
The Expression Problem Revisited

Four new solutions using generics

Mads Torgersen

Computer Science Department
University of Aarhus

Aabogade 34, Aarhus, Denmark
madst@daimi.au.dk

Abstract. The expression problem (aka the extensibility problem) refers
to a fundamental dilemma of programming: Can your application be
structured in such a way that both the data model and the set of virtual
operations over it can be extended without the need to modify existing
code, without the need for code repetition and without runtime type
errors.

Over the years, many solutions to this problem have been proposed,
each having different characteristics of type safety and reusability. In
this paper we present four new solutions to the problem, formulated
using the genericity mechanism of the forthcoming JDK1.5 distribution
of the Java programming language.

These solutions each highlight new ideas and approaches, and compare
well to earlier work. They rely on techniques that can be used in everyday
programming, and show new ways of building solutions with standard
and soon-to-be mainstream genericity mechanisms, which are type safe
and have very good reusability properties.

1 Introduction

A typical structure found in application programs is the one represented by the
Composite design pattern [1]: a recursive data structure defined by a number of
interrelated classes, and a set of operations with specific behaviour for each class.
The expression problem is concerned with the issue of modular extensibility of
such structures: Depending on the programming language and the organisation
of the code, it is usually straightforward to add either new data types or new
operations without changing the original program, but with the price that it is
very hard to add the other kind.

There are already many solutions to this problem, all with their own qualities
and drawbacks. This paper presents no less than four new solutions, each with
its own contributions to the subject area, and all based on the new generic
capabilities of C# and the Java programming language [2–5]. Furthermore we
establish a terminology framework for assessing the multitude of solutions, using
this to compare with a number of previous approaches.



1.1 The expression example

Although the issue has been known for many years, the expression problem was
named thus by Philip Wadler in 1998 [6] in reference to a classical domain in
which programming language implementors often encounter it: when represent-
ing expressions of a language, along with operations to manipulate them, it is a
very real dilemma whether to favor future extension with new expression kinds
or new operations over them.

In this paper we shall follow the tradition and use as a running example a
processor of a (very!) simple language with the following grammar:

Exp ::= Lit | Add
Lit ::=non-negative integer
Add ::=Exp ‘+’ Exp

We name the language ale from the initials of its constituent categories. Along
with a representation of the data itself, from the outset the processor is to im-
plement a print() operation to show expressions on screen.

To examine the expression problem we shall then want to try out different
representations of ale in the context of two “future” extensions: with a new
operation, eval(), to evaluate expressions, and with a new kind of expression
Neg :

Exp ::= ... | Neg
Neg ::= ‘−’ Exp

Of course this is a toy example, limited to the minimum necessary to illustrate
the points in the paper. Given the small amount of application logic involved,
it may seem that the amount of infrastructure needed in the examples is over-
whelming in comparison. But one should keep in mind that real applications will
involve a much large proportion of application logic. Also, “legacy” client code
of a Composite structure can also made reusable by a nondestructive extension,
and is therefore likely to constitute another major bulk of code that is spared
the need to be hand updated or recompiled.

1.2 The extensibility dilemma

Given, in the manner of the Composite design pattern, a number of recursively
defined classes describing the data, there are basically two ways of structuring the
description of the operations around them, each with extensibility consequences:

Data-centered: Each operation may be defined as a virtual method in the
common base class of the data, and overwritten in each specific data class.
This is the straightforward object-oriented approach, and has the modular
property that a new class may be easily added without modifications to
the existing code. Adding a new operation, however, involves modifying ev-
ery single data class to implement the data specific behaviour of the new
operation.



Operation-centered: Instead the code may be structured according to the
Visitor design pattern [1]: Each operation is represented by a separate visitor
class, containing handler methods (or visit methods) for each datatype. All
data classes are equipped once and for all with an accept method which
calls the appropriate visit method of a given visitor with the data object
itself as an argument. This structuring makes the data classes invulnerable
to the addition of new operations in the form of new Visitor classes, but
unfortunately the addition of a new data class requires all the visitor classes
to extend their fixed list of visit methods so that they can deal with the new
kind of data.

A straightforward data-centered implementation of ale may look as in Fig-
ure 1. In order to use the code we just have to build instances of the data classes
and start calling print() on them.

interface Exp {
void print();

}

class Lit implements Exp {
public int value;
Lit(int v) { value = v; }
public void print() { System.out.print(value); }

}

class Add implements Exp {
public Exp left, right;
Add(Exp l, Exp r) { left = l; right = r; }
public void print() { left.print(); System.out.print(’+’); right.print(); }

}

Fig. 1. A class-based implementation

As can be seen in Figure 2, an operation-centered implementation requires
a bit more setup. To use the implemented functionality, when we have created
appropriate instances we have to call their accept() method with an instance of
the AlePrint visitor class in order to get the desired output.

Adding a Neg expression to the data-centered code calls for a new data class
which just has to implement the print() method. This requires no change to the
existing code. In the operation-centered implementation, however, all existing
visitor classes must be modified to contain a visitNeg() method, breaking the
modularity of the extension .

When adding the eval() operation the situation is reversed. In the visitor-
based implementation the operation easily fits in as a new AleEval visitor, but
as a virtual eval() method it would have to be added to all classes of the data-
centered implementation.



interface Exp {
void accept(AleVisitor v);

}

class Lit implements Exp {
public int value;
Lit(int v) { value = v; }
public void accept(AleVisitor v) { v.visitLit(this); }

}

class Add implements Exp {
public Exp left, right;
Add(Exp l, Exp r) { left = l; right = r; }
public void accept(AleVisitor v) { v.visitAdd(this); }

}

interface AleVisitor {
void visitLit(Lit lit);
void visitAdd(Add add);

}

class AlePrint implements AleVisitor {
public void visitLit(Lit lit) { System.out.print(lit.value); }
public void visitAdd(Add add) {

add.left.accept(this); System.out.print(’+’); add.right.accept(this);
}

}

Fig. 2. A visitor-based implementation

Thus, either choice seems to paint us into a corner, and that is the core of
the expression problem. The approach of most solutions is to take one of the
above structuring principles as a starting point, and then use various tricks and
language constructs to “loosen up” the dilemma. Of the new solutions in this
paper, the first is fundamentally data-centered, whereas the second and third
(which are closely related) are operation-centered. The fourth solution, however,
is a genuine hybrid, using both approaches in one implementation.

1.3 A note on code examples

Minimal as the solution examples may be, this is a paper about the structuring
of code, and very often the twist undermining a whole approach is hidden in one
of those minuscular details that one is tempted to gloss over in presentations.
Thus, in the interest of verifiability we have chosen to show the full code for the
different solutions.

The solutions are all presented using the familiar syntax of the Java program-
ming language, with the generic enhancements scheduled for the next release



(JDK1.5) of the Java platform. The java source code for the solutions can be ac-
cessed at www.daimi.au.dk/~madst/ecoop04. In the interest of uniformity, this
is the case even for the fourth solution, which in fact does not work as-is in a Java
setting, where runtime information of generic types is lacking, but would in the
generic framework being added to C#. This solution has been hand-translated in
a straightforward fashion, to obtain a slightly less elegant but still working solu-
tion in Java. The solutions have all been compiled and tested with the prototype
compiler available for evaluation from Sun Microsystems at developer.java.
sun.com/developer/earlyAccess/adding_generics/index.html. Any errors
are thus due to the formatting process.

1.4 Contributions

This paper makes the following contributions:

– A terminology framework for characterizing and evaluating solutions to the
expression problem

– The first type-safe data-centered solution using only standard generic fea-
tures as found in Java.

– The first type-safe operation-centered solution using only standard generic
features as found in Java. This includes a clean solution to a long-standing
self-typing problem which has been a recurring showstopper in previous at-
tempts using this approach.

– The first application of wildcards [7] in a solution, and thereby the first type
safe solution that we know of allowing reusability of the actual expression
objects across extensions.1

– A new hybrid approach with very strong reusability properties.

1.5 Overview of the paper

The following section defines and discusses a number of properties important
to evaluate the different approaches to the expression problem. The next four
sections develop and examine as many solutions, which in Section 7 are then
compared to a once-popular brand of solutions using, or being inspired by, virtual
classes. Section 8 concludes.

2 Solutions

Many solutions to the expression problem have been proposed over the years.
On close scrutiny they differ considerably in their requirements to the language
context, as well as in the degree of extensibility they offer, and the limitations
they impose. In this section we set up a framework of terminology which can
help to assess the characteristics of the many different solutions.

But first of all, let us define exactly what we mean by a “solution”:
1 The referenced paper [7] on wildcards is accepted for publication at ACM SAC 2004,

but note yet published. It can be accessed at www.daimi.au.dk/~madst/wildcards.
pdf



A solution to the expression problem is a combination of
– a programming language
– an implementation of a Composite structure in that language, and
– a discipline for extension

which allows both new data types and operations to be subsequently added
1. any number of times
2. without modification of existing source code
3. without replication of non-trivial code
4. without risk of unhandled combinations of data and operations

This definition is somewhat looser than the one given by Philip Wadler in [6].
For one thing, he requires extensions to be made without the need to recompile
existing source code, whereas we contend ourselves with the source code not
being changed. Thus we include more approaches in the solution space, because
some of these are realistic and interesting. In return, however, below we classify
the different solutions according to their degree of robustness – their “level of
extensibility”.

Another important difference is that Wadler includes only completely type
safe (i.e. cast free) solutions. We have weakened this requirement to state that
the solution must handle all combinations.

In his description of the expression problem [8], Kim Bruce goes a bit in the
other direction from our definition, being content with “rewriting as little code
as possible”, whereas we stand firm on “no modifications”. In practise, however,
his paper is concerned primarily with non-modifying solutions.

2.1 Language context

The expression problem is in fact not specific to an object-oriented setting, but
has been widely discussed also in functional languages. Here, the straightforward
solution is to declare an algebraic datatype over the nodes and use type-casing
(i.e. pattern matching) functions to express the operations. This is equivalent
to the visitor-based solution above, in the sense that it is hard to add new data
types modularly, whereas operations are easy. To complete the picture, functional
languages may simulate the object-oriented approach using closures, so the same
dichotomy of operation versus data extensibility remains.

There are some important differences, however, because functional solutions
do not have to deal with statefulness and subclass substitutability. That this can
have an impact on the solution is witnessed e.g. by the proposals in [8], many
of which depend on a restriction of subclass substitutability for type safety. It is
therefore not obvious that solutions from the functional world translate well to
an object-oriented counterpart, and in this paper we will look only at proposals
dealing with an object-oriented context.

Even so, most approaches depend strongly on the precise set of language
constructs available in their environment, and oftentimes new mechanisms are
proposed specifically for dealing with the expression problem. Examples include
“deep subtyping” [6], “classgroups” [8] and “extensible algebraic datatypes” [9].



All solutions in this paper use general-purpose language mechanisms that
are, or will be, mainstream. They all depend on the use of generic classes, which
are being added to both the Java programming language and C#. The third
solution furthermore makes use of the wildcard mechanism which occurs only in
the Java implementation of generics, whereas the fourth solution makes use of
runtime reification of type variables, which only occurs in the C# version.

2.2 Level of extensibility

A very important characteristic is the degree of reuse of existing code offered by
the various approaches. To qualify as a solution we require that extensions fully
reuse nontrivial application logic from the extended code. Thus, there should be
no need to duplicate code except for whatever “scaffolding” is needed to set up
the extension. We refer to this property as source-level extensibility.

As noted above, the definition in [6] requires that existing code need not
even be recompiled. This is a much stronger requirement and clearly broadens
the applicability of the solution. For instance, recompilation is a big problem in
widely distributed code, on which independent third party operations have to
be able to interact. We call this degree of reuse code-level extensibility. All the
solutions in this paper have this property.

Additionally however, it is highly desirable that the data structures them-
selves, which may be large, persistently stored or part of an application that
cannot be allowed to terminate and restart because of the extension, may con-
tinue to be usable after the extension has taken place. Thus, we want the objects
created before the extension to survive and remain compatible afterwards. We
call this property object-level extensibility. The third and fourth of our solutions
in this paper have that property.

2.3 Generative programming

Recent years have seen a flourishing of so-called generative approaches to pro-
gramming, in which higher level source code is used to direct the generation or
manipulation of base level source code. A popular example is aspect-oriented
programming, which e.g. allows extra methods to be added to a class from a
separate unit of source code. This clearly solves the expression problem (in our
definition), but leads to an under-the-hood mangling of the original class, that
requires recompilation to a binary format.

In general, any discipline of destructive modification of a source code text
can be automated, and thus turned into a generative approach. Of course an
automated approach may be more safe than hand-editing, since it can be made
to check that various invariants are maintained.

While generative programming seems to have its uses, it does however suffer
from the need to deploy new binary code for every extension, a very contagious
property. For the remainder of the paper we shall focus on the more challenging
issues of code-level and object-level extensibility.



2.4 Basic Approach

All proposals that we know of take as a starting point either a data-centered ap-
proach, making it hard to add new operations, or an operation-centered (visitor-
based) approach, making it equally hard to add new data types. The choice may
depend on various language specific issues, but one thing is certain: If object-level
extensibility is desired, then the data-centered approach must be ruled out. This
is because the addition of operations will then require new virtual methods to
be added to all the classes representing data, e.g. by the use of subclassing. Old
data objects created from the unmodified classes will not have the new methods,
and will therefore not support the new operations.

With the operation-centered approach, however, there is hope that existing
objects can be made to work with newly added or extended visitors. Of course,
the converse restriction exists, that old visitor objects cannot survive the addition
of new data types, because they have no appropriate visit method. But this
problem is diminutive in comparison, as visitors represent operations, and we do
not expect those to be lasting, just as we do not expect to reuse the activation
record of a method call.

Our first solution examines the data-centered approach, whereas the second
is operation-centered. The third solution enhances the second in a manner that
allows for object level extensibility with some drawbacks, whereas the fourth
solution ventures a new hybrid approach which allows both data components
and visitor objects to be reused across extensions.

2.5 Extension graph

Most solutions assume that extensions happen linearly, one after the other, and
that a given extension knows about the previous version. One might well imagine,
however, that a given piece of software is extended independently by two different
parties, and that one might later want to merge them.

The approach in [9] relies heavily on a linear extension discipline, because
dispatching method calls are chained all the way up through the extension path.
There it is argued that a merge is rarely needed in practise, and that it can be
handled by other means.

Our extension approaches rely on subclassing, and a merge of multiple ex-
tensions would require the inheritance mechanism to also be multiple. Thus the
Java versions in this paper are restricted to linearity, but in other languages (or
dialects with e.g. mixins [10]) they might not be.

2.6 Surrounding code

An important but often overlooked aspect of solutions is the effect they have
on the reusability of the surrounding code. There are two main sorts of external
code that depend on the implementation of the Composite structure itself:



Creation code: The part of the application that is in charge of actually pro-
ducing instances of the datatype classes. If a solution relies on defining new
data types for each extension, then new constructors need to be called. An
approach in this situation would be to use the Abstract Factory pattern [1]
and provide a new factory for each extension.

Client code: The code that calls the operations on the datatype classes. If the
operations are represented by visitors, which get subclassed by new exten-
sions, then we have the dual situation to the one described for creation code,
and an approach providing visitor factories would be the way to obtain reuse
of the client code.

Furthermore, both types of external code will have to be type parameterised,
if the classes they depend on are. In the following sections we will not explicitly
divulge in the impact on external code of the solutions applied, but it should
be clear that the non-parameterised, non-stratified fourth solution is easier to
program around, than e.g. the first one, sporting an abundance of F-bounded
type parameters. The full code which has been used to test these approaches
includes factories and similar infrastructure as described above, as well as simple
creation and client methods which are reused across extensions, in order to
demonstrate the extensibility of surrounding code. As mentioned in Section 1
this Java code can be downloaded from www.daimi.au.dk/~madst/ecoop04.

2.7 Type safety

As noted above, Wadler requires full type safety of solutions. The reality is,
however, that a number of approaches make use of type casts, but provide other
interesting perspectives on the problem. For instance, [11] deals with the issue
of visitors recursively creating new visitors in the context of extension, and [9]
focuses on providing default behaviour for unimplemented cases of operations.
Neither is fully statically type safe, yet we wish to include those for comparison,
rather than a priori branding them as irrelevant. To minimise the danger, both
of these approaches propose language extensions handled by preprocessing, to
ensure that casts are inserted using a safe discipline.

Furthermore, [9] makes use of defaults to handle the situations that “fall
through” due to the lack of static safety, so that operations are called on data
for which they are not defined. It is argued that this approach is useful in the
setting they have investigated, an extensible compiler for Java-like languages.
However, it is not obvious that there will always be a sensible default action for
unhandled nodes in other domains.

While the first three of our solutions in this paper are statically typed, the
fourth one resorts to runtime type checks in exchange for other benefits. The
casts occur only in an initial dispatching framework, so there is no need for
special language constructs to “keep the discipline”. The solution uses defaults
for unhandled expressions, so just like in [9] the casts are guaranteed not to
cause runtime type errors.



3 A data-centered approach

We may note that the data-centered version of ale in Figure 1 is considerably
simpler than the visitor-based one in Figure 2, and perhaps more appealing from
an object-oriented point of view. In this section we therefore investigate what it
takes to equip it for code-level extensibility, and what the major challenges are.

Adding new kinds of data does not pose an immediate problem in this setting;
what we have to deal with is how to add a new virtual method to all members of
the type hierarchy. In our specific example, we wish to add an eval() method to
the Exp interface and the classes Lit and Add. We can achieve this nondestruc-
tively by introducing a new interface EvalExp extending the Exp interface with
an eval() method. New versions of Lit and Add must then extend the old ones
while implementing the new interface. This will lead to e.g. a new class EvalAdd
of the following form:

class EvalAdd extends Add implements EvalExp {
public int eval() { return left.eval()+right.eval(); }

}

Immediately we are in trouble: the inherited instance variables left and right are
of type Exp, and therefore do not have an eval() method to call recursively. Thus,
the compiler fails to type check the above code.

As also pointed out in [8], we can attempt to address this with genericity:
we may parameterize expressions with the type of their children. While Add will
allow its type parameter to be any kind of Exp, EvalAdd may then restrict it to
be a kind of EvalExp, thus ensuring that its children also have an eval() method.
In both cases, the children must have the same childtype as their parents, which
we arrange by making use of F-bounds in the declarations of the type variables
i.e., the type variable occurs in its own bound. Figure 3 shows the parameterized
code for ale.

The extension with an eval() operation can now be undertaken in a type safe
manner: in Figure 4, EvalAdd not only adds an eval() method implementation,
but also expects a child type parameter that extends EvalExp.

Thus, a type safe extension has been achieved. The type bookkeeping is over-
whelming, however, and it can be hard to spot the few lines of actual application
logic. But there is one more twist: because all the classes are F-bounded, there
does not at this point exist any class or interface that can be used as a type
parameter for them.

In a manner typical of programming with F-bounds, we first have to create a
new set of nongeneric subclasses that fix the F-bound on themselves. This has to
be done for every layer of extension that needs to be used in actual application
code, since there is no other way of getting to construct instances of the classes.
For the evaluation extension, the fixing classes can be seen in Figure 5.

The classes, having empty bodies, add no new semantics to our application,
but simply “tie down” the F-bounds. Finally, then, we have a set of eval()-
enabled classes that can be instantiated in application code like this:



interface Exp〈C extends Exp〈C〉〉 {
void print();

}

class Lit〈C extends Exp〈C〉〉 implements Exp〈C〉 {
public int value;
Lit(int v) { value = v; }
public void print() { System.out.print(value); }

}

class Add〈C extends Exp〈C〉〉 implements Exp〈C〉 {
public C left, right;
Add(C l, C r) { left = l; right = r; }
public void print() { left.print(); System.out.print(’+’); right.print(); }

}

Fig. 3. A data-centered implementation of ale with code-level extensibility

interface EvalExp〈C extends EvalExp〈C〉〉 extends Exp〈C〉 {
int eval();

}

class EvalLit〈C extends EvalExp〈C〉〉 extends Lit〈C〉 implements EvalExp〈C〉 {
EvalLit(int v) { super (v); }
public int eval() { return value; }

}
class EvalAdd〈C extends EvalExp〈C〉〉 extends Add〈C〉 implements EvalExp〈C〉 {

EvalAdd(C l, C r) { super (l,r); }
public int eval() { return left.eval()+right.eval(); }

}

Fig. 4. An extension of Figure 3 with eval() methods

interface EvalExpF extends EvalExp〈EvalExpF〉 {}
class EvalLitF extends EvalLit〈EvalExpF〉 implements EvalExpF {}
class EvalAddF extends EvalAdd〈EvalExpF〉 implements EvalExpF {}

Fig. 5. Fixed point classes for the F-bounds in Figure 4



EvalExpF e1 = new EvalLitF(2);
EvalExpF e2 = new EvalLitF(3);
EvalExpF e3 = new EvalAddF(e1,e2);
e3.print(); System.out.println(” = ” + e3.eval());

This is a type-safe data-centered code-level-extensible solution to the expression
problem, and indeed the first in the literature to use only standard generics.
Yet, the reader will have noticed that the initial simplicity of the data-centered
approach has disappeared.

Using the techniques of the Abstract Factory design pattern, we can limit
the complexity of object creation in this approach to the extension code itself,
and keep it out of surrounding creation code. The following method, taken from
the online code examples for this paper, demonstrates the point:

static 〈C extends Exp〈C〉〉 C build(AleFactory〈C〉 f) {
return f.makeAdd(f.makeLit(2),f.makeLit(3));
}

The method builds up a specific expression tree without heed to the operations
its nodes contain. It is reusable across extensions because it is parameterized
over the two kinds of things that extensions alter: The base expression type and
the creation procedure for its instances.

4 An operation-centered approach

Given the unexpected complexity of the data-centered solution, we now turn to
the other, initially more complex viewpoint of the operation-centered approach.
Starting from the visitor-based version of the ale code in Figure 2, the hard
problem now is to extend the language to nale by adding an additional datatype
Neg representing negation.

The argument runs somewhat dual to the data-centered approach: If we add
the Neg class, we need to extend our visitors to handle it, and we can do so
nondestructively only by subclassing:

interface NaleVisitor extends AleVisitor {
void visitNeg(Neg neg);

}
class NalePrint extends AlePrint implements NaleVisitor {

public void visitNeg(Neg neg) {
System.out.print(’−’); neg.exp.accept(this);

}
class Neg implements Exp {

public Exp exp;
public void accept(AleVisitor v) { v.visitNeg(this); }

}

Again we are in type checking trouble: this time the culprit is the accept() method



of Neg, which expects an AleVisitor rather than a NaleVisitor. It has to, in order
to implement the accept() method of Exp, but this means that v is not known
to have a visitNeg() method.

Again we may resort to type parameterization of the datatype hierarchy in
order to allow the accept() method of Neg to expect more of its visitor than its
fellow expression types. Note however, that this time the data classes are not
parameterized with themselves, which was what lead to all the hassle with F-
bounds in the previous solution, but rather with the kind of Visitor they accept().

In the visitor classes, the visit methods must adjust to the fact that the classes
they visit are now parameterized. We can obtain this by parameterizing the visit
methods themselves over the visitor type of their argument expressions. For Add
and its corresponding visit method in AlePrint, we would expect something like
this to work:

class Add〈V extends AleVisitor〉 implements Exp〈V〉 {
public Exp〈V〉 left, right;
public void accept(AleVisitor v) { v.visitAdd(this); }

}
class AlePrint implements AleVisitor {

...;
public 〈V extends AleVisitor〉 void visitAdd(Add〈V〉 add) {

add.left.accept(this); System.out.print(’+’); add.right.accept(this);
}

}

Surprisingly, however, this does not type check. Because now the AlePrint visitor
does not know that the children of add will actually accept() it. All we know
from the signature of the visitAdd() method is that they will accept V’s, but we
do not know at this point in the code that this is a V.

It is, though. Because of the structure of the Visitor pattern, visitAdd() is
invoked only from a single point in the whole program, and that is in the accept()
method of Add. There, we do know that the visitor called is one that both the
Add object itself and its children are able to accept(), simply because the children
by definition accept the same visitor type V as their parent. So how can we pass
this knowledge on to the visitAdd() method?

No amount of F-bounded self-parameterization of the visitor classes will help
us here. It is a well known shortcoming of F-bounds that they cannot express
true self types. To the best of our knowledge there is no way in the generic type
system of the forthcoming Java release to get ‘this’ in the visitAdd() method
typed as a V.

This is where [8] has to give up, and as we shall see in Section 7, other
approaches have broken down because of variations of this obstacle.

There is a trick, however, which, considering the pain caused by this hurdle,
is provocatively simple. We observe that, although the visitAdd() method of
AlePrint needs a V object to work on, it does not need to know that this object
is indeed this object. We may therefore simply add as an extra argument to



visitAdd() the visitor to use for recursive calls, and then let the accept() method
of Add pass the visitor object to itself in the call of visitAdd(). The full ale
implementation with this approach is shown in Figure 6.

interface Exp〈V extends AleVisitor〉 {
void accept(V v);

}

class Lit〈V extends AleVisitor〉 implements Exp〈V〉 {
public int value;
Lit(int v) { value = v; }
public void accept(V v) { v.visitLit(this); }

}

class Add〈V extends AleVisitor〉 implements Exp〈V〉 {
public Exp〈V〉 left, right;
Add(Exp〈V〉 l, Exp〈V〉 r) { left = l; right = r; }
public void accept(V v) { v.visitAdd(this, v); }

}

interface AleVisitor {
〈V extends AleVisitor〉 void visitLit(Lit〈V〉 lit);
〈V extends AleVisitor〉 void visitAdd(Add〈V〉 add, V self);

}

class AlePrint implements AleVisitor {
public 〈V extends AleVisitor〉 void visitLit(Lit〈V〉 lit) {

System.out.print(lit.value);
}
public 〈V extends AleVisitor〉 void visitAdd(Add〈V〉 add, V self) {

add.left.accept(self); System.out.print(’+’); add.right.accept(self);
}

}

Fig. 6. An operation-based implementation of ale with code-level extensibility

Despite its simplicity, this trick is one of the major contributions of this paper,
because it finally moves the visitor-based approach to the expression problem
into the realm of static type safety.

Finally we now have the scaffolding needed to extend the set of expressions
with a Neg class, using the same trick once more for the visitNeg() method. See
Figure 7 for the full code.

5 Object-level extensibility using wildcards

The solution above effectively divides the node classes of the different phases
into separate, incompatible families, each characterized, in the form of a type



class Neg〈V extends NaleVisitor〉 implements Exp〈V〉 {
public Exp〈V〉 exp;
Neg(Exp〈V〉 e) { exp = e; }
public void accept(V v) { v.visitNeg(this, v); }

}

interface NaleVisitor extends AleVisitor {
〈V extends NaleVisitor〉 void visitNeg(Neg〈V〉 neg, V self);

}

class NalePrint extends AlePrint implements NaleVisitor {
public 〈V extends NaleVisitor〉 void visitNeg(Neg〈V〉 neg, V self) {

System.out.print(”−(”); neg.exp.accept(self); System.out.print(”)”);
}

}

Fig. 7. An extension of Figure 6 adding a Neg class

parameter, by the specific brand of Visitor they are capable of accepting. Wild-
cards, a new mechanism to appear with generics in the forthcoming version of
the Java platform (JDK1.5/Tiger), aim at allowing the programmer to bridge
the gap between such separate families of classes [7]. Wildcards (represented by
questionmarks) abstract over different instantiations of a given parameterized
class, guided by given bounds on the type parameters. For instance

Exp〈? super NaleVisitor〉 e;

declares a variable e which may contain objects of type Exp〈T 〉 for any T that
is a supertype of NaleVisitor. Thus, it may for example be assigned an instance
of Add〈AleVisitor〉. To maintain static type safety, the type rules for wildcards
impose certain restrictions on method calls, but none of these apply in the given
situation.

To obtain object-level extensibility, we should be able to continue to use old
ale expression trees after an extension to nale has occurred. Already, Nale-
Visitors can be accepted by instances of Exp〈AleVisitor〉, simply because of sub-
classing. However, we would like for the old trees also to be usable as subtrees
of new composite expressions, e.g., of Add〈NaleVisitor〉. We can obtain this by
using wildcards in the types of children:

class Add〈V extends AleVisitor〉 implements Exp〈V〉 {
public Exp〈? super V〉 left, right;
public void accept(V v) { v.visitAdd(this, v); }

}

Defining composite nodes like this, subtrees with a more general visitor type than
V are allowed. As a consequence, not only can we reuse old trees, but we also lift
the requirement on leaf nodes to have a type parameter they do not use, only



for the purpose of being allowed into the company of like-parameterized classes.
Thus, with a few minor changes, in Figure 8 we have modified the solution of the
previous section to provide object-level extensibility. Figure 9 shows the modi-
fied Neg extension. Only the Neg class itself has changed, the visitors are as in
Figure 7.

interface Exp〈V extends AleVisitor〉 {
void accept(V v);

}

class Lit implements Exp〈AleVisitor〉 {
public int value;
Lit(int v) { value = v; }
public void accept(AleVisitor v) { v.visitLit(this); }

}

class Add〈V extends AleVisitor〉 implements Exp〈V〉 {
public Exp〈? super V〉 left, right;
Add(Exp〈? super V〉 l, Exp〈? super V〉 r) { left = l; right = r; }
public void accept(V v) { v.visitAdd(this, v); }

}

interface AleVisitor {
void visitLit(Lit lit);
〈V extends AleVisitor〉 void visitAdd(Add〈V〉 add, V self);

}

class AlePrint implements AleVisitor {
public void visitLit(Lit lit) { System.out.print(lit.value); }
public 〈V extends AleVisitor〉 void visitAdd(Add〈V〉 add, V self) {

add.left.accept(self); System.out.print(’+’); add.right.accept(self);
}

}

Fig. 8. A modification of Figure 6 using wildcards to obtain object-level extensibility

There is a price to pay for this change, though: With the wildcard type on
child nodes, we loose the exact knowledge about the child type of the children
themselves – the “grandchild type” as it were. Thus, it is effectively disallowed
to write into them anything other than expressions of the original unextended
framework, in this case Exp〈AleVisitor〉s. This means that we cannot in general
write visitors that change the structure of a given tree. If we could, we might
accidentally store new nale nodes inside old ale trees, and any code still using
old AleVisitors would be prone to a runtime type error when traversing it.

Depending on the type of application, this limitation may or may not be a
problem. In compilers for programming languages, it is rare to see a destructive
update of the structure of syntax trees. However, in a small step evaluator for



class Neg〈V extends NaleVisitor〉 implements Exp〈V〉 {
public Exp〈? super V〉 exp;
Neg(Exp〈? super V〉 e) { exp = e; }
public void accept(V v) { v.visitNeg(this, v); }

}

Fig. 9. An extension of Figure 8 adding a Neg class. Visitors are identical to Figure 7
and have been omitted

e.g., lambda expressions, tree manipulation is at the core of the semantics, and
this restriction would be a real showstopper.

The surrounding code is where we reap the benefits of this approach: code
written at a certain time may keep global references to expressions around, which
stay valid even across extensions. Old code will continue to work, and new code
is sure not to violate the integrity of the old expression objects. Thus extension
is a much less destructive endeavour than in the previous approaches.

6 A hybrid approach

We now turn to a completely different approach. The solution presented here
is based on the following idea: if using either a data-centered or an operation-
centered approach leads to so much difficulty, can we find a sweet spot in be-
tween?

More precisely, one might view the extensibility problems with both ap-
proaches as deriving from the need to “backpatch” existing code when new is
added. Virtual methods avoid backpatching of operations when data types are
added, whereas visitors avoid backpatching of data types when operations are
added. So why not combine these approaches to use virtual methods when adding
data types, and use visitors when adding operations?

This would require any given operation to be represented both as a virtual
method and a visitor. When a new operation is added, it provides functionality
for existing data types by means of a visitor, but it also defines a new specialized
expression interface with the operation added as a method. Subsequently added
data types must then implement this interface, and furthermore provide a new
specialized visitor interface with visit methods for the new data types.

This approach is attractive because both data and visitor instances remain
valid across new extensions. Compared to the previous solution, which used
wildcards to soften the boundaries between the type families originating from
the different phases of extension, in this approach there are no separate families.
As a result there is no need for type parameterization of child types of composite
nodes, wherefore the limitations of the wildcard approach on modification of the
tree structure are gone.

This sounds almost too good to be true, and sure enough there is a major
catch: we cannot implement it without casts. The hard part turns out to be the



dispatch of operation calls. Given an expression and a visitor object, we need to
figure out whether the operation:

– should be called as a method on the expression,
– should be called as a visit method on the visitor, or
– neither apply and we need to call a default method on the visitor.

We have been able to think of nothing better than to use type tests (using
instanceof in Java) for this dispatch. To stop the type unsafe code from spilling
out all over the extensions, we parameterize visitors with the kind of data types
having the corresponding operation as a method, and we parameterize data types
with the kind of visitors that have visit methods for them. In this way we can
implement the type testing once and for all in a framework of base classes, as
can be seen in Figure 10.

interface Exp {
void handle(Visitor v);

}

interface Visitor {
void apply(Exp e);
void default(Exp e);

}

abstract class Node〈V extends Visitor〉 implements Exp {
public final void handle(Visitor v) {

if (v instanceof V) accept((V)v);
else v.default(this);

}
abstract void accept(V v);

}

abstract class Op〈E extends Exp〉 implements Visitor {
public final void apply(Exp e) {

if (e instanceof E) call((E)e);
else e.handle(this);

}
abstract void call(E e);
public void default(Exp e) {

throw new IllegalArgumentException(”Expression problem occurred!”);
}

}

Fig. 10. A dispatch framework for a hybrid solution with full object-level extensibility

The dispatch starts with the apply() method of visitors. It is implemented in
the abstract Op class (which all concrete visitors will extend) to call the proper



method on its argument expression, if it exists, or otherwise ask the expression
to do the dispatch using the handle() method. This in turn will check if the
visitor has a proper visit method, or otherwise call the default() method of the
visitor, which, by default, throws an exception.

Figure 11 shows how ale can be implemented in this framework. The ex-
pression classes implement the print() operation using the class-based approach,
but also have accept() methods to deal with future additions. The Print visitor,
on the other hand, is trivial, since no expression will ever need a visit() method
on it. An AleVisitor interface is provided for future extension.

interface PrintExp extends Exp {
void print(Print print);

}

class Print extends Op〈PrintExp〉 implements Visitor {
void call(PrintExp e) { e.print(this); }

}

class Lit extends Node〈AleVisitor〉 implements PrintExp {
public int value;
Lit(int v) { value = v; }
public void print(Print print) { System.out.print(value); }
void accept(AleVisitor v) { v.visitLit(this); }

}

class Add extends Node〈AleVisitor〉 implements PrintExp {
public Exp left, right;
Add(Exp l, Exp r) { left = l; right = r; }
public void print(Print print) {

print.apply(left); System.out.print(’+’); print.apply(right);
}
void accept(AleVisitor v) { v.visitAdd(this); }

}

interface AleVisitor extends Visitor {
void visitLit(Lit lit);
void visitAdd(Add add);

}

Fig. 11. A hybrid implementation of ale based on the framework of Figure 10

In Figure 12 an eval() operation is added. It provides visit methods for the
already existing data classes, and an interface EvalExp for future extension.

The addition of a Neg class in Figure 13 is quite symmetric to this. Methods
are implemented for existing operations, and a NaleVisitor defined for future
extension.



class Eval extends Op〈EvalExp〉 implements AleVisitor {
int result;
public final int eval(Exp e) { apply(e); return result; }
void call(EvalExp e) { result = e.eval(this); }
public void visitLit(Lit lit) { result = lit.value; }
public void visitAdd(Add add) { result = eval(add.left) + eval(add.right); }

}

interface EvalExp extends PrintExp {
int eval(Eval eval);

}

Fig. 12. An extension of Figure 11 with an eval() operation

class Neg extends Node〈NaleVisitor〉 implements EvalExp {
public Exp exp;
Neg(Exp e) { exp = e; }
public void print(Print print) {

System.out.print(”−(”); print.apply(exp); System.out.print(”)”);
}

public int eval(Eval eval) { return −eval.eval(exp); }
void accept(NaleVisitor v) { v.visitNeg(this); }

}

interface NaleVisitor extends AleVisitor {
void visitNeg(Neg neg);

}

Fig. 13. A further extension of Figure 12 with a Neg class

In the forthcoming release of the Java platform, it is not possible to use casts
and the instanceof operation on type variables. This is one of the few essential
differences between the generic frameworks of C# and the Java programming
language, and comes down to differences in implementation techniques. In this
case, however, the limitation in Java is not grave. We can simulate the two
operations by adding the following methods to the Node class:

abstract boolean isV(Visitor v);
abstract V asV(Visitor v);

and the following methods to the Op class:

abstract boolean isE(Exp e);
abstract E asE(Exp e);



Both must be implemented in the subsequent concrete specialisations of the
two classes, when the type parameters are fixed to specific classes on which the
runtime type operations work.

Reuse of surrounding code in this approach is almost for free. Creation code
just instantiates the data classes directly. Client code may directly instantiate
operation objects, and apply() them to expression objects. Both data and visitor
objects may be kept around as global data, and will still work when new data
and operation types are added.

In summary, the previous three approaches allow the extender of the data
types and operations the safety of a type checked extension discipline, while
putting a certain burden of parameterization on the user of these structures,
along with limitations on object reuse. The present solution requires more disci-
pline of the extender, who must make sure to always extend the latest previous
version, without the aid of the type checker. But in return it completely liber-
ates the user from the worries of the expression problem, essentially allowing
any usage patterns of the naive non-extensible approaches of Figure 1 and 2.

7 Approaches based on virtual classes

Philip Wadler’s formulation of the expression problem, referred to in Section 2,
actually came with a solution. The note itself was part of a discussion forum
known as the Java genericity mailing list [12], where the expression problem was
discussed as an application for different genericity mechanisms. Wadlers solution
was one of a couple which were inspired by the virtual classes of Beta [13], and
was based on a speculative extension of GJ [3] with “deep subtyping”, which
allowed inner classes to behave as virtual classes in certain specific situations.
Very similar solutions were proposed by Thorup and Torgersen, based on a
full inclusion of virtual classes in Java [14], by Ernst, involving an extension
of Beta called gbeta [15], and by Bruce, involving a language construct called
“classgroups” which again were a close cousin of virtual classes [8].

All these proposals were based on the idea of letting all the expressions and
visitors of a given language, such as ale, be possibly virtual (i.e. overridable)
classes nested in a surrounding class representing the language itself, along the
following lines:

class Ale {
interface Exp { void accept(Visitor v); }

class Lit implements Exp { ... }

virtual interface Visitor { void visitLit(Lit lit); }
virtual abstract class Print extends Visitor {

public void visitLit(Lit lit) { ... }
}

}



The whole Ale class can then be specialized, adding new classes and overriding
virtual ones:

class Nale extends Ale {
class Neg implements Exp { ... }

virtual interface Visitor { void visitNeg(Neg neg); }
virtual abstract class Print {

public void visitNeg(Neg neg) { ... }
}

}

Of these proposals, only gbeta was implemented at the time, and was able to
type check the solution. gbeta also allows a data-centered solution using the same
approach of nested virtual classes [16]. Deep subtyping was later implemented
by Martin Odersky, which revealed a then unrepairable bug in Wadler’s solu-
tion. Virtual types were never implemented in Java, so the Thorup/Torgersen
solution, which was the only one that claimed (what we here call) object-level ex-
tensibility remained speculative. Classgroups were later implemented in LOOM,
but are type safe only with the extensive use of exact types (i.e., without sub-
class substitutability), and therefore not really applicable in an object-oriented
setting.

On closer scrutiny, these solutions have a lot in common with our operation-
centered proposal of Section 4: both achieve type safety by grouping the classes
in “families” each with their own view of which kind of visitor is used. Only, with
virtual types the families are represented by the enclosing classes (Ale and Nale in
this example), whereas in our solution they are represented by type parameters
(AleVisitor and NaleVisitor).

Reading Wadler’s solution with this similarity in mind, it is interesting to
discover that the bug which lead him to retract his proposal is identical to the
problem that stops Bruce from finding a type-safe visitor-based solution in [8]:
this is exactly the problem that we fix in Section 4. It is therefore highly probable
that our fix can be applied to Wadler’s original example as well, restoring it to
prominence. Unfortunately this is hard to verify, because the implementation of
deep subtyping in GJ has since deteriorated and is no longer available.

A partial archive of the Java genericity mailing list can be found at www.cis.
ohio-state.edu/~gb/cis888.07g/java-genericity, with the above propos-
als occurring as message number 20, 21, 28 and 37.

8 Conclusion

The scene of mainstream object-oriented programming languages is ever evolv-
ing, and genericity in the form of parameterized classes is becoming a standard
component of most popular platforms. This calls for a re-evaluation of old prob-
lems and apparent dichotomies in the new context.

In this paper we have shown by examples that standard parametric genericity
is a powerful means to obtain type safe solutions. Furthermore we have shown



that the features peculiar to the two main language contenders in the market,
namely Java’s wildcards and C#’s reified type parameters, both have a real
impact in terms of extensibility.

A number of novel concrete techniques have been proposed, which are con-
structive and general, and may be readily applied in real world settings. Thus,
they can have a great impact on the extensibility and safety of future applications
making use of the Composite structure.

A “full and final” solution to expression problem would combine the complete
and straightforward object-level extensibility of our hybrid solution with full
static type safety. This is still an important challenge for the future, and is
unlikely to be achieved only with the linguistic means employed in this paper.
Yet we hope that this paper has brought us closer to this ideal, and that it will
inspire others to pursue it.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Abstraction
and Reuse of Object-Oriented Designs. Addison-Wesley (1994)

2. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison-Wesley
(1996)

3. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the future safe for
the past: Adding genericity to the java programming language. In: Object Oriented
Programming: Systems, Languages and Applications, Vancouver, BC, OOPSLA98,
ACM Press. Craig Chambers, editor. (1998)

4. ECMA: C# language specification. http://www.ecma-international.org/

publications/standards/Ecma-334.htm (2002)

5. Kennedy, A., Syme, D.: Design and implementation of generics for the .NET com-
mon language runtime. In Norris, C., Fenwick, J.J.B., eds.: Proceedings of the
ACM SIGPLAN ’01 Conference on Programming Language Design and Imple-
mentation (PLDI-01). Volume 36.5 of ACM SIGPLAN Notices., N.Y., ACMPress
(2001) 1–12

6. Wadler, P.: The expression problem. Posted on the Java Genericity mailing list
(1998)

7. Torgersen, M., Hansen, C.P., Ernst, E., von der Ahé, P., Bracha, G., Gafter, N.:
Adding wildcards to the java programming language. In: Proceedings of the ACM
Symposium of Applied Computing. (2004) To appear.

8. Bruce, K.B.: Some challenging typing issues in object-oriented languages. In
Bono, V., Bugliesi, M., eds.: Electronic Notes in Theoretical Computer Science.
Volume 82., Elsevier (2003)

9. Zenger, M., Odersky, M.: Extensible algebraic datatypes with defaults. In: Pro-
ceedings of the International Conference on Functional Programming. (2001)

10. Ancona, D., Lagorio, G., Zucca, E.: Jam—designing a java extension with mixins.
ACM Trans. Program. Lang. Syst. 25 (2003) 641–712

11. Krishnamurthi, S., Felleisen, M., Friedman, D.P.: Synthesizing object-oriented and
functional design to promote re-use. In: European Conference on Object-Oriented
Programming, Brussels, Belgium, ECOOP98, LNCS 1445, Springer Verlag. Eric
Jul, editor. (1998) 91–113



12. Agesen, O., Bracha, G., Bruce, K., Cardelli, L., Cartwright, C., Ernst, E., Fisher,
K., Odersky, M., Joy, B., Pierce, B., Rose, J., Steele, Jr., G., Stoutamire, D., Tho-
rup, K.K., Torgersen, M., Ungar, D., Wadler, P., et al.: Personal communication.
The “Java Genericity” mailing list (1997-1998)

13. Madsen, O.L., Møller-Pedersen, B.: Virtual classes: A powerful mechanism in
object-oriented programming. In: Object Oriented Programming: Systems, Lan-
guages and Applications, New Orleans, Louisiana, OOPSLA89, ACM Press. Nor-
man K. Meyrowitz, editor. (1989)

14. Thorup, K.K.: Genericity in Java with virtual types. In: European Conference
on Object-Oriented Programming, Jyväskylä, Finland, ECOOP97, LNCS 1241,
Springer Verlag. Mehmet Akşit and Satoshi Matsuoka, editors. (1997) 444–471

15. Ernst, E.: gbeta – a Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Department of Computer Science,
University of Aarhus, Århus, Denmark (1999)

16. Ernst, E.: a data-centered solution in gbeta. Personal communication (2003)


