
An Analysis of Constrained Polymorphism for
Generic Programming

Jaakko J̈arvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Willcock

Open Systems Lab
Indiana University

Bloomington, IN USA
{jajarvi,lums,jsiek,jewillco }@osl.iu.edu

Abstract. Support for object-oriented programming has become an integral part
of mainstream languages, and more recently generic programming has gained
widespread acceptance. A natural question is how these two paradigms, and their
underlying language mechanisms, should interact. One particular design option,
that of using subtyping to constrain the type parameters of generic functions, has
been chosen for the generics extensions to Java and C#. The leading alternative
to subtype-based constraints is to use type classes, as they are called in Haskell,
or concepts, as they are called in the C++ generic programming community. In
this paper we argue that while object-oriented interfaces and concepts are similar
in many ways, they also have subtle but important differences that make concepts
more suitable for constraining polymorphism in generic programming.

1 Introduction

Generic programming is an emerging programming paradigm for writing highly re-
usable libraries of algorithms. The generic programming approach has been used ex-
tensively within the C++ community, in libraries such as the Standard Template Li-
brary [30, 31], Boost Graph Library [28] and Matrix Template Library [29]. Generic
algorithms are parameterized with respect to the types of their arguments so that a sin-
gle implementation may work on a broad class of different argument types.

For modularity, it is important for generic functions to be type checked separately
from their call sites. The body of a generic function should be type checked with respect
to its interface, and a call to that function should be type checked with respect to the
same interface. Separate type checking helps the author of the generic function to catch
errors in its interface and implementation, and more importantly, provides better error
messages for incorrect uses of generic functions.

To provide separate type checking, a programming language must have a mech-
anism for constraining polymorphism. Several mainstream object-oriented languages
with support, or proposed support, for generics, such as Java, C#, and Eiffel, implement
variations ofF-bounded polymorphism[6]. Haskell, a modern functional language, uses
type classes[34] as the constraint mechanism for polymorphic functions. ML has pa-
rameterized modules, called functors, whose parameters are constrained bysignatures.
Other approaches includewhere clausesin CLU [23]. C++ is an example of a language

without built-in support for constraints, and which has no direct support for separate
type checking: the body of a generic function is type checked at each call site.

In our recent study [14], we evaluated six mainstream programming languages
with respect to their support for generic programming. Mainstream object-oriented lan-
guages did not rank highly in this evaluation; practical problems encountered include
verbose code, redundant code, and difficulties in composing separately defined generic
components. These problems relate to the constraint mechanisms used in the various
languages. Consequently, this paper focuses on the suitability of different constraint
mechanisms for use in generic programming. We analyze current manifestations of
subtype-bounded polymorphism in mainstream object-oriented languages, as well as
other constraint mechanisms proposed in the literature, and identify the causes of the
above problems. We argue that the current implementations of subtype-based constraint
mechanisms in mainstream object-oriented languages are a major hindrance to effective
generic programming; it proves difficult to organize constraints into well-encapsulated
abstractions. We describe how object-oriented languages could be adapted to avoid the
problems mentioned above. The inspiration for the proposed changes comes from con-
straint mechanisms such as those in Haskell and ML, which are not affected by these
problems.

2 Background

We start with a short description of generic programming, and then describe two fam-
ilies of type systems/language mechanisms for supporting generic programming. The
first family is based on just parametric polymorphism whereas the second family is
based on subtype-bounded parametric polymorphism.

2.1 Generic programming

Generic programming is a systematic approach to software reuse. In particular, it fo-
cuses on finding the most general (or abstract) formulations of algorithms and then
efficiently implementing them. These two aspects, generality and efficiency, are oppos-
ing forces, which is perhaps the most challenging aspect of this practice. The goal is for
a single algorithm implementation to be usable in as many situations as reasonably pos-
sible without sacrificing performance. To cover all situations with the best performance,
it is often necessary to provide a small family of generic algorithms with automatic dis-
patching to the appropriate implementation based on the properties of the input types.

There are several ways in which an algorithm can be made more general. The sim-
plest and most common method is to parameterize the types of the elements the algo-
rithm operates on. For example, instead of writing a matrix multiply function that works
only for matrices ofdouble, one can parameterize the function for matrices of any nu-
meric type. Another way in which algorithms can be parameterized is on the represen-
tations of the data structures they manipulate. For example, a linear search function can
be generalized to work on linked lists, arrays, or indeed any sequential data structure
provided the appropriate common interface can be formulated. Yet another approach to
generalization is to parameterize certain actions taken by the algorithm. For example,

in the context of graph algorithms, a breadth-first search (BFS) algorithm can invoke a
user-defined callback function when tree edges are discovered. A client could use this to
record the parent of each node in a BFS tree for the graph. The end result of this abstrac-
tion process should be an algorithm that places the minimum number of requirements
on its input while still performing the task efficiently.

Terminology Fundamental to realizing generic algorithms is the notion of abstraction:
generic algorithms are specified in terms of abstract properties of types, not in terms of
particular types. In the terminology of generic programming, aconceptis the formal-
ization of an abstraction as a set of requirements on a type (or on several types) [1,18].
These requirements may be semantic as well as syntactic. A concept may incorporate
the requirements of another concept, in which case the first concept is said torefinethe
second. Types that meet the requirements of a concept are said tomodelthe concept.
Note that it is not necessarily the case that the requirements of a concept involve just
one type; sometimes a concept involves multiple types and specifies their relationships.

A concept consists of four different types of requirements: associated types, func-
tion signatures, semantic constraints, and complexity guarantees. Theassociated types
of a concept specify mappings from the modeling type to other collaborating types (such
as the mapping from a container to the type of its elements). The function signatures
specify the operations that must be implemented for the modeling type. Asyntactic con-
ceptconsists of just associated types and function signatures, whereas asemantic con-
ceptalso includes semantic constraints and complexity guarantees [18]. At this point
in the state of the art, type systems typically do not include semantic constraints and
complexity guarantees. For this paper we are only concerned with syntactic concepts,
so “concept” will mean “syntactic concept.”

Generic programming requires some kind of polymorphism in the implementation
language to allow a single algorithm to operate on many types. The remainder of this
section reviews different language mechanisms and type systems that support polymor-
phism.

2.2 Parametric polymorphism

Generic programming has its roots in the higher-order programming style commonly
used in functional languages [19]. The followingfind function is a simple example of
this style: functions are made more general by adding function parameters and type
parameters. In this example we parameterize on theT andIter types and pass in func-
tions for comparing elements (eq) and for manipulating the iterator (next, at end, and
current). This style obtains genericity using only unconstrained parametric polymor-
phism. For purposes of discussion we take the liberty of extending C# with polymorphic
functions, function types, and type aliases as class members.

Iter find<Iter>(Iter iter, Iter.value type x, ((Iter.valuetype, Iter.valuetype)→ bool) eq,
Iter find<Iter>((Iter → Iter) next, (Iter→ bool) at end, (Iter→ Iter.value type) current)
{

for (; !at end(iter); iter = next(iter)){
Iter.value type y = current(iter);

if (eq(x, y))
break;

}
return iter;

}

bool int eq(int a, int b){ return a == b; }

class ArrayIterator<T> {
typedef T valuetype; ...

}

ArrayIterator<T> array iter next<T>(ArrayIterator<T> iter) { ... }

bool array iter at end<T>(ArrayIterator<T> iter) { ... }

T array iter current<T>(ArrayIterator<T> iter) { ... }

void main(){
int[] array = new int[]{1, 2, 3, 5};
ArrayIterator<int> i(array);
i = find(i, 2, int eq, array iter next, array iter at end, array iter current);

}

This example demonstrates one obvious disadvantage of the higher-order style: the
large number of parameters forfind makes it unwieldy to use. One solution to this prob-
lem is to introduce where clauses (various forms of which can be found in CLU [23],
Theta [11], and Ada [33]). A where clause is a list of function signatures in the dec-
laration of a generic function which are automatically looked up at each call site and
implicitly passed into the function. This makes calling generic functions less verbose.

Iter find<Iter, T>(Iter iter, T x)
where bool eq(T, T), Iter next(Iter), bool atend(Iter), T current(Iter)

{ ... }

bool eq(int a, int b){ return a == b; }

class ArrayIterator<T> { ... }

ArrayIterator<T> next<T>(ArrayIterator<T> iter) { ... }

bool at end<T>(ArrayIterator<T> iter) { ... }

T current<T>(ArrayIterator<T> iter) { ... }

void main(){
int[] array = new int[]{1, 2, 3, 5};
ArrayIterator<int> i(array);
i = find(i, 2);

}

The addition of where clauses is not a fundamental change to the type system of the
language; it is syntactic sugar for explicitly passing the function arguments.

2.3 Concepts

Similar sets of requirements often appear in many generic functions, so grouping related
requirements together has software engineering benefits. For example, in a generic li-

brary such as the C++ Standard Library, all functions on sequences include requirements
on their iterator parameters. Where clauses do not provide a way to group and reuse
requirements. This is the role played by concepts. In the following example we create
two concepts: one for expressing the comparison requirement, and one for grouping
together the iterator operations. We are again using the base syntax of C#, but this time
extended with concepts (we define the semantics of concepts later in this section).

concept Comparable<T> {
bool eq(T, T);

}

concept Iterator<Iter> {
type Iter.valuetype;// Require an associated type

Iter next(Iter);
bool at end(Iter);
value type current(Iter);

}

Iter find<Iter, T>(Iter iter, T x)
where T models Comparable,
whereIter models Iterator,
whereIterator(Iter).value type == T

{ ... }

A model of a concept is a set of types and a set of functions that meet the require-
ments of the concept. Some languages link implementations to concepts through an
explicit models declaration(cf. Haskell instance declarations). At the call site forfind,
for each concept requirement, a corresponding models declaration must be found.

int models Comparable{
bool eq(int a, int b){ return a == b; }

}

class ArrayIterator<T> { ... }

forall<T> ArrayIterator<T> models Iterator{
type valuetype = T;
ArrayIterator<T> next(ArrayIterator<T> iter) { ... }
bool at end(ArrayIterator<T> iter) { ... }
value type current(ArrayIterator<T> iter) { ... }

}

void main(){
int[] array = new int[]{1, 2, 3, 5};
ArrayIterator<int> i(array);
i = find(i, 2);

}

The expressionIterator(Iter).value type in the constraints forfind accesses the
value type type definition from within the models declaration forIter. This mecha-
nism provides a way to map from the primary types of the concept to the associated
types.

Analogously to inheritance, concepts can be built from other concepts using refine-
ment. A simple example of this is the followingBidirectionalIterator concept.

concept BidirectionalIterator<Iter> : Iterator<Iter> {
Iter prev(Iter);

}

One important observation about concepts is that they are not types. They can not
be used as the type of a parameter, or to declare a variable. For the mathematically
oriented, a concept is a set of multi-sorted algebras [18]. Roughly speaking, a multi-
sorted algebra corresponds to a module: it is a collection of data types (the sorts) and
functions (the operations of the algebra). Earlier we defined a concept as requirements
on one or more types. The correspondence between these two definitions is the classic
identification of a set with the predicate that specifies which elements are in the set (the
elements in this case are modules).

In practice it is convenient to separate the data types of a module into two groups:
the main types and the associated types. An example of this is an iterator (the main
type) and its element type (an associated type). In a generic algorithm such asfind, a
common need is the ability to obtain an associated type given the main type. A module
then consists of a partial map from identifiers (names for associated types) to types
asc(M) : Id ⇀ Type, and a partial map from function signatures (the name, parameter
types, and result type) to function implementationsΣ(M) : S ⇀ F .

We formally define a conceptC as a predicate on somemain types~t and a module
M : C(~t,M) = A ∧ F ∧ ST whereA is of the form~x ⊆ dom(asc(M)) (where~x are
the associated types required byC), F is of the form~s ⊆ dom(Σ(M)) (where~s are
the function signatures required byC), andST is of the formτ1 = τ ′

1 ∧ · · · ∧ τn = τ ′
n

(where theτi andτ ′
i for i = 1 . . . n are pairs of type expressions which are required to

be equal). The following is theIterator concept expressed using this notation:

Iterator(Iter,M) ≡
{value type} ∈ dom(asc(M))∧
{ next : Iter → Iter, at end : Iter→ bool, current : Iter→ asc(M)(valuetype)} ⊆ Σ(M)

In the previous example, the body of the models declaration

forall<T> ArrayIterator<T> models Iterator{
type valuetype = T;
ArrayIterator<T> next(ArrayIterator<T> iter) { ... }
bool at end(ArrayIterator<T> iter) { ... }
value type current(ArrayIterator<T> iter) { ... }

}

can be viewed as a parameterized module with the following set of function signatures:

ArrayIterModule≡ Λ T.
({(value type, T)},
({
(next : ArrayIterator<T>→ ArrayIterator<T> = ...,
(at end : ArrayIterator<T>→ bool = ...,
(current : ArrayIterator<T>→ value type = ...
(})

So for any typeT, Iterator(ArrayIterator<T>, ArrayIterModule<T>) is true. We
formally define that a sequence of types~t together with a moduleM models a concept
c whenc(~t, M) is true. We often say that a sequence of types models a concept, leaving
out mention of the module of functions. This abbreviated form is writtenc(~t) and means
that there is a models declaration in scope that associates a set of associated types and
functions with the types~t and conceptc.

A conceptc refines another conceptc′, denoted byc � c′, if ∀~t,m. c(~t, m) implies
c′(~t, m).

To describe concept-bounded types (and later subtype-bounded) we use the general
setting ofqualified types[16] to allow for a more uniform presentation. A qualified type
is of the formP ⇒ τ whereP is some predicate expression andτ is a type expression.
The intuition is that ifP is satisfied thenP ⇒ τ has typeτ . A qualified polymorphic
type is then written

∀t. P ⇒ τ (1)

or with multiple type parameters

∀~t. P ⇒ τ (2)

A concept-bounded type is a qualified type where the predicates are models asser-
tions. So concept-bounded polymorphic types have the following form.

∀~t. c1(~t1) ∧ · · · ∧ cn(~tn) ⇒ τ (3)

where~ti ⊆ ~t, theci’s are concepts, andτ is a type expression possibly referring to types
in ~t.

The above definitions describe the structural aspects of modeling and refinement.
However, languages such as Haskell and the extended C# of this paper use nominal
conformance. That is, in addition to the structural properties being satisfied, there must
also be explicit declarations in the program to establish the modeling and refinement
relations.

Related constraint mechanismsHaskell and ML provide constraint mechanisms that
share much in common with concepts. The following example, written in Haskell,
groups the constraints from the previous example into type classes namedComparable
andIterator and then uses them to constrain thefind (Haskell is a functional language,
not object-oriented, and does not have object-oriented-style classes). In the declaration
for find, theComparable T⇒ part is called the “context” and serves the same purpose
as the CLU where clause. TheInt type is made aninstanceof Comparableby pro-
viding a definition of the required operations. In generic programming terminology, we
would say thatInt models theComparableconcept. Note that Haskell supports multi-
parameter type classes, as seen in theIterator type class below. The syntaxi → t below
means that the typet is functionally dependent oni, which is how we express associated
types in Haskell.

class Comparable t where
eq :: t→ t → Bool

class Iterator i t| i → t where
next :: i → i
at end :: i → Bool
current :: i → t

find :: (Comparable t, Iterator i t)⇒ i → t → i
find iter x =

if (at end iter)|| eq x (current iter) then
iter

else
find (next iter) x

instance Comparable Int where
eq i j = (i == j)

Theinstancedeclarations can be more complex. For example, the followingconditional
instance declaration makes all listsComparable, as long as their element types are
Comparable:

instance Comparable t⇒ Comparable [t] where
...

ML signaturesare a structural constraint mechanism. A signature describes the pub-
lic interface of a module, orstructureas it is called in ML. A signature declares which
type names, values (functions), and nested structures must appear in a structure. A sig-
nature also defines a type for each value, and a signature for each nested structure. For
example, the following signature describes the requirements ofComparable:

signature Comparable =
sig

type ElementT
val eq : ElementT→ElementT→bool

end

Any structure that provides the typeElementTand aneq function with the appropriate
types conforms to this signature without any explicit instance declarations. For exam-
ple:

structure IntCompare =
struct

type ElementT = int
fun eq i1 i2 = ...

end

2.4 Subtype-bounded polymorphism

For object-oriented languages, the subtype relation is a natural choice for constraining
generic functions. This section describes the various forms of subtype-bounded poly-
morphism that appear in mainstream languages and in the literature.

Bounded quantification Cardelli and Wegner [7] were the first to suggest using sub-
typing to express constraints, and incorporatedbounded quantificationinto their lan-
guage named Fun. The basic idea is to use subtyping assertions in the predicate of
a qualified type. For bounded quantification the predicates are restricted to the form
t ≤ σ wheret is a type variable andσ does not refer tot. So we have polymorphic
types of the form

∀t. t ≤ σ ⇒ τ [t] (4)

wheret is a type variable,σ is a type expression that does not refer tot, andτ [t] is a
type expressionτ that may refer tot.

Fun is an unusual object-oriented language in that subtyping is structural, and there
are no classes or objects; it has records, variants, and recursive types. The idea of
bounded quantification carries over to mainstream object-oriented languages, the main
change being the kinds of types and subtyping relations in the language. Subtyping in
languages such as C++, Java, and C# is between classes (or between classes and inter-
faces). The following is an attempt to write thefind example using bounded quantifi-
cation. There are two options for how to write theeq method in theInt class below.
The first option results in a type error because method parameters may not be covariant
(Eiffel supports covariance, but its type system is unsound [4,9]). The second option re-
quires a downcast, opening the possibility for a run-time exception. This is an instance
of the classic binary method problem [5].

interface Comparable{
bool eq(Comparable);

}

Iterator find<T : Comparable>(Iterator iter, T x) { ... }

class Int : Comparable{
bool eq(Int i){ ... } // Not a valid override
bool eq(Comparable c){ ... } // Requires a downcast

}

F-bounded polymorphism Bounded quantification was generalized toF-bounded
polymorphismby Canning et al. [6], which allows the left-hand side of a subtyping
constraint to also appear in the right-hand side, thus enabling recursive constraints.

∀t. t ≤ σ[t] ⇒ τ [t] (5)

Types that are polymorphic in more than one type can be expressed by nesting.

(∀t1. t1 ≤ σ[t1] ⇒ (∀t2. t2 ≤ σ[t1, t2] ⇒ (∀t3. t3 ≤ σ[t1, t2, t3] ⇒ τ [t1, t2, t3])))

However, a constraint on typeti may only refer toti and earlier type parameters.
The following example shows thefind example, this time written using F-bounded

polymorphism. We can now express the program without downcasts.

interface Comparable<T> {
bool eq(T);

}

interface Iterator<Iter,T> {
Iter next();
bool at end();
T current();

}

Iter find<T, Iter>(Iter iter, T x)
where T : Comparable<T>,
whereIter : Iterator<Iter,T>

{ ... }

class Int : Comparable<Int> {
bool eq(Int i){ ... }

}

F-bounded polymorphism in turn was generalized to systems of mutually recursive
subtyping constraints by Curtis [10, 12]. Arecursively subtype-constrained typeis of
the formP ⇒ τ whereP is a predicate of the formτ1 ≤ τ ′

1 ∧ · · · ∧ τn ≤ τ ′
n. Then a

recursively constrained polymorphic type is of the form

∀~t. τ1 ≤ τ ′
1 ∧ · · · ∧ τn ≤ τ ′

n ⇒ τ (6)

where the type variables in~t can appear anywhere in the type expressionsτi, τ ′
i , andτ .

Recursively constrained polymorphic types, with some minor restrictions, are used in
the generics extensions for Java and C#.

The following is an example of mutually recursive subtype constraints. The inter-
face describing a graph node is parameterized on the edge type, and vice versa, and the
breadthfirst searchfunction uses the two interfaces in a mutually recursive fashion.

interface Node<E> {
public List<E> out edges();

}

interface Edge<N> {
public N source();
public N target();

}

public void breadthfirst search<N, E>(N n)
where N: Node<E>,
whereE: Edge<N> { ... }

2.5 Definitions of the subtype relation

Subtype-bounded polymorphism expresses constraints based on the subtyping relation,
so the expressiveness of the constraints is very much dependent on what types and sub-
type relations can be defined in the language. As mentioned in Section 2.4, much of the
literature on bounded and F-bounded polymorphism [6,7] used languages with records,
variants, and recursive types and used a structural subtyping relation. Mainstream lan-
guages like C++, Java, and C# define subtyping as subclassing, a named subtyping rela-
tion between object types.

For a typeB to be a subtype of some typeA in a subtype relation that is based on
structural conformance,B must have at least the same capabilities asA. For example, if
A is a record type, thenB must have all the fields ofA and the types of those fields must
be subtypes of the corresponding fields inA. A subtype relation based on named con-
formance, on the other hand, requires an explicit declaration in addition to the structural
conformance requirement.

Mainstream object-oriented languages, such as C++, Java, C#, and Eiffel, unify sub-
typing with subclassing. The subtype relation is established at the point of definition
of each class by declaring its superclasses. In particular, it is not possible to add a new
supertype to an existing class without modifying the definition of the class. Mecha-
nisms permitting suchretroactive subtyping(or retroactive abstraction) declarations
have been proposed and can be found in several programming languages, such as
Sather [26,27] and Cecil [8].

3 Discussion

This section discusses problems arising in object-oriented languages when attempting
to follow the generic programming paradigm. Our earlier study in [14] showed that
generic programming suffers from a set of distinct problems, whose cumulative effect
is even more significant. As some of the symptoms, we observed verbose code in the
form of excessive numbers of type parameters and constraints, awkward constructions
to work around language limitations, difficulties in library maintenance, and the forced
exposure of certain implementation details; the examples in [14] clearly demonstrate
this.

We describe several extensions to Generic C# that lead to notably improved support
for generic programming. We also describe a source-to-source translation of some of
the extended features to current Generic C#.

3.1 Accessing and constraining associated types

Associated type constraints are a mechanism to encapsulate constraints on several func-
tionally dependent types into one entity. Section 2.3 gave an example of an iterator con-
cept and its associated typevalue type. As another example, consider the following two
concepts specifying the requirements of a graph type. TheIncidenceGraphconcept re-
quires the existence of vertex and edge associated types, and places a constraint on the
edge type:

concept GraphEdge<Edge> {
type Vertex;
Vertex source(Edge);
Vertex target(Edge);

}

concept IncidenceGraph<Graph> {
type Vertex;
type Edge models GraphEdge;
Vertex == GraphEdge<Edge>.Vertex;

type OutEdgeIterator models Iterator;
Iterator<OutEdgeIterator>.value type == Edge;

OutEdgeIterator outedges(Graph g, Vertex v);
int out degree(Graph g, Vertex v);

}

All but the most trivial concepts have associated type requirements, and thus a
language for generic programming must support their expression. Of mainstream lan-
guages, ML supports this via types in structures and signatures; C++ can represent as-
sociated types as member typedefs ortraits classes[25] but cannot express constraints
on them. Java and C# do not provide a way to access and place constraints on type
members of generic type parameters. However, associated types can be emulated using
other language mechanisms.

interface GraphEdge{
type Vertex;
Vertex source();
Vertex target();

}

interface IncidenceGraph{
type Vertex;
type Edge : GraphEdge;
Vertex == Edge.Vertex;

type OutEdgeIterator
: IEnumerable<Edge>;

OutEdgeIterator outedges(Vertex v);
int out degree(Vertex v);

}

interface GraphEdge<Vertex1> {
Vertex1 source();
Vertex1 target();

}

interface IncidenceGraph<
Vertex1, Edge1, OutEdgeIterator1>
where

Edge1 : GraphEdge<Vertex1>,
OutEdgeIterator1 :

IEnumerable<Edge1> {
OutEdgeIterator1 outedges(Vertex1 v);
int out degree(Vertex1 v);

}

(a) (b)

Fig. 1.Graph concepts represented as interfaces which can contain associated types (a), and their
translations to traditional interfaces (b).

A common idiom used to work around the lack of support for associated types is to
add a new type parameter for each associated type. This approach is frequently used in
practice. The C#IEnumerable<T> interface for iterating through containers serves as
an example. When a type extendsIEnumerable<T> it must bind a concrete value, the
value type of the container, to the type parameterT. The classAdjacencyList, which ex-
tends theIncidenceGraphinterface, in Figure 2(b) is an example of the same situation.
The following generic function, which hasIncidenceGraphas a constraint, includes

an extra type parameter for each associated type. These type parameters are used as
arguments toIncidenceGraphin the constraint on the actual graph type parameter.

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator> {
return g.out edges(v).Current.target();

}

The main problem with this technique is that it fails to encapsulate associated types
and constraints on them into a single concept abstraction. Every reference to a concept,
whether it is being refined or used as a constraint by a generic function, needs to list
all of its associated types, and possibly all constraints on those types. In a concept with
several associated types, this becomes burdensome. In the experiment described in [14],
the number of type parameters in generic algorithms was often more than doubled due
to this effect.

A direct representation for associated types could be added to Generic C# as an
extension, providingmember typessimilar to those in C++. In this extension, interfaces
can declare members which are placeholders for types, and place subtype constraints
on these types. Classes extending these interfaces must bind concrete values to these
types. As an example, Figure 1(a) shows two concepts from the domain of graphs. The
GraphEdgeconcept declares the member typeVertex. The IncidenceGraphconcept
has two associated types:Vertex andEdge. Note the three constraints:Edgemust be
a subtype ofGraphEdge; Vertex must be the same type as the associated type, also
namedVertex, of Edge; andOutEdgeIteratormust conform toIEnumerable<Edge>.
The last constraint uses the standardIEnumerable interface which does not use the
member type extension; the two styles can coexist.

This representation for associated types can straightforwardly be translated into the
emulation using extra type parameters which was described earlier. Figure 1(b) shows
the translated versions of the graph interfaces. In this translation, each interface con-
taining associated types has an extra parameter added for each associated type. The
subtype constraints on the associated types are converted to subtype constraints on the
corresponding type parameters. In classes inheriting from such interfaces, the associ-
ated type definitions are converted to type arguments of the interfaces, as shown in
Figure 2(b). Generic functions using interfaces with associated types also have an extra
type parameter added for each associated type (Figure 3(b)). Within the body and con-
straints of a generic function, references to associated types are converted to references
to the corresponding type parameters. Equality constraints between two types are han-
dled by unifying, in the logic programming sense, the translations of the types required
to be equal. For example, the typeVertex1is used both as theVertexassociated type for
GraphEdgeand forIncidenceGraphin Figure 1(b). Figure 2 shows the code defining
two concrete classes which extend the interfaces forGraphEdgeandIncidenceGraph,
both before and after translation. We used this translation of associated types, manually,
while implementing the graph library described in [14].

The advantages of the associated type extension become evident when using inter-
faces to constrain type parameters of a generic algorithm. Consider thefirst neighbor
function in Figure 3. The function has two parameters: a graph and a vertex. Using the
extension, shown in Figure 3(a), a single type parameter can describe the types and

class AdjListEdge : GraphEdge{
type Vertex = int;
...

}

class AdjacencyList : IncidenceGraph{
type Vertex = int;
type Edge = AdjListEdge;

type OutEdgeIterator =
IEnumerable<AdjListEdge>;

OutEdgeIterator outedges(Vertex v){...}

int out degree(Vertex v){...}
}

class AdjListEdge : GraphEdge<int> {
...

}

class AdjacencyList
: IncidenceGraph<int, AdjListEdge,

IEnumerable<AdjListEdge> > {

IEnumerable<AdjListEdge>
out edges(Vertex v){...}

int out degree(Vertex v){...}
}

(a) (b)

Fig. 2.A concrete graph type which models theIncidenceGraphconcept.

constraints of both of these parameters. In the translated code (Figure 3(b)), a separate
type parameter is needed for each of the three associated types of the graph type.

Note that the translated code is not valid Generic C#; we are assuming that con-
straints on type parameters are propagated automatically from the interfaces which are
used, which is not the case in the current version of Generic C#. Section 3.2 discusses
this issue in more detail.

G.Vertex firstneighbor<G>(G g, G.Vertex v) where G : IncidenceGraph{
return g.out edges(v).Current.target();

}

(a)

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator> {
return g.out edges(v).Current.target();

}

(b)

Fig. 3. A generic algorithm usingIncidenceGraphas a constraint, both with (a) and without (b)
the extension.

Note that an interface that contains associated types is not a traditional object-
oriented interface; in particular, such an interface is not a type. As the translation sug-
gests, these interfaces cannot be used without providing, either implicitly or explicitly,

the values of their associated types. As a consequence, interfaces with associated types
can be used as constraints on type parameters, but cannot be used as a type for vari-
ables or function parameters — uses that traditional interfaces allow. For example, the
function prototype in Figure 3(a) cannot be written as:

IncidenceGraph.Vertex firstneighbor(IncidenceGraph g, IncidenceGraph.Vertex v);

The references toIncidenceGraph.Vertexare undefined; the abstractIncidenceGraph
interface does not define a value for theVertexassociated type. This is a major differ-
ence between our translation and systems based onvirtual types[24, 32]. In our trans-
lation, all associated types are looked up statically, and so the type ofg is the interface
IncidenceGraph, not a concrete class which implementsIncidenceGraph. On the other
hand, in systems with virtual types, member types are associated with the run-time type
of a value, rather than its compile-time type; thus, the function definition above would
be allowed. The virtual type systems described in [24, 32] do not provide means to
express the constraints in the previous examples in type-safe manner. Ernst describes
family polymorphism[13], a type-safe variation of virtual types, for the programming
language BETA. This is a related mechanism to the extension proposed here for repre-
senting associated types in an object-oriented language. Whether family polymorphism
can provide full support for associated types remains to be evaluated.

For the translation described here to work, it is important to be able to infer the
values of associated types from the types bound to the main type parameters. This is
not currently supported in Generic C# or Java generics. As an example of this, consider
the following equivalent formulation of thefirst neighbor function, which makes the
use of the associated edge type more explicit:

G.Vertex firstneighbor<G>(G g, G.Vertex v) where G : IncidenceGraph{
G.Edge firstedge = g.outedges(v).Current;
return first edge.target();

}

In a call tofirst neighbor, a concrete graph type is bound toG, and thus associated
types, such asG.Edge, can be resolved. In the translated version, however, it is less
obvious that associated types can be inferred automatically:

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator>

{
G Edge firstedge = g.outedges(v).Current;
return first edge.target();

}

The two type parametersG EdgeandG OutEdgeIteratorare not the types of any of
the function arguments, and thus are not directly deducible. To infer their types, the
particular graph type used asG must be examined to find its associated type definitions.
The associated types are expressed as type arguments toIncidenceGraphin an inher-
itance declaration. Inferring the associated types from constraints is possible in most
cases, including all cases generated by the translation given here, but is not supported
in the current proposals for Generic C# or Java generics.

3.2 Constraint propagation

In many mainstream object-oriented languages, the constraints on the type parameters
to generic types do not automatically propagate to uses of those types. For example,
although a container concept may require that its iterator type model a specified iterator
concept, any generic algorithm using that container concept will still need to repeat the
iterator constraint. This is done for error checking: instances of an interface must always
be given correct type parameters, even within the definition of a generic method. The
burden of this is that the check is done when a generic method is defined, rather than
when it is used, and so the generic method ends up needing to repeat the constraints of
all of the interfaces which it uses.

For example, without constraint propagation, thefirst neighbor function from Fig-
ure 3(a) would need to be written as:

G.Vertex firstneighbor<G>(G g, G.Vertex v)
where G : IncidenceGraph,
whereG.Edge : GraphEdge,
whereG.Edge.Vertex == G.Vertex,
whereG.OutEdgeIterator : IEnumerable<G.Edge> {
return g.out edges(v).Current;

}

The problem with constraint propagation also applies to the translated version of
first neighbor(cf. Figure 3(b)):

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator>,
whereG Edge : GraphEdge<G Vertex>,
whereG OutEdgeIterator : IEnumerable<G Edge> {
return g.out edges(v).Current;

}

The additional constraints in these examples merely repeat properties of the asso-
ciated types ofG which are already specified by theIncidenceGraphconcept. This
greatly increases the verbosity of generic code and adds extra dependencies on the ex-
act contents of theIncidenceGraphinterface, thus breaking the encapsulation of the
concept abstraction.

This is not an inherent problem in subtype-based constraint mechanisms. For exam-
ple, the Cecil language automatically propagates constraints to uses of generic types [8,
§ 4.2]. Constraint propagation is simple to implement: a naı̈ve approach is to automati-
cally copy the type parameter constraints from each interface to each of the uses of the
interface.

3.3 Subclassing vs. subtyping

The subclass relation in object-oriented languages is commonly established in the class
declaration, which prevents later additions to the set of superclasses of a given class.
This is fairly rigid, and as many object-oriented languages unify subclassing and sub-
typing, the subtype relation is inflexible too. Several authors have described how this

inflexibility leads to problems in combining separately defined libraries or components,
and proposed solutions. Hölzle describes problems with component integration and sug-
gests that adding new supertypes and new methods to classes retroactively, as well as
method renaming, be allowed [15]. The Half & Half system [2] allows subtyping decla-
rations that are external to class definitions, as do the Cecil [8] and Sather [26,27] pro-
gramming languages. Aspect oriented programming systems [21], such as AspectJ [20],
can provide similar functionality by allowing modification of types outside of their orig-
inal definitions. Structural subtyping does not suffer from the same problems. Baum-
gartner and Russo [3], as well as Läufer et al. [22], suggest adding a structural subtyping
mechanism to augment the nominal subtyping tied to the inheritance relation.

Constraint mechanisms more directly supporting concepts, such as Haskell type
classes and ML signatures, do not exhibit the retroactive modeling problem: instance
declarations in Haskell are external to types, and ML signature conformance is purely
structural.

The work cited above is in the context of object-oriented programming, but the use
of the subtyping relation to constrain the type parameters of generic algorithms shares
the same problems. If an existing type structurally conforms to the requirements of a
generic algorithm, but is not a nominal subtype of the required interface, it can not be
used as the type parameter of the algorithm. Current mainstream object-oriented pro-
gramming languages do not provide a mechanism for establishing this relation; types
cannot retroactively be declared to be models of a given concept. This problem of
retroactive modeling is described further in [14]. The research cited above has demon-
strated that retroactive subtyping can be implemented for an object-oriented language.

3.4 Constraining multiple types

Some abstractions define interactions between multiple independent types, in contrast
to an abstraction with a main type and several associated types. An example of this is
the mathematical conceptVectorSpace(more examples can be found in [17]).

concept VectorSpace<V, S> {
V models Field;
S models AdditiveGroup;
V mult(V, S);
V mult(S, V);

}

For this example, it is tempting to think that the scalar type should be an associated
type of the vector type. For example, the classmatrix<float> would only havefloat for
its scalar type. However it also makes sense to form a vector space withmatrix<float>
andvector<float> as the vector and scalar types. So in general the scalar type of a
vector space is notdeterminedby the vector type.

It is cumbersome to express multi-parameter concepts using object-oriented inter-
faces and subtype-based constraints. One must split the concept into multiple interfaces.

interface VectorSpaceVector<V, S> : AdditiveGroup<V> {
V mult(S);

}

interface VectorSpaceScalar<V, S> : Field<S> {
V mult(V);

}

Algorithms that require theVectorSpaceconcept must specify two constraints now
instead of one. For example:

Vector linear combination2<Vector, Scalar>(Scalar alpha1, Vector v1,
Vector linear combination2<Vector, Scalar>(Scalar alpha2, Vector v2)

where Vector: VectorSpaceVector<Vector, Scalar>,
whereScalar: VectorSpaceScalar<Vector, Scalar>

{
return alpha1.mult(v1).add(alpha2.mult(v2));

}

In general, if a concept hierarchy has heightn, and places constraints on two types
per concept, then the number of subtype constraints needed in an algorithm is2n, an
exponential increase in the size of the requirement specification. Concept hierarchies of
height from two to five are common in practice, and we have encountered even deeper
hierarchies, but25 is already a large number.

The constraint propagation extension discussed in Section 3.2 ameliorates this prob-
lem. TheVectorSpaceScalar interface is attached to theVectorSpaceVector interface
by the constraint on the type parameterS:

interface VectorSpaceVector<V, S> : AdditiveGroup<V>
where S : VectorSpaceScalar<V, S>

{
V mult(S);

}

This prevents the exponential increase in the number of requirements, but the interface
designer must still split up concepts in an arbitrary fashion. This problem could be over-
come by an automatic translation of multi-parameter concepts into several interfaces,
as done above. Thelinear combination2 algorithm shown above needs only a single
constraint now.

Vector linear combination2<Vector, Scalar>(Scalar alpha1, Vector v1,
Vector linear combination2<Vector, Scalar>(Scalar alpha2, Vector v2)

where Vector: VectorSpaceVector<Vector, Scalar> {
return alpha1.mult(v1).add(alpha2.mult(v2));

}

4 Conclusion

The main contribution of this paper is to provide a detailed analysis of subtype-based
constraints in relation to generic programming. We survey a range of alternatives for
constrained parametric polymorphism, including subtype-based constraints in object-
oriented languages. We identify problems that hinder effective generic programming in
mainstream object-oriented languages, and pinpoint the causes of the problems. Some

of the surveyed alternatives, such as concepts, ML signatures, and Haskell type classes,
do not exhibit these problems. Based on these alternatives, we describe solutions that fit
within the context of a standard object-oriented language. We describe an extension to
C# that adds support for accessing and constraining associated types, constraint propa-
gation, and multi-parameter concepts. We outline a translation of the extended features
to the current Generic C# language.

Acknowledgments

We are grateful to Ronald Garcia for his comments on this paper. This work was sup-
ported by NSF grants EIA-0131354 and ACI-0219884, and by a grant from the Lilly
Endowment. The fourth author was supported by a Department of Energy High Perfor-
mance Computer Science Fellowship.

References

1. M. H. Austern.Generic Programming and the STL. Professional computing series. Addison-
Wesley, 1999.

2. G. Baumgartner, M. Jansche, and K. Läufer. Half & Half: Multiple Dispatch and Retroac-
tive Abstraction for Java. Technical Report OSU-CISRC-5/01-TR08, Ohio State University,
2002.

3. G. Baumgartner and V. F. Russo. Signatures: A language extension for improving type ab-
straction and subtype polymorphism in C++.Software–Practice and Experience, 25(8):863–
889, August 1995.

4. K. B. Bruce. Typing in object-oriented languages: Achieving expressibility and safety. Tech-
nical report, Williams College, 1996.

5. K. B. Bruce, L. Cardelli, G. Castagna, J. Eifrig, S. F. Smith, V. Trifonov, G. T. Leavens, and
B. C. Pierce. On binary methods.Theory and Practice of Object Systems, 1(3):221–242,
1995.

6. P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded polymorphism
for object-oriented programming. InProceedings of the fourth international conference on
functional programming languages and computer architecture, 1989.

7. L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–522, 1985.

8. G. Chambers and the Cecil Group.The Cecil Language: Specification and Rationale, version
3.1. University of Washington, Computer Science and Engineering, Dec. 2002. www.cs.
washington.edu/research/projects/cecil/.

9. W. R. Cook. A proposal for making Eiffel type-safe.The Computer Journal, 32(4):304–311,
1989.

10. P. Curtis.Constrained quantification in polymorphic type analysis. PhD thesis, Cornell Uni-
versity, Feb. 1990. www.parc.xerox.com/company/history/publications/bw-ps-gz/csl90-1.
ps.gz.

11. M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs. where clauses: Constraining
parametric polymorphism. InOOPSLA, pages 156–158, 1995.

12. J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained types and its
application to OOP. InProceedings of the 1995 Mathematical Foundations of Programming
Semantics Conference, volume 1. Elsevier, 1995.

13. E. Ernst. Family polymorphism. InECOOP, volume 2072 ofLecture Notes in Computer
Science, pages 303–326. Springer, June 2001.

14. R. Garcia, J. J̈arvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A comparative study of
language support for generic programming. InOOPSLA, Oct. 2003. To appear.

15. U. Hölzle. Integrating independently-developed components in object-oriented languages.
In ECOOP, volume 707 ofLecture Notes in Computer Science, pages 36–55. Springer, July
1993.

16. M. P. Jones.Qualified Types: Theory and Practice. Distinguished Dissertations in Computer
Science. Cambridge University Press, 1994.

17. S. P. Jones, M. Jones, and E. Meijer. Type classes: an exploration of the design space. In
Haskell Workshop, June 1997.

18. D. Kapur and D. Musser. Tecton: a framework for specifying and verifying generic system
components. Technical Report RPI–92–20, Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, New York 12180, July 1992.

19. A. Kershenbaum, D. Musser, and A. Stepanov. Higher order imperative programming. Tech-
nical Report 88-10, Rensselaer Polytechnic Institute, 1988.

20. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ.Lecture Notes in Computer Science, 2072:327–355, 2001.

21. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors,ECOOP, volume 1241
of Lecture Notes in Computer Science, pages 220–242, June 1997.

22. K. Läufer, G. Baumgartner, and V. F. Russo. Safe structural conformance for Java.Computer
Journal, 43(6):469–481, 2001.

23. B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms in CLU.
Communications of the ACM, 20(8):564–576, 1977.

24. O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful mechanism in object-
oriented programming. InOOPSLA, pages 397–406. ACM Press, 1989.

25. N. C. Myers. Traits: a new and useful template technique.C++ Report, June 1995.
26. S. M. Omohundro. The Sather programming language.Dr. Dobb’s Journal, 18(11):42–48,

October 1993.
27. Sather home pages. www.icsi.berkeley.edu/∼sather/.
28. J. G. Siek, L.-Q. Lee, and A. Lumsdaine.The Boost Graph Library User Guide and Refer-

ence Manual. Addison Wesley Professional, 2001.
29. J. G. Siek and A. Lumsdaine. A modern framework for portable high performance numerical

linear algebra. InModern Software Tools for Scientific Computing. Birkhäuser, 1999.
30. A. Stepanov. The Standard Template Library — how do you build an algorithm that is both

generic and efficient?Byte Magazine, 20(10), Oct. 1995.
31. A. A. Stepanov and M. Lee. The standard template library. Technical Report HPL-94-

34(R.1), Hewlett-Packard Laboratories, Apr. 1994. (http://www.hpl.hp.com/techreports).
32. K. K. Thorup. Genericity in Java with virtual types. InECOOP, volume 1241 ofLecture

Notes in Computer Science, pages 444–471, 1997.
33. United States Department of Defense.The Programming Language Ada: Reference Manual,

ANSI/MIL-STD-1815A-1983 edition, February 1983.
34. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. InACM Symposium

on Principles of Programming Languages, pages 60–76. ACM, Jan. 1989.

