion function is the textual size of programs.

Definition 3.13. A criterion function J : Program→ R assigns to each program a real number R.

We use real numbers and the letter J here for consistency with the engineering optimization
literature. One could just as well pick Z or, for that matter, any total order. The point is simply
that J offers a metrestick by which we wish to measure how “good” a program is in terms of speed,
abstraction, size, or so forth.

We give two results on optimality. The first (Section 3.9.1) shows that under certain weak
conditions, we can find optimal programs with respect to J in an equivalence class ∗↔. The second
(Section 3.9.2) gives conditions under which the output of the optimizer has no more→ rules left to
be ‘undone.’ This turns out to be quite difficult to prove in practice, but we give some theoretical
conditions.

3.9.1 Optimal programs in an approximate equivalence class

Our first result on optimality states that if the optimizer never makes programs worse with respect
to J , then it finds a program that is at least as good as the optimal value of J within the approximate
program equivalence defined by ∗↔.

Lemma 3.9 (Optimal programs). If O is decreasing in J , i.e., J(Op) ≤ J(p) for all p, then

J(Op) ≤ min
p′∈[p]

J(p′)

That is, after optimization the value of the criterion function is at most its value for the optimal
program in the equivalence class.

Proof. (By contradiction). Suppose there were a p such that J(Op) > minp′∈[p] J(p′). Choose p′′

such that J(p′′) = minp′∈[p] J(p′), i.e., a program in the equivalence class of p that has the least value
of J . Since p′′ ∗↔ p, by guaranteed optimization we haveOp′′ = Op. Then J(Op′′) = J(Op) > J(p′′).
But then J(Op′′) > J(p′′), a contradiction since O is decreasing in J . �

Corollary 3.1. Let J(p) = |p| be the textual size of a program. If O never increases program size,
then the optimizer finds a program at least as small as the smallest program equivalent to p in ∗↔
(i.e., convertible to p via rewrites).

That corollary follows by straightforward application of Lemma 3.9.

3.9.2 Minimally abstract programs

Our second result shows that guaranteed optimization can find minimally abstract programs. We
assume the rewrite rules were designed to capture common patterns of making programs more
abstract. We can then define a criterion function that measures the number of abstraction-adding
rewrites needed to arrive at a given program. But from what starting program? The difficulty is
that there may be multiple “least programs” within an equivalence class [p]. To make the proof
work, we assume the rewrite relation ∗→ is anti-symmetric; that is, there are no cycles p1 → p2 →
. . . → pn → p1. This is true if, for example, all rewrites strictly increase program size. Moreover,
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we assume ∗→ is well-founded: there are no infinite descending chains in ∗→, i.e., there is no program
that can be constructed by an infinite sequence of rewrites . . .→ p2 → p1 → p.

Lemma 3.10. Let p be a program. There is a nonempty set of “least programs” P0 ⊆ [p] such that
(1) for every least program p0 ∈ P0 there is no z ∈ [p] such that z → p0; (2) p is derivable from
some p0 ∈ P0 by rewriting.

Proof. The relation ∗→ is reflexive and transitive by definition. Furthermore we assumed above that
∗→ is anti-symmetric. Therefore ([p], ∗→) is a poset. Since we also assumed ([p], ∗→) is well-founded,

the poset has least elements. The least programs P0 ⊆ [p] are simply the least elements of the
poset. �

Now we are in position to define a criterion function that provides a rough measure of how “abstract”
a program is.

Definition 3.14. The abstraction level of a program p, written AL(p), is the minimum over all
least programs p0 ∈ [p] of the number of rewrite steps in the shortest derivation p0 → . . .→ p.

The measure AL(p) is useful only insofar as one can capture ‘abstraction penalty’ by the rewrites.
That is, making this measure meaningful requires choosing the rewrites to reflect our understanding
of what it means for programs to be ‘abstract’ in a software engineering sense.

Our goal here is to prove that for any program, AL(Op) = 0. The proof cannot work without
another assumption, though. It might be the case that by applying the optimizer, which might do
more optimization than just undoing the rewrites, we create an opportunity to undo a rewrite that
was not applicable before.11 We explore two avenues here: first, assuming that Op ∗→ p; and second
assuming Op ∈ [p], i.e., that the optimizer does not cross the equivalence classes of ∗↔. These offer
two possible routes to proving AL(Op) = 0 in practice. As customary, +→ indicates the transitive
closure of →, i.e., if a +→ b there is a sequence of one or more rewrites from a to b.

Lemma 3.11 (Zero Abstraction Level I). If Op ∗→ p for all p, then AL(Op) = 0 for all p.

Proof. (By contradiction). Choose p1 such that AL(Op1) > 0. Then there exists a p0 such that
p0

+→ Op1 (since otherwise, AL(Op1) would equal zero). From the assumption Op ∗→ p we have
Op0

∗→ p0 and Op1
∗→ p1. Therefore Op0

∗→ p0
+→ Op1

∗→ p1, from which Op0
+→ Op1. But from

p0
∗↔ p1 we have Op0 = Op1, which contradicts Op0

+→ Op1. �

Now the other possibility we explore is the assumption Op ∈ [p]. This is slightly weaker, and so
the proof requires a few more assumptions. For convenience we take |p| to measure the size of a
program p, since the de-optimizing rewrites we consider (for example, in Chapter 4) usually cause
an obvious increase in program size. However, other partial orderings on programs could be used
in place of size.

Lemma 3.12 (Zero Abstraction Level II). If for all p1, p2

1. p1 → p2 implies |p1| < |p2|; and

2. |Op1| ≤ |p1|; and
11This is not just a theoretical concern, but happens to be the case for the optimizer we define in Chapter 4.
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3. Op1 ∈ [p1]

then AL(Op) = 0 for all p.

Proof. By contradiction. Suppose AL(Op) > 0. Then there exists a p′ such that p′ → Op. From (3)
we have Op↔ p, so p′ → Op ∗↔ p, which implies p′ ∗↔ p. From guaranteed optimization Op′ = Op
and so we have the following diagram:

p

Op = Op′

OO

p′

OO

From p′ → Op′ and (1) we have |p′| < |Op′|, but this contradicts (2). �

This proof hinges on the property Op ∈ [p]. The informal interpretation of this requirement is that
the transformation phase doesn’t make any changes to programs beyond those required to meet the
guaranteed optimization property. How difficult it is to prove this property in practice is unknown.

The assumptions of both Lemma 3.11 and Lemma 3.12 can be shown to imply that ker(O) = ∗↔.
That is, the program equivalence decided by the optimizer is exactly that axiomatized by the
rewrites.

Lemma 3.13. If Op ∈ [p] then ker(O) = ∗↔.

Proof. We have ∗↔⊆ ker(O) from guaranteed optimization; to prove ker(O) = ∗↔ it suffices to show
∗↔⊇ ker(O), i.e., if Op1 = Op2 then p1

∗↔ p2. By definition Op ∈ [p] means Op ∗↔ p. Suppose
Op1 = Op2. Then Op1

∗↔ p1 and Op2
∗↔ p2; so p1

∗↔ Op1 = Op2
∗↔ p2 from which p1

∗↔ p2. �

Corollary 3.2. If Op ∗→ p then ker(O) = ∗↔.

Proof. This is simply a special case of Lemma 3.13, since Op ∗→ p implies Op ∈ [p]. �
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4
An implementation of guaranteed optimization

What’s this chapter about?

This chapter describes a prototype implementation of guaranteed optimization, demonstrating that
the proof techniques introduced in Chapter 3 scale to realistic compiler optimizations. The proto-
type handles constant and copy propagation, dead code elimination, and removal of unnecessary
dynamically-allocated data structures. We describe an intermediate language, a superanalysis, an
automated theorem prover for constructing guaranteed optimization proofs, and the proof itself.
As a corollary to the proof we show an optimality result: the prototype achieves ‘smallest’ pro-
grams within an approximate program equivalence. We do not make any claim that the analyses
and transformations described are sound; instead, our focus is on showing that the techniques of
Chapter 3 scale to realistic compilers. Showing soundness is an important goal, but outside the
scope of this dissertation.

What’s new here?

The analyses described are variants on well-known approaches from the literature, with some tin-
kering to adopt them to superanalysis and enable the proof of guaranteed optimization. Our focus
is not on the analyses per se, but rather on putting them together to achieve ‘optimal’ programs
and staging capabilities.

How is this chapter organized?

The first half of this chapter (Sections 4.1-4.2) is devoted to describing an intermediate language and
a superanalysis on it. In Section 4.3 we show how the results from this analysis are used to transform
programs. The guaranteed optimization proof is largely automated — a necessity for a proof on
this scale with an ever-changing compiler — and so in Section 4.4 we briefly describe the theorem
proving system used. Appendix A (p. 147) presents proofs of the lemmas for de-optimizing rewrites.
In Section 4.5 we tie these together to yield the proof of guaranteed optimization and optimality.

95
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x := t Assignment (multiply-assigned variable)
t = e Definition (singly-assigned variable)
t0(t1, . . . , tn) Function call
P (t1, . . . , tn) Primitive operation
t Use (of a singly-assigned variable)
ref(x) Variable reference (of a multiply-assigned variable)
if t then B1 else B2 If statement
return t Return

Table 4.1: Syntactic forms in the intermediate representation. Singly-assigned variables are denoted
ti, multiply-assigned variables x, branches Bi which are simply pointers to other vertices in the CFG.

4.1 Intermediate language

Typical compilers have multiple front ends (e.g., C++ , C, Java, Fortran) and sometimes multiple
back ends to support several target processors. Such compilers use an intermediate language to
which the front ends translate code; this intermediate form is then optimized and translated to
machine code.

We adopt a simple intermediate language that is midway between assembler and source-level
language and designed primarily to simplify analysis. It is imperative in flavour; this is a pragmatic
since the underlying machine model is imperative, and so languages of any stripe (functional, object
oriented) may be translated to it and from there to the machine. The major features of this
representation are standard and unremarkable:

• We use a graph representation in which vertices represent statements and edges represent
control flow. To aid analysis, we make each statement a single vertex in the graph, rather
than using “basic blocks” as vertices.

• To ensure that every value has a unique name, we distinguish between singly- and multiply-
assigned variables. Multiply assigned variables are given special treatment, and must be
protected by singly-assigned variables, similar to SSA-form or treating multiply-assigned vari-
ables as boxes.

• Nested expressions such as f(g(x)) are disallowed in favour of a flat representation (cf.
Section 3.5.2), also known as quad/triple-form (cf. [158]) or A-normal form [80]. Only uses of
singly-assigned variables are permitted “inside” function calls, primitive operations, if tests,
return statements, and so forth.

Table 4.1 shows the syntax of the intermediate representation. Arbitrary goto statements (for
example, loops) are implemented by inserting appropriate control-flow edges. If statements take
the true branch when the test is nonzero.

As basic types we have 32-bit integers (int32), pointers (ptr) and function pointers (fptr), as well
as various floating-point types. Table 4.2 shows the primitive operations supported in the prototype.
It is straightforward to extend the set of operations with more ‘pure’ operations, e.g., the standard
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fptrread(p, n) Memory read (func ptr)
alloc(n) Memory allocation
check(n) Static assertion: fails if 6` n 6= 0
ftrstore(p1, n2, f3) Store function pointer in memory: p1[n2]← f3

int32add(n1, n2) Integer addition
N Integer literal
int32eq(n1, n2) Integer equality test
int32mult(n1, n2) Integer multiplication
int32read(p, n) Memory read
int32store(p1, n2, n3) Store integer in memory: p1[n2]← n3

int32sub(n1, n2) Integer subtraction
ptrread(p, n) Memory read
ptrstore(p1, n2, p3) Store pointer in memory: p1[n2]← p3

Table 4.2: Primitive operations in the intermediate representation.

repertoire of floating-point operations; the set of pure primitives supported has essentially no effect
on the design of the analyses nor the guaranteed optimization proof.

For testing purposes we use a higher-level version of this intermediate language (referred to as
HIL) which is partly typed and allows nested expressions.

4.2 Analysis

In the following sections we describe the intraprocedural analyses used by the prototype. Since
we use a ‘superanalysis’ approach, the analyses are interdependent; this makes it challenging to
describe them in a sensible linear order.

The analyses are summarized in Figure 4.3. One of the challenges in superanalysis is to retain
a degree of modularity (cf. [140]). We achieve this by strictly limiting which analyses may interact.
The prototype has four flavours of analysis: reachability ψ, scalar analyses (c,u,n), forward aggregate
analyses (ρ+, σ+) and backward aggregate analyses (ρ−, σ−). The scalar analyses may interact with
one another; the aggregate analyses may interact only with the scalar analyses. This arrangement
is illustrated in Figure 4.1.

Throughout this chapter we use the term ‘provable’ as a short-form for ‘provable by the analyses
described here.’

4.2.1 Store representations

A central problem in program analysis is that of matching program points that modify variables
or store locations (definitions, or defs) with program points that read them (uses). Constructing
a representation for a def-use relation may be thought of as plumbing a program: building an
interconnection network that allows forward analysis values to flow efficiently from defs to uses,
and allows escape or ‘use’ information to flow backward from uses to defs. This is well-trodden
ground [35, 54, 61, 112, 131, 172, 180, 195, 199, 216, 250], but challenges remain in adopting these
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Analysis Variable Description
Reachability analysis ψ Find conditions under which code

is reachable
Forward constant c Constant propagation
Forward name n Name (copy/congruence) propagation
Forward environment ρ+ Analyze contents of variables
Forward store σ+ Analyze memory region contents
Backward use analysis u Determine future use of values
Backward environment ρ− Future use of variables
Backward store σ− Future use of memory region contents

Table 4.3: Summary of analyses

ρ− σ−

u

FFFFFFFFF

xxxxxxxxx

c

vvvvvvvvvv
n

HHHHHHHHHH

c× n

GGGGGGGGG

vvvvvvvvv

ρ+

yyyyyyyyy
σ+

FFFFFFFFF

Figure 4.1: Interactions between analyses. This diagram omits reachability (ψ), which interacts
with constant propagation and the aggregate analyses (ρ, σ).
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approaches to superanalysis. The problem, as usual, is phase ordering: such representations are
usually built statically, so that information uncovered during analysis is not incorporated into the
representation. Object oriented languages represent a worst case in this regard: a value may flow
to another program point through a sequence of method dispatches and store operations. Resolving
method dispatches requires def-use information; but building def-use information requires resolving
method dispatches. Statically constructed def-use representations are inadequate because of this
interdependence. For this reason, representations that can be maintained incrementally are of
increasing importance (e.g., [36, 101, 187, 215]).

We adopt the approach of embedding the representation in the analysis equations and solving
for the representation as analysis progresses; this addresses the phase-order problem through super-
analysis. We write an equation at every program point for the state of the store, and solve these
equations simultaneously with other analyses. For example, given a set of variables X and a con-
stant propagation lattice L, we can represent the local variable environment by a map ρ : X → L,
and allow equations such as:

ρ1 = {x 7→ >, y 7→ >} Initial environment
ρ2 = ρ1[x 7→ 3] Assign x

ρ3 = ρ2[y 7→ 4] Assign y

ρ4 = ρ2 t ρ3 Reconcile two environments

Solving store equations is a standard approach and can be seen (for example) in set-based analyses
(e.g., [78, 100]) and tree-grammar representations of stores (e.g., [88, 142, 147]). The straightforward
way of implementing such schemes are inefficient. We avoid the obvious inefficiencies by using
confluently persistent [65, 75, 170, 173] uniquely represented [5, 221] randomized search trees (or
‘treaps’) [17, 203, 243, 251].

Persistent data structures

Persistent data structures allow access to prior versions after changes are made [65]. Partial persis-
tence gives read-only access to previous versions; full persistence allows changes to previous versions
and reflects them in later versions. Purely functional data structures are by nature partially persis-
tent [170]. Confluently persistent data structures allow different versions of a data structure to be
reconciled by a meld operation (e.g., lattice join); recently, efficient methods have found to make
general data structures confluently persistent [75].

A version graph is a digraph (V,E) in which each vertex v ∈ V represents a version of a data
structure. There is a distinguished root r ∈ V , and an edge (v1, v2) ∈ E if version v2 derives from
v1. Each vertex represents an update operation. Persistent data structures have version graphs
which are rooted trees; confluently persistent data structures have graphs which are directed acyclic
graphs. To model store state in programs, our interest is in version graphs that contain cycles,
yielding what might be called recursively persistent data structures (Figure 4.2). The fields of the
data structures are drawn from some lattice domain, meld operations are implemented with lattice
join t, and we seek to efficiently find the least fixpoint to the set of equations implied by the version
graph.
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Figure 4.2: Version graphs of (left to right) (a) a persistent data structure; (b) a confluently
persistent data structure; (c) a recursively persistent data structure.

Randomized Search Trees (Treaps)

Randomized search trees, or treaps, were first proposed by Vuillemin [243] as ‘Cartesian trees’, and
re-discovered by Seidel and Aragon [203], where the more popular term ‘treaps’ was introduced.
Because they are both simple and efficient, they have proven popular representations for sets and
maps. Treaps are binary search trees in which every key is assigned a randomly chosen priority. The
tree is maintained in sorted order according to the keys, and also as a heap according to the priorities.
This yields a tree representation that has expected log depth, and insert and delete operations
require expected log time. In addition, given treap representations of sets A and B, the union A∪B
and intersection A∩B can be computed in expected time ∆ logN , where ∆ = |(A\B)∪(B\A)| is the
number of elements by which A and B differ, and N = max(|A|, |B|) [17, 243]. In a program analysis
context, this means one can solve store equations with reasonable efficiency. The exact complexity
has proven difficult to pin down, but for acyclic control-flow graphs our use of them for variable
environment analysis is easily shown to be O(nc log2 n) for some exponent c satisfying 1 ≤ c ≤ 2.
This compares favourably to SSA form, which has Ω(n2) worst cases for acyclic flow graphs.1

In the cyclic case the complexity of solving ‘treap equations’ is unknown. The combined key-
priority ordering is a random two-dimensional poset, which has tantalizing combinatorial properties
[21, 257, 258], but so far our efforts to turn these into a concrete complexity bound have been
fruitless.

Unique representation

A data structure is uniquely represented if any two equivalent data structures have the same internal
representation. In the case of sets represented by binary search trees, for example, this means that
any two trees representing the same set have identical structure. Many popular data structures
are not uniquely represented; for example, most self-adjusting search trees (Splay trees, red-black
trees) admit many possible representations for the same set of keys. Treaps can be equipped with

1This worst-case bound is expressed in the size of the input program; complexity results for SSA are frequently
expressed in terms of the output size of the representation, since SSA has been experimentally observed to scale
roughly linearly for real-world programs.
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Figure 4.3: A randomized search tree, or treap. In this representation, an element with priority p
and key k is plotted at location (k, p) on the graph. Each key is associated with a unique, randomly
selected priority.

the unique representation property by ensuring that every key is always given the same priority,
and that priorities are unique.

With caching, or memoization, uniquely represented data structures support O(1) equality test-
ing: one can test whether two sets or maps represented by treaps are equal by comparing their
pointers. This property makes it practical to use treap representations as values in a fixpoint solver
(e.g., in a worklist or priority queue solver, cf. [168]).

4.2.2 Forward propagation

The forward propagation analysis combines constant and copy propagation. It determines whether
values always have a constant value, or whether they are equal to some already-defined value. We
use a lattice C whose elements have the following forms:

Value Meaning
> Nothing is known about this value.
n This value is always equal to the constant value n
{H1, . . . ,Hk} This value points to one of the memory regions Hi
⊥ This value is never produced.

The lattice ordering satisfies ⊥ v {H1, . . . ,Hk} v > and ⊥ v n v > for any elements. Sets of
handles and constants are incomparable. Sets of memory region handles are ordered by set inclusion.
Constant values n are pairwise incomparable. This ordering is sketched in Figure 4.4.
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Figure 4.4: Sketch of the lattice for forward propagation.

The basic analysis equations are:

Analysis variables Construct Equations
c0t0(t1, . . . , tn) Function call c0 = >
c0,ρ0ref(x) Variable reference c0 = fst(ρ0(x))
c0,ρ0x Variable use c0 = fst(ρ0(x))
c0P (c1t1, . . . , cktk) Primitive c0 = P̂ (c1, . . . , ck)

The environment analysis variables ρ store pairs of (c, n) analysis values (constant propagation,
name analysis). The equation fst(ρ(x)) retrieves the constant propagation value for the variable x
from the environment ρ.

For most primitives, the approximate version P̂ is given by:

P̂ (c1, . . . , cn) =


⊥ if ci = ⊥ for any i; else
P (c1, . . . , cn) if all ci are constants; else
>

(4.1)

Literals are treated as primitives taking no arguments; this reduces the number of analysis cases and
is consistent with the conventional treatment of constants in universal algebra as nullary functions
(e.g., [28]).

4.2.3 Forward name analysis

Name analysis does copy propagation, and also serves as a weak form of congruence detection. For
each value-producing point in the program, the name analysis variable ni contains a ‘canonical
name’ for the value at that point. This canonical name is a singly-assigned variable whose value is
always equal to the value produced at the program point. For example, in this fragment:

x = n0f(. . .);
y = n1x;
foo(n2y);

The value of n1 and n2 is x. This indicates that foo(y) may be replaced by foo(x).
The ordering on variables t is dominance of definitions: t1 v t2 only if t1 is defined whenever t2

is defined.
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Analysis variables Construct Equations
n0t0(t1, . . . , tn) Function call n0 = >
n0P (n1t1, . . . ,

nktk) Primitive n0 = >
n0,σ

+
0 T read(c1t1, c2t2) Memory read n0 = snd(read(σ+

0 , c1, c2))
n0,ρ0ref(x) Variable reference n0 = snd(ρ0(x))
n0,ρ0x Variable use n0 = snd(ρ0(x))

Environments store (c, n) pairs, where c is constant propagation and n is name analysis; thus
snd(ρ(x)) retrieves the name analysis value for the variable x.

The ‘canonical names’ for the variables bound in an environment ρ define an equivalence relation:

x ' y ↔ snd(ρ(x)) = snd(ρ(y))

Thus, the environment analysis ρ carries both constant propagation information, copy propagation
information, and a flow-variant equivalence relation on variables.

4.2.4 Reachability analysis

Reachability generalizes the idea of ‘dead code’ detection. Dead code is code that is never reached.
Reachability analysis is concerned with finding necessary conditions for code to be reached.2

We use analysis variables of the form ψi for reachability. The use of ψ is traditional for indicating
a logic sentence, as it does here: ψ expresses a condition that must hold for a program point to
be reachable. In its simplest form, reachability uses a two-element lattice: if ψ = ⊥, then the
corresponding code is unreachable (since ⊥ is unsatisfiable); if ψ = > then the code is possibly
reachable (since > is always satisfied).

The analysis equations are straightforward. At a control-flow join, one takes the join of the
reachability conditions:

��������
ψ0 ��>

>>
>>

>>
> ��������

ψ1

��

. . . ��������
ψkvvlllllllllllllll

��������
ψout

��

ψout =
⊔
i≤k ψi

That is, ψout is reachable whenever any of the incoming edges ψi are reachable.
At an if branch, one has various choices of equations, depending on the precision of reachability

analysis desired. For a very precise analysis, one can use as a lattice the Lindenbaum-Tarski algebra
for an appropriate proof calculus (e.g., [6]). That is, one uses equivalence classes of formulas [ψ],
with ordering given by provability: [ψ1] v [ψ2] exactly when ψ1 ` ψ2, and [ψ1] = [ψ2] when both
ψ1 ` ψ2 and ψ2 ` ψ1. This construction yields a lattice with join and meet operations given by:

[φ1] t [φ2] = [φ1 ∨ φ2]
[φ1] u [φ2] = [φ1 ∧ φ2]

2 The term reachability is often associated with intraprocedural analysis (e.g., graph reachability [191]). Our use
of the term for intraprocedural analysis is consistent with its usual meaning in the automata theory literature.
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Figure 4.5: Illustration of the reachability lattice for variables a and b.

However, such lattices are theoretically very inefficient. Even for propositional logic, computing
orderings is interreducible with SAT, which is NPC (cf. [19, 261]). Instead, one can use approxima-
tions of the Lindenbaum-Tarski algebra that still permit efficient manipulation. The approximation
we choose consists of the elements ⊥,> plus formulas of the form

∧
{φ0, . . . , φk} where the φi are

propositional variables or negations of propositional variables. Figure 4.5 illustrates this lattice for
the set of variables {a, b}. Even a naive implementation can compute meets and joins in this lattice
in O(n2) time, where n is the formula length; we use a straightforward treap-based representation
that is more efficient. Using this approximation, the equations for an if-statement are:

ψ0
��

if c0,n0e
ψ1

zzvvvvvvvvv ψ2

$$H
HHHHHHHH

�������� ��������

ψ1 = ψ0 u IfTrue(c0, n0)
ψ2 = ψ0 u IfFalse(c0, n0)

The equation ψ1 = ψ0u IfTrue(c0) can be read as “The edge labelled ψ1 is reachable only if the edge
labelled ψ0 is reachable and (u) the condition e might be true.” The IfTrue and IfFalse functions
are given by:

IfTrue(c, n) =


⊥ if c = 0; else
[z] if n = z where z is a name; else
>

(4.2)

IfFalse(c, n) =


⊥ if c = k where k is a nonzero literal ; else
[¬z] if n = z where z is a name; else
>

(4.3)

This approximation is useful for dealing with code that contains redundant if-branches, as in this
example:

if (z)
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{
if (z) {

... // 3
}
else {

... // 4 (unreachable)
}
}
else {

... // 2
}

Such code arises frequently from macro-expansion, subroutine inlining, and in some type-casting
mechanisms.3 Assuming nothing is known about z and that the code is initially reachable, the
flow-graph and reachability analysis of this example are:4

��������
ψ0��

if c0,n0z
ψ1

wwooooooo
ψ2

!!C
CC

CC
CC

CC
CC

CC

if c1,n1zψ3

yyssssss
ψ4 ((QQQQQQQQQ

��������
ψ3

((QQQQQQQQQQQQQQQQQQQQ ��������
ψ4

��

��������
ψ2

zzuuuuuuuuuuuuu

��������
ψ5 ��

c0 = >
n0 = z
c1 = >
n1 = z
ψ0 = >
ψ1 = ψ0 u IfTrue(c0, n0) = ψ0 u [z] = [z]
ψ2 = ψ0 u IfFalse(c0, n0) = ψ0 u [¬z] = [¬z]
ψ3 = ψ1 u IfTrue(c1, n1) = ψ1 u [z] = [z]
ψ4 = ψ1 u IfFalse(c1, n1) = ψ1 u [¬z] = [z ∧ ¬z] = ⊥
ψ5 = ψ3 t ψ4 t ψ2 = [z] t ⊥ t [¬z] = [z ∨ ⊥ ∨ ¬z] = >

The branch labelled ψ4 (corresponding to ‘//4’ in the code above) is determined to be unreachable,
since its reachability conditions [z ∧¬z] = ⊥ are contradictory. Therefore the transformation phase
is able to eliminate the redundant if-test.

A related approach is supercompilation (cf. [212]), which is more ambitious in that it uses
inferences made from if branches to make inferences about values (by comparison, our prototype
only makes inferences about reachability.)

3In Java, for example, naive translation of code such as ‘if (x instanceof A){A y = (A)x; }’ duplicates a test of
whether x is an instance of A.

4We’ve simplified this example by leaving out environment analysis equations.
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Predication

It is frequently useful to ‘suppress’ values until the code producing them is discovered to be live.
Consider the following flow graph fragment:

if 0

true
zzvvv

vv
vv

vv

false $$H
HH

HH
HH

HH

x := 1

ψ0,ρ0
%%JJJJJJJJJJ x := 2

ψ1,ρ1
yytttttttttt

��������
ρ2
����������

The environment ρ1 should be suppressed since the false branch of the if is unreachable, i.e.,
conditional constant propagation [248] should be performed. We adopt the following notation
from Liu and Stoller [142]:

[ψ]ρ ≡

{
⊥ if ψ = ⊥; else
ρ

(4.4)

We refer to this as predication. Using this notation, the environment ρ2 for the above example can
be written

ρ2 = [ψ0]ρ0 t [ψ1]ρ1

A similar notation (necessitation) is used in modal and dynamic logics [97, 185]. Click [37, 38]
uses the notation ψ ⇒ ρ to similar effect, and Wadler and Hughes [247] use �. If instead of Eqn.
(4.4) one allowed values to be predicated, e.g. have forward propagation lattice elements of the
form [ψ0]c0 t [ψ1]c1 t · · · t [ψn]cn, approximations of path-sensitive analyses (cf. [19, 142, 261]) are
obtained. This is, however, beyond what we demonstrate in our prototype.

4.2.5 Forward environment analysis

Environment analysis tracks the content of variables. It associates with every program point and
control-flow edge an environment ρ+. (We use the + sign to distinguish a forward analysis; the
corresponding backward analysis for environments uses variables of the form ρ−.) Environments
have type ρ+ : X → (C × X ), where X is the set of possible names, C the forward propagation
lattice (Section 4.2.2), and X the name propagation lattice (Section 4.2.3). Unbound names are
given a default mapping of >.

Joins on environments are defined in the straightforward way:

(ρ+
1 t ρ

+
2 )x = (ρ+

1 x) t (ρ+
1 x) where x is a name
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The default equations for environments take the outgoing environment for a vertex to be the join
of the incoming environments, ‘predicated’ on reachability:

ρ+0 ,ψ0 ��?
??

??
??

ρ+1 ,ψ1
��

. . .

ρ+k ,ψkvvnnnnnnnnnnnnnnn

ρ+
in

ρ+out

��

ρ+
in =

⊔
i≤k[ψi]ρ

+
i

ρ+
out = ρ+

in

The only exception is at vertices where assignments or definitions take place:

ρ+in��
x := c1,n1t

ρ+out

��

Assignment ρ+
out = ρ+

in[x← c1 × n1]

ρ+in��
x = c1,n1t

ρ+out

��

Definition ρ+
out = ρ+

in[x← c1 × IntroName(n1, x)]

We use the convention that multiply-assigned variables are assigned, whereas singly-assigned vari-
ables are defined. The introduction of variable names for copy propagation and congruence detection
is handled by the function IntroName:

IntroName(n, x) =

{
x if n = >; else
n

(4.5)

This introduces a name for a value whenever nothing else is known about it.
At a variable reference or use, the forward propagation value is retrieved from the environment

(Section 4.2.2).

4.2.6 Forward store analysis

Analyzing pointers is notoriously complex and error-prone due to aliasing. To keep the analysis
simple we analyze only the contents of memory regions meeting a strict set of conditions. We call
such memory regions ‘simple.’ The conditions are:

1. The memory region must be provably local to a function, i.e., no pointer to that region may
ever leave the function. (This requires a flavour of escape analysis).

2. The memory region must be provably never aliased by a pointer to a non-simple memory
region. Specifically, a pointer to the region cannot reach a memory read or write operation
that might be also be reached by a non-simple pointer.
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3. The memory region can never reach a read or write operation where the offset into the region
where a value is being written or read is not provably constant.

More ambitious memory analyses would be desirable, but this offers a good starting point for
showing that guaranteed optimization can be applied to store analysis. We call memory regions
that meet these criteria ‘simple’; whether a region is simple or ‘hard’ is determined by use analysis
(Section 4.2.7). If a region is determined to be simple, we introduce a unique store handle Hi at
the point where it is allocated; these store handles are used as keys in the store representation.

The store analysis is flow-variant (i.e., there is a different representation of the store state for
every program point), and models destructive updating of store locations, cyclic data structures,
and aliasing.

We model a memory region by a map N → (C × X ), where N models offsets into the memory
region, C is the forward propagation lattice (Section 4.2.2), and N the name propagation lattice
(Section 4.2.3). We do not allow pointer arithmetic nor overlapping slots in the intermediate
representation, to make analysis easier.5

To every vertex and edge we associate a store analysis variable σ+ : Handle → (N → C × X )
which maps from store handles to memory region models.

As in environment analysis, the default equations for stores take the initial store for a vertex to
be the join of the incoming stores, and the outgoing store to be the same as the initial store:

σ+
0 ,ψ0 ��?

??
??

??

σ+
1 ,ψ1
��

. . .

σ+
k ,ψkvvnnnnnnnnnnnnnnn

σ+
in

σ+
out

��

σ+
in =

⊔
i≤k[ψi]σ

+
i

σ+
out = σ+

in

To analyze memory regions, the equations for forward propagation are modified as follows:

Analysis variables Construct Equations
c0,u0alloc(c1t) Memory allocation c0 = IntroHandle(u0, {Hi})
c0,σ

+
0 T read(c1t1, c2t2) Memory read c0 = read(σ+

0 , c1, c2)

Allocations are assumed to never fail by returning a null pointer.6 If use analysis finds that a
pointer returned by alloc satisfies the conditions for ‘simple’ regions described earlier, a singleton
store handle set {Hi} is introduced, where Hi ∈ Handle uniquely identifies a memory region. The
function IntroHandle is defined by

IntroHandle(u, h) =

{
> if u w hardptr; else
h

(4.6)

5 These assumptions are adequate for compiling Java, Scheme, Haskell, and so forth; but not for C or C++ , which
permit pointer arithmetic and unions. For such languages more precise analysis is required.

6 Instead, they must raise a signal or exception. This simplifies aggressive analysis of dynamically-allocated data
structures.
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function int32 foo(int32 x)
{

// Create an infinite list 1 2 1 2 1 2 ...
ptr cons1 = alloc(8);
int32store (cons1 ,0,1);
ptr cons2 = alloc(8);
int32store (cons2 ,0,2);
ptrstore(cons1,4,cons2);
ptrstore(cons2,4,cons1);

// Sum the first three elements
int32 w = int32add(int32read(cons1,0),

int32add(int32read(ptrread(cons1 ,4),0),
int32read(ptrread(ptrread(cons1 ,4),4),0)));

return w;
}

1 2

/∗ Output generated by lunar.back.cpp.CppBackEnd ∗/
#include <lunar2c.h>

int foo(int x);

/∗ Function foo defined at region2. hil :1 ∗/
int foo(int x)
{

int w = 4;
return w;

}

Figure 4.6: Store analysis example. From top to bottom: (1) an input program in HIL, a slightly
higher level version of the intermediate language, that creates an infinite list (1, (2, (1, . . .))) and
then returns the sum of its first three elements; (2) representation of the heap data structure pointed
to by cons1; (3) output from the prototype compiler (using a C++ back end).
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Here, the u equation is from use analysis, described in Section 4.2.7. To simplify the presentation
we use T read and T store in place of type-specific functions such as int32read, int32store and so
forth. Read operations are handled by the function:

read(σ, h, n) =


⊥ if σ = ⊥ or h = ⊥ or n = ⊥; else⊔
H∈h σ(H, n) if n ∈ N and H ⊆ Handle; else
>

(4.7)

Write operations are analyzed by these equations:

Analysis variables Construct Equations

σ+
0��

c0T store(c1t1, c2t2, c3t3)

σ+
1

��

Memory write c0 = >
σ+

1 = store(σ+
0 , c1, c2, c3)

The definition of store(σ, h, n, v) requires several cases:

1. If any of σ, h, n are ⊥, then store(σ, h, n, v) = ⊥.

2. Else, if h is not a set of handles {Hi}, then this write operation is assumed to affect no ‘simple’
memory regions being modelled, and so store(σ, h, n, v) = σ.

3. Else, if n is not an integer, then the analysis is about to discover that this store operation is
‘hard,’ and stop propagating the handles h. We temporarily propagate store(σ, h, n, v) = σ.

4. Else, if h is a singleton handle h = {Hi}, and n is an integer offset, then store(σ, h, n, v) = σ′

where

σ′(H′, n′) =

{
v if n = n′ and H′ = Hi; else
σ(H′, n′)

5. Otherwise, we have both a set of handles of local memory regions and an integer offset, and
store(σ, h, n, v) = σ′ where

σ′(H, n′) =

{
v t σ(H, n′) if n = n′ and H ∈ h; else
σ(H, n′)

Store representations may contain cycles (if loops are involved producing, for example, lists),
and the use of store handle sets gives ‘nondeterministic choice.’ This approach seems similar to
regular tree grammar approaches (e.g., [88, 142]). Unlike [142], our prototype does not yet support
conditional store states, although this would clearly be useful as it provides path-sensitivity.
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4.2.7 Use analysis

Use analysis is a backward analysis that analyzes how values might be used at future program
points. We use it for two purposes:

• To determine if the value generated by an operation is not needed (cf. [58, 247]), so that we
can eliminate the operation producing it;

• To determine if a memory region might escape (e.g., [16, 178]) or be used in a way that makes
it non-simple (Section 4.2.6).

We use the following lattice:

escapes

needed

ssssssssss
hardptr

LLLLLLLLLL

⊥

KKKKKKKKKKK

rrrrrrrrrrr

The meaning of these elements is as follows:

• ⊥: this value is not needed; the operation producing it can be removed.

• needed: this value is needed at a future program point.

• hardptr: this value might refer to a memory region that is used in a nonsimple way.

• escapes: no assumptions can be made about how this value might be used.

The basic use equations are:

Analysis variables Construct Equations
t0(u1t1, . . . ,

untn) Function call u1 = escapes
...

un = escapes
c0,u0P (u1t1, . . . ,

uktk) Primitive operation u1 = u0
...

uk = u0

return u0t Return value u0 = escapes
if u0t then ψ0e0 else ψ1e1 If test u0 = IfUse(ψ0, ψ1)

The value used to determine the branching of an if statement is only needed if both branches are
possibly live. This is modelled by the IfUse function:

IfUse(ψ0, ψ1) =

{
⊥ if ψ1 u ψ2 = ⊥; else
>

(4.8)

Expressions occurring in statement position, i.e., outside an assignment or definition, have their
values lost, and therefore no use of them is possible.

Analysis variables Construct Equations
u0e Expression in statement position u0 = ⊥
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4.2.8 Backward environment analysis

Backward environment analysis is much the same as forward environment analysis (Section 4.2.5),
but backward environments propagate use information back through time, and the role of assign-
ments and references is (more or less) reversed.

We use variables ρ− for use environments; the minus sign indicates the analysis is backward.
Names unbound in a use environment are given a default mapping of ⊥; this reflects the assumption
that at exit from a function the contents of all local variables are lost (and therefore never used).

The default equations for use environments mirror those of value environments: the outgoing
environment for a vertex is the join of the incoming environments.

ρ−in

ρ−out

OO

ρ−0 ,ψ0
??������� . . .

ρ−k ,ψk
__???????

ρ−in =
⊔
i≤k[ψi]ρ

−
i

ρ−out = ρ−in

The analysis equations for references and assignments are:

Analysis variables Construct Equations

c0,u0ref(x)

ρ−1

OO

ρ−0

OO
Variable reference ρ−1 = ρ−0 [x t← IfNotRepl(c0, u0)]

ρ−0 x := u1t

ρ−1

OO

ρ−0

OO
Assignment u1 = ρ−0 (x)

ρ−1 = ρ−0 [x← ⊥]

We use the shorthand notation:

ρ[x t← u] ≡ ρ[x← (u t ρ(x))] (4.9)

The IfNotRepl function (If Not Replaceable) is:

IfNotRepl(c, n, u) =

{
⊥ if n = ⊥ or or n = x or c = ⊥ or c ∈ Lit
u otherwise

(4.10)

ρ−[n t← u] =


⊥ if ρ = ⊥
ρ[x t← u] if n = x,where x ∈ X (a name)
ρ if n = ⊥

(4.11)
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The analysis equations for uses and definitions are similar to those of references and assignments:

Analysis variables Construct Equations

u0x

ρ−1

OO

ρ−0

OO
Variable use ρ−1 = ρ−0 [x t← u0]

x = u0f(u1t1, . . . ,
uktk)

ρ−1

OO

ρ−0

OO
Definition u0 = ρ−0 (x)

ρ−1 = ρ−0 [x← ⊥][t1
t← u1] · · · [tk

t← uk]

4.2.9 Backward store analysis

Backward store analysis mirrors forward store analysis: it propagates use of store region contents
backward through time.

The default equations for backward stores are as for backward environments:

σ−in

σ−out

OO

σ−0 ,ψ0
??������� . . .

σ−k ,ψk
__???????

σ−in =
⊔
i≤k[ψi]σ

−
i

σ−out = σ−in

Where there is a memory read or write operation, special equations are needed:

Analysis variables Construct Equations

T store(c1,u1t1,
c2,u2t2,

c3,u3t3)

σ−1

OO

σ−0

OO

Memory write u1 = PointerUse(c1, c2) t u2

u2 = needed u u3

u3 = HardUse(c1, read(σ−0 , c2, c3))
σ−1 = store(σ−0 , c1, c2,⊥)

c0,n0,u0T read(c1,u1t1,
c2,u2t2)

σ−1

OO

σ−0

OO

Memory read σ−1 = store( σ−0 , c1, c2,
IfNotRepl(c0, n0, u0)t

read(σ−0 , c1, c2))
u1 = PointerUse(c1, c2)t

(u0 u needed)
u2 = IfNotRepl( c0, n0,

u0 u needed)
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The function PointerUse determines whether a store region operation is ‘simple’ or not (Sec-
tion 4.2.6). If it fails to be simple, then hardptr is introduced.

PointerUse(h, n) =


⊥ if c = ⊥ or n = ⊥; else
⊥ if c = {H0, . . . ,Hn} and n is integer ; else
hardptr

(4.12)

The function HardUse gives a use of > when the region is non-simple; otherwise it retrieves use
information from σ−:

HardUse(c, u) =

{
u if c = ⊥ or c = {H0, . . . ,Hn}; else
escapes

(4.13)

When a handle-offset pair (h, n) is unbound in a use store σ−, it is given a default value of ⊥.

4.3 Transformation

Once the analysis equations are constructed, a transformer based on graph-rewrite rules is used to
carry out the changes deemed safe by the analysis. Fixpoint solutions are obtained using a demand
solver, so equations are solved only as needed by the transformer.

For easy reference all transformation rules are given names of the form ‘X. · · · ’, to distinguish
them from axioms, assumptions, and so forth in the theorem prover.

These rules define the optimizing rewrite system. We use � to distinguish these rewrites from
the de-optimizing rewrites (which we denote by →).

For each transformation rewrite, we give conditions on analysis variables which must hold for
the rewrite to be applicable. Each transformation rewrite is either a vertex deletion, an edge
contraction, or a term replacement.

Edge contractions

We use edge contraction (e.g., [252]) to remove a redundant operation from the graph; the vertex
containing the operation is identified with its unique successor.

Assumption 4.1. Every vertex removed by an edge contraction has a unique successor.

This assumption is justified because the only vertices that have multiple successors are if branches
and function calls, to which edge contraction is never applied.

The following example shows a vertex with the operation ‘b := a′ being removed by an edge
contraction:

a := 2

%%KKKKKKKKK a := 3

��

a := 2

��8
88

88
88

88
88

88
88

8 a := 3

��

b := a

��

�

c := 4 c := 4
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We do not delete self-loops after performing an edge contraction, since this might turn infinite
loops into ill-formed CFGs that had vertices with no successor. Instead, we have a special rule
(X.Omega) that handles such loops.

Definition 4.1 (Edge contraction). Let G = (V,E) be a directed graph, and e = (a, b) ∈ E an
edge. The edge contraction G · e is the graph G′ = (V ′, E′) where

V ′ = V \ {a}
E′ = E[b/a]

where the notation E[b/a] means removing the edge (a, b), then redirecting all edges ending at a to
end at b.

4.3.1 Optimizing rewrite rules

We now list the optimizing rewrite rules that generate the relation �. Inside each box is the graph
rewriting rule, and to its left any condition(s) that must hold for the rewrite to be applicable.

If a vertex is unreachable, then remove it and any of its outgoing edges from the graph:

ψ?1 = ⊥
ψ1e

~~}}
}}

}}
}}

  A
AA

AA
AA

A

. . .

� empty (X.Unreachable)

Replace a subterm (of an if, function call, primitive) with a canonical name (where y is a name):

ni = y nixi � y (X.SubtermRepl)

Copy introductions are always removable:

x = y

��
a

� a (X.CopyElim)

Eliminate the alternative branch of an ‘if’ when unreachable:

ψ?2 = ⊥

if e

||zz
zz

zz
zz

!!D
DD

DD
DD

D

ψ?1a ψ?2 b

� a (X.IfAlternElim)
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Eliminate the consequent branch of an ‘if’ when unreachable:

ψ?1 = ⊥

if e

||zz
zz

zz
zz

!!D
DD

DD
DD

D

ψ?1a ψ?2 b

� b (X.IfConseqElim)

Delete an unnecessary definition:

u?1 = ⊥
v = u1e

��
a

� a (X.DeadDef)

Delete a replaceable definition (where e is not a function invokation):

n?1 = x

v = n1e

��
a

� a (X.ReplDef)

Remove a constant definition:

c?0 = n

v = PurePrim(. . .)

��
a

� a (X.ConstFold)

Remove a pure primitive in statement position:

u?0 = ⊥

u0PurePrim(. . .)

��
a

� a (X.DeadPurePrim)

Remove an unnecessary store operation:

u?3 = ⊥
store(t1, t2, u3t3)

��
a

� a (X.DeadStore)

Finally, a special rule for handling endless loops of redundant operations. In such a case the
operation in the loop must be replaced with an infinite loop of nop instructions — this is necessary
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for proving confluence in the next section. Note that this rule is not applicable to operations causing
effects, since such operations are never redundant.

a is redundant a
%%

� nop
vv

(X.Omega)

4.3.2 Confluence and termination

For the guaranteed optimization proof to succeed, it is necessary that the rewrites � specify a
function rather than a process with multiple outcomes. If the transformation process were non-
deterministic it would be challenging to guarantee that optimizations actually happened. In this
section we prove � is a function; this proof is necessary, but largely irrelevant to understanding the
implementation.

There are two requirements for � to specify a function — see Section 3.7 (p. 88).

• Termination: any sequence of rewrites in � must eventually reach a normal form from which
no further rewrites are possible.

• Confluence: the order in which rewrites are applied does not matter; all sequences in � lead
to the same normal form.

To make the proof easier, we consider the rules described in Section 4.3 in three groups:

1. The rule X.Unreachable, which deletes a vertex.

2. The rules that perform an edge contraction on the CFG (e.g., X.CopyElim, X.IfAlternElim,
X.IfConseqElim, etc.)

3. The rule X.SubtermRepl, which carries out a subterm replacement.

We then consider the rewrite system → as being composed of three phases:

�= (
∗
�1 ◦

∗
�2 ◦

∗
�3)

where the relation �n applies the rules from the nth group.

Lemma 4.1. The rewrite system � is terminating.

Proof. The rules in group (1) and (2) both reduce the number of vertices in the CFG by one. The
rule X.SubtermRepl replaces a subterm; each subterm in the CFG may be replaced at most once.
Let Q = |V |+Ns where |V | is the number of vertices in the CFG, and Ns is the number of subterms
that have not been replaced. Q is finite, positive, and every rewrite strictly decreases Q; therefore
� terminates in a finite number of steps. �

Since � is terminating we can argue confluence via the Huet-Newman lemma (see Lemma 3.6 (p.
88)), i.e., prove local confluence. We consider the three phases separately; for each phase we prove
local confluence – see Defn. 3.12 (p. 88).

Lemma 4.2. The rewrite system �1 is locally confluent.
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Proof. �1 simply deletes vertices to which X.Unreachable applies. Given a graph x, if we delete
two different vertices by x �1 a and x �1 b, then there is obviously a graph c with both vertices
removed. �

Lemma 4.3. The rewrite system �2 is locally confluent.

Proof. �2 consists of the rewrites that carry out edge contractions. We need to show that the
order in which edge contractions are carried out does not matter. (This is nonobvious because we
are not dealing with abstract graphs, but CFGs where an IL term is associated with each vertex.)
Suppose a, b, c, d ∈ V are vertices, and consider a contraction of an edge (a, b) and, independently,
a contraction of an edge (c, d). We have the following diagram:

(V,E)

wwwwooooooooooo

'' ''OOOOOOOOOOO

(V \ a,E[b/a])

∗ '' ''OOOOOOOOOOO
(V \ c, E[d/c])

∗wwwwooooooooooo

(V ′, E′)

We need to show there is a graph (V ′, E′) joining the two paths. This is true if E[d/c][b/a] =
E[b/a][d/c], since (V ′, E′) = (V \ a \ c, E[d/c][b/a]) would join the paths. Consider cases over the
possible equality relations on {a, b, c, d}. Every partition of {a, b, c, d} (and therefore, every equality
relation on {a, b, c, d}) falls into one of these cases:

1. Case {a, b} ∩ {c, d} = ∅:

a

��

c

��
b d

Then the substitutions [d/c] and [b/a] commute, and E[d/c, b/a] = E[b/a, c/d].

2. Case a = b or c = d. Then one substitution is an identity.

3. Case a = c and b = d. Then E[d/c][b/a] = E[b/a] = E[d/c] = E[b/a][d/c].

4. Case {{a, c}, {b}, {d}}:

a, c

~~}}
}}

}}
}}

  B
BB

BB
BB

B

b d

This case violates Assumption 4.1 since b, d are both successors of a, and hence does not apply.
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5. Case {{b, d}, {a}, {c}}:

a

  B
BB

BB
BB

B c

~~}}
}}

}}
}}

b, d

Then E[d/c][b/a] = E[b/c][b/a] = E[b/a][d/c].

6. Case {{a, d}, {b}, {c}}:

c

��
a, d

��
b

Then E[d/c][b/a] = E[a/c][b/a] = E[b/a][d/c].

7. Case {{b, c}, {a}, {d}}:

a

��
b, c

��
d

Then E[d/c][b/a] = E[b/c][b/a] = E[b/a][d/c].

8. Case {{a, d}, {b, c}}:

a, d

��
b, c

CC

In this situation we have two redundant primitive operations in an infinite loop. Depending
on which contraction we perform first, we’ll end up with a different primitive operation in an
infinite loop: either

a
%%

or b
zz

But by using rule X.Omega, we can turn each of these into

nop
((

which joins the two paths.
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�

Lemma 4.4. The rewrite system �3 is locally confluent.

Proof. �3 consists of term replacements via rule X.SubtermRepl. Each subterm can be replaced at
most once, and the possible subterm replacements are completely independent of each other. Given
a graph x, if one carries out two different subterm replacements by x �3 a and x �3 b, then the
graph c obtained by replacing both the subterms satisfies a

∗
�3 c and b

∗
�3 c. �

Theorem 4.1. The rewrite system � specifies a function.

Proof. From Lemma 4.1, Lemma 3.6 (p. 88), and Lemmas 4.2—4.4, �n is terminating and confluent
for n = 1, 2, 3. Therefore their composition � specifies a unique function. �

4.4 Theorem Prover

One of the challenges in constructing a guaranteed optimization proof for a practical compiler is
that any change made to the analyses or transformation rules invalidates portions of the proof. The
proof shown here was constructed with a special-purpose automated theorem prover. This made
it easy to maintain the proof as changes were made to the compiler, and took care of many of the
tedious proof details.

The decision to implement a custom solver is perhaps a questionable one — why implement a
theorem prover instead of using one of dozens of high-quality general-purpose provers? The primary
reason is that by implementing a custom solver, we can integrate it tightly with the compiler itself,
and directly prove properties of the compiler. To use a general-purpose theorm prover one would
be proving properties of an approximate representation of the compiler as described to a proof
system, and one would have to be extremely careful to keep this description synchronized with
what the compiler was actually doing. Secondly, the custom prover is highly tailored to doing
proofs of guaranteed optimization, and proves the lemmas without intervention once appropriate
initial assumptions are made. This makes it easy to maintain the proof in the presence of changes to
the compiler, since the proof is usually updated automatically. Lastly, we implement the optimizer
taking for granted the theory developed in Chapter 3.

The theorem prover we use has three major components: congruence, unification, and explicit
solving of fixpoint equations. At the current stage of development we are only working with de-
optimizing rewrites that do not contain cycles in the redex. This means we can use a slightly
simpler approach: for congruence we use an incrementalized version of the standard Downey-Sethi-
Tarjan congruence closure algorithm [64]. In the future this ought to be replaced by an appropriate
bisimulation algorithm (e.g., [63, 176]) to handle redexes that contain cycles. (Note, though, that
the current proof technique is quite suitable for programs containing cycles; it is just that we do
not deal with de-optimizing rewrites that introduce cycles.) For unification we do simple one-sided
recursive pattern matching to test whether axioms apply to equations (cf. [130]). For the fixpoint
solver, we use the prototype compiler’s solver, which is a demand-driven priority queue solver with
dynamic dependencies and chaotic (asynchronous) iteration, using join-updates to handle second-
order effects [11, 33, 49, 67, 73, 87, 99, 104, 117, 127, 171, 190, 239].

As described in Chapter 3, the proof is structured as a series of lemmas, one for each de-
optimizing rewrite rule. We work with graph rewrite rules that apply to the control-flow graph.
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4.4.1 A short guide to the proofs

A few comments about the theorem prover will make the proofs in Appendix A (p. 147) less
puzzling.

Equations are built and manipulated as a (cyclic) term graph. This representation is ‘variable-
free’ — analysis variables are merely labels we attach to vertices for debugging and outputting
readable proofs. (In fact, when the compiler is used in non-debug mode, no analysis variables are
created at all.) For this reason, the same analysis variable may decorate multiple edges and vertices.

Variables are often given numeric subscripts as in ρ+
44; this can be read as “an environment

from line 44 of the input program.” Where multiple variables of the same type occur on one line,
alphanumeric letters are introduced: ρ+

44a, ρ
+
44b, etc.

Each lemma follows this structure:

1. The statement of the lemma, which gives an informal description of the de-optimizing rewrite
being considered, and refers to a figure indicating the exact rewrite;

2. A presentation of the “before and after” analysis equations, with x taking the role of unknown
equations from the context, and α(x, . . .) indicating the context equations, as in Section 3.6
(p. 78).

3. A statement of any assumptions, usually deriving from the statement of the lemma;

4. A summary of the proof obligations for compatibility, followed by a proof of each using the
techniques from Section 3.6 (p. 78);

5. For the transformation step, possibly some additional reasoning to prove some fixpoint values,
and a summary of what transformation rules were applied to undo the de-optimizing rewrite.

The proofs are somewhat complex because they are doing more than just proving that such-and-
such a rewrite is being undone: the compatibility portion of the proof is proving that applying the
de-optimizing rewrite does not affect the ability to perform any other optimizations.

4.4.2 Observational equivalence

The proof we present here is a slight variation on the general technique introduced in Chapter 3.
Most importantly, we adjust the notion of ‘compatibility’ between systems of equations to handle
the environment and store analyses. The difficulty is that compatibility — Defn. 3.7 (p. 78) —
requires equality of the fixpoint solutions of shared variables. This would effectively bar us from
introducing new variables and store handles; for example, changing

int32 x = 10; to int32 y = 5;
int32 x = int32add(y, y);

would break compatibility, since the system of equations after the rewrite would have environments
with y ∈ dom(ρ).

For this reason, we use a weakened form of compatibility: for each de-optimizing rewrite, we
judge compatibility based only on quantities that are observable before the rewrite. In the above
example, assuming y is a previously unbound variable being introduced, we would take y to be
unobservable.
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Recall the notation e? introduced in Section 30 (p. 75) to mean “the least fixpoint solution of
equation e.”

Definition 4.2 (Observational equivalence). Equations e1 and e2 are observably equivalent
with respect to a set of observables O, and we write e1

o∼ e2, if:

1. e?1 = e?2; or

2. e?1 and e?2 are maps (i.e., environments or stores), and the restrictions of e?1 and e?2 to O are
equal, i.e., e?1(α) = e?2(α) for every α ∈ O.

In this chapter we use a ∼ b to mean a? = b?. Note that ∼ implies o∼; we generally reason with ∼
as much as possible, and only resort to o∼ for the final proof steps when it is obvious that certain
quantities are equivalent modulo observability.

The revised notion of compatibility for this proof simply replaces equality with o∼ in Defn. 3.7.

Definition 4.3 (Consistency, revised). Let Sa = (Xa, Ea) and Sb = (Xb, Eb) be two systems
of equations. We say Sa is compatible with Sb, and write Sa � Sb exactly when Xa ⊆ Xb and
σ?ax

o∼ σ?bx for all x ∈ Xa.

In the proofs we explicitly state when we are assuming a variable, store handle or store location to
be not in O, i.e., unobservable.

4.4.3 Contexts and redexes

We express the de-optimizing rewrites as graph rewrites that apply to the control-flow graph of a
function. An example will clarify a few terms and notations used in the proof. Consider Figure 4.7,
which shows the control flow graph for a tiny function. The operation in the box, ‘t3 = 1’, might
be replaced by a sequence such as

t3a = 0;
t3b = 1;
t3 = int32add(t3a, t3b);

by a de-optimizing rewrite. To reason about such rewrites, we abstract away the context as shown
in Figure 4.8, keeping only the redex (inside the box) and a pair of vertices A,B from the context.
The proof obligations for compatibility are obtained by matching up equations for edges that across
the boundary of the redex (the dotted box in Figure 4.8) before and after the rewrite. In engineering
terminology, one proves that the ‘transfer function’ of the redex is the same before and after the
rewrite.
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if u5ac5at2

t3 = u8ac8a1int32

t4 = u9cc9c int32sub(u9bc9an, u9bc9bt3)

return u10ac10at4

ρ−9b,σ
−
10b

ψ10b

ρ+10b,σ
+
10b

[return− pad]

ρ−10b,σ
−
10b

ψ10b

ρ+10b,σ
+
10b

return u6ac6at1

ρ−5c,σ
−
10b

ψ6b

ρ+6b,σ
+
10b

ρ−5b,σ
−
10b

ψ10b

ρ+6b,σ
+
10b

ρ+8b,σ
+
10b

ψ10b

ρ−8b,σ
−
10b

t2 = u4cc4c int32eq(u4bc4an, u4bc4bt1)

t1 = u3ac3a0int32

ρ+6b,σ
+
10b

ψ3a

ρ−4b,σ
−
3b

ρ+3b,σ
+
10b

ψ3a

ρ−3b,σ
−
3b

ρ+6b,σ
+
10b

ψ6b

ρ−10b,σ
−
10b

Figure 4.7: Example of a context (everything outside the dotted box) and redex (inside the box)
for a rewrite rule application.
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��
@@��

@@A

��
@@��

@@B

t3 = u8ac8a1int32

ρ+8b,σ
+
10b

ψ10b

ρ−8b,σ
−
10b

ρ+6b,σ
+
10b

ψ10b

ρ−5b,σ
−
10b

Figure 4.8: A redex.

4.4.4 Axioms

The following equational axioms are used by the theorem prover:

∀x . x t ⊥ = x (Ax.JoinBotRight)
∀x . x t > = > (Ax.JoinTopRight)
∀x . ⊥ t x = x (Ax.JoinBotLeft)
∀x . > t x = > (Ax.JoinTopLeft)
∀x . > u x = x (Ax.MeetTopLeft)
∀x . x u ⊥ = ⊥ (Ax.MeetBotRight)
∀x . ⊥ u x = ⊥ (Ax.MeetBotLeft)
∀x . x u > = x (Ax.MeetTopRight)

∀ρ . ρ[t t← ⊥] = ρ (Ax.EnvJBot)

∀r . ∀x . r[t t← x](t) = r(t) t x (Ax.EnvJLookup)
∀r . ∀x . r[t← x](t) = x (Ax.EnvLookup)
∀x . ∀y . fst(x× y) = x (Ax.Fst)
∀x . ∀y . IfUse(x, y) = x u y (Ax.IfUse)
∀x . fst(x)× snd(x) = x (Ax.Pair)

∀x . [⊥]x = ⊥ (Ax.BotPred)
∀x . ∀y . snd(x× y) = y (Ax.Snd)

∀ρ . ∀t . ρ[var(t) t← ⊥] = ρ (Ax.UseJBot)
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Nonequational axioms

In addition, a few nonequational axioms are needed that require special tests before being applied.

If x 6= y:

ρ[x← v](y) = ρ(y) (Ax.EnvIndep)

If n is an integer and {Hi} a singleton store handle:

store(σ, {Hi}, n, read(σ, {Hi}, n)) = σ (Ax.StoreIdent)

4.4.5 Special assumptions

The theorem prover is permitted to make several assumptions whenever necessary. The first reflects
the fact that backward environment (ρ−) and store (σ−) analysis always gives a default binding of
⊥.

Assumption 4.2 (RedexLocal). If a variable, store handle, or store location is newly introduced
by a rewrite, then its binding in any backward environment or store prior to the rewrite is ⊥.

The following assumption is based on the implementation decision that maps carried by control-flow
edges are always ‘predicated’ (Section 4.2.4) on the reachability of the edge.

Assumption 4.3 (PredElim). If a control-flow edge has reachability ψ, and carries environments
and stores ρ+, ρ−, σ+, σ−, then:

ρ+ ∼ [ψ]ρ+

ρ− ∼ [ψ]ρ−

σ+ ∼ [ψ]σ+

σ− ∼ [ψ]σ−

The following assumption is justified by the way use analysis is designed. At any variable use such
as n0,u0x, the use update equation is ρ−0 = ρ−1 [var(n0)← u0], i.e., we attribute any use of the value
of x to the name propagated through n0. In a copy introduction such as x = y, the analysis is
designed such that at any use of x, the name x will never reach that point (but instead, the name
y etc. will).

Assumption 4.4 (CopyUseBot). In a copy introduction such as this:

��
x = y

ρ−0
��

The binding of x in ρ−0 is ⊥.
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Lemma Description
Lemma A.1 (p. 147) Replace a literal with an operation constructing

that literal, e.g., 5→ int32add(2, 3)
Lemma A.2 (p. 150) Introduce a new variable.
Lemma A.3 (p. 152) Introduce an if branch that always takes the

true branch.
Lemma A.4 (p. 157) Introduce an if branch that always takes the

false branch.
Lemma A.5 (p. 161) Introduce a new memory region.
Lemma A.6 (p. 164) Store a value into an unused memory region.
Lemma A.7 (p. 170) Replace a variable reference with a read from

a memory region to which that variable has been
stored.

Table 4.4: De-optimizing rewrite rules proven in Appendix A.

4.5 Guaranteed optimization and optimality results

Appendix A (p. 147) gives the proofs for the rewrite lemmas. A casual description of these lemmas
is given in Table 4.4. In this section we apply these lemmas to obtain the guaranteed optimization
theorem, and from there an optimality result.

4.5.1 Guaranteed optimization theorem

Let O be the optimizer defined by carrying out the analysis defined in Section 4.2, solving to a least
fixpoint, and performing the transformation T J·K given by the Z=⇒ rules of Section 4.3. We use for
→ the de-optimizing rewrite relation generated by the rules given in lemmas of Section A. As usual
we take ∗→ to be the reflexive, transitive closure of →.

Theorem 4.2 (Guaranteed Optimization). If p1
∗→ p2, then Op1 = Op2.

Proof. By induction over rewrites. For a sequence of n rewrites p0 → p2 → · · · → pn, we have from
the lemmas of Section A that S0 � S1 � · · · � Sn, and therefore T Jp0K = T Jp1K = · · · = T JpnK. �

4.5.2 Optimality

The following theorem follows from Lemma 3.9 (p. 91).

Theorem 4.3 (Minimal programs). Let J(p) be the sum of the number of vertices in the control-
flow graph of a function, plus the number of primitive operations excluding literals. Then O mini-
mizes J over the equivalence class of p in ∗↔.

Proof. Each transformation rule of Section 4.3 causes a decrease in J : they all either remove vertices
or non-literal primitive operations. Let [p] denote the equivalence class of p under ∗↔. Then by
Lemma 3.9 (p. 91),

J(Op) ≤ min
p′∈[p]

J(p′)
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5
Optimizers as Theorem Provers

What’s this chapter about?

In this chapter we describe some promising research directions related to ‘optimizers as theorem
provers,’ that is, using the optimizer to check safety properties at compile-time. Our biggest result
in this area was the implementation [233] of a realistic subset of the C++ type system in this
manner. This gave strong evidence that the capabilities of C++ templates can be subsumed by
guaranteed optimization. We follow up on the ideas of Chapters 2,3 that the optimizer can act as a
decision procedure, and see how this capability might be exploited. At this point we have only a few
toy examples working, so much of this chapter is speculative and points to interesting possibilities
for future work.

What’s new here?

Our basic tack in this chapter is to embed proof systems and proofs in the intermediate language,
and use guaranteed optimization to drive checking and construction of proofs. This is similar in
spirit to the Curry-Howard isomorphism (e.g. [213]), although we embed proofs in values rather
than types; and to proof-carrying code [162], although our approach is to intermingle proofs with
the source code rather than having them separate.

How is this chapter organized?

In Section 5.1 we describe how guaranteed optimization can be used to realize the goal of lan-
guages with extensible safety checking. In particular we describe how the ‘de-optimizing rewrites’
of Chapters 3-4 can be viewed as axioms for which the compiler acts as an automated decision
procedure. The introduction of a check(·) primitive (Section 5.1.1) gives the ability to verify that
simple program properties hold, or signal a failure if they do not. This opens up the possibility of
using the compiler as a fully automated theorem prover (Section 5.2); as an example we show how
the compiler can verify correct use of a mutex without any runtime overhead (Section 5.2.1). More

129
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ambitiously, one can use the compiler to realize ‘embedded type systems’ in which type analysis
is embedded in the intermediate language, and the optimizer is used to drive type inference (Sec-
tion 5.2.2). Another interesting direction worth exploring is using the compiler as a semi-automated
theorem prover (Section 5.3), where the optimizer can automatically prove certain properties, and
the users can supply supplemental proofs when automatic checking fails. This would provide a more
flexible relationship between the set of programs accepted by the compiler, safety, and performance.

5.1 Introduction

In Chapter 1 we argued that compilers ought to support languages with extensible safety checking,
and that this would let active libraries enforce domain-specific safety properties. Section 1.8.6
(p. 35) showed that, in principle, the problem of providing ‘safety-universal’ languages reduces
to providing a ‘stage-universal’ language with a suitable method for signalling unsafe programs at
compile-time. In this chapter we explore this approach and give some examples of the possibilities.

The basic idea is simple. If the optimizer is sound, then it can be used to prove theorems about
programs. For example, if the optimizer replaces a term “1 + 0” with the term “1”, then this may
be taken as a proof of 1 + 0 = 1. Obviously we’d like to prove more interesting properties than
this. The guaranteed optimization technique introduced in Chapters 3-4 provides a method to build
compilers that automatically and reliably decide many such properties. The deoptimizing rewrites
→ may be viewed as an axiomatization of program equivalence for which the compiler is a decision
procedure. The essence of the guaranteed optimization proof is that ∗↔ is a subset of ker(O), that
is, any two programs convertible via→ are optimized to the same program. For convenient notation
we can write simply:

∗↔ ⊆ ker(O)

Soundness of the optimizer is an orthogonal issue not addressed in this thesis. If, however, the
optimizer is sound, then we can expand this formula to:

∗↔ ⊆ ker(O) ⊆ ∼

where ∼ is an appropriate behavioural equivalence on programs. This provides a ‘sandwich’ for the
optimizer: it decides a program equivalence ker(O) at least as big as the relation ∗↔, and at most
as big as ∼. By increasing the number of deoptimizing rewrite rules that generate the relation ∗↔,
we increase the number of theorems the optimizer can prove about programs. Practical limits on
compile-time and computability prevent us from making ∗↔ too big. The optimizer, then, can play
a role similar to simplifiers in theorem provers — proving simple theorems automatically.

For more difficult proofs, we can embed proof calculi in the language, and use the check(·)
primitive to verify that deduction steps are correct. If this proof calculi can be embedded in the
kernel of the compiler, then the optimizer is guaranteed to “erase” the proof from the compiled
program. One can use syntactic translation (e.g. macros) to automatically mark up languages with
appropriate code to construct proofs of program properties, and even invoke proof search procedures
that lie in the kernel and are therefore guaranteed to be evaluated and erased at compile-time. This
is the approach taken for the C++ type system prototype ([233], Section 5.2.2).

In Chapter 2 we argued that superanalysis is superior because it lets compilers decide combina-
tions of coinductively-defined relations, using simultaneous coinduction. This opens the possibility
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that with appropriately defined analyses, compilers can act as complete decision procedures for a
(useful) partial axiomatization of programs. That is, although it is quite impossible for compilers
to decide arbitrary properties of programs, we may be able to select a weaker set of axioms for a
language, and show that the compiler completely decides any formula provable in that restricted
theory. Of course, any sound compiler does this in some theoretical sense: if the compiler is sound,
then it decides the approximate program equivalence given by its kernel; and this equivalence must
have a finite axiomatization (assuming the compiler is effective). Our interest is in giving a set of
axioms useful for proving program properties, and constructing compiler that decides those axioms.
Guaranteed optimization is a first step toward that goal: the “de-optimizing rewrites” are precisely
such axioms, and the rewrites we chose in Chapter 4 mimic axioms one might design for a theorem
prover. For example, the rewrites RecordIntro, RecordWrite, and RecordRead give useful axioms
for reasoning about heap operations.

5.1.1 The check(·) primitive

To exploit guaranteed optimization for safety checking, we introduce a new primitive check(·) to
the language of Chapter 4 that behaves like a static assert: If the optimizer is able to prove that
its argument is always nonzero, then the check(·) operation is erased from the program. Otherwise,
compilation fails and a diagnostic message is issued. This realizes the requirement of Section 1.8.6
that programs be capable of announcing their ‘unsafeness’ at compile-time.

The meaning of this primitive is simple. Consider this code fragment from some language (say,
Java):

void foo(int x, int y)
{

check(1+1 == 2); // Succeeds
check(1+1 == 3); // Fails : provably false
check(x+y == 1); // Fails : not enough known about x and y
}

Figure 5.1 shows the corresponding HIL code realizing this fragment, and compiler output using
the prototype described in Chapter 4.

The current prototype offers very primitive error reporting; obviously for realistic problems one
would like to construct customized diagnostic messages. The ability to construct such messages
at compile time is, fortuituously, provided by guaranteed optimization. In a realistic system, one
would provide primitives such as check(c, · · · ) where · · · would provide useful information (e.g.,
diagnostic messages) should the condition c fail.

5.2 Fully automated theorem proving

In this section we explore a few possibilities in using the optimizer as a fully automated theorem
prover. This allows two styles of checking:

• checking of simple safety properties that the compiler is capable of proving on its own; and

• checking of properties by implementing a custom theorem prover in the kernel, so that guar-
anteed optimization drives the proof system. As an example we overview an implementation
of a type system for a subset of C++ using this approach.
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function void foo(int32 x, int32 y)
{

check(int32eq(int32add (1,1),2));
check(int32eq(int32add (1,1),3));
check(int32eq(int32add(x,y ),1));
}

check(int32eq(int32add(1,1),3));
^^^^^^^^^^^^^^^^^^^^^^^^

exam1.hil:4 Check failed

check(int32eq(int32add(x,y),1));
^^^^^^^^^^^^^^^^^^^^^^^^

exam1.hil:5 Check failed

Figure 5.1: HIL example and output from the compiler

void mutex init(mutex t ∗);
void mutex lock(mutex t ∗);
void mutex unlock(mutex t ∗);

Figure 5.2: Mutual exclusion API modelled after the POSIX threads (Pthreads) library.

5.2.1 A mutex example

Consider the mutex API of Figure 5.2. A common example problem for safety checking is to verify
that programs handle locks correctly (cf. [70, 77]). Figure 5.3 shows a model of correct operation
of the API: alternating calls to mutex lock() and mutex unlock().

In [70], such code is checked by an external tool; in [24, 77] by means of a type-based analysis.
This is an obvious case of a domain-specific safety check that we’d like to be able to express in the
language. Using the prototype compiler of Chapter 4 with the addition of the check(·) primitive, one
can check these properties automatically at compile-time for some simple situations. For example,
suppose one wrote a C++ front-end for the compiler of Chapter 4. Figure 5.4 shows a class Lock
that acts as a proxy to an underlying mutex: it maintains the flag is locked as per the interface
model of Figure 5.3, and invokes check (..) to assert that the API is used correctly.

A valid use of a Lock object is as follows:

Lock∗ my lock = new Lock();
my lock−>lock();
do stuff ();
my lock−>unlock();

Figure 5.5 shows a manual translation of this code to HIL, and Figure 5.6 the output from the
prototype compiler. The Lock object and its operations lie entirely in the kernel of the compiler and
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 locked 

unlocked

mutex__unlock mutex__lock

Figure 5.3: Model of the mutex API.

class Lock {
mutex t∗ mutex;
bool is locked;

public:
Lock()
{

mutex = new mutex t();
mutex init(mutex);
is locked = 0;

}

˜Lock()
{

check( is locked == 0);
mutex destroy(mutex);

}

void lock()
{

check( is locked == 0);
mutex lock(mutex);
is locked = 1;

}

void unlock()
{

check( is locked == 1);
mutex unlock(mutex);
is locked = 0;

}
};

Figure 5.4: Proxy object in C++ for checking correct use of locks.



134 CHAPTER 5. OPTIMIZERS AS THEOREM PROVERS

extern function void mutex init(ptr x);
extern function void mutex lock(ptr x);
extern function void mutex unlock(ptr x);
extern function void do stuff();

function int32 processData()
{

// Lock∗ my lock = new Lock();
ptr my lock = alloc(8);
ptr mutex = alloc(64);
mutex init(mutex);
ptrstore(my lock,4,mutex);
int32store (my lock,0,0);

// my lock−>lock();
check(int32eq(int32read(my lock ,0),0));
mutex lock(ptrread(my lock,4));
int32store (my lock,0,1);

do stuff ();

// my lock−>unlock();
check(int32eq(int32read(my lock ,0),1));
mutex unlock(ptrread(my lock,4));
int32store (my lock,0,0);

return 0;
}

Figure 5.5: Manual translation of a use of the Lock object (Figure 5.4) to HIL. Shown in comments
are the relevant C++ code being translated.
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/∗ Output generated by lunar.back.cpp.CppBackEnd ∗/
#include <lunar2c.h>

int processData();

/∗ Function processData defined at exam2.hil:6 ∗/
int processData()
{

int t1 l10 c21 = 64;
char ∗mutex = (char ∗) malloc(t1 l10 c21);
mutex init(mutex);
mutex lock(mutex);
do stuff ();
mutex unlock(mutex);
int t1 l27 c10 = 0;
return t1 l27 c10;

}

Figure 5.6: Output of the prototype compiler for Figure 5.5, using the C++ back end.

are erased at compile-time, leaving only bare calls to the API. If, on the other hand, one compiled
code with improper uses of the Lock object, compilation fails (Figure 5.6).

5.2.2 Embedded type systems

A reasonable test of a domain-specific safety checking system is whether it is powerful enough to
subsume the type system. That is, one regards type checking as simply another kind of safety check
to be implemented by a “type system library.” We call this approach embedded type systems; they
are attractive because they open a natural route to user-extensible type systems, and hence domain-
specific type systems. This was demonstrated for a realistic subset of C++, using an early version of
the prototype compiler that used a form of partial evaluation, rather than guaranteed optimization,
but the approaches were similar enough that the results are relevant. In this section we summarize
the essential ideas from this work; the interested reader is referred to [233] for complete details.

In this approach, type analysis is removed from the compiler and replaced with a type system
library which is treated as source code by the compiler (Figure 5.8). Type computations are embed-
ded in the intermediate language of the compiler, and the optimizer used to drive type analysis and
template instantiation. By making simple changes to the behavior of the partial evaluator, a wide
range of compilation models was achieved, each with a distinct tradeoff of compile time, code size,
and code speed. These models range from pure dynamic typing – ideal for scripting C++ – to the
usual “instantiation = specialization” model of compiling templates. This approach to compiling
C++ uncouples the idea of genericity or polymorphism (functions which operate on arbitrary types)
from the idea of specialization (duplicating functions to improve performance).

The essential idea was to translate from C++ to an intermediate representation by mingling
together value computations and code for type inference (i.e., proofs of types, insofar as a formal
proof system can be read into the C++ language specification). Rather than performing type
analysis, the front end inserts calls to this type system library as it translates the source code. The
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extern function void mutex init(ptr x);
extern function void mutex lock(ptr x);
extern function void mutex unlock(ptr x);
extern function void do stuff();

function int32 processData(int32 flag)
{

// Lock∗ my lock = new my lock();
ptr my lock = alloc(8);
ptr mutex = alloc(64);
mutex init(mutex);
ptrstore(my lock,4,mutex);
int32store (my lock,0,0);

if flag then
{

// my lock−>lock()
check(int32eq(int32read(my lock ,0),0));
mutex lock(ptrread(my lock,4));
int32store (my lock,0,1);
}
else {

0;
}

do stuff ();

// my lock−>unlock();
check(int32eq(int32read(my lock ,0),1));
mutex unlock(ptrread(my lock,4));
int32store (my lock,0,0);

return 0;
}

check(int32eq(int32read(my_lock,0),1));
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

exam3.hil:29 Check failed

Figure 5.7: HIL example and output from the compiler
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Figure 5.8: Comparison of two compiler structures: (a) Typical compiler: source files are parsed
to abstract syntax trees (AST), and type analysis decorates the trees with type information. The
trees are then translated to an intermediate language, optimized, and a back end produces native
code. (b) Structure of the compiler of [233]: the type system is implemented by a library, and is
treated as just another set of source files. A partial evaluator is used to optimize the user program
in the context of the type system, resulting in type analysis being performed at compile time.

library routines can be viewed as type inference rules, or in more complicated situations, as search
procedures for proofs. This was done in such a way that code computating types was evaluated
and erased at compile-time by the optimizer, leaving only the value computations behind for the
run-time stage.

The optimizer was a mix of partial evaluation and standard imperative optimization techniques.
Unlike the optimizer described in this dissertation, this compiler did not offer guarantees of opti-
mization; instead it was just assumed that the compiler would fold certain computations. The style
of code needed for type computations required a strictly functional style (i.e., no loops or mutable
heap operations), so it was reasonable to design the partial evaluator to ‘reliably’ eliminate such
code.

Basics of the translation

The C++ front end implemented a modest subset of C++, just enough to demonstrate and test
the approach: it handled simple functions, classes, and templates. The front end was implemented
by approximately 10,000 lines of Java code.

C++ types were represented by C++ objects; there was a base class type info, and subclasses
for primitive types, pointers, function pointers, class instances, and so forth. This gave as a free
reward reflection of the C++ type system.

Multiple values were used to translate C++ expressions into expressions producing 〈value,type〉
pairs; for example, the C++ expression 5.0 was translated to the pair of values 〈5.0,double〉 where
double was a global variable pointing to the data structure representing the C++ type double.
This is comparable to a type judgement such as 5.0 : double.

Translation of non-template code was straightforward. For every variable x, the front end creates
a variable x$type which points to the appropriate type info object representing x’s type.

Translation of C++ expressions is straightforward, with each node in the abstract syntax tree of-
ten translating directly to a call into the type library. New variables are created to hold intermediate
results. For example, this code:



138 CHAPTER 5. OPTIMIZERS AS THEOREM PROVERS

int x = 5;
float y = 7.0;
int z = x + y;

is translated as:

// Translation of the literal 5

__a8 := 5
__a8$type := int

// Initialize x with 5

[x, x$type] := initializerConversion(__a8,
__a8$type, int)

// Initialize y with 7.0

__a9 := 7.0
__a9$type := double // 7.0 is a double literal

[y, y$type] := initializerConversion(__a9,
__a9$type, float)

// Add x + y, and initialize z with the result

[__a10, __a10$type] := plus(x, x$type, y, y$type)
[z, z$type] := initializerConversion(__a10,

__a10$type, int)

where initializerConversion(value,source-type,dest-type) is a type library routine implement-
ing C++ initializer type conversions, and plus(..) implements the + operator semantics.

In the translated code, int and float are no longer keywords representing builtin types. Instead,
they are global variables declared by the type library that point to data structures representing the
C++ types int and float.

This translation resembles compiling a dynamically typed language. One of the options of
Lunar’s C++ front end is to do just this – compile C++ to dynamically typed code – which turns
out to have some interesting advantages, discussed later.

After optimization, the above code became:

// Promote 5 to floating point

x2__195 := _itof(5)
// Add 5 and 7.0 in floating point

__a6 := _f+(x2__195, 7.0)
// Convert back to integer

z := _ftoi(__a6)

The calls to the type library routines are partially evaluated and inlined, and all the x$type
variables disappear because they are no longer needed. The primitives itof, f+, and ftoi turn into
single machine operations to convert integer to float, add two floats, and convert a float to integer,
respectively.
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Translation of functions and function calls

Each C++ function was translated into two functions:

• a bind function, which checks argument types and deduces template parameters for the call
site; and

• an implementation function, which is a translation of the function body.

The bind function takes all the arguments and their types, whereas the implementation function
takes only the arguments. As an example, consider this cube() function:

float cube(float x)
{
return x*x*x;

}

The C++ front end produces a bind function cube$bind(x,x$type):

function cube$bind(x, x$type)
blockscope [__a1, __a1$type]
// Check that x’s type is float

assertIsType(x$type, float)
// Invoke implementation function

__a1 := cube(x)
// Return value/type pair

return [__a1, float]

and an implementation function cube(x):

function cube(x)
blockscope [return$type, x$type, __a2, __a2$type,

__a3, __a3$type, __a4, __a4$type]
// Bindings for the function body

return$type := float
x$type := float
// Translation of the function body

[__a2, __a2$type] := star(x, x$type, x, x$type)
[__a3, __a3$type] := star(__a2, __a2$type, x, x$type)
__a4 := assignmentConversion(__a3, __a3$type, return$type)
return __a4

The essential idea is that the bind function is inlined at the call site, and serves to perform
necessary type-checking there.

A similar elaboration served to compile C++ template functions: a template function was
translated into a bind function that deduced template parameters and called the implementation
function, passing the inferred types as extra parameters (cf. type-passing [98]).

Lessons from the C++ prototype

This implementation validated the general idea of realizing type systems this way, and (more gen-
erally) of having automatic theorem provers embedded in the kernel of the compiler. The notion of
the bind function as a cheap way to check requirements of a function being called at the call site
seems generally useful.
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5.3 Semi-automated theorem proving

Another direction worth exploring is using the compiler as a semi-automated theorem prover. This
would extend the reach of languages from checking safety properties automatically to doing low-
grade verification, or allowing supplemental proofs when automatic checks fail.

5.3.1 Proof embeddings

The essential idea is to embed a proof system ` in the language by encoding formulas as objects, and
rules as constructors, such that a formula object is constructible only if the corresponding `-proof
is. We appropriate the coding notation p·q for this: pϕq can be viewed as an object whose existence
asserts that ` ϕ. We rely on a reversed version of the BHK interpretation (e.g., [213]), as can be
seen from the following requirements on the relation between codes and proofs:

• If pϕq has been constructed, then there is a proof ` ϕ;

• If pϕ1 ∧ ϕ2q has been constructed then ` ϕ1 and ` ϕ2;

• If pϕ1 ∨ ϕ2q has been constructed then either ` ϕ1 or ` ϕ2;

• If pϕ1 → ϕ2q has been constructed and pϕ1q has been constructed, then ` ϕ2.

The challenges in realizing such a system are:

• The language or compiler must institute controls that enforce the reverse-BHK interpretation.
There are standard techniques for doing this; for example, object-oriented languages routinely
control constructibility of objects by making constructors ‘private.’ Another possibility is to
make the objects p·q exist only in the compiler, and treat the appearance of p·q in the code
as merely representing tokens for the proof objects in the compiler. We have in mind that
the compiler would represent the p·q objects as elements in e.g. a Lindenbaum-Tarski lattice,
alongside the usual program analysis lattices.

• If the coded formulas make assertions about state, then there must be a method of guaran-
teeing that the state may not be changed without changing the coded formula. Alternately,
formulas must refer to snapshots of state, so that if the state changes the formula no longer
pertains.

There are two medium-term goals for such an approach. The first is to realize some kind of
statically enforced version of design-by-contract [151]. A more ambitious, farther off goal is to
realize languages in which any program may be compiled with assurance of safety, so long as the
programmer is willing to provide supplemental proofs when automatic checks (for example, of type
safety) are insufficient.

Such proof embeddings would let domain-specific libraries to issue proof obligations that must
be met when automated static checks failed. More generally, such systems would make it possible
to define domain-specific proof systems, which would open the door to doing domain-specific type
analysis and verification.
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Assessment and Related Work

6.1 Critical Assessment

In Section 1.9 (p. 36) we stated the following thesis:

Guaranteed optimization offers a practical path to compilers for stage- and safety-
universal languages suitable for implementing active libraries.

This statement carries a number of implicit claims. In this section we consider these claims and
assess how strong an argument may be made in favour of them.

In Chapters 3-4 we introduced guaranteed optimization, and demonstrated that it scaled to re-
alistic compiler optimizations. Our hidden agenda in the proof of Chapter 4 was to prove properties
that would allow us to meet the requirements of Theorem 1.1 (p. 34), i.e., a “Turing-complete ker-
nel”, in a practical way. The proof of Chapter 4 falls just shy of this mark; in particular “mandatory
inlining” i.e., inlining of specially marked functions, is needed.

Claim 6.1. Mandatory inlining can be incorporated into the framework described in Chapter 4.

This lies in the category of future work. Previous versions of the compiler described in Chapter 4
did implement mandatory inlining, but it has not (as of this writing) been incorporated into the
version described in Chapter 4. Mandatory inlining is a routine optimization and it is reasonable
to assume it can be incorporated into the optimizer of Chapter 4.

We will refer to the intermediate language and compiler of Chapter 4, with the addition of
mandatory inlining, as IL+.

Claim 6.2. IL+ meets the conditions of Theorem 1.1 (p. 34), i.e., has a “Turing-complete kernel.”

The de-optimizing rewrites chosen in the large proof of Chapter 4 were chosen with this in mind: the
rules ConstFold, IfFalse, and IfTrue provide the basic capabilities needed for testing and branching;
RecordIntro, RecordRead, and RecordWrite provide the ability to manipulate data structures (e.g.,
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lists) at compile-time. With the addition of inlining, one has the possibility of recursion and
constructing (possibly infinite) data structures at compile-time, from which Turing-completeness is
immediate from any number of constructions of universal machines.

Claim 6.3. Guaranteed optimization can subsume staging.

Theorem 1.1 (p. 34) states this is a straightforward consequence of Claim 6.2. However, this is
merely a theoretical condition and says nothing of practicality. We believe the results of Chapter 4
support a stronger claim: that there is a “structure-preserving” embedding of a realistic staged lan-
guage, such as MetaML, to IL+. The rules proven in Chapter 4 have a fairly direct correspondence
to evaluation rules for a staged language, for example the rule ConstFold guarantees the evaluation
of primitive operations, IfFalse guarantees the evaluation of a construct if 0 then . . ., and so forth.

Now we are in a position to discuss specific claims related to the thesis statement. The motivating
examples for “active libraries” are largely from C++ . The following claim is justified by our previous
work in [233], where we showed the essential aspects of the C++ template system could be realized
by an “embedded type system,” and the optimizer (an early prototype of the compiler discussed in
Chapter 4) used to drive type analysis.

Claim 6.4. With suitable syntactic translation from C++ to IL+, the language and compiler of
Chapter 4 can subsume the capabilities of C++ templates, and in particular, the results on imple-
mentability of active libraries in C++ transfer to IL+.

One of the issues we are still grappling with is how to incorporate specialization into the framework
of Chapter 4. Specialization is closely related to inlining, but subtly different. In particular,
integrating specialization with superanalysis raises interesting challenges. The addition of some
form of controllable specialization to IL+ would be essential to realizing the above claim. We
believe it possible, and have prototyped similar techniques in the past — the implementation of
[233] required this, for example.

The criteria of Section 1.7 (p. 24) listed abstraction penalty as an important concern for high-
performance active libraries:

Claim 6.5. Guaranteed optimization can minimize abstraction penalty.

This is true insofar as one can prove “de-optimizing rewrites” capturing abstraction penalty are
undone by the optimizer. The rules we proved in Chapter 4, in particular the ones related to data
structures, show clear promise in this regard. For example, in Section 5.2.1 (p. 132) we gave an
example where a dynamically-allocated proxy object was entirely erased by the optimizer. The rules
RecordIntro, RecordRead, and RecordWrite of Chapter 4 were designed with this purpose in mind.
To advance this claim further we plan to extend the techniques of Chapters 3-4 to interprocedural
analyses.

Claim 6.6. IL+ can support domain-specific optimization (by way of generative optimization) and
component generation.

This follows more-or-less from claims Claim 6.4, since these capabilities are supported by C++ , with
the caveat that we do not yet understand how to integrate specialization.

Claim 6.7. IL+ can support library-specific safety checking.
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We discussed and gave examples of this in Chapter 5. For example, Section 5.2.1 (p. 132) gives a
working example of library-specific safety checking. This work is, however, still in very early stages
and although Theorem 1.2 (p. 36) suggests IL+ can be ‘safety-universal,’ how far this approach
may extend in practice remains an open question.

Claim 6.8. IL+ shows promise for supporting extensible type systems.

This claim lies more in the future work category, but some promise is shown by the results of [233]
and the general approaches discussed in Chapter 5. The proxying example of Section 5.2.1 (p. 132)
demonstrates that libraries can wrap objects with special safety-checking layers, check these safety
properties, and be confident that the ‘wrapping’ is erased by the compiler.

Claim 6.9. IL+ can support a mixture of safety levels within a program.

The techniques described in Chapter 5 give the basic capabilities one needs to support this concept.
A front-end could, for example, elect to do dynamic type checking, static type checking, or no
checking at all, and use the mechanisms of IL+ to support this. We described this in detail for the
C++ type system in [233].

Claim 6.10. IL+ can support semi-automated safety checking.

We outlined some approaches to this in Section 5.3.1 (p. 140). Much work remains to be done in
showing realistic embeddings of proof calculi, and giving practical demonstrations of their usefulness.

6.2 Related work

We have indicated specifically related work throughout this dissertation. Here we would like to
briefly discuss how our approach fits into the larger currents and trends, and draw some distinctions
between the various approaches.

Guaranteed optimization draws inspiration from partial evaluation (e.g., [116]), staged languages
(e.g., [167, 223]), and general partial computation (GPC) [85]. These four approaches are usefully
compared along the following criteria:

• Whether the binding-time analysis (BTA) is automatic or manual. Binding-time analysis in-
dicates what parts of a program are to be evaluated statically or dynamically. In explicitly
staged languages such as MetaML and C++ templates [81, 167, 223] terms are manually
annotated with binding times. This has two benefits: (1) users can control over what com-
putations happen at compile-time, and (2) implementation can be simpler since it does not
require an automated BTA. In partial evaluation and GPC, BTA is usually understood to
be automatic, though there are exceptions. In our approach we do not use binding-times on
terms per se, adopting instead the closely related notion of the ‘kernel’ of the compiler, but
the distinction between manual vs. automatic applies. Manual approaches are suitable for
experts (e.g., library authors) who want explicit control over what happens at compile-time.
Automated approaches are suited for less expert or controlling users, since they can rely on
the tool’s judgement to improve programs automatically without (the sometimes tedious)
need for manual control. Guaranteed optimization can offer a mix of these approaches: many
improvements are performed automatically. For more ‘expert’-style use, annotations in the
form of mandatory inlining or specialization are necessary. This approach might reduce the
‘syntactic noise’ associated with explicitly staged languages such as C++ and MetaML.
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• Whether optimization is assured or heuristic. By assured, we mean the system comes with a
set of rules from which users can deduce what computations will be performed at compile-time.
This is the case for explicitly staged languages, where annotations provide the rules, and for
guaranteed optimization, where the “de-optimizing rewrites” provide the assurances. In such
approaches the onus is on the user to figure out how to use these rules to their advantage. In
a heuristic approach, no such rules are given, and the intent of the system is to automatically
decide which computations are worthwhile to perform at compile-time. Clearly these are two
different philosophies and each address different needs.

• Whether the binding-time division is congruent or non-congruent. We use this as a distinction
between classical partial evaluation viewed as a form of “aggressive constant folding,” and
approaches such as GPC where theorem proving is used to draw inferences about values.
In a congruent division, static computations must depend only on the value of other static
computations, e.g., in a definition x = y + z, x may have static binding only if both y and z
do. In a noncongruent division, this is not necessarily the case; for example we might know
from previous definitions that z = −y, and infer that x = 0 without knowing the values of
y and z. To date, languages with explicit staging constructs (such as MetaML) always have
congruent division.

Partial evaluation is such a vast field that it would be simplistic to characterize partial evaluation by
“automatic BTA, heuristic optimization, and congruent division”; this does, however, captures the
classical notion of PE. With this simplification, the relationship between guaranteed optimization
and other technologies providing staging-like abilities is summarized by this table:

Automatic Guarantees Noncongruent
BTA division

Staging #  #
(Classical) Partial Evaluation  # #
General Partial Computation  #  
Guaranteed Optimization G#   

Staged languages (e.g., [167, 223]) are explicitly annotated with binding times, and have the
advantage of guaranteeing evaluation of static computations at compile-time. The binding-time
annotation is generally a congruent division, which effectively prevents theorem-proving about
dynamic values.

Partial evaluation (e.g., [114]) automatically evaluates parts of a program at compile-time; in this
respect it is closely related to guaranteed optimization. Partial evaluation is not usually understood
to include proven guarantees of what will be statically evaluated; indeed, a lot of interesting research
looks at effective heuristics for deciding what to evaluate. General partial computation [85] is an
intriguing extension to partial evaluation in which theorem proving is used to reason about dynamic
values. A related idea is Turchin’s supercompilation [202, 212].

Guaranteed optimization is largely annotation-free, although one must introduce some small
annotations to control unfolding in the compile-time stage. It provides proven guarantees of what
optimizations it will perform, and has the ability to prove theorems about run-time values.

Waddell [245] (see also [244]) describes a macro system and optimizer for Scheme that overlaps
this work in several ways. Among the motivations listed for his system, Waddell mentions embed-
dings of other languages and minimizing the abstraction penalty introduced by macros. To this
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end he develops an efficient linear-time optimizer, and suggests that users can rely on this opti-
mizer to eliminate certain kinds of overhead commonly associated with macros. He also mentions
the possibility of using macros to implement domain-specific optimizations as part of the language
embedding. There are, however, significant differences: our interest lies in providing compilers that
provide ironclad guarantees of what optimizations are performed, and we use proofs as a design
technique to achieve these guarantees. In general we sacrifice compile-time speed for more aggres-
sive (and thorough) optimizations. For example, our store analysis is flow-variant and handles
destructive updates of store locations; Waddell’s system handles only immutable, fully static struc-
tures (e.g., lists whose every element is a constant), which can be analyzed rapidly. Our system is
optimistic, whereas Waddell’s is pessimistic.
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A
Guaranteed Optimization Proof

This appendix contains the guaranteed optimization proof for the prototype compiler described in
Chapter 4. Section 4.4.1 (p. 121) gives a short guide to reading these proofs.

A.0.1 Staging lemmas

Lemma A.1 (ConstFold). Suppose that at some program point (1) the variables x 1 and x 2 are
bound to constants, i.e., there are definitions in scope of the form x 1 = L1 and x 2 = L2, where
L1, L2 are literals; and (2) there is a pure primitive P such that P (L1, L2) = L3. Then for the
rewrite of Figure A.1, S � S′ and the graphs rewrite identically using ∗Z=⇒.

Proof. Assuming the variable x1 is defined by the context. Assuming the variable x2 is defined by
the context. The analysis equations are:

S
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Figure A.1: De-optimizing graph rewrite for Lemma A.1, decorated with analysis variables.

S′



x = α(x, ψ57b, σ
+
57b, σ

−
57b, ρ

+
57b, ρ

−
56b)

ψ57b = ψA1

ρ+
56a = ρ+

A1

ρ+
57b = ρ+

56a[x 3← c57c × IntroName(>, x 3)]
ρ−56b = ρ−57b[x 3← ⊥][var(n57a)

t← u57b][var(n57b)
t← u57b]

ρ−57b = ρ−B0

σ+
57b = σ+

A1

σ−57b = σ−B0

c57a = fst(ρ+
56a(x 1))

c57b = fst(ρ+
56a(x 2))

c57c = P̂(c57a, c57b)
n57a = snd(ρ+

56a(x 1))
n57b = snd(ρ+

56a(x 2))
u57b = IfNotRepl(c57c,>, u57c)
u57c = ρ−57b(x 3)
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Assumptions: The variables ρ+
A1, ρ

−
B0, σ

+
A1, σ

−
B0 are assumed to contain no non-⊥ bindings for

redex-local variables and store handles.
Compatibility. The proof obligations for S � S′ are:

ψ51b
o∼ ψ57b

σ+
51b

o∼ σ+
57b

σ−51b
o∼ σ−57b

ρ+
51b

o∼ ρ+
57b

ρ−50b
o∼ ρ−56b

ψ51b
o∼ ψ57b is immediate.

Consider ρ+
51b = ρ+

A1[x 3← L3 × IntroName(>, x 3)] and ρ+
57b. Simplifying,

ρ+
57b ∼ ρ

+
A1[x 3← P̂(fst(ρ+

A1(x 1)), fst(ρ+
A1(x 2)))× IntroName(>, x 3)]

∼ ρ+
A1[x 3← P̂(fst(L1 × n1), fst(ρ+

A1(x 2)))× IntroName(>, x 3)] (by Assumption
1)

∼ ρ+
A1[x 3← P̂(L1, fst(ρ+

A1(x 2)))× IntroName(>, x 3)] (by Ax.Fst)

∼ ρ+
A1[x 3← P̂(L1, fst(L2 × n2))× IntroName(>, x 3)] (by Assumption 1)

∼ ρ+
A1[x 3← P̂(L1, L2)× IntroName(>, x 3)] (by Ax.Fst)

∼ ρ+
A1[x 3← L3 × IntroName(>, x 3)] (by Assumption 2)

∼ ρ+
A1[x 3← L3 × x 3] (by Solve)

Therefore ρ+
51b

o∼ ρ+
57b .

Consider ρ−50b = ρ−B0[x 3← ⊥] and ρ−56b. Simplifying,

ρ−56b ∼ ρ
−
B0[x 3← ⊥][var(snd(L1 × n1)) t←

IfNotRepl(P̂(L1, L2),>, ρ−B0(x 3))][var(snd(L2 × n2)) t←
IfNotRepl(P̂(L1, L2),>, ρ−B0(x 3))]

∼ ρ−B0[x 3← ⊥][var(n1) t← IfNotRepl(P̂(L1, L2),>, ρ−B0(x 3))][var(snd(L2 ×
n2)) t← IfNotRepl(P̂(L1, L2),>, ρ−B0(x 3))] (by Ax.Snd)

∼ ρ−B0[x 3← ⊥][var(n1) t← IfNotRepl(L3,>, ρ−B0(x 3))][var(snd(L2 × n2)) t←
IfNotRepl(L3,>, ρ−B0(x 3))] (by Assumption 2)

∼ ρ−B0[x 3← ⊥][var(n1) t← ⊥][var(snd(L2 × n2)) t← ⊥] (by Eqn. (4.10))

∼ ρ−B0[x 3← ⊥][var(snd(L2 × n2)) t← ⊥] (by Ax.UseJBot)

∼ ρ−B0[x 3← ⊥][var(n2) t← ⊥] (by Ax.Snd)

∼ ρ−B0[x 3← ⊥] (by Ax.UseJBot)

Therefore ρ−50b
o∼ ρ−56b .

σ+
51b

o∼ σ+
57b is immediate. σ−51b

o∼ σ−57b is immediate. Therefore S � S′.
Transformation. Simplifying,

u57c ∼ ρ−B0(x 3)
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Figure A.2: Graphs of Figure A.1, after rewriting.

These lfp values were used:

c?57c = L3

Figures A.1(a,b) transform identically, by rule X.ConstFold.See Figure A.2. �

Lemma A.2 (VarIntro). Suppose x1 is an unbound variable name, and n1 is a constant. Then
for the rewrite of Figure A.3, S � S′ and the graphs rewrite identically using ∗Z=⇒.

Proof. The analysis equations are:

S



x = α(x, ψ42a, ρ
+
42a, ρ

−
42b, σ

+
42a, σ

−
42b)

ψ42a = ψA1

ρ+
42a = ρ+

A1

ρ−42b = ρ−B0

σ+
42a = σ+

A1

σ−42b = σ−B0
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Figure A.3: De-optimizing graph rewrite for Lemma A.2, decorated with analysis variables.

S′



x = α(x, ψ48b, ρ
+
48b, ρ

−
47b, σ

+
48b, σ

−
48b)

ψ48b = ψA1

ρ+
47a = ρ+

A1

ρ+
48b = ρ+

47a[x 1← c48a × IntroName(>, x 1)]
ρ−47b = ρ−48b[x 1← ⊥]
ρ−48b = ρ−B0

σ+
48b = σ+

A1

σ−48b = σ−B0

c48a = n1

u48a = ρ−48b(x 1)

Assumptions: The variables ρ+
A1, ρ

−
B0, σ

+
A1, σ

−
B0 are assumed to contain no non-⊥ bindings for redex-

local variables and store handles.
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Compatibility. The proof obligations for S � S′ are:

ψ42a
o∼ ψ48b

ρ+
42a

o∼ ρ+
48b

ρ−42b
o∼ ρ−47b

σ+
42a

o∼ σ+
48b

σ−42b
o∼ σ−48b

ψ42a
o∼ ψ48b is immediate.

Consider ρ+
42a = ρ+

A1 and ρ+
48b. Simplifying,

ρ+
48b ∼ ρ

+
A1[x 1← n1 × IntroName(>, x 1)]

∼ ρ+
A1[x 1← n1 × x 1] (by Solve)

From previous assumptions, x1 is unobserved in the context. Therefore ρ+
42a

o∼ ρ+
48b .

Consider ρ−42b = ρ−B0 and ρ−47b. Simplifying,

ρ−47b ∼ ρ
−
B0[x 1← ⊥]

From previous assumptions, x1 is unobserved in the context. Therefore ρ−42b
o∼ ρ−47b .

σ+
42a

o∼ σ+
48b is immediate. σ−42b

o∼ σ−48b is immediate. Therefore S � S′.
Transformation. Simplifying,

u48a ∼ ρ−B0(x 1)
∼ ⊥ (by RedexLocal)

These lfp values were used:

c?48a = n1

u?48a = ⊥

Figures A.3(a,b) transform identically, by rule X.DeadDef.See Figure A.4. �

The following lemma proves that rewrites of the form ‘B −→ if 1 then B else C’ are undone.

Lemma A.3 (IfTrue). For the de-optimizing rewrite of Figure A.5, with t 1 being a newly intro-
duced variable, S � S′ and the graphs rewrite identically using ∗Z=⇒.
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Figure A.4: Graphs of Figure A.3, after rewriting.

Proof. The analysis equations are:

S



x = α(x, ψ46a, ρ
+
46a, ρ

−
46b, σ

+
46a, σ

−
46b)

ψ46a = ψA1

ρ+
46a = ρ+

A1

ρ−46b = ρ−B0

σ+
46a = σ+

A1

σ−46b = σ−B0
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S′



x = α(x, ψ54d, ρ
+
53b, ρ

−
52b, σ

+
53b, σ

−
53b)

ψ53b = ψA1

ψ54d = ψ53b u IfTrue(c54a)
ψ54e = ψ53b u IfFalse(c54a)
ρ+
52a = ρ+

A1

ρ+
53b = ρ+

52a[t 1← c53a × IntroName(>, t 1)]
ρ−52b = ρ−53b[t 1← ⊥]
ρ−53b =

(
ρ−54a

)
[var(n54a)

t← u54a]
ρ−54a = [ψ54d]ρ−54b t [ψ54e]ρ−54c
ρ−54b = ρ−B0

ρ−54c = ρ−C0

σ+
53b = σ+

A1

σ−53b = [ψ54d]σ−54b t [ψ54e]σ−54c
σ−54b = σ−B0

σ−54c = σ−C0

c53a = ˆ1int32()
c54a = fst(ρ+

53b(t 1))
n54a = snd(ρ+

53b(t 1))
u53a = ρ−53b(t 1)
u54a = IfUse(ψ54d, ψ54e)

Assumptions: The variables ρ+
A1, ρ

−
B0, ρ

−
C0, σ

+
A1, σ

−
B0, σ

−
C0 are assumed to contain no non-⊥ bindings

for redex-local variables and store handles.
Compatibility. The proof obligations for S � S′ are:

ψ46a
o∼ ψ54d

ρ+
46a

o∼ ρ+
53b

ρ−46b
o∼ ρ−52b

σ+
46a

o∼ σ+
53b

σ−46b
o∼ σ−53b

Consider ψ46a = ψA1 and ψ54d. Simplifying,

ψ54d ∼ ψA1 u IfTrue(fst(ρ+
53b(t 1)))

∼ ψA1 u IfTrue(fst(ρ+
53b(t 1))) (by Solve)

∼ ψA1 u IfTrue(fst((int32(1), t 1))) (by Ax.EnvLookup)

∼ ψA1 u IfTrue(int32(1)) (by Solve)

∼ ψA1 u IfTrue(int32(1)) (by Solve)

∼ ψA1 u > (by Solve)

∼ ψA1 (by Ax.MeetTopRight)

Therefore ψ46a
o∼ ψ54d .
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Figure A.5: De-optimizing graph rewrite for Lemma A.3, decorated with analysis variables.
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Consider ρ+
46a = ρ+

A1 and ρ+
53b. Simplifying,

ρ+
53b ∼ ρ

+
A1[t 1← (int32(1), t 1)]

From previous assumptions, t1 is unobserved in the context. Therefore ρ+
46a

o∼ ρ+
53b .

Consider ρ−46b = ρ−B0 and ρ−52b. Simplifying,

ρ−52b ∼
(
[ψ54d]ρ−B0 t [ψA1 u IfFalse(fst((int32(1), t 1)))]ρ−C0

)
[var(snd((int32(1), t 1))) t←

IfUse(ψ54d, ψA1 u IfFalse(fst((int32(1), t 1))))][t 1← ⊥]

∼
(
[ψA1]ρ−B0 t [ψA1 u IfFalse(fst((int32(1), t 1)))]ρ−C0

)
[var(snd((int32(1), t 1))) t←

IfUse(ψA1, ψA1 u IfFalse(fst((int32(1), t 1))))][t 1← ⊥] (by Ax.MeetTopRight)

∼
(
ρ−B0 t [ψA1 u IfFalse(fst((int32(1), t 1)))]ρ−C0

)
[var(snd((int32(1), t 1))) t←

IfUse(ψA1, ψA1 u IfFalse(fst((int32(1), t 1))))][t 1← ⊥] (by PredElim)

∼
(
ρ−B0 t [ψA1 u ⊥]ρ−C0

)
[var(snd((int32(1), t 1))) t← IfUse(ψA1, ψA1 u⊥)][t 1←

⊥] (by Solve)

∼
(
ρ−B0 t [⊥]ρ−C0

)
[var(snd((int32(1), t 1))) t← IfUse(ψA1,⊥)][t 1← ⊥] (by

Ax.MeetBotRight)

∼
(
ρ−B0 t ⊥

)
[var(snd((int32(1), t 1))) t← IfUse(ψA1,⊥)][t 1← ⊥] (by

Ax.BotPred)

∼ ρ−B0[var(snd((int32(1), t 1))) t← IfUse(ψA1,⊥)][t 1← ⊥] (by Ax.JoinBotRight)

∼ ρ−B0[var(t 1) t← IfUse(ψA1,⊥)][t 1← ⊥] (by Solve)

∼ ρ−B0[var(t 1) t← ⊥][t 1← ⊥] (by Ax.IfUse)

∼ ρ−B0[t 1← ⊥] (by Ax.UseJBot)

From previous assumptions, t1 is unobserved in the context. Therefore ρ−46b
o∼ ρ−52b .

σ+
46a

o∼ σ+
53b is immediate.

Consider σ−46b = σ−B0 and σ−53b. Simplifying,

σ−53b ∼ [ψ54d]σ−B0 t [ψA1 u ⊥]σ−C0

∼ [ψA1]σ−B0 t [ψA1 u ⊥]σ−C0 (by Ax.MeetTopRight)

∼ σ−B0 t [ψA1 u ⊥]σ−C0 (by PredElim)

∼ σ−B0 t [⊥]σ−C0 (by Ax.MeetBotRight)

∼ σ−B0 t ⊥ (by Ax.BotPred)

∼ σ−B0 (by Ax.JoinBotRight)

Therefore σ−46b
o∼ σ−53b .

Therefore S � S′.
Transformation. Simplifying,

c53a ∼ ˆ1int32()
∼ int32(1) (by Solve)
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Figure A.6: Graphs of Figure A.5, after rewriting.

Simplifying,

u53a ∼ ρ−B0[var(t 1) t← ⊥](t 1)
∼ ρ−B0(t 1) (by Ax.UseJBot)

∼ ⊥ (by RedexLocal)

These lfp values were used:

ψ?54e = ⊥
c?53a = int32(1)
u?53a = ⊥

Figures A.5(a,b) transform identically, by rules X.DeadDef, X.IfAlternElim.See Figure A.6. �

The following lemma proves that rewrites of the form ‘B −→ if 0 then C else B’ are undone.

Lemma A.4 (IfFalse). For the de-optimizing rewrite of Figure A.7, with t being a newly introduced
variable, S � S′ and the graphs rewrite identically using ∗Z=⇒.

Proof. The analysis equations are:

S



x = α(x, ψ46a, ρ
+
46a, ρ

−
46b, σ

+
46a, σ

−
46b)

ψ46a = ψA1

ρ+
46a = ρ+

A1

ρ−46b = ρ−B0

σ+
46a = σ+

A1

σ−46b = σ−B0
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S′



x = α(x, ψ54e, ρ
+
54e, ρ

−
52b, σ

+
54e, σ

−
53b)

ψ53b = ψA1

ψ54d = ψ53b u IfTrue(c54a)
ψ54e = ψ53b u IfFalse(c54a)
ρ+
52a = ρ+

A1

ρ+
54e = ρ+

52a[t← c53a × IntroName(>, t)]
ρ−52b = ρ−53b[t← ⊥]
ρ−53b =

(
ρ−54a

)
[var(n54a)

t← u54a]
ρ−54a = [ψ54d]ρ−54b t [ψ54e]ρ−54c
ρ−54b = ρ−C0

ρ−54c = ρ−B0

σ+
54e = σ+

A1

σ−53b = [ψ54d]σ−54b t [ψ54e]σ−54c
σ−54b = σ−C0

σ−54c = σ−B0

c53a = ˆ0int32()
c54a = fst(ρ+

54e(t))
n54a = snd(ρ+

54e(t))
u53a = ρ−53b(t)
u54a = IfUse(ψ54d, ψ54e)

Assumptions: The variables ρ+
A1, ρ

−
B0, ρ

−
C0, σ

+
A1, σ

−
B0, σ

−
C0 are assumed to contain no non-⊥ bindings

for redex-local variables and store handles.
Compatibility. The proof obligations for S � S′ are:

ψ46a
o∼ ψ54e

ρ+
46a

o∼ ρ+
54e

ρ−46b
o∼ ρ−52b

σ+
46a

o∼ σ+
54e

σ−46b
o∼ σ−53b

Consider ψ46a = ψA1 and ψ54e. Simplifying,

ψ54e ∼ ψA1 u IfFalse(fst(ρ+
54e(t)))

∼ ψA1 u IfFalse(fst(ρ+
54e(t))) (by Solve)

∼ ψA1 u IfFalse(fst((int32(0), t))) (by Ax.EnvLookup)

∼ ψA1 u IfFalse(int32(0)) (by Solve)

∼ ψA1 u IfFalse(int32(0)) (by Solve)

∼ ψA1 u > (by Solve)

∼ ψA1 (by Ax.MeetTopRight)

Therefore ψ46a
o∼ ψ54e .



159

�
�

�
Z

Z
Z�

�
�
Z

Z
Z

�
�

�
Z

Z
Z�

�
�
Z

Z
Z
��DD��DD

A

B

ρ−46b,σ
−
46b

ψ46a

ρ+
46a,σ

+
46a

(a) Before

#
#
c

c#
#
c

c

#
#
c

c#
#
c

c #
#
c

c#
#
c

c

A

t = u53ac53an=>0int32

ρ−52b
,σ−53b

ψ53b

ρ+52a,σ
+
54e

if u54ac54an54at

ρ−53b
,σ−53b

ψ53b

ρ+54e,σ
+
54e

B

ρ−54b
,σ−54b

ψ54d

ρ+54e,σ
+
54e

C

ρ−54c,σ
−
54c

ψ54e

ρ+54e,σ
+
54e

(b) After

Figure A.7: De-optimizing graph rewrite for Lemma A.4, decorated with analysis variables.
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Consider ρ+
46a = ρ+

A1 and ρ+
54e. Simplifying,

ρ+
54e ∼ ρ

+
A1[t← (int32(0), t)]

From previous assumptions, t is unobserved in the context. Therefore ρ+
46a

o∼ ρ+
54e .

Consider ρ−46b = ρ−B0 and ρ−52b. Simplifying,

ρ−52b ∼
(
[ψA1 u IfTrue(fst((int32(0), t)))]ρ−C0 t [ψ54e]ρ−B0

)
[var(snd((int32(0), t))) t←

IfUse(ψA1 u IfTrue(fst((int32(0), t))), ψ54e)][t← ⊥]

∼
(
[ψA1 u ⊥]ρ−C0 t [ψ54e]ρ−B0

)
[var(snd((int32(0), t))) t←

IfUse(ψA1 u ⊥, ψ54e)][t← ⊥] (by Solve)

∼
(
[⊥]ρ−C0 t [ψ54e]ρ−B0

)
[var(snd((int32(0), t))) t← IfUse(⊥, ψ54e)][t← ⊥] (by

Ax.MeetBotRight)

∼
(
⊥ t [ψ54e]ρ−B0

)
[var(snd((int32(0), t))) t← IfUse(⊥, ψ54e)][t← ⊥] (by

Ax.BotPred)

∼
(
⊥ t [ψA1]ρ−B0

)
[var(snd((int32(0), t))) t← IfUse(⊥, ψA1)][t← ⊥] (by

Ax.MeetTopRight)

∼
(
⊥ t ρ−B0

)
[var(snd((int32(0), t))) t← IfUse(⊥, ψA1)][t← ⊥] (by PredElim)

∼ ρ−B0[var(snd((int32(0), t))) t← IfUse(⊥, ψA1)][t← ⊥] (by Ax.JoinBotLeft)

∼ ρ−B0[var(t) t← IfUse(⊥, ψA1)][t← ⊥] (by Solve)

∼ ρ−B0[var(t) t← ⊥u ψA1][t← ⊥] (by Ax.IfUse)

∼ ρ−B0[var(t) t← ⊥][t← ⊥] (by Ax.MeetBotLeft)

∼ ρ−B0[t← ⊥] (by Ax.UseJBot)

From previous assumptions, t is unobserved in the context. Therefore ρ−46b
o∼ ρ−52b .

σ+
46a

o∼ σ+
54e is immediate.

Consider σ−46b = σ−B0 and σ−53b. Simplifying,

σ−53b ∼ [ψA1 u ⊥]σ−C0 t [ψ54e]σ−B0

∼ [⊥]σ−C0 t [ψ54e]σ−B0 (by Ax.MeetBotRight)

∼ ⊥ t [ψ54e]σ−B0 (by Ax.BotPred)

∼ ⊥ t [ψA1]σ−B0 (by Ax.MeetTopRight)

∼ ⊥ t σ−B0 (by PredElim)

∼ σ−B0 (by Ax.JoinBotLeft)

Therefore σ−46b
o∼ σ−53b .

Therefore S � S′.
Transformation. Simplifying,

c53a ∼ ˆ0int32()
∼ int32(0) (by Solve)
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Figure A.8: Graphs of Figure A.7, after rewriting.

Simplifying,

u53a ∼ ρ−B0[var(t) t← ⊥](t)
∼ ρ−B0(t) (by Ax.UseJBot)

∼ ⊥ (by RedexLocal)

These lfp values were used:

ψ?54d = ⊥
c?53a = int32(0)
u?53a = ⊥

Figures A.7(a,b) transform identically, by rules X.DeadDef, X.IfConseqElim.See Figure A.8. �

A.0.2 Record elimination lemmas

Lemma A.5 (RecordIntro). For the rewrite of Figure A.9, S � S′ and the rewrite is undone by
the transformation.

Proof. The analysis equations are:

S



x = α(x, ψ38a, ρ
+
38a, ρ

−
38b, σ

+
38a, σ

−
38b)

ψ38a = ψA1

ρ+
38a = ρ+

A1

ρ−38b = ρ−B0

σ+
38a = σ+

A1

σ−38b = σ−B0
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S′



x = α(x, ψ46b, ρ
+
46b, ρ

−
44b, σ

+
46b, σ

−
46b)

ψ46b = ψA1

ρ+
44a = ρ+

A1

ρ+
45b = ρ+

44a[t1← c45a × IntroName(>, t1)]
ρ+
46b = ρ+

45b[y← c46b × IntroName(>, y)]
ρ−44b = ρ−45b[t1← ⊥]
ρ−45b = ρ−46b[y← ⊥][var(n46a)

t← u46a]
ρ−46b = ρ−B0

σ+
46b = σ+

A1

σ−46b = σ−B0

c45a = n
c46a = fst(ρ+

45b(t1))
c46b = IntroHandle(u46b, {H46:10})
n46a = snd(ρ+

45b(t1))
u45a = ρ−45b(t1)
u46a = IfNotRepl(c46b,>, u46b)
u46b = ρ−46b(y)

Assumptions: The variables ρ+
A1, ρ

−
B0, σ

+
A1, σ

−
B0 are assumed to contain no non-⊥ bindings for redex-

local variables and store handles.
Compatibility. The proof obligations for S � S′ are:

ψ38a
o∼ ψ46b

ρ+
38a

o∼ ρ+
46b

ρ−38b
o∼ ρ−44b

σ+
38a

o∼ σ+
46b

σ−38b
o∼ σ−46b

ψ38a
o∼ ψ46b is immediate.

Consider ρ+
38a = ρ+

A1 and ρ+
46b. Simplifying,

ρ+
46b ∼ ρ

+
A1[t1← n× IntroName(>, t1)][y←

IntroHandle(ρ−B0(y), {H46:10})× IntroName(>, y)]

∼ ρ+
A1[t1← n× t1][y← IntroHandle(ρ−B0(y), {H46:10})× IntroName(>, y)] (by

Solve)

∼ ρ+
A1[t1← n× t1][y← IntroHandle(⊥, {H46:10})× IntroName(>, y)] (by

RedexLocal)

∼ ρ+
A1[t1← n× t1][y← {H46:10} × IntroName(>, y)] (by Solve)

∼ ρ+
A1[t1← n× t1][y← {H46:10} × y] (by Solve)

∼ ρ+
A1[t1← n× t1][y← ({H46:10}, y)] (by Solve)

From previous assumptions, t1, y are unobserved in the context. Therefore ρ+
38a

o∼ ρ+
46b .
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Figure A.9: De-optimizing graph rewrite for Lemma A.5, decorated with analysis variables.
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Consider ρ−38b = ρ−B0 and ρ−44b. Simplifying,

ρ−44b ∼ ρ
−
B0[y← ⊥][var(snd(ρ+

A1[t1← n× t1](t1))) t←
IfNotRepl(IntroHandle(ρ−B0(y), {H46:10}),>, ρ−B0(y))][t1← ⊥]

∼ ρ−B0[y← ⊥][var(snd(n× t1)) t←
IfNotRepl(IntroHandle(ρ−B0(y), {H46:10}),>, ρ−B0(y))][t1← ⊥] (by
Ax.EnvLookup)

∼ ρ−B0[y← ⊥][var(t1) t←
IfNotRepl(IntroHandle(ρ−B0(y), {H46:10}),>, ρ−B0(y))][t1← ⊥] (by Ax.Snd)

∼ ρ−B0[y← ⊥][var(t1) t← IfNotRepl(IntroHandle(⊥, {H46:10}),>,⊥)][t1← ⊥]
(by RedexLocal)

∼ ρ−B0[y← ⊥][var(t1) t← IfNotRepl({H46:10},>,⊥)][t1← ⊥] (by Solve)

∼ ρ−B0[y← ⊥][var(t1) t← ⊥][t1← ⊥] (by Eqn. (4.10))

∼ ρ−B0[y← ⊥][t1← ⊥] (by Ax.UseJBot)

From previous assumptions, t1, y are unobserved in the context. Therefore ρ−38b
o∼ ρ−44b .

σ+
38a

o∼ σ+
46b is immediate. σ−38b

o∼ σ−46b is immediate. Therefore S � S′.
Transformation. Simplifying,

u45a ∼ ρ−B0[y← ⊥][var(t1) t← ⊥](t1)
∼ ρ−B0[y← ⊥](t1) (by Ax.UseJBot)

∼ ρ−B0(t1) (by Ax.EnvIndep)

∼ ⊥ (by RedexLocal)

These lfp values were used:

c?45a = n

u?46b = ⊥
u?45a = ⊥

Figures A.9(a,b) transform identically, by rule X.DeadDef.See Figure A.10. �

Lemma A.6 (RecordWrite). Suppose that at some program point (1) x 1 points to a simple
region, (2) i1 is an integer that is a valid offset into x, and (3) the content of x 1[i 1] is provably
unused in the future. Then for the rewrite of Figure A.11, S � S′ and the graphs rewrite identically
using ∗Z=⇒.

Proof. Assuming the variable x1 is defined by the context. Assuming the variable y1 is defined by
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Figure A.10: Graphs of Figure A.9, after rewriting.

the context. The analysis equations are:

S



x = α(x, ψ45a, ρ
+
45a, ρ

−
45b, σ

+
45a, σ

−
45b)

ψ45a = ψA1

ρ+
45a = ρ+

A1

ρ−45b = ρ−B0

σ+
45a = σ+

A1

σ−45b = σ−B0
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S′



x = α(x, ψ51a, ρ
+
52b, ρ

−
51b, σ

+
53b, σ

−
51b)

ψ51a = ψA1

ρ+
51a = ρ+

A1

ρ+
52b = ρ+

51a[t 1← c52a × IntroName(>, t 1)]
ρ−51b = ρ−52b[t 1← ⊥]
ρ−52b = ρ−53b[var(n53b)

t← u53b][var(n53a)
t← u53a][var(n53c)

t← u53c]
ρ−53b = ρ−B0

σ+
51a = σ+

A1

σ+
53b = store(σ+

51a, c53b, c53a, c53c × n53c)
σ−51b = store(σ−53b, c53b, c53a,⊥)
σ−53b = σ−B0

c52a = i1
c53a = fst(ρ+

52b(t 1))
c53b = fst(ρ+

52b(x 1))
c53c = fst(ρ+

52b(y 1))
n53a = snd(ρ+

52b(t 1))
n53b = snd(ρ+

52b(x 1))
n53c = snd(ρ+

52b(y 1))
u52a = ρ−52b(t 1)
u53a = u53c u (needed)
u53b = PointerUse(c53b, c53a) t u53a

u53c = HardUse(c53b, read(σ−53b, c53b, c53a))

Assumptions: The variables ρ+
A1, ρ

−
B0, σ

+
A1, σ

−
B0 are assumed to contain no non-⊥ bindings for redex-

local variables and store handles.
Compatibility. The proof obligations for S � S′ are:

ψ45a
o∼ ψ51a

ρ+
45a

o∼ ρ+
52b

ρ−45b
o∼ ρ−51b

σ+
45a

o∼ σ+
53b

σ−45b
o∼ σ−51b

Assuming the store location σ+
45a({H0:0}, i1) is unobservable.

ρ+
A1(x 1) = {H0:0} × x 1 (Assumption 1)

IntroName(i1, z) = i1 (Assumption 2)
PointerUse({H0:0}, i1) = ⊥ (Assump. 2, Eqn. (4.12))

[ψA1]ρ+
A1 = ρ+

A1 (PredElim)
[ψA1]σ+

A1 = σ+
A1 (PredElim)

[ψA1]ρ−B0 = ρ−B0 (PredElim)
[ψA1]σ−B0 = σ−B0 (PredElim)

store(σ−B0, {H0:0}, i1,⊥) = σ−B0 (Assumption 3)
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Figure A.11: De-optimizing graph rewrite for Lemma A.6, decorated with analysis variables.
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read(σ−B0, {H0:0}, i1) = ⊥ (Assumption 3)

ψ45a
o∼ ψ51a is immediate.

Consider ρ+
45a = ρ+

A1 and ρ+
52b. Simplifying,

ρ+
52b ∼ ρ

+
A1[t 1← i1 × IntroName(>, t 1)]

∼ ρ+
A1[t 1← i1 × t 1] (by Solve)

From previous assumptions, t1 is unobserved in the context. Therefore ρ+
45a

o∼ ρ+
52b .

Consider ρ−45b = ρ−B0 and ρ−51b. Simplifying,

ρ−51b ∼ ρ
−
B0[var(snd(ρ+

52b(x 1))) t← PointerUse(fst(ρ+
52b(x 1)), fst(ρ+

52b(t 1))) t
HardUse(fst(ρ+

52b(x 1)), read(σ−B0, fst(ρ
+
52b(x 1)), fst(ρ+

52b(t 1)))) u
(needed)][var(snd(ρ+

52b(t 1))) t←
HardUse(fst(ρ+

52b(x 1)), read(σ−B0, fst(ρ
+
52b(x 1)), fst(ρ+

52b(t 1)))) u
(needed)][var(snd(ρ+

52b(y 1))) t←
HardUse(fst(ρ+

52b(x 1)), read(σ−B0, fst(ρ
+
52b(x 1)), fst(ρ+

52b(t 1))))][t 1← ⊥]

∼ ρ−B0[var(snd(ρ+
A1(x 1))) t← PointerUse(fst(ρ+

A1(x 1)), fst(ρ+
52b(t 1))) t

HardUse(fst(ρ+
A1(x 1)), read(σ−B0, fst(ρ

+
A1(x 1)), fst(ρ+

52b(t 1)))) u
(needed)][var(snd(ρ+

52b(t 1))) t←
HardUse(fst(ρ+

A1(x 1)), read(σ−B0, fst(ρ
+
A1(x 1)), fst(ρ+

52b(t 1)))) u
(needed)][var(snd(ρ+

52b(y 1))) t←
HardUse(fst(ρ+

A1(x 1)), read(σ−B0, fst(ρ
+
A1(x 1)), fst(ρ+

52b(t 1))))][t 1← ⊥] (by

Ax.EnvIndep)

∼ ρ−B0[var(snd({H0:0} × x 1)) t← PointerUse(fst({H0:0} × x 1), fst(ρ+
52b(t 1))) t

HardUse(fst({H0:0} × x 1), read(σ−B0, fst({H0:0} × x 1), fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(t 1))) t←

HardUse(fst({H0:0} × x 1), read(σ−B0, fst({H0:0} × x 1), fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(y 1))) t← HardUse(fst({H0:0} ×

x 1), read(σ−B0, fst({H0:0} × x 1), fst(ρ+
52b(t 1))))][t 1← ⊥] (by Assumption 1)

∼ ρ−B0[var(snd(({H0:0}, x 1))) t← PointerUse(fst(({H0:0}, x 1)), fst(ρ+
52b(t 1))) t

HardUse(fst(({H0:0}, x 1)), read(σ−B0, fst(({H0:0}, x 1)), fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(t 1))) t←

HardUse(fst(({H0:0}, x 1)), read(σ−B0, fst(({H0:0}, x 1)), fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(y 1))) t←

HardUse(fst(({H0:0}, x 1)), read(σ−B0, fst(({H0:0}, x 1)), fst(ρ+
52b(t 1))))][t 1←

⊥] (by Solve)
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∼ ρ−B0[var(x 1) t← PointerUse(fst(({H0:0}, x 1)), fst(ρ+
52b(t 1))) t

HardUse(fst(({H0:0}, x 1)), read(σ−B0, fst(({H0:0}, x 1)), fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(t 1))) t←

HardUse(fst(({H0:0}, x 1)), read(σ−B0, fst(({H0:0}, x 1)), fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(y 1))) t←

HardUse(fst(({H0:0}, x 1)), read(σ−B0, fst(({H0:0}, x 1)), fst(ρ+
52b(t 1))))][t 1←

⊥] (by Solve)

∼ ρ−B0[var(x 1) t← PointerUse({H0:0}, fst(ρ+
52b(t 1))) t

HardUse({H0:0}, read(σ−B0, {H0:0}, fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(t 1))) t←

HardUse({H0:0}, read(σ−B0, {H0:0}, fst(ρ+
52b(t 1)))) u

(needed)][var(snd(ρ+
52b(y 1))) t←

HardUse({H0:0}, read(σ−B0, {H0:0}, fst(ρ+
52b(t 1))))][t 1← ⊥] (by Solve)

∼ ρ−B0[var(x 1) t← PointerUse({H0:0}, fst(i1 × t 1)) t
HardUse({H0:0}, read(σ−B0, {H0:0}, fst(i1 × t 1))) u (needed)][var(snd(i1 ×
t 1)) t← HardUse({H0:0}, read(σ−B0, {H0:0}, fst(i1 × t 1))) u
(needed)][var(snd(ρ+

52b(y 1))) t←
HardUse({H0:0}, read(σ−B0, {H0:0}, fst(i1 × t 1)))][t 1← ⊥] (by Ax.EnvLookup)

∼ ρ−B0[var(x 1) t← PointerUse({H0:0}, i1) t
HardUse({H0:0}, read(σ−B0, {H0:0}, i1)) u (needed)][var(snd(i1 × t 1)) t←
HardUse({H0:0}, read(σ−B0, {H0:0}, i1)) u (needed)][var(snd(ρ+

52b(y 1))) t←
HardUse({H0:0}, read(σ−B0, {H0:0}, i1))][t 1← ⊥] (by Ax.Fst)

∼ ρ−B0[var(x 1) t←
⊥t HardUse({H0:0}, read(σ−B0, {H0:0}, i1)) u (needed)][var(snd(i1 × t 1)) t←
HardUse({H0:0}, read(σ−B0, {H0:0}, i1)) u (needed)][var(snd(ρ+

52b(y 1))) t←
HardUse({H0:0}, read(σ−B0, {H0:0}, i1))][t 1← ⊥] (by Assump. 2, Eqn. (4.12))

∼ ρ−B0[var(x 1) t← ⊥t HardUse({H0:0},⊥) u (needed)][var(snd(i1 × t 1)) t←
HardUse({H0:0},⊥) u (needed)][var(snd(ρ+

52b(y 1))) t←
HardUse({H0:0},⊥)][t 1← ⊥] (by Assumption 3)

∼ ρ−B0[var(x 1) t← ⊥t⊥ u (needed)][var(snd(i1 × t 1)) t←
⊥u (needed)][var(snd(ρ+

52b(y 1))) t← ⊥][t 1← ⊥] (by Solve)

∼ ρ−B0[var(x 1) t← ⊥t⊥][var(snd(i1 × t 1)) t← ⊥][var(snd(ρ+
52b(y 1))) t←

⊥][t 1← ⊥] (by Ax.MeetBotLeft)

∼ ρ−B0[var(x 1) t← ⊥][var(snd(i1×t 1)) t← ⊥][var(snd(ρ+
52b(y 1))) t← ⊥][t 1← ⊥]

(by Ax.JoinBotRight)

∼ ρ−B0[var(snd(i1 × t 1)) t← ⊥][var(snd(ρ+
52b(y 1))) t← ⊥][t 1← ⊥] (by

Ax.UseJBot)

∼ ρ−B0[var(t 1) t← ⊥][var(snd(ρ+
52b(y 1))) t← ⊥][t 1← ⊥] (by Ax.Snd)
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∼ ρ−B0[var(snd(ρ+
52b(y 1))) t← ⊥][t 1← ⊥] (by Ax.UseJBot)

∼ ρ−B0[var(snd(ρ+
A1(y 1))) t← ⊥][t 1← ⊥] (by Ax.EnvIndep)

∼ ρ−B0[t 1← ⊥] (by Ax.UseJBot)

From previous assumptions, t1 is unobserved in the context. Therefore ρ−45b
o∼ ρ−51b .

Consider σ+
45a = σ+

A1 and σ+
53b. Simplifying,

σ+
53b ∼ store(σ+

A1, fst(({H0:0}, x 1)), fst(i1 × t 1), fst(ρ+
A1(y 1))× snd(ρ+

A1(y 1)))
∼ store(σ+

A1, {H0:0}, fst(i1 × t 1), fst(ρ+
A1(y 1))× snd(ρ+

A1(y 1))) (by Solve)

∼ store(σ+
A1, {H0:0}, i1, fst(ρ+

A1(y 1))× snd(ρ+
A1(y 1))) (by Ax.Fst)

Simplifying,

σ+
45a ∼ σ

+
A1

Consider σ−45b = σ−B0 and σ−51b. Simplifying,

σ−51b ∼ store(σ−B0, fst(({H0:0}, x 1)), fst(i1 × t 1),⊥)
∼ store(σ−B0, {H0:0}, fst(i1 × t 1),⊥) (by Solve)

∼ store(σ−B0, {H0:0}, i1,⊥) (by Ax.Fst)

∼ σ−B0 (by Assumption 3)

Therefore σ−45b
o∼ σ−51b .

Therefore S � S′.
Transformation. Simplifying,

u52a ∼ ρ−B0[var(snd(ρ+
A1(y 1))) t← ⊥](t 1)

∼ ρ−B0(t 1) (by Ax.UseJBot)

∼ ⊥ (by RedexLocal)

These lfp values were used:

c?52a = i1

u?52a = ⊥
u?53c = ⊥

Figures A.11(a,b) transform identically, by rules X.DeadDef, X.DeadStore.See Figure A.12. �

Lemma A.7 (RecordRead). Suppose that at some program point (1) x 1 points to a simple
region, (2) i1 is an integer that is a valid offset into x, and (3) this program point is dominated by a
store of the contents of a singly-assigned variable y 1 to x 1[i1], with no interfering store operations
between. Then for the rewrite of Figure A.13, S � S′ and the graphs rewrite identically using ∗Z=⇒.
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Figure A.12: Graphs of Figure A.11, after rewriting.

Proof. Assuming the variable x1 is defined by the context. Assuming the variable y1 is defined by
the context. The analysis equations are:

S



x = α(x, ρ−47b, ψ48b, σ
+
48b, σ

−
48b, ρ

+
48b)

ψ48b = ψA1

ρ+
47a = ρ+

A1

ρ+
48b = ρ+

47a[z← c48a × IntroName(n48a, z)]
ρ−47b = ρ−48b[z← ⊥][var(n48a)

t← u48a]
ρ−48b = ρ−B0

σ+
48b = σ+

A1

σ−48b = σ−B0

c48a = fst(ρ+
47a(y 1))

n48a = snd(ρ+
47a(y 1))

u48a = ρ−48b(z)
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S′



x = α(x, ρ−54b, ψ54a, σ
+
54a, σ

−
54b, ρ

+
56b)

ψ54a = ψA1

ρ+
54a = ρ+

A1

ρ+
55b = ρ+

54a[t1← c55a × IntroName(>, t1)]
ρ+
56b = ρ+

55b[z← c56c × IntroName(n56c, z)]
ρ−54b = ρ−55b[t1← ⊥]
ρ−55b = ρ−56b[z← ⊥][var(n56a)

t← u56a][var(n56b)
t← u56b]

ρ−56b = ρ−B0

σ+
54a = σ+

A1

σ−54b = store(σ−56b, c56a, c56b, IfNotRepl(c56c, n56c, u56c) t read(σ−56b, c56a, c56b))
σ−56b = σ−B0

c55a = i1
c56a = fst(ρ+

55b(x 1))
c56b = fst(ρ+

55b(t1))
c56c = fst(read(σ+

54a, c56a, c56b))
n56a = snd(ρ+

55b(x 1))
n56b = snd(ρ+

55b(t1))
n56c = snd(read(σ+

54a, c56a, c56b))
u55a = ρ−55b(t1)
u56a = u56c u (needed) t PointerUse(c56a, c56b)
u56b = IfNotRepl(c56c, n56c, u56c u (needed))
u56c = ρ−56b(z)

Assumptions: The variables ρ+
A1, ρ

−
B0, σ

+
A1, σ

−
B0 are assumed to contain no non-⊥ bindings for redex-

local variables and store handles.
Compatibility. The proof obligations for S � S′ are:

ρ−47b
o∼ ρ−54b

ψ48b
o∼ ψ54a

σ+
48b

o∼ σ+
54a

σ−48b
o∼ σ−54b

ρ+
48b

o∼ ρ+
56b

ρ+
A1(x 1) = {H0:0} × x 1 (Assumption 1)
ρ+
A1(y 1) = cy × y 1 (Assumption 3)
ρ−B0(z) = ⊥ (CopyUseBot)

IntroName(i1, z) = i1 (Assumption 2)
PointerUse({H0:0}, i1) = ⊥ (Assump. 2, Eqn. (4.12))

read(σ+
A1, {H0:0}, i1) = cy × y 1 (Assumption 3)

ψ48b
o∼ ψ54a is immediate.



173

�
�

�
Z

Z
Z�

�
�
Z

Z
Z

�
�

�
Z

Z
Z�

�
�
Z

Z
Z

A

z = u48ac48an48ay 1

ρ−47b,σ
−
48b

ψ48b

ρ+
47a,σ

+
48b

B

ρ−48b,σ
−
48b

ψ48b

ρ+
48b,σ

+
48b

(a) Before

#
#
c

c#
#
c

c

#
#
c

c#
#
c

c

A

t1 = u55ac55an=>i1

ρ−54b
,σ−54b

ψ54a

ρ+54a,σ
+
54a

z = u56cc56cn56c int32read(u56ac56an56ax 1, u56bc56bn56b t1)

ρ−55b
,σ−54b

ψ54a

ρ+55b
,σ+

54a

B

ρ−56b
,σ−56b

ψ54a

ρ+56b
,σ+

54a

(b) After

Figure A.13: De-optimizing graph rewrite for Lemma A.7, decorated with analysis variables.
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Consider ρ+
48b = ρ+

A1[z← fst(ρ+
A1(y 1))× IntroName(snd(ρ+

A1(y 1)), z)] and ρ+
56b. Simplifying,

ρ+
56b ∼ ρ

+
A1[t1← i1 × IntroName(>, t1)][z← fst(read(σ+

A1, fst(ρ
+
A1[t1←

i1 × IntroName(>, t1)](x 1)), fst(ρ+
A1[t1←

i1 × IntroName(>, t1)](t1))))× IntroName(snd(read(σ+
A1, fst(ρ

+
A1[t1←

i1 × IntroName(>, t1)](x 1)), fst(ρ+
A1[t1← i1 × IntroName(>, t1)](t1)))), z)]

∼ ρ+
A1[t1← i1 × t1][z← fst(read(σ+

A1, fst(ρ
+
A1[t1← i1 × t1](x 1)), fst(ρ+

A1[t1←
i1 × t1](t1))))× IntroName(snd(read(σ+

A1, fst(ρ
+
A1[t1←

i1 × t1](x 1)), fst(ρ+
A1[t1← i1 × t1](t1)))), z)] (by Solve)

∼ ρ+
A1[t1← i1×t1][z← fst(read(σ+

A1, fst(ρ
+
A1(x 1)), fst(ρ+

A1[t1← i1×t1](t1))))×
IntroName(snd(read(σ+

A1, fst(ρ
+
A1(x 1)), fst(ρ+

A1[t1← i1 × t1](t1)))), z)] (by
Ax.EnvIndep)

∼ ρ+
A1[t1← i1 × t1][z← fst(read(σ+

A1, fst({H0:0} × x 1), fst(ρ+
A1[t1←

i1 × t1](t1))))× IntroName(snd(read(σ+
A1, fst({H0:0} × x 1), fst(ρ+

A1[t1←
i1 × t1](t1)))), z)] (by Assumption 1)

∼ ρ+
A1[t1← i1 × t1][z← fst(read(σ+

A1, fst(({H0:0}, x 1)), fst(ρ+
A1[t1←

i1 × t1](t1))))× IntroName(snd(read(σ+
A1, fst(({H0:0}, x 1)), fst(ρ+

A1[t1←
i1 × t1](t1)))), z)] (by Solve)

∼ ρ+
A1[t1← i1 × t1][z← fst(read(σ+

A1, {H0:0}, fst(ρ+
A1[t1← i1 × t1](t1))))×

IntroName(snd(read(σ+
A1, {H0:0}, fst(ρ+

A1[t1← i1 × t1](t1)))), z)] (by Solve)

∼ ρ+
A1[t1← i1 × t1][z← fst(read(σ+

A1, {H0:0}, fst(i1 × t1)))×
IntroName(snd(read(σ+

A1, {H0:0}, fst(i1 × t1))), z)] (by Ax.EnvLookup)

∼ ρ+
A1[t1← i1 × t1][z←

fst(read(σ+
A1, {H0:0}, i1))× IntroName(snd(read(σ+

A1, {H0:0}, i1)), z)] (by
Ax.Fst)

∼ ρ+
A1[t1← i1 × t1][z← fst(cy × y 1)× IntroName(snd(cy × y 1), z)] (by

Assumption 3)

∼ ρ+
A1[t1← i1 × t1][z← cy × IntroName(snd(cy × y 1), z)] (by Ax.Fst)

∼ ρ+
A1[t1← i1 × t1][z← cy × IntroName(y 1, z)] (by Ax.Snd)

∼ ρ+
A1[t1← i1 × t1][z← cy × y 1] (by Solve)

Simplifying,

ρ+
48b ∼ ρ

+
A1[z← fst(ρ+

A1(y 1))× IntroName(snd(ρ+
A1(y 1)), z)]

∼ ρ+
A1[z← fst(cy × y 1)× y 1] (by Assumption 3)

∼ ρ+
A1[z← cy × y 1] (by Ax.Fst)

From previous assumptions, t1 is unobserved in the context. Therefore ρ+
48b

o∼ ρ+
56b .

Consider ρ−47b = ρ−B0[z← ⊥][var(y 1) t← ρ−B0(z)] and ρ−54b. Simplifying,

ρ−54b ∼ ρ
−
B0[z← ⊥][var(snd(({H0:0}, x 1))) t← ρ−B0(z) u (needed) t

PointerUse(fst(({H0:0}, x 1)), fst(i1 × t1))][var(snd(i1 × t1)) t←
IfNotRepl(fst(cy × y 1), snd(cy × y 1), ρ−B0(z) u (needed))][t1← ⊥]
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∼ ρ−B0[z← ⊥][var(x 1) t← ρ−B0(z) u (needed) t
PointerUse(fst(({H0:0}, x 1)), fst(i1 × t1))][var(snd(i1 × t1)) t←
IfNotRepl(fst(cy × y 1), snd(cy × y 1), ρ−B0(z) u (needed))][t1← ⊥] (by Solve)

∼ ρ−B0[z← ⊥][var(x 1) t←
⊥u (needed)tPointerUse(fst(({H0:0}, x 1)), fst(i1× t1))][var(snd(i1× t1)) t←
IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥ u (needed))][t1← ⊥] (by CopyUseBot)

∼ ρ−B0[z← ⊥][var(x 1) t← ⊥t PointerUse(fst(({H0:0}, x 1)), fst(i1 ×
t1))][var(snd(i1 × t1)) t← IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥)][t1← ⊥]
(by Ax.MeetBotLeft)

∼ ρ−B0[z← ⊥][var(x 1) t← ⊥t PointerUse({H0:0}, fst(i1 × t1))][var(snd(i1 ×
t1)) t← IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥)][t1← ⊥] (by Solve)

∼ ρ−B0[z← ⊥][var(x 1) t← ⊥t PointerUse({H0:0}, i1)][var(snd(i1 × t1)) t←
IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥)][t1← ⊥] (by Ax.Fst)

∼ ρ−B0[z← ⊥][var(x 1) t← ⊥t⊥][var(snd(i1 × t1)) t←
IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥)][t1← ⊥] (by Assump. 2, Eqn. (4.12))

∼ ρ−B0[z← ⊥][var(x 1) t← ⊥][var(snd(i1 × t1)) t←
IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥)][t1← ⊥] (by Ax.JoinBotRight)

∼ ρ−B0[z← ⊥][var(snd(i1 × t1)) t←
IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥)][t1← ⊥] (by Ax.UseJBot)

∼ ρ−B0[z← ⊥][var(t1) t← IfNotRepl(fst(cy × y 1), snd(cy × y 1),⊥)][t1← ⊥] (by
Ax.Snd)

∼ ρ−B0[z← ⊥][var(t1) t← IfNotRepl(cy, snd(cy × y 1),⊥)][t1← ⊥] (by Ax.Fst)

∼ ρ−B0[z← ⊥][var(t1) t← IfNotRepl(cy, y 1,⊥)][t1← ⊥] (by Ax.Snd)

∼ ρ−B0[z← ⊥][var(t1) t← ⊥][t1← ⊥] (by Eqn. (4.10))

∼ ρ−B0[z← ⊥][t1← ⊥] (by Ax.UseJBot)

Simplifying,

ρ−47b ∼ ρ
−
B0[z← ⊥][var(y 1) t← ⊥]

∼ ρ−B0[z← ⊥] (by Ax.UseJBot)

From previous assumptions, t1 is unobserved in the context. Therefore ρ−47b
o∼ ρ−54b .

σ+
48b

o∼ σ+
54a is immediate.

Consider σ−48b = σ−B0 and σ−54b. Simplifying,

σ−54b ∼ store(σ−B0, fst(({H0:0}, x 1)), fst(i1 × t1), IfNotRepl(fst(cy × y 1), snd(cy ×
y 1), ρ−B0(z)) t read(σ−B0, fst(({H0:0}, x 1)), fst(i1 × t1)))

∼ store(σ−B0, {H0:0}, fst(i1 × t1), IfNotRepl(fst(cy × y 1), snd(cy ×
y 1), ρ−B0(z)) t read(σ−B0, {H0:0}, fst(i1 × t1))) (by Solve)

∼ store(σ−B0, {H0:0}, i1, IfNotRepl(fst(cy × y 1), snd(cy × y 1), ρ−B0(z)) t
read(σ−B0, {H0:0}, i1)) (by Ax.Fst)
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∼ store(σ−B0, {H0:0}, i1, IfNotRepl(cy, snd(cy × y 1), ρ−B0(z)) t
read(σ−B0, {H0:0}, i1)) (by Ax.Fst)

∼ store(σ−B0, {H0:0}, i1, IfNotRepl(cy, y 1, ρ−B0(z)) t read(σ−B0, {H0:0}, i1)) (by
Ax.Snd)

∼ store(σ−B0, {H0:0}, i1,⊥ t read(σ−B0, {H0:0}, i1)) (by CopyUseBot)

∼ store(σ−B0, {H0:0}, i1, read(σ−B0, {H0:0}, i1)) (by Ax.JoinBotLeft)

∼ σ−B0 (by Ax.StoreIdent)

Therefore σ−48b
o∼ σ−54b .

Therefore S � S′.
Transformation. Simplifying,

u55a ∼ ρ−B0[z← ⊥][var(t1) t← ⊥](t1)
∼ ρ−B0[z← ⊥](t1) (by Ax.UseJBot)

∼ ρ−B0(t1) (by Ax.EnvIndep)

∼ ⊥ (by RedexLocal)

These lfp values were used:

c?55a = i1

u?55a = ⊥
u?56c = ⊥

Figures A.13(a,b) transform identically, by rules X.CopyElim, X.DeadDef.See Figure A.14. �
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Figure A.14: Graphs of Figure A.13, after rewriting.
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