
T C P C C++

Martin Böhme∗ Bodo Manthey†

Abstract

Using a C++ compiler, any partial recursive function can be computed
at compile time. We show this by using the C++ template mechanism to
define functions via primitive recursion, composition, and µ-recursion.

1 Introduction
Any partial recursive function can be computed using the programming language
C++. But what about the computational power of C++ compilers? Are there any
functions that can be computed just by compiling C++ source code instead of ex-
ecuting a C++ program after compilation? The answer is surprising: Any partial
recursive function can be computed by running a C++ compiler. We show this by
presenting a way to specify primitive recursion, composition, and µ-recursion [2]
by (ab)using the C++ template mechanism and type system [3]. Our strategy
for obtaining the output is to provide an error message that contains the result in
unary representation. When we run the C++ compiler, after specifying a partial
recursive function f and a natural number x as C++ source code, the error mes-
sage typed out by the compiler will be f (x). We make the reasonable assumption
that the compiler outputs helpful error messages that give the names of the types
involved in a type conflict, for example. However, even if the only error message
that is produced by the compiler is “error”, we show that the compiler still has to
compute f (x) internally.

The idea of using the C++ template mechanism for computations at compile
time goes back to Unruh. He developed a program that printed out prime num-
bers at compile time [4], and stated that any partial recursive function could be
computed in this way [5]. As far as we are aware, though, he has never published
a proof. Veldhuizen [6] picked up the idea and applied it to improve the speed
of C++ programs. He considers C++ to be a two-level language: static compu-
tations performed at compile time and dynamic computations performed at run

∗Universität zu Lübeck, boehme@informatik.uni-luebeck.de. †Universität zu Lübeck,
Institut für Theoretische Informatik, manthey@tcs.uni-luebeck.de.

boehme@informatik.uni-luebeck.de
manthey@tcs.uni-luebeck.de

time [7]. Splitting the computation up in such a way is called “partial evaluation”
or “program specialization” (see e.g. Jones [1] or Stroustrup [3, Sec. 13.5]), and
today this technique is widely used in template libraries.

2 Defining Functions Using C++ Templates
We now present the mechanism by which we compute partial recursive functions
using the template mechanism. To represent numbers, we choose not to use the
built-in integer type int; instead, we use types constructed recursively using the
C++ template mechanism, which in theory allows us to represent arbitrarily large
numbers. We will call a C++ type that represents a natural number a number type.

To make this concrete,

struct zero { };

is the number type that represents the number zero, and, given a number type T,

template<class T> struct suc
{
typedef T pre;

};

represents the successor of that number. For example, suc<suc<zero> > repre-
sents the number 2. The pre typedef can be used to obtain the predecessor. Thus,
for any number type T that is not zero, T::pre represents the predecessor of that
number. (For brevity, we will use struct instead of class throughout this work;
both are equivalent except that the default access for struct is public whereas
for class it is private.)

A function is represented as a C++ class that contains a typedef called val.
This typedef is equal to the number type of the result. The arguments of the func-
tion are represented as template arguments. We will refer to classes that represent
functions in this way as function types. For example,

template<class T> struct plus2
{
typedef suc<suc<T> > val;

};

is a function type that computes the function f (x) = x + 2. If we want to compute
f (1), we add

int main()
{
plus2<suc<zero > >::val tmp;
return (int) tmp;

}

as the main program. Due to the illegal type cast (int) tmp; the compiler will
type out the error message

‘struct suc<suc<suc<zero> > >’ used where a ‘int’ was expected

and thus we obtain the result f (1) = 3.
To show that any partial recursive function can be computed in this way, we

need to be able to express the base functions as well as primitive recursion, com-
position and µ-recursion. We quickly review their definitions (see e.g. Smith [2]).

Base Functions: The zero function Z with Z(x) = 0, the successor function S with
S (x) = x + 1 and the projection functions Un

j (1 ≤ j ≤ n) with Un
j (x1, . . . , xn) = x j

are primitive recursive.

Primitive Recursion: Let g and h be primitive recursive functions of arity n and n + 2,
respectively. Then the function f with

f (x1, . . . , xn, 0) = g(x1, . . . , xn) and
f (x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f (x1, . . . , xn, y))

is also primitive recursive.

Composition: Let g1, . . ., gm be primitive recursive functions, each of arity n, and h be a
primitive recursive function of arity m. Then the function f with

f (x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) .

is also primitive recursive.

µ-Recursion: Let h be a (partial) function of arity n+1. A function f of arity n is defined
by µ-recursion from h if

f (x1, . . . , xn) = µ y[h(x1, . . . , xn, y) = 0] ,

where µ y[h(x1, . . . , xn, y) = 0] = z if

– h(x1, . . . , xn, z) = 0 and

– for all y′ < z, h(x1, . . . , xn, y′) is defined and h(x1, . . . , xn, y′) , 0.

If no such z exists, µ y[h(x1, . . . , xn, y) = 0] is undefined.

We first demonstrate that primitive recursion can be expressed. We demon-
strate this only for the case where f is a binary function, but the extension to the
general case is easy. Therefore, let g and h be unary and ternary primitive re-
cursive functions, respectively, and let G and H be function types that compute g
and h. Then the following function type F computes the function f as defined by
primitive recursion from g and h.

template<class X, class Y> struct F;

template<class X> struct F<X, zero>
{
typedef typename G<X>::val val;

};

template<class X, class Y> struct F
{
typedef typename H
<
X, typename Y::pre, typename F<X, typename Y::pre>::val

>::val val;
};

We omit a demonstration of how the base functions and composition can be
expressed since the base functions are fairly easy and composition merely involves
assembling the various function types.

With the base functions, primitive recursion and composition, any primitive
recursive function can be expressed as a function type. We will now show that
µ-recursion can be expressed, thus allowing us to compute any partial recursive
function, since any partial recursive function can be expressed with a single µ-
operator acting on a primitive recursive function.

In our demonstration of how to express the µ-operator, we again restrict our-
selves to unary functions, but again, generalization is easy. Let f be a unary
partial recursive function, let h be a binary primitive recursive function such that
f (x) = µ y[h(x, y) = 0], and let H be a function type that computes h. The idea
for computing µ y[h(x, y) = 0] using the template mechanism is to construct a
function

mu(h, x, y, p) =
{

y − 1 if p = 0 and
mu(h, x, y + 1, h(x, y)) otherwise.

We have f (x) = µ y[h(x, y) = 0] = mu(h, x, 0, 1). The way this works is that we
always have p = h(x, y − 1) (except for y = 0), and so when p is zero for the first

time we return y − 1 as the result. If h(x, y) , 0 for all y then the recursion never
terminates, and so mu(h, x, 0, 1) is undefined.

We now define a class Mu<H, X, Y, HprY> that computes mu.

template<template<class A,class B> class H,
class X, class Y, class HprY> struct Mu;

template<template<class A,class B> class H,
class X, class Y> struct Mu<H,X,Y,zero>

{
typedef typename Y::pre min;

};

template<template<class A,class B> class H,
class X, class Y, class HprY> struct Mu

{
typedef typename Mu<
H, X, suc<Y>, typename H<X,Y>::val>::min min;

};

This is a straightforward implementation of the definition of mu. Template
specialization is used to select the first definition of Mu when HprY ≡ zero, and
the second definition otherwise.

This means that if f (x) = µ y[h(x, y) = 0] = mu(h, x, 0, 1) is defined, Mu<H,
X, zero, suc<zero> >::min is the number type that represents f (x). If f (x)
is undefined, the type Mu<H, X, zero, suc<zero> >::min is likewise unde-
fined; specifically, it is an infinite nesting of template instantiations, which will
cause the compiler to go into an infinite loop (or hit an internal limit on the tem-
plate instantiation depth).

3 Concluding Remarks
We have seen how to compute any partial recursive function f using the C++ tem-
plate mechanism and type system, outputting the result as an error message from
the compiler. But what happens if the compiler does not print out any (helpful)
error messages?

In this case, the compiler still has to compute the value f (x) internally. Sup-
pose that suc<T> is given the member variables T dummy1 and int dummy2.
This means that we have sizeof(suc<T>) > sizeof(T), because suc<T> con-
tains an object of type T as well as an additional integer.1 Thus, the function that

1Strictly speaking, for machines with very restrictive alignment rules, it is conceivable that one

maps a natural number n to the size of the number type representing n is injective.
If, in our program, we instantiate (create a variable of) the number type represent-
ing f (x), the compiler has to work out its size and thus compute f (x). We note
that it should be possible to devise a (compiler-dependent) scheme for extracting
f (x) from the executable generated by the compiler, but we will not go into the
technicalities of how such a scheme might work.

The way in which we have specified functions is quite similar to the pattern
matching used in functional programming languages. Consider for example our
implementation of primitive recursion. First we try to match the template argu-
ments with F<X,zero> (with arbitrary X). If this fails, we try to match them with
F<X, Y> (which should be successful). In the latter case we know that Y . zero,
so we can safely use Y::pre.

It is surely interesting to find other programming languages for which com-
pile-time computations are possible. Veldhuizen [8] presented an experimental
compiler for Java that performs partial evaluation to improve the performance of
numerical code. The worst-case running time of this compiler is quadratic.

As we have seen, C++ allows arbitrary computations at compile time. This
is something of a dilemma. We want the power to perform complex program
manipulations at compile time, but we would also like to have a guaranteed time
bound for the compiler. On the other hand, it could be argued that, since we are
completely responsible for the run-time complexity of our programs, we should
simply get used to being responsible for the compile-time complexity, too.

References
[1] Neil D. Jones. An Introduction to Partial Evaluation. ACM Computing Surveys,

28(3):480–503, 1996.

[2] Carl H. Smith. A Recursive Introduction to the Theory of Computation. Springer,
1994.

[3] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1997.

[4] Erwin Unruh. Prime number computation. ANSI X3J16-94-0075/ISO WG21-462,
1994.

[5] Erwin Unruh. Template Metaprogrammierung, 2002. URL: http://www.erwin-
unruh.de/meta.html (in German).

[6] Todd L. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–43,
1995.

additional integer variable would not necessarily increase the size of the type (because of structure
packing). In this case, we could use more than one dummy integer to make sure we always have
sizeof(suc<T>) > sizeof(T).

[7] Todd L. Veldhuizen. C++ Templates as Partial Evaluation. In Proc. of the ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), Technical report BRICS NS-99-1, University of Aarhus, pages 13–18, 1999.

[8] Todd L. Veldhuizen. Just when you thought your little language was safe: “Expres-
sion Templates” in Java. In Proc. of the 2nd Symp. Generative and Component-Based
Software Engineering (GCSE), volume 2177 of Lecture Notes in Comput. Sci., pages
188–200. Springer, 2001.

	Introduction
	Defining Functions Using C++ Templates
	Concluding Remarks

