
C++ templates/traits versus Haskell type classes

Sunil Kothari ∗

Majoris Systems,
Bangalore, India

sunkot@yahoo.com

Martin Sulzmann
School of Computing,

3 Science Drive 2,
National University of Singapore,

Singapore
sulzmann@comp.nus.edu.sg

October 31, 2004

Abstract

This article presents an in-depth study of the close connection between
Haskell type classes and C++ template/traits mechanism - two different
facilties for implementing generic programming concepts. Haskell type
classes and various extensions can be closely mimicked by C++ tem-
plates/traits and related mechanisms. We highlight the subtleties related
to type-based computations and the limitations induced by language de-
sign on the program behaviour by a number of examples.

1 Introduction

There is a new thrust in programming languages community for language-
level support for Generic Programming (writing code that works with any data
type meeting a set of requirements) [GJL+03]. A recent survey [CDST04] of
widely used programming languages has shown that Haskell1 [JHA+99] SML
[MTHM97] and C++ [Org98] come quite close in their support for generic pro-
gramming. In particular, Haskell type classes [WB89] and C++ templates/traits
[Mye95] mechanism provides the ability to express these requirements into the
type system provided by the language.

Although type classes are well studied and have reached a relatively stable
phase, C++ templates, on the other hand, are less structured (a collection of ad-
hoc tricks) and, in some situations boil down to plain hackery. Given that C++
compiler is a Turing-complete interpreter for a subset of C++, theoretically, it
is possible to emulate various type class extensions in C++ but there is not

∗This work was done by the author while on an internship with the second author at School
of Computing

1Haskell98 with support for multi-parameter type class extension

1

much literature available that points to the precise connections. We show how
to emulate Haskell type classes and related extensions in C++. We believe that
the connection between the two has never been explored to such depths before.

The rest of this article is organized as follows: Section 2.1 introduces C++
templates/traits. Section 2.2 introduces Haskell type classes and other exten-
sions. Section 2.3 gives a brief introduction on the theory behind modeling
of functional dependencies as CHRs. Section 3 describes the close connection
between Haskell type classes and C++ traits/templates. Finally, we conclude
with Section 4 and list possible future work.

All C++ examples mentioned in this article have been tested on gcc version
3.3.6 running on Debian Linux. This is important as the support for templates,
especially template template parameters, varies greatly with various gcc ver-
sions.

2 Background

This article assumes a preliminary knowledge of Haskell and C++ template
specializations and some concept of meta-programming as related to C++ tem-
plates. A good reference on templates is [VJ02] and [CE00]. A good introduc-
tory article on template meta-programming is [GA], [Wal]. The treasure house
for Haskell is inevitably the Haskell web-site [Com]. In the next few sub-sections
we provide the relevant background on the rest of the concepts used.

2.1 C++ Templates/Traits

C++ traits technique was first mentioned in this article by Nathan C. Myers
[Mye95]. Consider Myer’s description of Traits:

A class used in place of template parameters. As a class, it aggre-
gates useful types and constants; as a template, it provides an avenue
for that extra level of indirection that solves all software problems.

We will see later how “indirection” is achieved in Haskell by means of type class
mechanism.

Example 1. Consider this example from Myer’s article. The problem is we
want to define a class that encapsulates the behavior of reading an input stream.
Normally, the stream is represented as a sequence of characters and EOF is
defined as a value different from any of these character values. Traditionally,
the type of EOF is int and the function that retrieves characters returns an int.
The behavior is modeled as a C++ class below:

class basic_streambuf {
....
int sgetc(); // return the next character, or eof
int sgetn(char*, int N) // get N characters.

};

2

Consider parameterizing basic streambuf on the character type so as to handle
a variety of different character types. This means that the type of EOF now
becomes dependent on the type of characters. The parameterized version of the
basic streambuf class looks like this:

template <class charT, class intT>
class basic_streambuf {
....
intT sgetc();
int sgetn (charT*, int N);
}

And here lies the problem. There is nothing wrong as such (the program will
compile gracefully) but this extra dependency is annoying. Moreover, given a
value of charT there is only a particular value that corresponds to legal types.
We would like to express this dependency in terms of program code in such a
manner that the right type of return type of sgetc is selected on the basis of
charT.

With traits it is easy. We can provide a default traits class template and
specialize it for known character types.

template <class charT>
struct ios_char_traits { };

Note this default traits template is empty instead of providing some generic code.
In a way it makes sense if the behavior is not defined for an arbitrary type then
better state nothing about it. For char we specialize the template as:

struct ios_char_traits<char> {
typedef char char_type;
typedef int int_type;
static inline int_type eof() { return EOF; }

};

Similarly, we can add support for w char (wide character) types:

struct ios_char_traits<wchar_t> {
typedef wchar_t char_type;
typedef wint_t int_type;
static inline int_type eof() { return WEOF; }

};

Note here that we go from general to specific; first the generic code is defined
and then specific instances. We have not seen the magic of traits yet. The magic
happens in the way above traits are used:

template <class charT>
class basic_streambuf {
public:

3

typedef ios_char_traits<charT> traits_type;
typedef traits_type::int_type int_type;
int_type eof() { return traits_type::eof(); }
...
int_type sgetc();
int sgetn(charT*, int);

};

Here the “indirection” takes place in the first two lines after public keyword.
That’s not all. In fact, a variant of the same program expressed below has
similar semantics but instead of having a single type parameter it takes two type
parameters; one expressed in terms of another. This demonstrates that we can
not only define a general use of a specific type but also a specific use of a specific
type.

template <class charT, class traits = ios char traits<charT> >
class basic streambuf {
public:
typedef traits traits_type;
typedef traits type::int_type int_type;
int_type eof() { return traits_type::eof(); }
...
int type sgetc();
int sgetn(charT*, int N);

};

Here’s another example of traits:

Example 2. Consider writing a library for numerical analysis domain. A
library writer is not interested in various constants which are type dependent
and already provided by the header file float.h i.e. parameters like mantissa,
an epsilon etc. defined for float, long, long double. A template parame-
terized on the numeric type doesn’t know whether to refer to FLT EPSILON or
DBL EPSILON. Again, traits solves the problem. Here is the code with template
specializations handling the value for float, double:

template <class numT>
struct float_traits {};

template<>
struct float_traits<float> {
typedef float float_type;
static float_type epsilon() { return FLT_EPSILON; }

};

4

template<>
struct float_traits<double> {

typedef double float_type;
static float_type epsilon() { return DBL_EPSILON; }

};

Now “epsilon” can be referred in a generic way as follows:

template <class numT >
class myclass {
public:
typedef numT num_type;
typedef float_traits<num_type> traits_type;
num_type epsilon() { return traits_type::epsilon(); }

};

The usefulness of traits can be summarized as Myers describes it:

This technique turns out to be useful anywhere that a template must
be applied to native types, or to any type for which you cannot add
members as required for the template’s operations.

Although helpful in indirecting to a type-specific code, we can’t indirect code
when the type is constrained by some complicated constraints. In other words,
we don’t have the Haskell style of controlled overloading. We describe it next.

2.2 Haskell type classes

Haskell type classes were introduced in [WB89] to add controlled overloading
of symbols to a Hindley-Milner based type system. Type classes allow the
programmer to define relations over types. For single-parameter type classes,
the type class relation simply states set membership. Consider the Eq type class,
the declaration

class Eq a where
(==):: a -> a -> Bool

states that every type a in type class Eq has an equality function “==”. Instance
declarations prove that a type is in the class, by providing appropriate functions
for the class methods. For example, Int is in Eq:

instance Eq Int where
(==) = primeIntEq

which states that the equality function for Ints is primeIntEq where primIntEq
is a built-in primitive function on Integers. The == function type can be con-
strained by allowing only values that have a type that is a member of class
Eq:

5

(==)::Eq a => a -> a -> Bool

Multi-parameter type classes [Jon00] allow for multiple class parameters. For
example,

class Collects e ce where
empty:: ce
insert :: e -> ce -> ce

The Collects type class defines a relation between element types e and the type
ce of the collection itself. But the type ce of empty would lead to ambiguity
as we cannot determine which instance to use for a given type of ce. Jones
proposed functional dependency [Jon00] to make it unambiguous. The functional
dependency ce -> e states that for all instance declaration of Collects the
element type e can be determined from the collection type ce. We can now
model a type class using the features that we have already discussed above.

Example 3. Consider a type class that handles overloading of binary operators
for Int and Float.

class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a

instance Num Int where
(+) = addInt
(*) = mulInt

instance Num Float where
(+) = addFloat
(*) = mulFloat

square :: Num a => a -> a
square x = x * x

This syntax hides the “indirection” that handles the overloading. This can
be understood by looking at the translated version of the above example.

data NumD a = NumDict (a -> a -> a) (a -> a -> a)
add (NumDict a m) = a
mul (NumDict a m) = m
numDInt :: NumD Int
numDInt = NumDict addInt mulInt
numDFloat :: NumD Float
numFloat = NumDict addFloat mulFloat
square’ :: NumD a -> a -> a
square’ numDa x = mul NumDa x x

The indirection is achieved by passing the appropriate dictionary at runtime.
Since dictionaries are passed on the basis of instance types, any failure to dis-
ambiguate between the instances leads to compile-time errors.

6

2.3 CHRs and Functional Dependencies

Constraint handling rules [Fru95] (CHRs) are a multi-headed concurrent con-
straint language for writing incremental constraint solvers. In effect, they define
transitions from one constraint to an equivalent constraint. Transitions serve
to simplify constraints and detect satisfiability and unsatisfiability. Constraint
handling rules (CHR rules) are of two forms:

simplification rulename@ c1, ..., cn ⇐⇒ d1, ..., dn

propagation rulename@ c1, ..., cn =⇒ d1, ..., dn

In these rules c1,...,cn are CHR constraints and d1,...,dn are either CHR or
Herbrand constraints. The simplification rule states that given a constraint
set {c1,...,cn} this set can be replaced by {d1,...,dn}. The propagation rule
states that given a constraint set {c1,...,cn} we should add {d1,...,dn}. A gen-
eral framework for type class and various extensions has been proposed in
[GSS01] [GSS00]. We use CHR rules to model functional dependencies in multi-
parameter type classes. Consider our earlier example which models a collection
reproduced below:

class Collects e ce | ce -> e

The functional dependency ce -> e can be expressed in terms of CHRs as:

Collects e ce, Collects f ce =⇒ f = e
Collects [a] b =⇒ a = b

The first rule states that if we have two constraints (Collects e ce) and
(Collects f ce) both hold then have that e and f are of the same type.
The second rule states that if (Collects [a] b) holds then it must be that a
is of the same type as b.

There are other CHRs for handling constraints that model class superclass
relationship and the corresponding instances but for our purpose the above two
rules are sufficient. Interested readers can refer [GSS01] for a formal theory
behind CHRs and type classes. In the next sub-section we detail an important
principle that provides a way to emulate Haskell type class instances in C++.

2.4 SFINAE principle

In C++, a template function call resolution is a two-step process. First, the
argument type is deduced from the function call and then the argument type
is substituted in the function templates to resolve any overloads. It is at this
stage of overloading that if an incorrect argument type is formed the template
is removed from the overload set without causing a compile-time error. This
is called as substitution-failure-is-not-an-error (SFINAE) principle. There are
various conditions where argument-types may be invalid. More details can be
found in [JWHL03] ,[VJ02]. The following example demonstrates this:

7

Example 4. Consider this example taken from [JWL03] where we overload
negate function.

int negate (int i)
{ return -i; }

Assume there is another definition of negate and this time its a function tem-
plate:

template<class T>
typename T::result_type negate(const T & t){ return -t; };

int main()
{

int i;
i = negate(5);
return 0;

}

A call to negate is handled by the overload resolution by considering both
these definitions. The template version is instantiated as :

int::result type negate(const int &);

The return type int::result type is invalid since there are no nested types for
int. Therefore, the template version is removed from the overload resolution
set and the function call is resolved to the non-template version of negate.

Without SFINAE both the calls would be a candidate for the call and hence
the program would fail to compile.

2.5 Enable If technique

Although the SFINAE principle in itself is relatively of little use but when com-
bined with compile-time meta-programming it packs that extra punch that not
only helps us to emulate type classes but implement various type-class exten-
sions and gives new insights into Haskell type class and C++ templates/traits
connection. We detail the principle here but use it later to emulate various
advanced Haskell type class extensions.

Example 5. Consider a somewhat simpler form of Show defined in prelude

class Showable t where
show:: t -> String
instance Showable Int where
show i = ...

instance Showable t => Showable [t] where
show l =

8

Similarly, we can define a print method that can take as input arguments only
those types that are members of Showable type class.

print:: Showable t => t -> IO()
print s

To emulate this in C++, we use enable if template [JWL03] to constrain
a templates arguments. This in turn helps to enable or disable a particular
class template specialization. The following example shows the main concepts
involved:

Example 6. Consider this example where we encode Showable in C++.

template <class T, class Enable = void>
struct showable_traits { static const bool conforms = false;};
template<class T>
struct showable
{

static const bool b = showable_traits<T>::conforms;
if (b == false)
{

std::cout << ‘‘This type does not model showable concept’’ ;
} else
{

showable_traits<T>::show();
}

};

The first template class encodes whether a type T (any arbitrary type) is an
instance of the type class; the boolean parameter conforms indicates whether
a particular type participates in the concept being modeled. The default case
is that type does not model a concept. To “enable” a type to participate in the
concept being modeled the programmer needs to explicitly state that the parameter
conforms is assigned the value true.

template<>
struct showable_traits<int> {
static const bool conforms = true;
string show(int x) /*...*/

};

This template specialization indicates int is now assigned to model the concept.
Compare this with Haskell, where we need to explicitly state that a value of
type Int is showable. The flexibility with type classes is that we can define
additional constraints on an arbitrary set of types. In contrast, C++ we can
make only a certain set of types showable. The following example makes all the
pointer types showable:

9

template<class T>
struct<showable_traits<T*> >{

static const bool conforms = true;
string show(T* x){ /*... */ }

}

Consider again the Showable type class. In Haskell, we can assign a context
to a type declaration to specify for an arbitrary type T in the form of context as:

instance Showable T => Showable [T] where

Something similar can be expressed in C++ by using enable if template:

template<class T>
struct showable_traits< list<T>,

typename enable_if<showable_traits<T>::conforms
>::type

>
{
static const bool conforms = true;
string show(const list<T>& x) { ... }

};

Here’s a summary of enable if template as mentioned in [JWL03]. A class
template specialization can be augmented with a static metaprogram that ex-
amines certain properties of the template arguments and conditionally enables
or disables the specialization. This allows us to go beyond the capabilities of
Haskell type classes. The enable if technique can be used to express almost
arbitrary boolean expressions which are evaluated at compile-time.

3 Emulating type classes in C++

In this section we show how we can mimic Haskell type classes and then show
that with the help of some additional techniques we can easily emulate advanced
type class behavior such as type classes with duplicate instances and multi-
parameter type classes with functional dependencies. We start with looking at
some sample programs to bring out the subtleties between Haskell type class
and C++ templates.

3.1 Type annotations

Almost similar behavior can be expressed in terms of Haskell type classes as
follows:

10

Example 7. Consider the stream buf class mentioned earlier in Section 2.1.

class StreamBuf a b where
eof :: b
sgetc :: b
sgetn :: a -> Int -> Int

instance StreamBuf Char Int where
eof = EOF
...

instance StreamBuf W Char Int where
eof = WEOF
...

Currently, Haskell supports only default type annotations and not partial type
annotation. This would be an easy extension. In Haskell, the specific instance
models the code to be executed at runtime based on the types provided at
compile-time.

3.2 Handling structural conformance

Example 8. Consider another example taken from Stroustrup’s book [Str93]
and also finds a mention in [Mye95].

template <class T> class CMP {
static bool eq(T a, T b) { return a == b; }
static bool lt(T a, T b) { return a < b; }

};

and an ordinary string template:

template <class charT> class basic_string {
//
};

typedef basic_string<char> string;

We can now define a function compare() that can be used to compare strings.
More precisely, the criteria of sorting is now parameterized as shown in the
following code:

template <class charT, class C = CMP<charT> >
int compare(const basic_string<charT>& str1,

const basic_string<charT>& str2
) {

for (int i=0; i<str1.length() && i < str2.length(); i++) {
if (!C::eq(str1[i],str2[i])) return C::lt(str1[i],str2[i]);

}
return str2.length() - str1.length();

};

11

We can now pass our comparison criteria as an instantiated template class:

class LITERATE {
static int eq(char a , char b) return a == b;
static int lt(char, char); // use literary convention; defined elsewhere

};
string swede1, swede2;
compare<char, LITERATE>(swede1,swede2);

In Haskell, we can express the above example as:

Example 9. Consider this example where type signatures enforce constraints
on implementations.

class CMP t where
eq :: t -> t -> Bool
lt :: t -> t -> Bool
instance CMP Char where
eq = ..
lt = ..

class CMP t => Compare [t] where
compare:: [t] -> [t] -> Bool

In C++, something similar is expressed by encoding the parameter as an in-
stantiated template but we do not force the structure requirement strictly. For
example, any arbitrary class Foo can be passed as a parameter to the compare
function template.

3.3 Overloading functions

In Haskell, we can describe a generic family of overloaded functions via instance
declarations.

Example 10. Consider this example where we evaluate a binary node corre-
sponding to a parse tree.

data BNode a b c = BNode a b c
data L = L
data R = R
data OpPlus = OpPlus
class Eval a where

12

evalAt :: a -> ()
instance (Eval L, Eval R) => Eval (BNode OpPlus L R) where
evalAt(BNode OpPlus L R) = ... eval L; ... eval R; ...

Something similar can be expressed in C++ as is mentioned in [CDST04]

template <class L, class R> struct Eval<BNode<OpPlus,L,R> >
{ static inline T evalAt(const BNode<OpPlus, L,R>& b, int i)
{ return ... Eval<L>::evalAtEval<R>::evalAt

In Haskell, we specify exactly the valid relations among overloaded instances
whereas in C++ we annotate the program text (e.g. Eval<L>::evalAt), similar
to System-F style type application. The enable if technique can be used to
express almost arbitrary boolean expressions which are evaluated at compile-
time. This allows us to go beyond the capabilities of Haskell type classes. We
cite below some important cases with examples.

3.4 Overlapping Instances

Our discussion until now has been focussed on mimicking Haskell type classes
in C++.

Example 11. Consider the following example in Haskell that involves over-
lapping instances.

class C a b where
f:: a -> b -> Bool

instance C Bool a where
f b x = b

instance C a Bool where
f x b = b

--Compiling Main (overlap.hs, interpreted)
--
--overlap.hs:4:
-- Overlapping instance declarations:
-- overlap.hs:4: C Bool a
-- overlap.hs:7: C a Bool
--Failed, modules loaded: none.

GHC fails to compile the above program. A similar program in C++ also fails to
compile because of the ambiguity. Note here that we do not use any enable if
templates.

13

Example 12. Consider the above example in C++:

template<template <class T1, class T2 > class C, class T >
struct C_traits<C<T, int> >
{
static const bool conforms = true;
....

};

template<template<class T1, class T2> class C, class T>
struct C_traits<C<int, T> >
{
static const bool conforms = true;
.....

};

Instantiating C traits<C<int,int> > leads to the following error message in
C++:

Hoverlappaper.cpp: In function ‘int main()’:
Hoverlappaper.cpp:285: error: ambiguous class template
instantiation for ‘struct C_traits<C<int, int>, void>’

Hoverlappaper.cpp:259: error: candidates are: struct C_traits<C<int, T>, void>
Hoverlappaper.cpp:249: error: struct C_traits<C<T, int>, void>
Hoverlappaper.cpp:285: error: aggregate ‘C_traits<C<int, int>, void> a’ has

incomplete type and cannot be defined

These are essentially the same error messages as given for overlapping instances
in Haskell. Note that no amount of compile-time meta-programming can disam-
biguate the above instances. But in certain cases, we can disambiguate between
these overlapping instances. Consider a somewhat similar but a more general
case where we would like to model the subtype relation ≤ between regular ex-
pression types r1, r2 and r3 given by:

True
r1 ≤ r1 (RESubtype0)

r1 ≤ r2
r1 ≤ (r2 | r3) (RESubtype1)

r1 ≤ r3
r1 ≤ (r2 | r3) (RESubtype2)

Example 13. Consider this example in Haskell which models the above sub-
type relation.

data OR a b = data OR a b
class RESubtype r1 r2 where
instance RESubtype r1 r1
instance RESubtype r1 r2 => instance RESubtype r1 (OR r2 r3)

14

instance RESubtype r1 r3 => instance RESubtype r1 (OR r2 r3)

Again GHC fails to compile the above program. Clearly, in this example GHC
issues warnings that the instances are duplicated even though the contexts dis-
ambiguate the two instances. This is where the enable if technique proves so
useful. As in the earlier examples we assume the existence of a default Enabler
template and a default RESubtype template. The context can now be used to
disambiguate between the two instances as shown below:

Example 14. Consider this example where subtyping is encoded in C++.

template< template<class T1, class T4> class RESubtype,
template<class T1, class T2> class OR,
class T3, class T2 , class T1

>
struct RESubtype_traits< RESubtype< T1, OR<T2,T3> >,

typename enable_if<RESubtype_traits<RESubtype<T1,T3>
>::conforms

>::type
>

{
static const bool conforms = true;
static void equal(){
std::cout <<"RESubtype<T1,T3> => RESubtype<T1,(T2|T3)>" << std::endl;

}
};

template< template<class T1, class T2> class RESubtype,
template<class T1, class T2> class OR,
class T3, class T2 , class T1

>
struct RESubtype_traits< RESubtype< T1, OR<T2,T3> >,

typename enable_if<RESubtype_traits<RESubtype<T1,T2>
>::conforms

>::type
>

{
static const bool conforms = true;
static void equal()
{
std::cout <<"RESubtype<T1,T2> => RESubtype<T1,(T2|T3)>" << std::endl;

15

}
};

The interesting part in this code is the place where enable if is used to disam-
biguate between the instances. Thus, a call like RESubtype<int,OR<int,float>
> >::equal() is resolved to the correct equal function. In our case, equal()
outputs:

RESubtype<T1,T2> => RESubtype<T1,(T2|T3)>

Here we have assumed that there is code which rules out instances of the form
RESubtype<int,float> but accepts instances of the form RESubtype<int,int>.

3.5 Functional Dependencies

So far we have encoded Haskell type classes which do not involve any functional
dependencies.

Example 14. Consider a simple example where functional dependencies are
used to rule out illegal instances:

class Foo a b | a -> b where ...
instance Foo Bool Char
instance Foo Bool Int

This program is ambiguous since for a given type of a we have two possible
types for b. This can also be realized in terms of CHRs as:

Foo a b , Foo a c =⇒ b = c

Clearly, the above two instances conflict with what functional dependencies
say about the type a and b i.e. a determines b.

Example 15. Consider the following example which tries to encode functional
dependencies in terms of C++ template code. The idea behind this code is that
the two overload instances with the same first parameter will produce a compile-
time error. We assume that we have the corresponding enable if template
defined.

16

template< template<class T1, class T2> class Foo,
class T1, class T2

>
struct Foo_traits< Foo<T1,T2>,

typename enable_if<Foo<T1,_>::conforms>::type
>

{
static bool const conforms = true;
........

};

template<>
struct Foo_traits<Foo<int,char> >
{

static bool const conforms = true;
.....

};

The above code will compile if and only if the overload resolution set finds
only one element in the overload resolution set. We need an extension of
enable if or maybe a new technique optional if to handle such cases.
Assuming that we have such an extension we can then express more complex
functional dependency. The following example elaborates this point further:

Example 16. Consider earlier example but with both parameters dependent
on each other:

class Foo a b | a -> b, b -> a where ...

The corresponding C++ code remains the same but we make changes in the
enable if template to reflect the additional constraints.

template< template<class T1, class T2> class Foo,
class T1,
class T2

>
struct Foo_traits< Foo<T1,T2>,

typename enable_if<Foo_traits<Foo<T1,_> >::conforms &&
Foo_traits<Foo<_,T2> >::conforms
>::type

>
{
.....

}

17

This example correctly mimics the functionality of functional dependencies but
it does not scale well when we encounter Foo [a] b. Because such a case in-
volves type equivalence at two levels: at the level of types it enforces structural
equivalence and at the level of values it enforces that values are uniquely deter-
mined. In such a case we should infer that b = [c] for some c. In C++, we can
handle such a situation if we can inspect the types of b and a at compile-time
and take a decision based on this information. We show how to do this next.

3.6 Type traits and functional dependencies

In C++, there is a mechanism by which it is possible to inspect the type struc-
ture at compile-time [MC00]. In our case, we can check for structural equiva-
lence of a type; check whether the first parameter is of type list and the second
parameter is of base type. An example follows:

Example 17. Consider this example where we can find at compile-time whether
a type T is a pointer type.

template<typename T>
struct is_pointer
{ static const bool value = false; };

template<typename T>
struct is_pointer<T*>
{static const bool value = true; };

In C++, we can do more than just inspect types at compile-time. In fact, we
can perform type-specific transformation; for example, we can remove a top-level
qualifier list from a type list<T> as shown in the following example:

Example 18. Consider this example where we use compile-time computation
to remove outer list constructor list from a type list<T>.

template<typename T>
struct removelist<std::list<T> >
{

typedef T type;
};

template<typename T>
struct removelist<std::list<std::list<T> > >
{

typedef std::list<T> type;
};

18

The above example removes the outer list constructor from the type T .
For example, removelist<list<int> >::type would evaluate to the type int
whereas removelist<list<list<int> > >::type would evaluate to the type
list<int>.

This technique can also be used to add a list constructor to types. Thus,
addlist<list<int> >::type would evaluate to the type list<list<int> >
where addlist is defined just as removelist. In terms of CHRs the above
example can be seen as:

F [a] b =⇒ F [a] b, b = [c]

The next sub-section shows an example involving above CHR encoded in C++.

3.7 Malicious Functional Dependency example

We now have a mechanism by which we can emulate functional dependencies in
C++. But functional dependencies have been known to cause non-termination
of type inference procedure. The following Haskell example shows what can go
wrong with functional dependencies. Related information on the theory behind
this example can be found in [DPJSS04].

Example 19. Consider this contrived example which involves a functional
dependency.

class Foo a b | a -> b
instance Foo a b => Foo [a] [b]

This boils down to following rules in terms of CHR solving as:

@Rule1 Foo a b, Foo a c =⇒ b = c
@Rule2 Foo [a] c ⇐⇒ c = [b], Foo [a] c
@Rule3 Foo [a] [b] =⇒ Foo a b

Now consider Foo [a] a,

⇐⇒rule2 Foo [a] a, a = [b]
⇐⇒ Foo [[b]] [b], a = [b]
=⇒rule3 Foo [b] b, a = [b]

.........

We can code almost similar program behaviour in C++ as:

19

Example 20. We show here the skeleton of a program which tries to mimick
the above behavior but is limited by the C++ templates inability to use a type
before if is defined.

// this template takes care of the following CHR: F [a] b => F [a] b , b = [c]
template<template<class T1, class T2>class RESubtype, class T>
struct RESubtype_traits<RESubtype<std::list<std::list<T> >,std::list<T> >,
typename enable_if<RESubtype_traits<typename removelist<RESubtype<std::list<std::list<T> >,

std::list<T>
>::type

>::conforms
>::type>

{
........
};

// this is for instance of this form instance Foo a b => Foo [a][b]
template<template<class T1, class T2>class RESubtype, class T>
struct RESubtype_traits<RESubtype<std::list<T>,T>,
typename enable_if<RESubtype_traits<typename addlist<RESubtype<std::list<T>,T>

>::type
>::conforms

>::type>
{
......

};

When compiled, the above program terminates. The comments in the program
are self-explanatory. We have already covered the background needed to under-
stand addlist and removelist templates. Haskell community has long been
aware of the failure of type inference mechanism to terminate. But as the above
example shows C++ compile-time metaprograms are much more restricting.

3.8 Encoding Arrow types in C++

It is possible to encode arrow types in C++ by overloading the function call
operator. Essentially this gives a state to a function which is used to hold the
computed value of previous call. First, we take a look at a Haskell type class
involving arrow type.

Example 21. Consider this example which describes a generic family of zip
functions.

zipall::[a]->[b]->[(a,b)]
zipall (a:as) (b:bs) = (a,b):(zipall as bs)

20

zipall _ _ = []

class Zip a b c | a c -> b , b c -> a where
myzip:: a -> b -> c

instance Zip [a] [b] [(a,b)] where
myzip a b = zipall a b

instance Zip [(a,b)] [d] e => Zip [a] [b] ([d]-> e) where
myzip a b = \c -> (myzip (zipall a b) c)

e1:: [((((Int,Char),Int),Char),Char)]
e1 = myzip [1::Int,2] [’a’,’c’] [5::Int] [’x’,’y’] [’r’,’t’]
--here is the output
--[((((1,’a’),5),’x’),’r’)]

The Haskell code above needs explicit type annotation and functional depen-
dencies for type inference to guide the computation. The type class mentioned
above defines a function that can accept variable number of arguments in a
type-safe manner.

In C++, something similar can be expressed with the help of functor objects
by overloading the () operator. We use a technique first described in [Ale98] for
a container that can accumulate a variable number of arguments in a type-safe
manner. Since the generic list container provided by STL is homogeneous we
hold pointers to the base class instead of derived class as:

std::list<Base*> v1;
class Base
{
public:
...

};

To give a truly polymorphic behavior, we add wrapper classes for representing
primitive types i.e.int, char:

class SimpleInteger:public Base;
std::list<Base*> v1;
SimpleInteger* si1 = new SimpleInteger(12);
v1.push_back(si1);

Class SimpleInteger acts as a wrapper class for integer type. All the wrapper
classes inherit from the Base class in order to pass a value corresponding to the
base type as pointers to this class type. But the bulk of the work is centered
around mycontainer class which inherits from the list container. We highlight
the skeleton of the equivalent program. The full code listing can be found in
the Appendix A.

template < class T = Base, class container = std::list<T*> >
class mycontainer : public container

21

{
private:
std::list<Base*> fst;
std::list<Base*> snd;

public:
mycontainer()
{
}

mycontainer(const std::list<Base*> &v)
{
this->swap(v);

}

explicit mycontainer(std::list<Base*>& a, std::list<Base*>& b)
{
std::list<Base*> final;
std::list<Base*>::iterator iter1;
for(iter1 = a.begin(), iter2 = b.begin();

iter1 != a.end() && iter2 != b.end();
iter1++,iter2++

)
{

Pair* p1 = new Pair(*iter2, *iter1);
final.push_back(p1);

}
this->swap(final);

}

mycontainer& operator()(std::list<Base*> &a)
{
std::list<Base*>::iterator iter1, iter2;
std::list<Base*> temp;
for(iter1 = a.begin(), iter2 = this->begin();

iter1!= a.end() && iter2!= this->end();
iter1++, iter2++

)
{

Pair* p2 =new Pair(*iter2,*iter1);
temp.push_back(p2);

}
this->swap(temp);
return *this;

}

22

};

A call to the function foo (which has the functionality of zip the Haskell
equivalent) can now be specified as:

foo(make_list<Base>(v1,v2)(v3)(v4)(v5));

where v1, v2, v3, v4 and v5 denote a list of pointer to base type. The make list
function returns an instance of mycontainer and subsequent calls are operator
overloads of () with a list of pointers to base type passed as argument. Here’s
the output of the above function call with the above arguments::

Pair<Pair<Pair<Pair<13,12>,13>,S>,k>
Pair<Pair<Pair<Pair<13,12>,18>,U>,e>
Pair<Pair<Pair<Pair<12,12>,13>,N>,n>

Here Pair<> is defined as a placeholder for holding two base pointers:

struct Pair:public Base
{
Base* fst;
Base* snd;

};

Our findings can be summarized as:

• Template/traits are a popular mechanism for type/value computations in
C++.

• Haskell type classes and other extensions can be mimicked in C++ using
some tricks (enable if) and type traits technique.

• In Haskell, there is a clear phase distinction between type and value com-
putations. Via type class we can impose properties on types. This infor-
mation is then used to generate code by turning into dictionaries.

• In C++, type inference/checking is viewed as program manipulation whereas
Haskell has type inference. Therefore, in C++ we need to annotate the
program text (e.g. Eval<L>::evalAt) (and also the fact that compile-
time computation is based on the fact that values are immutable, we en-
counter “functional” view of type inference) whereas in Haskell we specify
exactly the valid relations among overloaded instances. The enable if
technique can be viewed as a tool to model these instance relationships in
C++.

• In C++, SFINAE principle along with the is used to disambiguate be-
tween the duplicate instances. Correspondingly, Haskell lacks a mecha-
nism whereby duplicate instances can be disambiguated at compile-time
by using the context information.

23

• We think it is possible to encode in C++ the following example in Haskell
where functional dependencies are inherited from the parent class. Here
is an example:

class Foo a b | a -> b where
class Foo a b => Bar a b where

4 Conclusions

Haskell type classes and various extensions can be emulated in C++ by C++
templates/traits and some amount of compile-time metaprogramming. C++
is wordy and thus requires many more lines of codes than something similar
in Haskell which can be expressed in few lines of code. Nevertheless C++
can easily handle other possible extensions to Haskell type classes. We believe
that more work needs to be done to bring out the connections and potential
problems associated with various language mechanisms. Our work will ben-
efit language designers who might want ad-hoc polymorphism in a language
that has no in-built support for controlled polymorphism(like type classes in
Haskell) but otherwise provides excellent facilities for type-based computations
(like Template meta-programming) and some facility for Generic Programming
(like templates/traits) .

References

[Ale98] Andrei Alexandrescu. Inline Containers for Variable Arguments.
C++ Users Journal, September,1998.

[CDST04] Krzysztof Czarnecki, John Donnell, Joerg Striegnitz, and Walid
Taha. DSL implementation in Metaocaml, Template Haskell, and
C++. In Not yet known, volume 3016 of LNCS. Springer Verlag,
2004.

[CE00] K. Czarnecki and U. Eisenecker. Generative programming: Meth-
ods, techniques, and applications, 2000.

[Com] Haskell Community. Haskell web site. http://www.haskell.org.

[DPJSS04] Gregory J. Duck, Simon Peyton-Jones, Peter J. Stuckey, and Mar-
tin Sulzmann. Sound and decidable type inference for functional
dependencies. ESOP 2004: The European Symposium on Program-
ming, 2004.

[Fru95] Thom Fruehwirth. Constraint handling rules. In A. Podelski, editor,
Constraint Programming: Basics and Trends, volume 910 of LNCS.
Springer Verlag, 1995.

24

[GA] Aleksey Gurtovoy and David Abrahams. The boost c++ metapro-
gramming library. http://www.boost.org/libs/mpl/doc/paper/
html/index.html.

[GJL+03] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and
Jeremiah Willcock. A comparative study of language support for
generic programming. In Proceedings of the 18th ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and
applications, pages 115–134. ACM Press, 2003.

[GSS00] Kevin Glynn, Martin Sulzmann, and Peter J. Stuckey. Type classes
and constraint handling rules. First Workshop on Rule-Based Con-
straint Reasoning and Programming, July 2000.

[GSS01] K. Glynn, P.J. Stuckey, and M. Sulzmann. A General Type Class
Framework. Technical report, Department of Computer Science,
The University of Melbourne, 2001.

[JHA+99] Simon Peyton Jones, John Hughes, Lennart Augustsson, Dave Bur-
ton, and Brian Boutel. Haskell98: A Non-strict, Purely Functional
Language, February 1999.

[Jon00] Mark P. Jones. Type classes with functional dependencies. In
Proceedings of the 9th European Symposium on Programming Lan-
guages and Systems, pages 230–244. Springer-Verlag, 2000.

[JWHL03] J. Järvi, J. Willcock, H. Hinnant, and A. Lumsdaine. Function
overloading based on arbitrary properties of types. C/C++ Users
Journal, 21(6):25–32, June 2003.

[JWL03] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine.
Concept-controlled polymorphism. In Frank Pfennig and Yan-
nis Smaragdakis, editors, Generative Programming and Component
Engineering, volume 2830 of LNCS, pages 228–244. Springer Verlag,
September 2003.

[MC00] John Maddock and Steve Cleary. C++ type traits. http://www.
boost.org/libs/type_traits/c++_type_traits.htm, 2000.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The definition of Standard ML (Revised). MIT press, Cambridge,
MA, 1997.

[Mye95] Nathan C. Myers. Traits: a new and useful template technique.
C++ Report, 7:32–35, 1995.

[Org98] International Standardization Organization. ANSI/ISO standard
14882, Programming Language C++. 1 rue de Varembe, Case
postale 56, CH-1211 Geneve 20, Switzerland, 1998.

25

[Str93] B. Stroustrup. Design and Evolution of C++. Addison Wesley,
Reading, MA,USA, 1993.

[VJ02] David Vandevoorde and Nicolai M. Josuttis. C++ Templates.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[Wal] Josh Walker. Template metaprogramming: make your com-
piler work for you. http://home.earthlink.net/~joshwalker1/
writing/TemplateMetaprogramming.%html.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
phism less ad hoc. ACM Symposium on Principles of Programming
Languages, 1989.

Appendix A

// This is the original program which works
#include <vector>
#include <list>
#include <deque>
#include <iostream>

class Base
{

public:
virtual ~Base(){}
virtual void print(){}

};

class SimpleInteger:public Base
{
int i;

public:
SimpleInteger(int sint)
{
i = sint;

}
~SimpleInteger(){
}

void print(){
std::cout<<this->i;

}
};

26

class SimpleCharacter:public Base
{
private:
char c;

public:
SimpleCharacter(char cchar)
{

c=cchar;
}
~SimpleCharacter(){
}
void print(){
std::cout<< this ->c << ",";

}
};

struct Pair:public Base
{
Base* fst;
Base* snd;

Pair(Base* ffst,Base* ssnd)
{
fst = ffst;
snd = ssnd;
//std::cout<< "Constructor 2 called"<< std::endl;
//ffst->print();

}
void print()
{
std::cout<<"Pair<";
fst->print();
std::cout<<",";
snd->print();
std::cout<<">";

}
virtual ~Pair(){}

};

template < class T = Base, class container = std::list<T*> >
class mycontainer : public container
{
private:

27

std::list<Base*> fst;
std::list<Base*> snd;

public:
mycontainer()
{
std::cout <<"calling default constructor"<<std::endl;

}

mycontainer(const std::list<Base*> &v)
{

this->swap(v);
}

explicit mycontainer(std::list<Base*>& a, std::list<Base*>& b)
// : container(1, new Pair<T,T>(a,b))

{
std::list<Base*> final;
std::list<Base*>::iterator iter1;
std::list<Base*>::iterator iter2;
for(iter1 = a.begin(), iter2 = b.begin();iter1 != a.end() &&iter2 != b.end();iter1++,iter2++)
{

Pair* p1 = new Pair((*iter2),(*iter1));
final.push_back(p1);

}
this->swap(final);

}

mycontainer& operator()(std::list<Base*> &a)
{
std::list<Base*>::iterator iter1, iter2;
std::list<Base*> temp;
for(iter1 = a.begin(), iter2 = this->begin();iter1!= a.end()&&iter2!= this->end();iter1++,iter2++)
{

Pair* p2 =new Pair(*iter2,*iter1);
temp.push_back(p2);

}
this->swap(temp);
return *this;

}

28

};

template<class T>
inline mycontainer<T> make_list(std::list<Base*>& a,std::list<Base*>& b)
{

return mycontainer<T>(a,b);
}

template <class container>
void foo(container a)
{
std::list<Base*>::iterator aiter;
for(aiter = a.begin(); aiter !=a.end(); aiter++)
{
(*(*aiter)).print();
std::cout << std::endl;

};

}

int main()
{
std::list<Base*> v1;
std::list<Base*> v2;
std::list<Base*> v3;
std::list<Base*> v4,v5;

SimpleInteger* si1 = new SimpleInteger(12);
SimpleInteger* si2 = new SimpleInteger(12);
SimpleInteger* si3 = new SimpleInteger(12);
SimpleInteger* si4 = new SimpleInteger(13);
SimpleInteger* si5 = new SimpleInteger(13);
SimpleInteger* si6 = new SimpleInteger(13);
SimpleInteger* si7 = new SimpleInteger(18);
SimpleCharacter* sc1 = new SimpleCharacter(’S’);
SimpleCharacter* sc2 = new SimpleCharacter(’U’);
SimpleCharacter* sc3 = new SimpleCharacter(’N’);
SimpleCharacter* sc4 = new SimpleCharacter(’I’);
SimpleCharacter* sc11 = new SimpleCharacter(’k’);
SimpleCharacter* sc12 = new SimpleCharacter(’e’);
SimpleCharacter* sc13 = new SimpleCharacter(’n’);
SimpleCharacter* sc14 = new SimpleCharacter(’n’);
v1.push_back(si1);
v1.push_back(si2);

29

v1.push_back(si3);
v2.push_back(si4);
v2.push_back(si5);
v2.push_back(si3);
v3.push_back(si6);
v3.push_back(si7);
v3.push_back(si4);
v4.push_back(sc1);
v4.push_back(sc2);
v4.push_back(sc3);
v5.push_back(sc11);
v5.push_back(sc12);
v5.push_back(sc13);
v5.push_back(sc14);
foo(make_list<Base>(v1,v2)(v3)(v4)(v5));
return 0;

}

30

