
C++ Advanced Course

Zoltán Porkoláb
gsd@zolix.hu

2001-08-20

1 Preface

This is a tutorial for the Advanced Course on the C++ Language. It's main pur-
pose is to give a background material for the 24 hours Advanced C++ course. It
it supposed that You are already familiar with the basic C++ language elements
like:

• Overview of the basic elements

• Di�erences between C and C++

• Lexical rules

• Scope rules

• Life rules

• References

• Namespaces

• Function declarations

• Default arguments

• Parameter passing by value and by reference

• Overloading

• Template functions

• Classes

• Visibility (public, protected, private)

• This

• Const memberfunction, const and static members

• Operator overloading

• Copy semantics (copy constructor, assignment)

• Class templates

1

mailto:gsd@zolix.hu

• Inheritance

• Polymorphism (virtual functions)

• Exception handling

This course try to answer the question when and how to use the language
features above, rather than learn newer and newer language elements. (However
we learn a few one, like pointer to member , etc...) We have an outlook on design
questions too. We will analyze already written (and working example programs:
try to understand them and �nd it's problematic parts. Then we improve them.

We also take a tour on the standard library. We get to know the basic
concept on STL (Standard Template Library) and the I/O mechanism. We also
practice the usage of std::string.

2 C++ Design Issues

In this section we discuss some of the fundamental design issues of the C++
language. We overlook the role of a class, and the steps how we can specify the
classes in a project. We encounter the di�erent connection types between classes.
These relationships may describe various connections between the objects of
those classes: connections in objects life, usage of interface, etc.

2.1 Never looking for a single class

Consider designing a single class. Tipically, this is not a good idea. Concepts
do not exist in isolation; rather, a concept is de�ned in the context of other
concepts. Similarly, a class does not exist in isoolation but is de�ned together
with logically related classes. Typically, on e works on a set of related classes.
Such a set is often called a class library or a component. Sometimes all the
classes in a component constitue a single class hierarchy, sometimes they are
members of a single namespace, and sometimes they are a more ad-hoc collection
of declarations.

The set of classes in a component is united by some logical criteria, often by
a common style and often by a reliance on common services. A component is
thus the unit of design, documentation, ownership, and often reuse. This does
not mean that if you use one class from a component, you must understand and
use all the classes from the component or maybe get the code for every class in
the component loaded into your program. On the contrary, we typically strive
to ensure that a class from a componentcan be used with only minimal overhead
in machine resources and human e�ort.

2.2 How to design components

As usual, there is no one right way of doing this. However the main steps are
regularly the followings:

• 1. Find the concepts/classes and their most fundamental relationships.

• 2. Re�ne classes by specifying the sets of operations on them. Classify
these operations. In particular, consider the needs for construction, copy-
ing, and destruction. Consider minimalism, completeness, convience.

2

• 3. Re�ne classes by specifying their dependencies. Consider parametriza-
tion, inheritance and use dependencies

• 4. Specify the interfaces. Separate functions into public and protected
operations. Specify the exact type of the operations on the classes.

These steps are in an iterative process. Typically, several loops through this
sequence are needed to produce a design one can confortably use for an initial
implementation or reimplementation.

2.3 Find Classes

Find the concepts/classes and their most fundamental relationships . The key
to a good design is to model some aspect of reality directly � that is, capture
the concepts of an application as classes, represent the relationships between
classwell-de�ned ways such as inheritance, and do this repeatedly at di�erent
levelabstraction. But how do we go about �nding those concepts? What is a
practical approach to deciding which classes we need?

The best place to start looking is in the application itself, as opposed to
looking in the computer scientist's bag of abstractions and concepts. Listen to
someone who will become an expert user of the system once it has been built and
to someone who is a somewhat dissatis�ed user of the system being replaced.
Note the vocabulary they use.

It is often said that the nouns will correspond to the classes and objects
needed in the program; often that is indeed the case. However, that is by no
means the end of the story. Verbs may denote operations on objects, tradi-
tional (global) functions that produce new values based on the value of their
arguments, or even classes. As examples of the latter, note the function objects
and manipulators. Verbs such as iterate or commit can be represented by an
iterator object and an object representing a database commit operation, respec-
tively. Even adjectives can often usefully be represented by classes. Consider
the adjectives storable, concurrent, registered, and bounded. These may be
classes intended to allow a designer or programmer to pick and choose among
desirable attributes for later-designed classes by specifying virtual base classes.

Not all classes correspond to application-level concepts. For example, some
represent system resources and implementation-level abstractions. It is also
important to avoid modeling an old system too closely. For example, we don't
want a system that is centered around a database to faithfaspects of a manual
system that exist only to allow individuals to manage the physical shu�ing of
pieces of paper.

2.4 Specify operations

Re�ne classes by specifying the sets of operations on them . Naturally, it is
not possible to separate �nding the classes from �guring out what operations
are needed on them. However, there is a practical di�erence in that �nding
the classes is focusses on the key concepts and deliberately deemphasizes the
computational aspects of the classes, whereas specifying the operations focusses
on �nding a complete and usable set of operations.

The strategy in considering what functions are to be provided may be the
following:

3

• Consider how an object of the class is to be constructed, copied (if at all)
and destroyed.

• De�ne the minimal set of operations required by the concept the class is
representing. Typically these operations became the member functions.

• Consider wich operations could be added for notational convience. In-
clude only a few really important ones. Often these operations became
nonmember functions.

• Consider wich operations are to be virtual, that is, operations for which
the class can act as an interface for an implementation supplied by a
derived class.

• Consider what commonality of naming and functionality can be achieved
across all the classes of the component.

Motto: Try to minimalize your interface . You can allwais extend your inter-
face, but almost never narrow it. Note that minimalism requires more work from
the designer, rather than less. When choosing operations, it is also important
to focus on what to be done rather than how it is to be done.

Classi�cation of operations:

• Foundation operators: constructors, destructors and copy operators.

• Inspectors: operations that do not modify the state of an object.

• Modi�ers: operations that do modify the state of an object.

• Conversions: operations that produce an object of another type based on
the value (state) of the object to which they are applied.

• Iterators: operations that allow aaccess to or use of a sequence of contained
objects.

2.5 Specify Dependencies

Re�ne classes by specifying their dependencies . In C++ we consider the follow-
ing relationships between classes (types):

• Inheritance relationship

• Containment relationship

• Use relationship

• Programmed-in relationship

• Relationships within a class

4

2.5.1 Inheritance relationship

Inheritance is the higher level relationship that can be represented directly in
C++ and the one that �gures largest in the early stages of a design. In practice
inheritace is appearing in two forms.

• With inheritance we may collect the common set of attributes (data mem-
bers) and behaviour (member functions) of related classes into a common
base class. That procedure is called generalization.

• Otherwise, we may distinguish di�erence in data structure or in behaviour
between objects of a certain classes: collecting them into di�erent derived
classes. That procedure is called specialization.

We express inheritance relationship in C++ in the following way:

class base1 { /* ... */ };
class base2 { /* ... */ };
class base3 { /* ... */ };

class derived : public base1, protected base2, private base3 { /* ... */ };

Of cource the derived class depends on its base classes. It is less often
appreciated that if a class has a virtual function, the class depends on the
derived classes. Similarly, if a class uses a protected member, that is again a
dependency from the derived classes. Try to minimalize such dependencies.

2.5.2 Containment relationship

Where containment is uesd, there are two major alternatives for representing
an object of a class X:

• Declare a member of type X.

• Declare a member of type X or type X&.

The following example demonstrates the basic usage of the di�erent solu-
tions:

class X
{
public:

X(int);
// ...

};

class C
{

X a;
X *p;
X &r;

public:
C(int i, int j, int k) : a(i), p(new X(j)), r(*new X(k)) { /* ... */ }

~C() { delete p; delete &r; }
};

5

Member of type X is preferred, because of e�ciency in space, time, and
human e�ort. The pointer solution is useful when the contained object may
vary in the life of of the container.

The inheritance hierarchy also expresses some kind of containtment. There
is a (not easy) tradeo� to decide between membership versus inheritance.

2.5.3 Use relationship

There is a number of use relationships represented in C++. Each of them
introduce some dependency between the client code (which uses the other) and
the code which was used.

• Using a name. This is the smallest dependency, not even necessery to use
the declaration.

• Calling a member function

• Reading a member

• Writing a member

• Creating an object

• Taking the size of an object. This needs to know the declaration but
doesn't depend on the constructor.

It is always a good idea to minimalize the dependencies between the di�erent
parts of the code.

2.5.4 Programmed-in relationship

Some relationship cannot be described explicitelly in the programming lan-
guages (even not in C++). In such cases the semantic should be implemented
by the user code.

In C++ for example there is no language concept to describe inheritance
with delegation. In such a case we use other relationship(s), and we program
the semantic.

class B
{

void f();
void g();
void h();

};

class A
{

B *p;
// ...
void f();
void ff();
void g() { p->g(); } // delegate g()
void h() { p->h(); } // delegate h()

};

6

A one-to-one mapping between the design concepts and the language con-
cepts should be used wherever possible. This ensures simplicity and minimalize
the possible errors.

2.5.5 Relationships within a class

Decrementing dependencies inside a class helps to code, test and maintain the
code. You can use the following ideas to minimalize to specify clear relationships
inside a class:

• De�ne class invariants

• Use assertations

• Use preconditions and postconditions for mamber functions

• Increase encapsulation

2.6 Specify Interfaces

Private functions are don't usually need to be considered at the design stage.
What implementation issues must be considered in the design stage are best
dealt as part of the consideration of dependencies. Even more: there is a strong
rule is used by Mr. Stroustrup as a rule of thumb: that unless at least two sig-
ni�cantly di�erent implementations of a class are possible, then there is probably
something wrong with the class . That it, it is simply an implementation in dis-
guise and not a representations of a proper concept. Motto: Ask, whether the
interface to this class su�ciently implementation independent .

Public bases and friends are part of the public interface of a class.
This is the step, where exact types of arguments are considered and speci-

�ed. The ideal is to have as many interfaces as possible statically typed with
application-level types.

2.7 Class in C++

The key notion of C++ is class. A C++ class is a type. Together with names-
paces, classes are also a primary mechanism for information hiding. Programs
can be speci�ed in terms of user-de�ned types and hierarchies of such user-
de�ned types. Both built-in and user-de�ned types obey statically checked type
rules. Virtual functions provide a mechanism for run-time binding without
breaking the static type rules. Templates support the design of parameterized
types. Exceptions provide a way of making error handling more regular. These
C++ features can be used without incurring overhead compared to C programs.
These are the �rst-order properties of C++ that must be understood and con-
sidered by a designer.

In addition, generally available major libraries (such as matrix libraries,
database interfaces, graphical user interface libraries, and concurrency support
libraries) can strongly a�ect design choices.

Fear of novelty sometimes leads to sub-optimal use of C++. So does misap-
plication of lessons from other languages, systems, and application areas. Poor
design tools can also warp designs.

7

Five ways designers fail to take advantage of language features and fail to
respect limitations are worth mentioning:

• Ignore classes and express the design in a way that constrains implementers
to use the C subset only.

• Ignore derived classes and virtual functions and use only the data abstrac-
tion subset.

• Ignore the static type checking and express the design in such a way that
implementers are constrained to simulate dynamic type checking.

• Ignore programming and express systems in a way that aims to eliminate
programmers.

• Ignore everything except class hierarchies.

These variants are typical for designers with

• a C, traditional CASE, or structured design background,

• an Ada83, Visual Basic, or data abstraction background,

• a Smalltalk or Lisp background,

• a nontechnical or very specialized background,

• a background with heavy emphasis on pure object-oriented programming,

Try to avoid the traps above. Use procedural part of C++, classes, in-
heritance, generic programming (eg. template functions and template classes),
polymorphism (eg. use of virtual functions) and static typechecking in a bal-
lance.

3 Advanced examples

In this section we present three examples. In all the examples you should imple-
ment a class on the base of user speci�cation. This speci�cation is given in the
form of existing client code. In other words: there is a main() function already
using your class. You should implement the class which makes the client code
valid.

You may do this in iterative steps. In the client code there are sections
between two to �ve (in correspondig the di�culty of the given problem). You
can uncomment a given section, when you have implemented the corresponding
part of the class. You shouldn't do any other changes in the main �les.

Do practicing and enjoy C++!

3.1 Big integer

The purpose of that class is to store an arbitrary number of digits in a user
de�ned type, and make some basic operation on that. This is an easy starting
- no templates, no exceptions.

8

/*
* main.cc - the client code for class Bigint
* (C) Porkolab Zoltan, ELTE, Budapest, Hungary
* (C) 1998
*/

#include <iostream>
#include "bigint"

class BigintCnt : public Bigint
{
public:

BigintCnt(const char *s) : Bigint(s) { ++cnt; }
BigintCnt(const Bigint &rhs) : Bigint(rhs) { ++cnt; }
~BigintCnt() { --cnt; }
static int get_cnt() { return cnt; }
int mark_five(int arg = 5) { return arg - 1; }

private:
static int cnt;

};
int BigintCnt::cnt = 0;

int main()
{

int iMark(1);

/* 2-es
Bigint b1("1999" "1999" "1999" "1999" "1999");
iMark = (++b1)[4]; // jobbrol 4-ik szamjegy int erteke

*/

/* 3-as
Bigint b2("2000");
Bigint b3 = b2;
iMark += static_cast<int>(b3 - 1999); // b3 erteke

*/

/* 4-es
Bigint *bip = new BigintCnt("9999");
iMark += BigintCnt::get_cnt(); // hany BigintCnt objektum el
delete bip;
iMark -= BigintCnt::get_cnt(); // hany BigintCnt objektum el

*/

/* 5-os
bip = new BigintCnt("5555");
if (bip->Bigint::mark_five() != 5)
{

iMark = bip->mark_five();

9

}
*/

cout << "Your mark is " << iMark << endl;
return 0;

}

3.2 Bag

A bag type is similar to a set, except that a bag has multiplicity, and you can
ask it. That means, eg. put the same value twice into a bag has multiplicity 2.

This is a bit more complicated example, because bag is a template, and you
should even throw templated exceptions. But never mind, just do everything
as you did in the Basic Course, and what you haven't done there may be triv-
ially deduced from the general rules of C++. Remember, there are almost no
exceptions from language rules in C++.

/*
* main.cc - the client code for class bag
* (C) Porkolab Zoltan, ELTE, Budapest, Hungary
* (C) 2001
*/

#include <iostream>
#include "bag.h"

using namespace std;

int main()
{

int yourMark(1);

/* 2-es
bag<long> your_bag;
your_bag.put(50);
your_bag.put(100);
your_bag.put(50);
your_bag.put(400);
yourMark = your_bag.mul(50);

*/

/* 3-as
your_bag.put(50);
const bag<long> copy_of_your_bag = your_bag;
your_bag.remove(50);
yourMark = copy_of_your_bag.mul(50);

*/

/* 4-es
your_bag = copy_of_your_bag;

10

your_bag.put(50);
if (your_bag.mul(50) != copy_of_your_bag.mul(50))

yourMark = your_bag.mul(50);
*/

/* 5-os
try
{

your_bag.remove_all(50);
yourMark = your_bag[50];

}
catch(bad_value<long> bi)
{

std::cerr << "A(z) " << bi.value() << " ertek nem szerepel\n";
yourMark = 5;

}
*/

std::cout << "Your mark is " << yourMark << endl;
return 0;

}

3.3 Dictionary

Here you should implement a dictionary � or a hash table in Java phrase. The
dictionary is an associative array , like the map class in the standard C++ library.
It is a template type with two type parameters, the key type, which is used to
index the associative array, and the value type, which is the value associated to
a certain key. Otherwise this example is a natural derivative of the bag example.

/*
* main.cc - the client code for class dict
* (C) Porkolab Zoltan, ELTE, Budapest, Hungary
* (C) 2001
*/

#include <iostream>
#include <string>
#include "dict.h"

int main()
{

int yourMark(1);

/* 2-es
dict<std::string,int> your_index;
your_index.put("programozási módszertan", 4);
your_index.put("analízis", 2); // :-)
your_index.put("programozási nyelvek I", 5);
your_index.put("programozási nyelvek II", 2);

11

yourMark = your_index.get("programozási nyelvek II");
*/

/* 3-as
your_index.put("programozási nyelvek II", 3);
const dict<std::string,int> copy_of_your_index = your_index;
yourMark = copy_of_your_index.get("programozási nyelvek II");

*/

/* 4-es
if (your_index["programozási nyelvek II"] ==

copy_of_your_index["programozási nyelvek II"])
++your_index["programozási nyelvek II"];

yourMark = your_index["programozási nyelvek II"];
*/

/* 5-os
try
{

your_index["Java programozási nyelv"] = 5;
}
catch(bad_index<std::string> bi)
{

std::cerr << "A " << bi.index() << " targyat meg nem tanultuk\n";
yourMark = your_index["programozási nyelvek II"]+1;

}
*/

std::cout << "Your mark is " << yourMark << endl;
return 0;

}

4 Style examples

Most likely you won't only meet with C++ when you create a new program
from scratch. It is highly possible you will inherit C++ code from others, and
you should understand, analyze, �x and/or modify these sources.

Therefore it is important for you being able to understand others way of
thinking � presented in C++ lines. You should decide which elements of that
code is correct, and which elements are overcomplicated or simple mistakes. At
the end you should correct the program.

Here we present three examples of this kind. Each of them is "correct" in the
meaning that you can compile them and they produce the expected output. But
they are not perfect at all. Several kind of mistakes may lay in these programs,
from design issues to technicalities.

I have put 3 independent projects under style-1, style-2 and style-3 directo-
ries. In each directories You can read the goal of the programs in the version
with su�x 'a.cpp' (eg. style-1a.cpp).

Your job is to analyze the examples, and try to improve the solutions. In
the other �les (eg. style-1b.cpp) you can �nd improved versions to get a hint,

12

what to do. Please, look at those �les only in "case of emergency".

4.1 Hardware Store

The practice of abstraction is central to the creation of software. The single
most important abstraction mechanism in C++ is the class. A class captures
the common properties of the objects instantiated from it; a class characterizes
the common behaviour of all objects that are its instances. Identifying appro-
priate abstractions is a critical part of programming in C++. To �nd good
abstractions, the programmer must understand the underlying properties of the
objects manipulated by the program.

To study the class as an abstraction mechanism, we examine a sample pro-
gram and evaluate its strength and weaknesses, particulary with respect to the
choice of classes. ALternative ways of writing the program with di�erent classes
and di�erent class relationships appear. General rules of programming style,
which will improve other programs, then emerge from rethinking the design and
rewriting the code of the sample program.

4.1.1 Original version

A hardware store
The program determines the price of various con�gurations of a computer.

Two selections must be made when con�guring a computer: one for an expansion
card and an other for monitor. The slot for an expansion card must contain one
of the three options:

• CDROM drive

• Tape drive

• Netword card

The monitor must be either:

• Monochrom

• Color

Questions:

• Are the classes providing the right abstractions?

• Are there ways to eliminate complexity from the program by changing its
abstractions?

In reading the program, think about how it may be simpli�ed. Write your
own version, compile, and run it. What you gain and what you loose with the
new version?

#include <iostream>
using namespace std;

enum CARD {CDROM, TAPE, NETWORK };

13

enum MONITOR { MONO, COLOR };

class Card
{
public:

virtual int price() = 0;
virtual char *name() = 0;
virtual int rebate();

};

class Network : public Card
{
public:

int price();
char *name();

};

class Tape : public Card
{
public:

int price();
char *name();

};

class CDRom : public Card
{
public:

int price();
char *name();
int rebate();

};

class Monitor
{
public:

virtual int price() = 0;
virtual char *name() = 0;

};

class Color : public Monitor
{
public:

int price();
char *name();

};

class Monochrome : public Monitor
{
public:

int price();

14

char *name();
};

int Card::rebate() { return 45; }

int Network::price() { return 600; }
char *Network::name() { return "Network"; }

int CDRom::price() { return 1500; }
char *CDRom::name() { return "CDRom"; }
int CDRom::rebate() { return 135; }

int Tape::price() { return 1000; }
char *Tape::name() { return "Tape"; }

int Color::price() { return 1500; }
char *Color::name() { return "Color"; }

int Monochrome::price() { return 500; }
char *Monochrome::name() { return "Mono"; }

class Computer
{
public:

Computer(CARD, MONITOR);
~Computer();

int netPrice();
void print();

private:
Card *card;
Monitor *mon;

};

Computer::Computer(CARD c, MONITOR m)
{

switch(c)
{

case NETWORK: card = new Network; break;
case CDROM: card = new CDRom; break;
case TAPE: card = new Tape; break;

}
switch(m)
{

case MONO: mon = new Monochrome; break;
case COLOR: mon = new Color; break;

}
}

Computer::~Computer()
{

15

delete card;
delete mon;

}

int Computer::netPrice()
{

return mon->price() + card->price() - card->rebate();
}

void Computer::print()
{

cout << "Configuration = " << card->name()
<< ", " << mon->name()
<< ", net price = " << netPrice()
<< endl;

}

int main()
{

Computer nm(NETWORK, MONO);
Computer cm(CDROM, MONO);
Computer tm(TAPE, MONO);
Computer nc(NETWORK, COLOR);
Computer cc(CDROM, COLOR);
Computer tc(TAPE, COLOR);

nm.print();
cm.print();
tm.print();
nc.print();
cc.print();
tc.print();

return 0;
}

4.1.2 2nd version (Finding a Common Abstraction)

Motto: Concentrate common abstractions in a base class.

The class interfaces of Card and Monitor are similar: Both have price()
and name() as pure virtual functions. The di�erence is that class Card has an
additional virtual function: rebate(). Studying the similarities and di�erences
between these classes will clarify their relationships and lead to a better program.

Card and Monitor are similar, but they are not formally related in the inher-
itance hierarchy. Both Card and Monitor have price() and name() memberfunc-
tions. They are both computer components. It makes mor esense to formalize
that common abstraction in a further base class called: Component. This makes
the semantic of a computer explicitelly de�ned with the help of C++ language

16

tools.

#include <iostream>
using namespace std;

enum CARD {CDROM, TAPE, NETWORK };
enum MONITOR { MONO, COLOR };

class Component
{
public:

virtual int price() = 0;
virtual char *name() = 0;
virtual int rebate();

int netPrice();
};

Although Component adds another class to the program, it uni�es Card
and Monitor by identifying a common base abstraction. With the addition of
Component, the program better models the program domain.

As you can read from the �rst implementation a card may have a rebate but
a Monitor object may not. Is the distintion intentional, or merely accidental?
It is better to chose a general approximation here, therefore we suppose that a
Component may have a rebate. We express this to declare rebate() as a member
of Component.

int Component::rebate()
{

return 0;
}

Although price() and name() in Component are pure virtual functions, Com-
ponent::rebate() is not. There is no meaningful default default implementation
of price() and name() that the base class might use � that information must be
speci�ed by a derived class before an object may be instatiated. In contrast, a
rebate of zero is a sound default implementation to use in a base class.

class Card : public Component
{
public:

virtual int price() = 0;
virtual char *name() = 0;
virtual int rebate();

};

class Monitor : public Component
{
public:

virtual int price() = 0;
virtual char *name() = 0;

17

};

class Network : public Card
{
public:

int price();
char *name();

};

class Tape : public Card
{
public:

int price();
char *name();

};

class CDRom : public Card
{
public:

int price();
char *name();
int rebate();

};

class Color : public Monitor
{
public:

int price();
char *name();

};

class Monochrome : public Monitor
{
public:

int price();
char *name();

};

int Card::rebate() { return 45; }

int Network::price() { return 600; }
char *Network::name() { return "Network"; }

int CDRom::price() { return 1500; }
char *CDRom::name() { return "CDRom"; }
int CDRom::rebate() { return 135; }

int Tape::price() { return 1000; }
char *Tape::name() { return "Tape"; }

18

int Color::price() { return 1500; }
char *Color::name() { return "Color"; }

int Monochrome::price() { return 500; }
char *Monochrome::name() { return "Mono"; }

class Computer
{
public:

Computer(CARD, MONITOR);
~Computer();

int netPrice();
void print();

private:
Card *card;
Monitor *mon;

};

Computer::Computer(CARD c, MONITOR m)
{

switch(c)
{

case NETWORK: card = new Network; break;
case CDROM: card = new CDRom; break;
case TAPE: card = new Tape; break;

}
switch(m)
{

case MONO: mon = new Monochrome; break;
case COLOR: mon = new Color; break;

}
}

Computer::~Computer()
{

delete card;
delete mon;

}

Uni�cation of the base abstractions (creating the common base class Com-
ponent permits a simpli�cation of the pricing. Both Card and Monitor have a
rebate, so we can implement netPrice() in Component:

int Component::netPrice()
{

return price() - rebate();
}

As a consequece we can drastically simplify the netPrice() of Computer. It
is the sum of netPrice()-es of the Components.

19

int Computer::netPrice()
{

// was: return mon->price() + card->price() - card->rebate();
return mon->netPrice() + card->netPrice();

}

void Computer::print()
{

cout << "Configuration = " << card->name()
<< ", " << mon->name()
<< ", net price = " << netPrice()
<< endl;

}

int main()
{

Computer nm(NETWORK, MONO);
Computer cm(CDROM, MONO);
Computer tm(TAPE, MONO);
Computer nc(NETWORK, COLOR);
Computer cc(CDROM, COLOR);
Computer tc(TAPE, COLOR);

nm.print();
cm.print();
tm.print();
nc.print();
cc.print();
tc.print();

return 0;
}

4.1.3 3rd version (Di�erences between classes)

Motto: a class should describe a set of objects

We were encountered the similarities between the classes, it is time to answer
the question: what makes these classes di�erent? What is the di�erence between
CDRom and Network? The di�erence is found in the derived class declarations.
Neither class adds new members; they have no additional state or supplementary
behaviour. The di�erence is in their de�nitions of the virtual functions price(),
name() and rebate().

These virtual functions do not vary the behaviour of the objects of the
di�erent derived classes. The only di�erence between a Network object and a
CDRom object is the values returned by their virtual functions.

In general, the behaviour of an object is the way it responds to each stimulus
it can receive. Viewing an object in terms of its response to stimuli emphasizes

20

the independence of objects - each object is an autonomous component of a
program in execution.

The most common form of stimulus is a member function call. The object
responds by executing its member function, either to perform a side e�ect or
to return a value or both. Polymorphism - virtual functions in C++ - permits
the objects of di�erent types (classes) to respond in di�erent ways to the same
stimulus. In this program, the virtual functions do not produce variation in
behaviour between objects.

The di�erence between the derived classes can be seen from another perspec-
tive. All information in an object of one of these leaf classes is incorporated in
its type. A Tape object, for example has no data members, every Tape object
is equivalent to every other. There is no reason to instantiate more than one
Tape object, because they must all behave in the very same way. Such a type
is called Singleton, and sometimes is an essential part of a program. But a
program containing only singletons - that is very suspicious.

Generality is an essential property of a program. Code fragments addressed
to solve general problems are more usefull than those that are restricted to
speci�c problems. In practice, a program cannot a�ord to de�ne a di�erent
class for every object that it creates. Rather, each class should characterize a
set of objects.

#include <iostream>
using namespace std;

enum CARD {CDROM, TAPE, NETWORK };
enum MONITOR { MONO, COLOR };

class Component
{
public:

Component(int p, char *n, int r = 0);
int netPrice();
int price() { return m_price; }
char *name() { return m_name; }
int rebate() { return m_rebate; }

private:
int m_price;
char *m_name;
int m_rebate;

};

Component::Component(int p, char *n, int r)
: m_price(p), m_name(n), m_rebate(r) { }

int Component::netPrice()
{

return price() - rebate();
}

The 1st version of the program was drawn into the common trap of thinking

21

that inheritance and virtual functions are the only ways to program in C++.
The excessive use of inheritance resulted in class declarations in which some
classes are so specialized that each describes just one object. Inheritance and
polymorphism are powerful tools when behavious varies between objects of dif-
ferent classes. However, in this program the variation is in values, not behaviour.

Simple data members and non-virtual functions are su�cient to represent
the di�erences between componenct objects.

The di�erence between components is now a di�erence in value, not a dif-
ference in type. The di�erent values are established by arguments to the con-
structor.

Use data members for variation in value, reserve virtual functions for varia-
tion in behaviour.

Component Network(600, "Network", 45);
Component CDRom(1500, "CDRom", 135);
Component Tape(1000, "Tape", 45);
Component Color(1500, "Color");
Component Monochrome(500, "Mono");

The objects above are automatic ones, in a real program perhaps we create
them on user request from the heap.

class Computer
{
public:

Computer(CARD, MONITOR);
int netPrice();
void print();

private:
Component *card;
Component *mon;

};

The Computer has changed accordingly the changes above. It does not
create new Components and destroys them. Therefore no destructor is needed
anymore.

Computer::Computer(CARD c, MONITOR m)
{

switch(c)
{

case NETWORK: card = & Network; break;
case CDROM: card = & CDRom; break;
case TAPE: card = & Tape; break;

}
switch(m)
{

case MONO: mon = & Monochrome; break;
case COLOR: mon = & Color; break;

}
}

22

Uni�cation of the base abstractions (creating the common base class Com-
ponent permits a simpli�cation of the pricing. Both Card and Monitor have a
rebate, so we can implement netPrice() in Component:

As a consequece we can drastically simplify the netPrice() of Computer. It
is the sum of netPrice()-es of the Components.

int Computer::netPrice()
{

return mon->netPrice() + card->netPrice();
}

void Computer::print()
{

cout << "Configuration = " << card->name()
<< ", " << mon->name()
<< ", net price = " << netPrice()
<< endl;

}

See the client code: no modi�cation was needed here.

int main()
{

Computer nm(NETWORK, MONO);
Computer cm(CDROM, MONO);
Computer tm(TAPE, MONO);
Computer nc(NETWORK, COLOR);
Computer cc(CDROM, COLOR);
Computer tc(TAPE, COLOR);

nm.print();
cm.print();
tm.print();
nc.print();
cc.print();
tc.print();

return 0;
}

4.1.4 Final version (The Role of a class)

Motto: a public derived class should be a specialization of its base class

In one respect, the program has lost ground in the transformation. The
original program speci�ed only once, in Card::rebate(), that the default rebate
for cards i s45. With the current de�nition of Component, the values of all
non-zero rebates must be speci�ed in the object declarations. The program has
no place to record a default rebate speci�cally for cards. The program does

23

need to distinguish cards from monitors. Inheritance can provide appropriate
specialization with distinct constructors for cards and monitors.

We must reintroduce the classes Card and Monitor to provide constructors
with the appropriate rebate defaults.

The specialization in the derived classes is limited to their constructors. The
default rebates are speci�ed as default argument values to the constructors for
Card and Monitor.

#include <iostream>
using namespace std;

enum CARD {CDROM, TAPE, NETWORK };
enum MONITOR { MONO, COLOR };

class Component
{
public:

Component(int p, char *n, int r = 0);
int netPrice();
int price() { return m_price; }
char *name() { return m_name; }
int rebate() { return m_rebate; }

private:
int m_price;
char *m_name;
int m_rebate;

};

Component::Component(int p, char *n, int r)
: m_price(p), m_name(n), m_rebate(r) { }

int Component::netPrice()
{

return price() - rebate();
}

class Card : public Component
{
public:

Card(int p, char *n, int r = 45)
: Component(p, n, r) { }
};

class Monitor : public Component
{
public:

Monitor(int p, char *n, int r = 0)
: Component(p, n, r) { }
};

24

Generally, public inheritance is used when the derived class is a specialization
of the base class, that is, when the classes exhibit the "is a kind of" relationship.
A Card is a kind of Component; a Monitor is a kind of Component. In this case,
the specialization applies only during construction - once constructed, all Com-
ponent objects behave uniformly. Limiting the variation in the derived classes
to initialization - constructor specialization - is a legitimate use of inheritance.

It is interesting to note, that Card and Monitor now di�er in a "default
value", implemented as a constructor default argument value. In the original
version of the program, Card and Monitor di�ered in a "default behaviour",
implemented as a virtual function.

Card Network(600, "Network");
Card CDRom(1500, "CDRom", 135);
Card Tape(1000, "Tape");
Monitor Color(1500, "Color");
Monitor Monochrome(500, "Mono");

In place of �ve Component objects, there are now three Card objects and
two Monitor objects. Only one rebate value need be speci�ed; only the CDRom
object deviates from its default.

class Computer
{
public:

Computer(Card *c, Monitor *m);
int netPrice();
void print();

private:
Card *card;
Monitor *mon;

};

The reintroduction of Card and Monitor can simplify the program in other
way. The arguments to Computer::Computer specify one CARD and one MON-
ITOR value. The enumerations place a level of indirection between the construc-
tor and the information it needs, without adding any �exibility. The constructor
really needs the Component objects and has to map each enumeration value to
an object.

Maintaining this mapping is complicated. To add another Monitor for ex-
ample GreyScale, the programmer has to

• add GREY_SCALE to the MONITOR enumeration type,

• declare a GreyScale object, and

• add a GREY_SCALE case to the constructor's switch statement.

Card and Monitor are distinct types. If Computer::Computer takes pointers
to objects as its arguments, the enumerations and the switch statements can be
removed.

25

Computer::Computer(Card *c, Monitor *m)
{

card = c;
mon = m;

}

int Computer::netPrice()
{

return mon->netPrice() + card->netPrice();
}

void Computer::print()
{

cout << "Configuration = " << card->name()
<< ", " << mon->name()
<< ", net price = " << netPrice()
<< endl;

}

Here you must modify the client code: you construct Computer with the
addresses of the objects rather than the enumerators

int main()
{

Computer nm(&Network, &Monochrome);
Computer cm(&CDRom, &Monochrome);
Computer tm(&Tape, &Monochrome);
Computer nc(&Network, &Color);
Computer cc(&CDRom, &Color);
Computer tc(&Tape, &Color);

nm.print();
cm.print();
tm.print();
nc.print();
cc.print();
tc.print();

return 0;
}

4.2 Vehicles and Garages

In the hardware store example, we examined the class relationships, and the
di�erence between variability in behaviour and value. In that example, not all
the inheritance relationships was veri�ed.

In the following example inheritance relationships are "natural", and public
inheritance is appropriate. However, the decision to use public inheritance raises
other questions with respect to the detailed distribution of the and function
members of the classes in the inheritance hierarchy.

26

4.2.1 Original version

The program manipulates vehicles, recording their entry and exit from a parking
garage. Classes Car and Truck are derived from a common base class, Vehicle.

Vehicles identify themselves by printing a message with the vehicle's type
(car or truck) and license plate number.

The main function exercises the Garage class by inserting and removing
Truck and Car objects from a Garage called Park. The public interface to class
Garage is de�ned in terms of pointers to Vehicle objects.

Note that Garage is more than just a bounded collection of pointers to
Vehicle. Each vehicle registered in the garage has an associated bay number,
the only key by which it may be referred to within the Garage.

Questions:

• Which members should be public, private or protected?

• Which functions should be virtual?

• There is a serious bug in the interaction between the base class and the
derived class. Find it and �x it.

Read the program, and make suggestions to create better coupling between
classes.

#include <stdio.h>
#include <string.h>

class Vehicle
{
public:

Vehicle() { plate = 0; }
Vehicle(char *p)
{

plate = new char[strlen(p)+1];
strcpy(plate, p);

}
~Vehicle() { delete [] plate; }
virtual void identify() { printf("generic vehicle\n"); }

protected:
char *plate;

};

class Car : public Vehicle
{
public:

Car() : Vehicle() { }
Car(char *p) : Vehicle(p) { };
void identify() { printf("car with plate %s\n", plate); }

};

27

class Truck : public Vehicle
{
public:

Truck() : Vehicle() { }
Truck(char *p) : Vehicle(p) { };
void identify() { printf("truck with plate %s\n", plate); }

};

class Garage
{
public:

Garage(int max);
~Garage();

int accept(Vehicle*);
Vehicle *release(int bay);
void listVehicles();

private:
int maxVehicles;
Vehicle **parked;

};

Garage::Garage(int max)
{

maxVehicles = max;
parked = new Vehicle*[maxVehicles];
for(int bay = 0; bay < maxVehicles; ++bay)
{

parked[bay] = 0;
}

}

Garage::~Garage()
{

delete [] parked;
}

int Garage::accept(Vehicle *veh)
{

for(int bay = 0; bay < maxVehicles; ++bay)
if(!parked[bay])
{

parked[bay] = veh;
return(bay);

}
return(-1); // No free bay

}

Vehicle *Garage::release(int bay)
{

28

if(bay < 0 || bay > maxVehicles)
return 0;

Vehicle *veh = parked[bay];
parked[bay] = 0;
return(veh);

}

void Garage::listVehicles()
{

for(int bay = 0; bay < maxVehicles; ++bay)
if(parked[bay])
{

printf("Vehicle in bay %d is: ", bay);
parked[bay]->identify();

}
}

Car c1("AAA100");
Car c2("BBB200");
Car c3("CCC300");

Truck t1("TTT999");
Truck t2("SSS888");
Truck t3("UUU777");

int main()
{

Garage Park(14);

Park.accept(&c1);
int t2bay = Park.accept(&t2);
Park.accept(&c3);
Park.accept(&t2);

Park.release(t2bay);

Park.listVehicles();

return 0;
}

The output of the program is the following:

Vehicle in bay 0 is: car with plate AAA100
Vehicle in bay 2 is: car with plate CCC300
Vehicle in bay 3 is: truck with plate SSS888

29

4.2.2 2nd version (Consistency)

Consistency is fundamental in class design and implementation. We can speak
about external consistency (in the interface) and internal consistency (in the
implementation of each objects state.

When inheritance is used, there is a further issue of consistency to con-
sider: consistency in the interface between a base class and its derived classes.
In addition to the public interface, a base class may have a protected inter-
face consisting of the protected members accessible from derived classes. By
declaring protected members, a base class provides special access for use by its
derived classes. The derived classes must use this access consistently with the
implementation of the base class.

Car and Truck make inconsistent use of the base protected member plate.
The default constructor of Vehicle set plate to 0 pointer. However identify()
function in Car and Truck pass plate to printf vithout checking for a null value.
If the parameter for null value, the behaviour of printf is not de�ned.

The following code has an unde�ned result:

Truck t;
t.identify();

We should �x this inconsistency.

#include <stdio.h>
#include <string.h>

class Vehicle
{
public:

Vehicle() { plate = 0; }
Vehicle(char *p)
{

plate = new char[strlen(p)+1];
strcpy(plate, p);

}
~Vehicle() { delete [] plate; }
virtual void identify() { printf("generic vehicle\n"); }

protected:
char *plate;

};

The root of the problem is in the identify() member function in the derived
classes. They behave inconsistently with respect to the protected interface of
their base class. The base class represents a missing license plate number with
a null pointer, but the derived identify() functions assume that the pointer is
always non-null.

A derived class cannot be coded before its base class. A derived class should
conform consistently to the conventions established by its base class. In our
example, the derived classes do not account for all of the legitimate states of
the base part of their objects.

30

To correct the bug, Car::identify() and Truck::identify() should test for null
pointer and take a reasonable action to handle that case.

class Car : public Vehicle
{
public:

Car() : Vehicle() { }
Car(char *p) : Vehicle(p) { };
void identify()

{
char *p = plate ? plate : "<node>";
printf("car with plate %s\n", p);
}
};

class Truck : public Vehicle
{
public:

Truck() : Vehicle() { }
Truck(char *p) : Vehicle(p) { };
void identify()

{
char *p = plate ? plate : "<node>";
printf("truck with plate %s\n", p);
}
};

An other important point to see is, that Vehicle has a non-virtual destructor.
We know, that for a polymorphic type a virtual destructor is very important.
However, if the derived classes have no destructor de�ned, the non-virtual base
destructor causes no problem.As long as the derived classes do not need destruc-
tors, the base class may remain as it is.

(This rule does not adequately address multiply inheritance.)

class Garage
{
public:

Garage(int max);
~Garage();

int accept(Vehicle*);
Vehicle *release(int bay);
void listVehicles();

private:
int maxVehicles;
Vehicle **parked;

};

Garage::Garage(int max)
{

maxVehicles = max;

31

parked = new Vehicle*[maxVehicles];
for(int bay = 0; bay < maxVehicles; ++bay)
{

parked[bay] = 0;
}

}

Garage::~Garage()
{

delete [] parked;
}

int Garage::accept(Vehicle *veh)
{

for(int bay = 0; bay < maxVehicles; ++bay)
if(!parked[bay])
{

parked[bay] = veh;
return(bay);

}
return(-1); // No free bay

}

Vehicle *Garage::release(int bay)
{

if(bay < 0 || bay > maxVehicles)
return 0;

Vehicle *veh = parked[bay];
parked[bay] = 0;
return(veh);

}

void Garage::listVehicles()
{

for(int bay = 0; bay < maxVehicles; ++bay)
if(parked[bay])
{

printf("Vehicle in bay %d is: ", bay);
parked[bay]->identify();

}
}

Car c1("AAA100");
Car c2("BBB200");
Car c3("CCC300");

Truck t1("TTT999");
Truck t2("SSS888");
Truck t3("UUU777");

32

int main()
{

Garage Park(14);

Park.accept(&c1);
int t2bay = Park.accept(&t2);
Park.accept(&c3);
Park.accept(&t2);

Park.release(t2bay);

Park.listVehicles();

return 0;
}

The output of the program is the following:

Vehicle in bay 0 is: car with plate AAA100
Vehicle in bay 2 is: car with plate CCC300
Vehicle in bay 3 is: truck with plate SSS888

4.2.3 3rd version (Coupling)

The inheritance hierarcy in this program is sound. Both Car and Truck are
specialization of the base class Vehicle. Class Garage manages cars and truck
uniformly with respect to the base class interface.

The public inheritance establishes valid "is a kind of" relationships between
the base class and the derived classes. Other part of the program can deal with
Car and Truck objects knowing only that they are at least Vehicle objects and
they react to the interface established by the public members of Vehicle.

Although the inheritance is valid, the detailed distribution of code between
the base and derived classes can be improved. To make a better version from
the example, try to answer the following questions:

• What is common among classes of an inheritance hierarcy

• What are the di�erences between the derived classes

The common properties of all vehicles are a license plate number and the
ability to identify themselves. These properties are captured in the plate base
class data member, and virtual member fuction identify().

Vhat is the di�erence between a Car and a Truck? The only di�erence is
the string "car" or "truck" printed by identify(). In other words, truck and car
di�er only in value not in their behaviour.

The similarity between Car::identify() and Truck::identify() is telling. In the
following, we migrate common behaviour - represented by the identify() function
- to the base class.

#include <stdio.h>

33

#include <string.h>

class Vehicle
{
public:

Vehicle() { plate = 0; }
Vehicle(char *p)
{

plate = new char[strlen(p)+1];
strcpy(plate, p);

}
virtual ~Vehicle() { delete [] plate; }
void identify()
{

char *p = plate ? plate : "none";
printf("%s with plate %s\n", group(), p);

}
protected:
virtual char *group() = 0;

private:
char *plate;

};

The virtual behaviour identify() has been replaced by the virtual behaviour
of group(). In fact, group() itselfmay be replaced with a data member. Plate
member has been moved from the protected area to private.

Car and Vehicle has been also modi�ed accordingly to the changes at Vehicle.

class Car : public Vehicle
{
public:

Car() : Vehicle() { }
Car(char *p) : Vehicle(p) { };

private:
char *group() { return "car"; }
};

class Truck : public Vehicle
{
public:

Truck() : Vehicle() { }
Truck(char *p) : Vehicle(p) { };

private:
char *group() { return "truck"; }
};

class Garage

34

{
public:

Garage(int max);
~Garage();

int accept(Vehicle*);
Vehicle *release(int bay);
void listVehicles();

private:
int maxVehicles;
Vehicle **parked;

};

Garage::Garage(int max)
{

maxVehicles = max;
parked = new Vehicle*[maxVehicles];
for(int bay = 0; bay < maxVehicles; ++bay)
{

parked[bay] = 0;
}

}

Garage::~Garage()
{

delete [] parked;
}

int Garage::accept(Vehicle *veh)
{

for(int bay = 0; bay < maxVehicles; ++bay)
if(!parked[bay])
{

parked[bay] = veh;
return(bay);

}
return(-1); // No free bay

}

Vehicle *Garage::release(int bay)
{

if(bay < 0 || bay > maxVehicles)
return 0;

Vehicle *veh = parked[bay];
parked[bay] = 0;
return(veh);

}

void Garage::listVehicles()
{

35

for(int bay = 0; bay < maxVehicles; ++bay)
if(parked[bay])
{

printf("Vehicle in bay %d is: ", bay);
parked[bay]->identify();

}
}

Car c1("AAA100");
Car c2("BBB200");
Car c3("CCC300");

Truck t1("TTT999");
Truck t2("SSS888");
Truck t3("UUU777");

int main()
{

Garage Park(14);

Park.accept(&c1);
int t2bay = Park.accept(&t2);
Park.accept(&c3);
Park.accept(&t2);

Park.release(t2bay);

Park.listVehicles();

return 0;
}

4.2.4 Final version (Value versus behaviour)

Vehicle::identify() was a virtual function in the original version of the program,
and following that style group() is virtual in the revised version. Is a virtual
function is the right way to capture the di�erence between the characteristic
strings "car" and "truck"? The di�erence between the derived classes is one of
value and not behaviour. Objects ofthe derived classes do not behave di�erently
nor use di�erent algorithms. A di�erence in value can be recorded more natu-
rally in a data member than in a virtual function. A data member in Vehicle
would be su�cient:

#include <stdio.h>
#include <string.h>

class Vehicle
{

36

public:
// Vehicle(char *g) { group = g; plate = 0; }
Vehicle(char *g, char *p)
{

group = g;
plate = new char[strlen(p)+1];
strcpy(plate, p);

}
virtual ~Vehicle() = 0; // pure virtual
void identify()
{

char *p = plate ? plate : "none";
printf("%s with plate %s\n", group, p);

}

private:
char *plate;
char *group;

};

The data member can receive its value from an additional argument to each
Vehicle constructor, supplied by the corresponding derived constructor. The
base and the derived classes interact only during initialization, further reducing
coupling.

Vehicle::~Vehicle()
{

delete [] plate;
}

class Car : public Vehicle
{
public:

// Car() : Vehicle("car") { }
Car(char *p = 0) : Vehicle("car", p) { };

};

class Truck : public Vehicle
{
public:

// Truck() : Vehicle("truck") { }
Truck(char *p = 0) : Vehicle("truck", p) { };

};

We can further reduce the code by using default argument in the constructors
of the derived classes and so eliminating the second cosntructors both in derived
and the base classes.

In the same time we must mentioned that when we eliminated a virtual
function we increased the size of the object. So the data versus function tradeo�
has a size versus runtime parallel. Here we should recognize, that eliminating
the virtual function also eliminated the vptr, se reduced size.

37

class Garage
{
public:

Garage(int max);
~Garage();

int accept(Vehicle*);
Vehicle *release(int bay);
void listVehicles();

private:
int maxVehicles;
Vehicle **parked;

};

Garage::Garage(int max)
{

maxVehicles = max;
parked = new Vehicle*[maxVehicles];
for(int bay = 0; bay < maxVehicles; ++bay)
{

parked[bay] = 0;
}

}

Garage::~Garage()
{

delete [] parked;
}

int Garage::accept(Vehicle *veh)
{

for(int bay = 0; bay < maxVehicles; ++bay)
if(!parked[bay])
{

parked[bay] = veh;
return(bay);

}
return(-1); // No free bay

}

Vehicle *Garage::release(int bay)
{

if(bay < 0 || bay > maxVehicles)
return 0;

Vehicle *veh = parked[bay];
parked[bay] = 0;
return(veh);

}

void Garage::listVehicles()

38

{
for(int bay = 0; bay < maxVehicles; ++bay)

if(parked[bay])
{

printf("Vehicle in bay %d is: ", bay);
parked[bay]->identify();

}
}

Car c1("AAA100");
Car c2("BBB200");
Car c3("CCC300");

Truck t1("TTT999");
Truck t2("SSS888");
Truck t3("UUU777");

int main()
{

Garage Park(14);

Park.accept(&c1);
int t2bay = Park.accept(&t2);
Park.accept(&c3);
Park.accept(&t2);

Park.release(t2bay);

Park.listVehicles();

return 0;
}

4.3 Big Integer

In this project we created a class which represents a big integer value. "Big"
means, it can hold arbitrary number of digits. We de�ned the basic operations
on that class (operator= and operator+). The class seems to work correctly.

However we have serious e�ciency problems. It seems, that operations in
main() are terrible slow, and even worse: execution time is non-linear with the
number of digits.

Try to detect the bottlenecks, and �x they (in iterative steps).

#include <stdio.h>
#include <string.h>
#include <time.h>

class BigInt

39

{
friend class DigitStream;

public:
BigInt(const char*);
BigInt(unsigned n = 0);
BigInt(const BigInt&);

~BigInt() { delete [] digits; }
void operator=(const BigInt&);
BigInt operator+(const BigInt&) const;
void print(FILE* f = stdout) const;

private:
char* digits;
unsigned ndigits;

BigInt(char* d, unsigned n) { digits = d; ndigits = n; }
};
class DigitStream
{
public:

DigitStream(const BigInt& n) { dp = n.digits; nd = n.ndigits; }
unsigned operator++() { if (nd == 0) return 0;

else {nd--; return *dp++; } }
private:

char* dp;
unsigned nd;

};
void BigInt::print(FILE* f) const
{

for (int i = ndigits-1; i>=0; i--) fprintf(f, "%c", digits[i]+'0');
}
void BigInt::operator=(const BigInt& n)
{

if (this == &n) return;
delete [] digits;
unsigned i = n.ndigits;
digits = new char[ndigits = i];
char* p = digits;
char* q = n.digits;
while(i--) *p++ = *q++;

}
BigInt BigInt::operator+(const BigInt& n) const
{

unsigned maxDigits = (ndigits>n.ndigits ? ndigits : n.ndigits)+1;
char* sumPtr = new char[maxDigits];
BigInt sum(sumPtr, maxDigits);
DigitStream a(*this);
DigitStream b(n);
unsigned i = maxDigits;
unsigned carry = 0;
while (i--)
{

40

*sumPtr = (++a) + (++b) + carry;
if (*sumPtr >= 10)
{

carry = 1;
*sumPtr -= 10;

}
else carry = 0;

sumPtr++;
}
return sum;

}
BigInt::BigInt(unsigned n)
{

char d[3*sizeof(unsigned)+1];
char* dp = d;
ndigits = 0;

do
{

*dp++ = n%10;
n /= 10;

ndigits++;
}
while (n > 0);

digits = new char[ndigits];
for (register i = 0; i < ndigits; i++) digits[i] = d[i];

}
BigInt::BigInt(const BigInt& n)
{

unsigned i = n.ndigits;
digits = new char[ndigits = i];
char* p = digits;
char* q = n.digits;
while (i--) *p++ = *q++;

}
BigInt::BigInt(const char* digitString)
{

unsigned n = strlen(digitString);
if (n != 0)
{

digits = new char[ndigits = n];
char* p = digits;
const char* q = &digitString[n];
while (n--) *p++ = *--q - '0';

}
else
{

digits = new char[ndigits = 1];

41

digits[0] = 0;
}

}

int main()
{

BigInt b = 1;
time_t t1 = time(NULL);

for (int i = 1; i <= 50000; ++i) b = b + 1;
time_t t2 = time(NULL);
printf("Elapsed time: %ld\n", t2 - t1);
// 1000 rec = 1 sec
// 2000 rec = 7 sec
// 5000 rec = 38 sec
// 10000 rec = 150 sec
// ... on my old machine :-)

}

42

