Five compilation models for C++ templates
(Extended Abstract)

Todd L. Veldhuizen
Extreme Computing Laboratory
Indiana University Computer Science Department
Bloomington Indiana 47405, USA
tveldhui@acm.org

Abstract

This paper proposes an alternate structure for C++ com-
pilers. Type analysis is removed from the compiler and re-
placed with a type system library which is treated as source
code by the compiler. Type computations are embedded
in the intermediate language of the compiler, and partial
evaluation is used to drive type analysis and template in-
stantiation. By making simple changes to the behavior of
the partial evaluator, a wide range of compilation models is
achieved, each with a distinct tradeoff of compile time, code
size, and code speed. These models range from pure dy-
namic typing — ideal for scripting C++ — to profile-directed
template instantiation. This approach may solve several se-
rious problems in compiling C++: it achieves separate com-
pilation of templates, allows template code to be distributed
in binary form by deferring template instantiation until run
time, and reduces the code bloat associated with templates.

1 Introduction

A program in a statically typed language such as C++ de-
scribes two computations. There is the usual computation
we think of — values being combined to produce other values
— but there is also a type computation, in which types are
combined to produce other types. In this code:

float f(int x, float y)

{
}

there is an implicit type computation which determines that
int + float = float. The compiler evaluates the type compu-
tation at compile time to check types and report errors.

This type computation is normally built into the compil-
er: the functions which handle arithmetic type promotions,
inheritance, and other language features are functions in the
compiler. In this paper we explore an alternative compiler
structure, illustrated by Figure 1: the type system is imple-
mented in a library, and this type system library is treated
as source code by the compiler. Rather than performing
type analysis, the front end inserts calls to this type system
library as it translates the source code. Partial evaluation
is used to optimize away the type system code at compile
time. This approach to compiling C++ uncouples the idea
of genericity (functions which operate on arbitrary types)
from the idea of specialization (duplicating functions to im-
prove performance).

return x + y;

We illustrate the approach by examining a prototype
compiler, called Lunar, which implements a modest C++
front end. We start by describing the important features of
Lunar’s structure and intermediate languages (Section 2).
Partial evaluation plays a key role in the compilation pro-
cess, so we overview the important features of Lunar’s par-
tial evaluator (Section 3). Next we describe the process of
translating C++ into Lunar’s intermediate language (Sec-
tion 4). The translation is unique because type computa-
tions are embedded in the intermediate language. By con-
trolling how the partial evaluator specializes functions, five
distinct compilation models may be achieved (Section 6). Fi-
nally, we discuss performance issues and related work (Sec-
tion 7).

2 The intermediate languages

Lunar uses a family of intermediate languages called ILo,
ILy, and ILg. The C++ front end generates ILq, and the
partial evaluator operates over ILo.! There are automat-
ic transforms which lower I'Ls to IL; to ILg. ILg resem-
bles quadruple-form,> with all intermediate results being
explicitly named. It is call-by-value, typeless, and single-
assignment. It is easier to partially evaluate ILg if some
higher-level control flow structures are still in place, so I Lo
provides if/else, exceptions, loop/break, function calls and
block-scoped variables.

I'Ly exists in the compiler as trees — Lunar does not dump
intermediate forms to files — but for rendering I'Ly we use
the surface syntax of Figure 2. The only distinct feature of
ILg is its support for multiple values. Multiple values may
be created at any program point by using the square bracket
[1 notation. This statement:

return [4,5]

returns the pair of values (4,5). Multiple values must be
immediately bound to variables using an init statement, or
the additional values are lost; in this code:

[x,y]l := [1,2]
foo([1,2],[3,4,5])

1Parts of the C++ type system library are implemented in ILo,
and Lunar’s Java front end generates ILy. IL; is similar to ILg but
allows variable assignments.

2In quadruple form, most instructions are of the form: r «
z1 * T2, where r is a name for the result, z: and x2 are names or
literals, and * is an operator.

User source AST AST IL IL Nati d
files Type . P Back ative code
(a) — | Lex/Parse ype Translation Optimizer E—
Analysis End
User source .
files AST . IL Partial IL Back Native code
(b) —— | Lex/Parse Translation) E—
Evaluation End
Type
library

Figure 1: Comparison of two compiler structures: (a) Typical compiler: source files are parsed to abstract syntax trees (AST),

and type analysis decorates the trees with type information.

The trees are then translated to an intermediate language (IL),

optimized, and a back end produces native code. (b) Structure explored in this paper: the type system is implemented by
a library, and is treated as just another set of source files. A partial evaluator is used to optimize the user program in the

context of the type system, resulting in type analysis being

float pow(float x, int n)

if (n == 0)
return 1.0;
else
return x * pow(x,n-1);

}

float a, b;
a = pow(b,3);

(a) Some code

// pow has been specialized for n=3
float pow__3(float x)

return x * X * X;

}
float a, b;
a = pow_3(b);

(b) After partial evaluation

Figure 3: Partial evaluation example

the variable x is initialized with 1 and y is initialized with
2, but the call to function foo is equivalent to foo(1,3) —
the additional values of the arguments are discarded.

In Lunar’s C++ front end, multiple values are used to
turn C++ values into (value,type) pairs; for example, the
C++ expression 5.0 is translated to the pair of Lunar values
[6.0,double] where double is a global variable pointing to
a data structure representing the C++ type double.

3 Partial evaluation

A partial evaluator takes a program, performs the opera-
tions which depend only on known values, and outputs a
specialized program [6]. The standard example is shown in
Figure 3.

Lunar’s partial evaluator is a blend of functional-
language-style partial evaluation and imperative language
optimization techniques. In spirit, it is a partial evaluator —
particularly in this application of compiling C++ — because

performed at compile time.

its goal is to evaluate the type system portion of the code
at compile time. There are five critical components in the
mix:

e Constant folding and propagation: the partial e-
valuator folds primitive operations whose operands are
known at compile time, replacing (for example) 3+7
with 10. It also propagates constants through variables,

turning (for example) x := 3; y := xintox := 3; y
1= 3.
e Copy propagation: if an initialization x := y is en-

countered, later uses of x are replaced with y.

e Heap analysis: constants and copies are propagated
through heap (and stack) data structures when pos-
sible. Lunar’s heap analyzer builds on the tradition
of partly-static data structures in the partial evalua-
tion community (e.g. [3]), and of store analyzers in
the imperative world (e.g. [9, 11]). Lunar uses a split-
store analysis: it distinguishes between store operations
which are mutable (i.e. someone may later overwrite
that region of the heap) from those which are final.
Use of a final store operation implies an assumption
that nothing will ever be written to the same heap lo-
cation. (In Lunar’s C++ front end, this is true of the
compiler-generated data structures representing type
information — it is not possible for users to modify ob-
ject layouts, for example — but not true of operations
on user-defined classes). Mutable store operations are
subject to aliasing; final store operations are not. Prop-
agating constants and copies through the heap is easy
for final regions of the heap, and difficult — often im-
possibly so — for mutable regions.

e Dead code elimination: variables, globals, and func-
tions which are no longer needed are stripped from the
program. Function calls where the return value is dis-
carded are removed if the function was determined to
have no non-local side effects.

e Specialization: at each call site, the partial evalua-
tor may choose to specialize the function being called
based on some of the argument values. In the impera-
tive world this is known as procedure cloning. The front

d = function f (wi,...,vn) b
| global v=1b
b = blockscope [v1,..., U |
81...8n—1,50
s* u= s
return e
break e
throw e
[
s u= e
[vi,...,v;] :=e
try by catch [vy,..
e u= | pCty, .. tn)
to Ct1, ..., tn)
if to then b; else b»
[t1, oy tn]
loop b
t n= c
| v

.,’Uj] bz

function definition
global value definition

basic block

function return
break from loop
exception throw
void statement

variable initialization
exception handling

primitive

function call

if expression
multiple-value construction
loop expression

constant
variable use

Figure 2: The grammar for I Lo consists of (d) top-level definitions; (b) basic blocks; (s*) terminal statements; (s) statements;

(e) nontrivial expressions; (%) trivial expressions.

end may allow or disallow certain specializations; when
the Lunar C++ front end is running in “standard-
compliant” mode, it only allows functions to be spe-
cialized based on arguments which represent types.

In addition to these optimizations, the partial evaluator does
liveness analysis, escape analysis, a limited form of alias
analysis, stack allocation analysis, and inlining.

The type computation of C++ has some functional as-
pects: it is single assignment (you cannot change the type
of a variable, once declared); data structures representing
classes and structures are mostly immutable (you cannot
dynamically add a new base class, nor change the type sig-
nature of a function). You cannot take the address of an
uninstantiated template function, which means the partial
evaluator can determine at every call site of a template func-
tion exactly which function is being invoked. These func-
tional aspects are critical to optimizing away the type library
routines at compile time.

4 The C++ front end

The C++ front end is ~ 10000 lines of source code, not
including the parser. It implements a very modest subset
of C++, just enough to demonstrate and test the approach.
It handles simple functions, classes, and templates. It does
not yet handle overloading, non-type template parameters,
virtual base classes, namespaces, nor a few hundred other
C++ features.

The front end translates C++ to a version of the Lunar
intermediate language, called ILq, which is a little higher-
level than I Lo and allows assignments. The high-level struc-
ture of the compiler is shown in Figure 4. The C++ type
system is implemented by a type library. Part of this library
is implemented directly in ILs — a high-level version of the
Lunar intermediate language— and part of it is implemented

in C++. The type system library is treated as just another
set of source files by the compiler.

4.1 The type_info hierarchy

All C++ types are represented by pointers to data struc-
tures which are subclasses of type_info. These classes are
declared in a C++ file, part of which is shown in Figure 5.

Instances of the type_info classes are created by code
written in IL,. This allows the type library to express that
fields of the type_info classes are immutable.® Without
this knowledge, it would be difficult for the partial eval-
uator to read fields from these data structures: a closed-
program alias analysis would be required to exclude the
possibility that someone, somewhere, was writing to these
fields. Closed-program analyses do not interact well with
dynamically-linked shared libraries, which are commonplace
now.

4.2 Translation of simple, non-template code

For every variable x, the front end creates a variable x$type
which points to the appropriate type_info object represent-
ing x’s type.

Translation of C++ expressions is straightforward, with
each node in the abstract syntax tree often translating di-
rectly to a call into the type library. New variables are cre-
ated to hold intermediate results. For example, this code:

void simpleMath()

int x = 5;
float y = 7.0;
int z = x + y;

}

3Tmmutability is not expressible in C4++4; const can always be cast
away.

IL2
front end
Lunar
IL2
User source
files Ct++ Lunar Lunar Lunar
— IL1 ILo Partial ILo Code Gen € a.out
Front End [gcc —
cpp Evaluator (to C)
Prepasses

Figure 4: High-level structure of the compiler. No type analysis is done by the C++ front end; the type system is implemented
by a type library. Type analysis results from partially evaluating the program.

// Base class for all types
struct type_info {
int type;

// Class template
struct type_info_template_class

. T : type_info {

int . size; i charx* name;

type_info* ptrlype; int numParameters;
H

’ template_class_instance_list* head_instance;
H

// Primitive types

struct type_info_primitive : type_info { // Instance of a class template

harx* ; X .
coar name; struct type_info_template_class_instance
int precisionRank; N
¥ : type_info_class {
’ type_info_template_class* instance_of;

// Pointer types type_infox* template_parameters;

struct type_info_ptr : type_info {
type_info* derefType;

// Field in a class
struct type_info_field {

% .
// Function pointers :ha:: infok :am::
struct type_info_funcptr : type_info { iiz - o)fllf)s;t'
int arity; int flags; |
type_info* returnType; ¥ !
type_info** argTypes; !
; // Method in a class
struct type_info_method
// Class types char* ype- - namef
struct type_info_class : type_info { int flag;'
% .)
t.:har name; type_info_funcptr* t;
int numBaseClasses; .
type_info_class** baseClasses; ’
int* baseClassQffsets; // Virtual methods
nt . . n1.1mF1e1ds; struct type_info_virtual_method
type_info_field* fields; : type_info_method {
int . numMethods; int vtable_offset;
type_info_method* methods; }

Figure 5: The type_info hierarchy of classes which represent C++ types.

is translated as:

function simpleMath()
blockscope [return$type, x, x$type, __a8, __a8$%type,
y, y$type, __a9, __a9%type, z, z$type,
__al0, __al0$typel
// Translation of the literal 5
__a8 =56
__a8$type := int
// Initialize z with 5
[x, x$type] := initializerConversion(__a8,
__a8%type, int)
// Initialize y with 7.0
_.a9 :=7.0
__a9%type := double // 7.0 is a double literal
[y, y$type]l := initializerConversion(__a9,
__a9%type, float)
// Add z + y, and initialize z with the result
[__al0, __al0$type] := plus(x, x$type, y, y$type)
[z, z$type]l := initializerConversion(__alO0,
__al0$type, int)

where initializerConversion(value, source-type, dest-
type) is a type library routine implementing C++ initializer
type conversions, and plus(..) implements the + operator
semantics.

In the translated code, int and float are no longer key-
words representing builtin types. Instead, they are glob-
al variables declared by the type library that point to da-
ta structures representing the C++ types int and float.
These data structures are instances of type_info_primitive
(Figure 5).

This translation resembles compiling a dynamically type-
d language. One of the options of Lunar’s C++ front end
is to do just this — compile C++ to dynamically typed code
— which turns out to have some interesting advantages, dis-
cussed later.

4When the above code is partially evaluated, the result
is:

function simpleMath()

blockscope [z, __a6, x2, x2__195]
// Promote 5 to floating point
x2__195 := _itof(5)
// Add 5 and 7.0 in floating point
__a6 := _f+(x2__195, 7.0)
// Convert back to integer
z := _ftoi(__a6)

The calls to the type library routines are partially evaluated
and inlined, and all the x$type variables disappear because
they are no longer needed. The primitives itof, £+, and
ftoi turn into single machine operations to convert inte-
ger to float, add two floats, and convert a float to integer,
respectively.

4.3 Function calls

Now we progress to translating functions which take argu-
ments. We translate each C++ function into two functions:

e a bind function, which checks argument types and de-
duces template parameters for the call site; and

4More accurately, the partial evaluator turns simpleMath() into
an empty function body. To generate this code, the constants 5 and
7.0 were “lifted” out of the partial evaluator’s view, and the result z
was stored in a global variable.

e an implementation function, which is a translation of
the function body.

The bind function takes all the arguments and their types,
whereas the implementation function takes only the argu-
ments. As an example, consider this cube() function:

float cube(float x)

{

}

The C++ front end produces a bind function
cube$bind (x,x$type):

return xX*x*x;

function cube$bind(x, x$type)
blockscope [__al, __al$typel
// Check that z’s type is float
assertIsType(x$type, float)
// Invoke implementation function
__al := cube(x)
// Return value/type pair
return [__al, float]

and an implementation function cube(x):

function cube(x)
blockscope [return$type, x$type, __a2, __a2$type,
__a3, __a3$type, __a4, __ad$typel

// Bindings for the function body
return$type := float
x$type := float
// Translation of the function body
[__a2, __a2$type] := star(x, x$type, x, x$type)
[__a3, __a3%type] := star(__a2, __a2$type, x, x$type)
__ad := assignmentConversion(__a3,
return __a4

In an implementation which supported overloading, the
function cube$bind would dispatch to the proper implemen-
tation of cube based on signature. Also, note that the bind
function relies only on the declaration of a function (its re-
turn type and signature) so separate compilation is possible.

4.4 Simple template functions

Next we consider translating simple template functions. As
an example:

template<typename T1, typename T2>
T1 hypot2(T1 x, T2 y)

return x*x + y*y;

}

Template functions are also translated into a bind function
and an implementation function. The bind function is now
responsible for deducing template parameters:

function hypot2$bind(x, x$type, y, y$type)
blockscope [T1, T2, __al, __al$type]

// Deduce the template parameters from the argument
// types -- easy in this ezample

T1 := x$type

T2 y$type

// Call the implementation function; the template
// parameters are passed as additional arguments
__al := hypot2(x, y, T1, T2)

return [__al, Ti]

__a3$type, return$type)

and the implementation function—

function hypot2(x, y, T1, T2)
blockscope [return$type, x$type, y$type, __a2, __a2$type,
__a3, __a3$type, __a4, __ad$type, __ab, __ab$typel

// Declare the return type, and each argument type
return$type := T1

x$type := T1

y$type := T2

// Translation of x * x
[__a2, __a2%type] := star(x, x$type, x, x$type)

// Translation of y * y
[__a3, __a3%type] := star(y, y$type, y, y$type)

// Add (x * x) + (y * y)
[__a4, __a4$type] := plus(__a2, __a2%type,
__a3, __a3$type)

// Convert result to the return type and return

__ab := initializerConversion(__a4, __a4$type,
return$type)

return __ab

Note how the template parameters are passed to the im-
plementation function as extra parameters. When partial
evaluation is used to specialize the function with respect
to the template parameters, these extra parameters become
dead and may be eliminated.’

This style of translation — passing types as extra param-
eters — is called the type-passing style of compiling polymor-
phism [5].

4.5 Template parameter deduction

To deduce template parameters, the C++ front creates a
tree representing each declared argument type, and gener-
ates code to walk these trees, checking argument types and
deducing template parameters. To illustrate, here is a sim-
ple pair class:

template<class T1, class T2>
class pair {
public:

T1 first;

T2 second;

}s
And a template function which operates on pairs:

template<class T1, class T2>
T1 first(pair<T1i,T2>* x)

return x->first;

}

At compile time, the type pair<T1,T2>* is represented by
the prefix notation tree: pointer(template(pair,T1,T2)).
The generated bind function for first() walks this tree,
checking that x$type is a pointer, then checking that it is a
pointer to an instance of pair, and so on:

// Bind function for first(), illustrating

// tree walk to deduce template parameters

function first$bind(x, x$type)

blockscope [derefType, tempparmlist, tempparmO, Ti,

5Lunar does not yet implement dead parameter elimination.

tempparmi, T2, __al, __ai$type]
// Check that z$type is a pointer
assertIsPtrType (x$type)
// Get the type which = points to
derefType := _readp(x$type, type_info_ptr.derefType)
// Check that it ¢s an instance of pair<>
assertIsTemplateInstance(derefType, pair$template)
// Get its list of template arguments
tempparmlist := _readp(derefType,
type_info_template_class_instance.template_parameters)
// Get the first template argument-- this becomes T1
tempparm0 := _readp(tempparmlist, 0)
T1 := tempparmO
// Get the second template argument-- this becomes T2
tempparml := _readp(tempparmlist, 4)
T2 := tempparml
// Call the implementation and return
__al := first(x, T1, T2)
return [__al, T1]

4.6 Compiling classes

One inconvenience in compiling classes is that object lay-
out has to be deferred until template instantiation time. A
simple example illustrates why:

template<class T, class X>
class Foo : public T {

X x;

int z;

}s

The base class of Foo is not known until instantiation time,
and the offset of z within the object will depend on both
the base class and the template type X. Clearly, too, T might
inject field and method names into the environment of class
Foo, so even field lookup in expressions like a->x must be
deferred.

For this reason, type_info_class and its subtype
type-info_template_class_instantiation must contain
lists of base classes, fields, and methods; and uses of “.”
and “->” are translated by calling type library functions
which look up field names in the type_info_class and asso-
ciated data structures (Figure 5). In other words, even parts
of name analysis must be implemented by the type library
and resolved by partial evaluation.

Class declarations translate into too much IL code to
include here, so we look at a simple example and describe
the code which is generated:

class B :
float b;

}s

For the class B, a global function B$layout is created
which generates an instance of type_info_class (Figure 5).
B$layout() uses type library routines to initialize the data
structure with:

public 4, Q {

e an array of pointers to the base classes A and Q, and
offsets of those base classes within the object layout;

e an array of fields, with names, types, and offsets for
each field;

e (not implemented yet) a list of methods and vtable

A global variable B is created and initialized to the result
of calling B$layout (). This global is then used to represent
the type of an instance of class B.

Translation of class templates is similar. For a class tem-
plate such as

template<class T1, class T2>
class pair {

T1 first;

T2 second;

b

a function pair$layout(T1,T2) is created which returns an
instance of type_info_template_class_instance (Figure 5).
Passing the template parameters T1 and T2 as arguments
gives enough information to calculate the object layout. A
type_info record for a class template also contains an array
of template arguments and a pointer to the uninstantiated
template type.

A global function pair(T1,T2) is created which checks
if the template instance pair<T1,T2> already exists, and
if not instantiates it by calling pair$layout(T1,T2). In
the functional-language world, pair() would be regarded as
a type operator: given types T1 and T2, it returns a type
pair(T1,T2).

Field accesses are translated into a call to a type library
routine. For example, in this code:

pair<int,float>* z = new pair<int,float>;
z->first = 3;

the expression z->first is translated as:

__,ab =3
__ab$type := int
storeFieldPtr(z, z$type, "first", __ab, __ab$type)

where storeFieldPtr(z, ztype, name, y, ytype) finds the
field name in class ztype, and stores y there.

4.7 Bootstrapping the type system

It would be nice to implement the type system entirely in
C++. To see why this is hard, consider this example: the
compiler often needs to assert that a type is a pointer type.
It does this by inserting a call to a type library routine
assertIsPointer().

Suppose this assertion function were written in C++:

void assertIsPointer(type_info* t)

if (t->type == type_pointer)
return;

lunar_type_error("Expected a pointer type here");

The C++ front end has to translate this code into interme-
diate language. In translating the expression t->type, the
C++ front end will insert a check that t is in fact a pointer
type:

function assertIsPointer(t)
// Translation of t->type
assertIsPointer(t) // Infinite recursion!

// Get the type_info* for the dereferenced type

derefType__4 := readp(t, type_info_ptr.derefType)

// Read the field called "type"

[__a3, __a3$type] := readField(t, derefType__4, "typeype")

So the first time assertIsPointer() is invoked, the pro-
gram will go into an infinite recursive loop. To avoid such
problems, this bootstrapping approach is used:

e Layout of type_info classes is done in the compiler.
There are ~ 100 lines of code in the front end which
recognize that a class declaration being processed is a
type-info class, and determine the object layout (for
other classes, object layout is implemented by a type
library routine). This code handles very restricted ob-
jects: only one base class may be specified, and fields
may only be builtin types or pointers.

e Layout of other classes is deferred by generating code
as described in Section 4.6.

e Primitive types and structure operations (field accesses,
etc.) are implemented in type system modules, and
written in intermediate language IL-.

e Higher-level language features may be implemented in
C++, as long as they do not use their own language
feature in the implementation. Lunar’s C++ front end
has just reached the point where it has become possible
to implement type library routines in C++, and there
is nothing to show yet.

4.8 Reporting type errors

One problem which arises with this approach to compilation
is reporting errors: when a type error is found during partial
evaluation, can it be presented in a sensible way to the user?

Lunar religiously maintains pointers to the front end
AST representations throughout partial evaluation. Errors
found during partial evaluation are passed to the appropri-
ate front end AST node to be reported. ILo includes a
primitive error() which, if encountered during partial eval-
uation, forces an error to be reported. This primitive is used
in the type library to report type errors. One problem with
the current implementation is that type errors are reported
at their location in the type system library. It should be
straightforward for the partial evaluator to also provide the
front end with a specialization stack (analogous to a cal-
1 stack), so the location of the error in user code can be
determined.

4.9 Register selection

Another problem caused by Lunar’s approach is that the
intermediate language is typeless. Hence the back end does
not know whether a variable should be in an integer or
floating-point register. The back end uses the source point-
ers to ask the front end to recommend register types. This
works fine if the front end has done type analysis (as is the
case for Lunar’s Java front end), but Lunar’s C++ front end
does not do type analysis.

This is likely solvable by having the partial evaluator feed
information about eliminated variables to the front end; for
example, when the partial evaluator discovers that x$type
is float, it can pass this information to the front end, which
holds onto it and uses it to recommend register types for the
back end.

5 Freebies

Before discussing the compilation models which Lunar’s ap-
proach allows for C++ templates, we examine two useful
features which result from having a type system library.

5.1 Reflection— for free

One of the obvious benefits of taking this approach to com-
piling C++ is that an implementation could expose the in-
formation in the type_info classes, giving reflection “for
free”. Being able to step through and examine the fields
of an arbitrary class is very useful for implementing features
like persistence and remote method invocation.

5.2 Virtual function resolution— for free

Although not yet implemented, there is good reason to be-
lieve that this style of implementation will resolve some vir-
tual functions at compile time. In Lunar’s Java front end,
which uses a conventional type system implementation, the
partial evaluator is able to propagate the names of virtual
functions through the vtable in some circumstances, turning
dynamic dispatch into static dispatch. The C++ front end
could use the partial evaluator to similar benefit.

6 Five compilation models

So far, we have described the C++ front end as if we want-
ed to duplicate the usual compilation model for C++ tem-
plates, in which all template parameters are determined at
compile time, and template functions are specialized based
on type.

By making simple changes to the partial evaluator’s be-
havior, we can achieve a range of compilation models, each
with a different tradeoff of code size, code speed, and time
to compile (Figure 6).

Some of these models are not standard compliant, be-
cause type-checking of some template code is deferred until
run-time. These non-compliant models are proposed as ad-
ditional models to be provided by a C++ compiler, rather
than as a replacement for the standard template compilation
model.

6.1 Dynamic typing (-T0)

An obvious thing to do is not run the partial evaluator at
all. The type system library is then part of the application
at run-time, and type analysis is done on the fly as the C++
program executes.

This model allows rapid compiles: there is no template
instantiation or even type checking done. It may even
be possible to compile headers and source files separately,
provided a parser symbol table and preprocessor state are
dumped for each header file.

With dynamic typing, the program runs slower® and all
type errors are detected at run time. Even the most egre-
giously flawed C++ program will compile, so long as it can
be parsed. Our current implementation handles run-time
type errors by issuing an error message and throwing an
exception, which is typically uncaught and aborts the pro-
gram.

SAll the type analysis is being done dynamically, and all values
are boxed, which slows down execution substantially.

The dynamic typing model is suitable for scripting. Lu-
nar’s C++ front end generates ILo, which is easy to in-
terpret.” A scripting front end for C++ would read single
statements, convert them to I Lo, and interpret them.

One interesting application of the dynamic typing
model is debugging thorny template instantiation er-
rors. Template-heavy libraries are notorious for generating
bizarre compile errors several template instantiations deep
into the library. Using dynamic typing, one can load up the
debugger and run the program until the type error occurs.
Figure 7.2 shows a debugger session using the Data Display
Debugger [16] to view a template instantiation bug in dy-
namically typed C++ code compiled by Lunar. When the
type error is encountered, the debugger halts execution and
the user can browse the backtrace of template functions, ex-
amining the template parameter types for each call site. A
function in the type library called displayType() can be
used to show pretty-printed versions of template parameter
types, and the brave can use DDD’s data structure view-
er used to examine the type_info structures for template
parameters.

6.2 Dynamic typing for template code, static typ-
ing otherwise (-Tfast)

This model may be summarized as “genericity without code
bloat.” Partial evaluation is used to statically type non-
template code, but the partial evaluator is not permitted to
specialize template functions. This results in static typing
being used for non-template code, and dynamic typing being
used for template code.®

Non-template code will execute quickly, while template
code may be substantially slower. Since template function-
s are not specialized, there is only one dynamically typed
version of each template function, resulting in smaller code
sSi1ze.

Separate compilation is possible in this model, since tem-
plate instantiation is deferred until run time. It is also pos-
sible to build binary libraries — even shared libraries — con-
taining uninstantiated templates. This is partway to a so-
lution for the problem of distributing commercial template
libraries without revealing source code.

6.3 Monovariant specialization: dynamic typing
only to avoid code duplication (-Tmono)

With a closed program assumption and whole-program anal-
ysis, it is possible to generate one version of each template
function that is specialized as much as possible given the
ways in which it is used. If at all call sites, a template pa-
rameter has the same type, then the template function may
be specialized based on that template parameter.

For example, if a program used only Array<int>, the
Array<> methods would be specialized for int. However, if
the program used both Array<int> and Array<float>, the
methods of Array would be dynamically typed.

This model corresponds to monovariant specialization in
the partial evaluation world, meaning literally: one (mono)
variant of each function is allowed.

"Lunar has an an interpreter for an older version of ILg, and up-
dating this for the latest version would be straightforward.

8This model is not yet working in Lunar. Of the models described,
-TO and -Tstd work, and the -Tfast, -Tmono and -Tprof models are
still being implemented.

Option | Model Benefits Templates are Non-template code
instantiated at ... | is typed at ...
-TO Dynamic typing scripting, debugging run-time run-time
template instantiation
-Tfast | Template code is fast compile, run-time compile-time
dynamically typed; can build binary libraries
non-template code is containing templates
statically typed
-Tstd Standard template fast execution, compile-time compile-time
compilation; everything standard compliance
is statically typed
-Tmono | Up to one instance of small code size mixed compile-time
each template is allowed;
otherwise templates are
dynamically typed
-Tprof | Profile-guided template small code size mixed compile-time
instantiation: templates and fast execution
are instantiated only in
performance-critical regions

Figure 6: Five compilation models for C++ templates

In this model, there is no code bloat, and there may be
some performance benefit from whatever specialization oc-
curs. Doing monovariant specialization requires an iterative
closed program analysis, possibly impractical for large C++
applications.

6.4 Standard model: polyvariant specialization (-
Tstd)

This model implements the usual C++ template compila-
tion semantics. Function templates are specialized based on
template parameter types. This corresponds to polyvariant
specialization in the partial evaluation world.

The model is standard-compliant, and suffers from the
traditional problems of C++ compilers: separate compila-
tion requires either a disk cache of template instantiation-
s, or discarding duplicate instantiations at link time; or a
whole-program analysis is required to do instantiation at
link time.

It also shares the convergence problems of typical C++
compilers. Whether a template instantiation chain will con-
verge is undecidable; this is a property of type systems such
as C++’s, which allow types to depend on values [1]. Heuris-
tics are required to halt specialization when “too many”
specializations have been generated. One advantage of a
Lunar-style approach is that rather than halting compila-
tion in such a situation, the compiler can issue a warning
and defer instantiating the rest of the templates until run
time.

6.5 Profile-guided template instantiation (-Tprof)

This model is a straightforward application of profile feed-
back; a very similar technique — controlling procedure
cloning using profile feedback — is described in [15].°

A program is first compiled using another compilation
model and executed with a profiler. The profiler is used to
generate a list of inclusive time for each function.’® The

9Lunar does not yet provide this model, but it appears to be s-
traightforward to implement.

OInclusive time is time spent in a function and all the functions it
calls.

program is then compiled again with -Tprof. As the par-
tial evaluator encounters each template function call site, it
decides whether to specialize the function or not based on
what percentage of time was spent in that function template
and its descendents in the call graph.

The effect is to instantiate templates only in performance
critical regions — say, the functions that consume more than
10% of the run time — and avoid instantiating templates
where it would convey no performance advantage. This
provides a controllable tradeoff between efficiency and code
growth.

7 Discussion

7.1 Performance of the compiler

There remain serious unanswered questions about the com-
pile times required by this compilation model. As currently
implemented, the type system is effectively “interpreted” at
compile time by the partial evaluator. A redeeming qual-
ity is that the partial evaluator caches specializations; for
example, the first time + is used to add two numbers, the
type library routine plus and several others have to be inter-
preted to handle arithmetic type promotions and instruction
selection. However, the next time two numbers of the same
type are added, the specialized version of plus is retrieved
from the cache and inlined (this is called memoization in the
functional world).

Another aspect of Lunar’s C++ front end which hurts
performance is that it uses extensional equality to compare
types.!! It is possible that a better alias analysis would
allow the use of intensional equality for type comparisons.

In theory, some of the interpretation overhead could be
removed by using a partial evaluation trick: the second Futa-
mura projection [4] suggests that the partial evaluator could
be specialized with respect to the type system library. Given
the difficulties encountered in just getting the partial evalua-
tor to optimize away the type system library (so far = 1000
lines of code) the prospect of achieving this on the entire

11n other words, two types are equal if their type_info data struc-
tures are recursively equal. Intensional equality refers to comparing
pointers.

compiler system automatically (= 70000 lines of code) ap-
pears remote.

A more plausible approach is to translate the type library
to ILg, then write a translator to convert ILo into code
which operates over the partial evaluator’s representation
of values, heap states, and trees. This code could then (in
theory) be linked into the compiler. The type system would
then be executing as native code in the compiler, and the
main performance disadvantage would be using the partial
evaluator’s representation of heaps and values rather than
operating on native data representations.

7.2 Related work

The existence of a relationship between C++ templates and
partial evaluation was first proposed by Salomon [8], who
proposed a dialect of C using partial evaluation to achieve
C++ template-like capabilities. The relationship was later
explored in detail by [13]. This paper goes well beyond these
two by proposing a concrete compilation process which uses
partial evaluation to drive type analysis.

Staging [7, 12] is the general notion of splitting a com-
putation into several stages, each of which perform part of
the computation and produce a residual to be executed in
the next stage. Dynamic typing of statically typed code, as
used in some of Lunar’s template compilation models, may
be thought of as staged type analysis [10]. Lunar handles
template parameters using a type-passing style similar to
that of [5].

Lunar initially converts C++ to dynamically typed code,
so there is some resemblance between this approach and soft
typing [2], which is used to turn dynamically typed code into
statically typed code. Soft typing is a specialized analysis to
recover types, and does not use partial evaluation to drive
type analysis as Lunar does.

In a tenuous way, Lunar’s approach to compiling C++
can be viewed as a flavour of attribute grammar computa-
tions. Lunar only worries about a single attribute — types —
but one can imagine embedding other attributes in the inter-
mediate language as well, by inserting x$attr variables and
appropriate calls into an attribute computation library. Par-
tial evaluation can then be viewed as staging the attribute
computation so that only values are computed at run-time.

Lunar’s approach to compiling C++ may also be thought
of as an embedded type system [14], in the sense that the
type semantics of C++ are embedded in the semantics of
Lunar’s intermediate language.

References

[1] AuGusTssoN, L. Cayenne — a language with dependent
types. ACM SIGPLAN Notices 84, 1 (Jan. 1999), 239—
250.

[2] CARTWRIGHT, R., AND FAGAN, M. Soft typing. In
Proceedings of the ACM SIGPLAN ’91 Conference
on Programming Language Design and Implementation
(Toronto, ON, Canada, June 1991), B. Hailpern, Ed.,
ACM Press, pp. 278-292.

[3] ConserL, C. Binding time analysis for higher order
untyped functional languages. In 1990 ACM Confer-
ence on Lisp and Functional Programming (June 1990),
ACM, ACM Press, pp. 264-272.

10

[4] FuraAMURA, Y. Partial evaluation of computation pro-
cess - an approach to a compiler-compiler. Systems,
Computers, Controls 2, 5 (1971), 45-50.

[5] HARPER, R., AND MORRISETT, G. Compiling polymor-
phism using intensional type analysis. In Principles of
Programming Languages (San Francisco, Jan. 1995).

[6] JoNES, N. D. An introduction to partial evaluation.
ACM Computing Surveys 28, 3 (Sept. 1996), 480-503.

[7] JORRING, U., AND ScHERLIS, W. L. Compilers and
staging transformations. In POPL’86 (1986), pp. 86—
96.

[8] SaLomoN, D. J. Using partial evaluation in support
of portability, reusability, and maintainability. In Com-
piler Construction ’96 (Linkoping, Sweden, 24-26 Apr.
1996), pp. 208-222.

[9] SARKAR, V., AND KNOBE, K. Enabling sparse constant
propagation of array elements via array SSA form. Lec-
ture Notes in Computer Science 1508 (1998), 33-77

[10] SHIELDS, M., SHEARD, T., AND JONES, S. P. Dynamic
typing as staged type inference. In Conference Record of
POPL ’98: The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (San
Diego, California, 19-21 Jan. 1998), pp. 289-302.
[11] STEENSGAARD, B. Sparse functional stores for imper-
ative programs. In ACM SIGPLAN Workshop on In-
termediate Representations (IR’95) (Jan. 1995), vol. 30
(3) of SIGPLAN Notices, ACM Press, pp. 62-70.
[12] TAHA, W., AND SHEARD, T. Multi-stage programming
with explicit annotations. ACM SIGPLAN Notices 32,
12 (1997), 203-217.
[13] VELDHUIZEN, T. L. C++ templates as partial evalua-
tion. In Proceedings of PEPM’99, The ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, ed. O. Danvy, San Antonio,
January 1999. (Jan. 1999), University of Aarhus, Dept.
of Computer Science, pp. 13-18.
[14] WAND, M. Embedding type structure in semantics.
In Conference Record of the 12th Annual ACM Sym-
posium on Principles of Programming Languages (New
Orleans, LS, Jan. 1985), B. K. Reid, Ed., ACM Press,

pp- 1-6.

[15] WAY, T., AND PorLock, L. Using path spectra to
direct function cloning. In Workshop on Profile and
Feedback-Directed Compilation (1998).

[16] ZELLER, A., AND LUTKEHAUS, D. DDD - A free graph-
ical front-end for UNIX debuggers. ACM SIGPLAN

Notices 30, 12 (Dec. 1995).

i—rderefTypel—:fields[11
L — _
72 *(type_in...tr *) T1 79: *(type_in...erefType
. type =1
type =z o ; = : =
. _ ! _ - ype_infor =] size =4
<type_info> = EE_EWE =4 ntrType = Ox804d178
_ name = 0x804h483 "int"
derefType = 0x804d110 precisionRank = 3
73: *(type_in...erefType
type =5
<type_infos =| =size =4
ptrType = ...
rarme = 0x804b48? "pair”
numBaseClasses =0
] bazeClasses = ..
<type_info_class» =| paseClassOffsets = ...
numFields =2
fields = 0x804d350
numMethods =1
methaods = ...
numidi rtualMethods = 0
yirtualMethods = OxfFffffff
instance_of = 0x804d128
template_parameters = 0x804d4370

int firstipair<T1,T2:* u)
i

ireturn w—>first;

first_dolbind (3 at tempdebug

.) first) at tempdebug. cpp:i:

%nt main i assignmentConversion () at ari:
conversionError (3 at arithme

typearror {3 at arithmetic.luns

pair<int®*, float:* ¥ = new pair<int®*, floaty
int k = first(x);

fgdb) call displayTypelT1)

int*

fgdb) call displayTvpelx_daltypeld
pair<int*, float:*

fgdb) call displayType(return_doltypel
int

Figure 7: Using the Data Display Debugger [16] to debug template instantiation. The data window (top) is showing the
type_info structures for: (78) T1=int* (79) int (73) pair<int*,float>. The data display expands and collapses by clicking
to reveal fields, base classes, and other information about types. In the GDB console (bottom), the user can call the lunar
routine displayType() to show “pretty-printed” versions of types.

11

