
Google Test Quick Reference
Example Tests
• The following code snippet is a simple test that one might write when driving a bowling scorer object.
TEST(BowlingGameTest,	
 AllGuttersGetsZero)	
 {
	
 	
 BowlingGame	
 game;
	
 	
 vector<int>	
 rolls(20,	
 0);
	
 	
 ASSERT_EQ(0,	
 game.Score(rolls));
}

• The following code snippets demonstrate a simple data fixture and a test that uses that fixture.
class	
 QueueTest	
 :	
 public	
 ::testing::Test	
 {
	
 	
 protected:
	
 	
 	
 	
 virtual	
 void	
 SetUp()	
 {
	
 	
 	
 	
 	
 	
 q1_.Enqueue(1);
	
 	
 	
 	
 }

	
 	
 	
 	
 Queue<int>	
 q0_;
	
 	
 	
 	
 Queue<int>	
 q1_;
};

TEST_F(QueueTest,	
 IsEmptyInitially)	
 {
	
 	
 ASSERT_EQ(0,	
 q0_.size());
}

TEST_F(QueueTest,	
 DequeueWorks)	
 {
	
 	
 int*	
 n	
 =	
 q1_.Dequeue();
	
 	
 ASSERT_TRUE(n	
 !=	
 NULL);
	
 	
 EXPECT_EQ(1,	
 *n);
	
 	
 EXPECT_EQ(0,	
 q1_.size();
	
 	
 delete	
 n;
}

Creating Tests
TEST(test_case_name, test_name) test_case_name is the name of the Test Case. test_name is the name of the

individual scenario contained within this test method. A test case can and
probably should contain multiple tests.

TEST_F(test_case_name, test_name) This is the same as above except the test_case_name is the name of a test
fixture. Test fixtures allow you to use the same data and setup across multiple
tests.

* ASSERT_* yields a fatal failure and returns from the current function, while EXPECT_* yields a nonfatal failure, allowing
the function to continue running.

Basic Assertion
Fatal Assertion Nonfatal Assertion Verifies

ASSERT_TRUE(condition) EXPECT_TRUE(condition) condition is true

ASSERT_FALSE(condition) EXPECT_FALSE(condition) condition is false

Explicit Success of Failure
Assertion Description

SUCCEED() This is purely documentation and currently doesnʼt generate any visible output.
In the future google may choose to have this macro produce messages.

FAIL() This will generate a fatal failure.

ADD_FAILURE() This will generate a nonfatal failure.

Binary Comparison
Fatal Assertion Nonfatal Assertion Verifies

ASSERT_EQ(expected, actual) EXPECT_EQ(expected, actual) expected == actual

ASSERT_NE(val1, val2) EXPECT_NE(val1, val2) val1 != val2

ASSERT_LT(val1, val2) EXPECT_LT(val1, val2) val1 < val2

ASSERT_LE(val1, val2) EXPECT_LE(val1, val2) val1 <= val2

ASSERT_GT(val1, val2) EXPECT_GT(val1, val2) val1 > val2

ASSERT_GE(val1, val2) EXPECT_GE(val1, val2) val1 >= val2

String Comparison
Fatal Assertion Nonfatal Assertion Verifies

ASSERT_STREQ(expected, actual) EXPECT_STREQ(expected, actual) the two C strings have the same
content

ASSERT_STRNE(str1, str2) EXPECT_STRNE(str1, str2) the two C strings have different
content

ASSERT_STRCASEEQ(exp, act) EXPECT_STRCASEEQ(exp, act) the two C strings have the same
content, ignoring case

ASSERT_STRCASENE(str1, str2) EXPECT_STRCASENE(str1, str2) the two C strings have different
content, ignoring case.

* The assertions in this group compare two C strings. If you want to compare two string objects use EXPECT_EQ, etc.
* CASE in an assertion name means that case is ignored.

Exception Assertions
Fatal Assertion Nonfatal Assertion Verifies

ASSERT_THROW(stmt, exc_type) EXPECT_THROW(stmt, exc_type) stmt throws an exception of the given
exc_type.

ASSERT_ANY_THROW(stmt) EXPECT_ANY_THROW(stmt) stmt throws an exception of any type.

ASSERT_NO_THROW(stmt) EXPECT_NO_THROW(stmt) stmt throws no exception

Examples:
ASSERT_THROW(Foo(5),	
 bar_exception);

EXPECT_NO_THROW({
	
 	
 int	
 n	
 =	
 5;
	
 	
 Bar(&n)
});

Floating Point Comparison
Fatal Assertion Nonfatal Assertion Verifies

ASSERT_FLOAT_EQ(exp, act) EXPECT_FLOAT_EQ(exp, act) The two float values are almost equal.

ASSERT_DOUBLE_EQ(exp, act) EXPECT_DOUBLE_EQ(exp, act) The two double values are almost
equal

ASSERT_NEAR(val1, val2, abs_err) EXPECT_NEAR(val1, val2, abs_err) The difference between the val1 and
val2 doesnʼt exceed abs_err .

* By “almost equal” we mean the two values are within 4 ULPʼs from each other.

Windows HRESULT Assertions
Fatal Assertion Nonfatal Assertion Verifies

ASSERT_HRESULT_SUCCEEDED(exp) EXPECT_HRESULT_SUCCEEDED(exp) exp is a success HRESULT

ASSERT_HRESULT_FAILED(exp) EXPECT_HRESULT_FAILED(exp) exp is a success HRESULT
* The generated output contains the human-readable error message associated with the HRESULT code returned by exp.

Predicate Assertions for Better Error Messages
Fatal Assertion Nonfatal Assertion Verifies

ASSERT_PRED1(pred, val1) EXPECT_PRED1(pred, val1) pred(val1) returns true

ASSERT_PRED2(pred, val1, val2) EXPECT_PRED2(pred, val1, val2) pred(val1, val2) returns true

...
* When the assertion fails it prints the value for each argument.
* Currently we only provide predicate assertions of arity <= 5.
Example:
bool	
 MutuallyPrime(int	
 m,	
 int	
 n)	
 {...}
const	
 int	
 a	
 =	
 3;
const	
 int	
 b	
 =	
 4;
const	
 int	
 c	
 =	
 10;

The assertion EXPECT_PRED2(MutuallyPrime, a, b) will succeed, while the assertion EXPECT_PRED2(MutuallyPrime(b,
c) will fail with the message:

MutuallyPrime(b,	
 c)	
 is	
 false,	
 where
b	
 is	
 4
c	
 is	
 10

Running Test Programs - Advanced Options
Running a Subset of the Tests
If you set the GTEST_FILTER environment variable or the --gtest_filter flag to a filter string Google Test will only run those
tests whose full name match the filter.

Temporarily Disabling Tests
If you have a broken test that you cannot fix right away, you can add the DISABLED_ prefix to its name. This will exclude
it from execution.
* Note: This feature should only be used for temporary pain-relief. You still have to fix the disabled tests at a later time.

As a reminder, Google Test will print a banner warning you if a test program contains disabled tests.

Temporarily Enabling Disabled Tests
To include disabled tests in test execution, just invoke the test program with --gtest_also_run_disabled_tests or set the
GTEST_ALSO_RUN_DISABLED_TESTS environment variable to a value greater than 0.

Colored Terminal Output
You can set the GTEST_COLOR environment variable or set the --gtest_color command line flag to yes, no, or auto to
enable colors, disable colors or let Google Test decide.

Suppressing Elapsed Time
By default, Google Test prints the time it takes to run each test. To suppress that, run the program with the --
gtest_print_time=0 command line flag. Setting the GTEST_PRINT_TIME environment variable to 0 has the same effect.

Generating an XML Report
Google Test can emit a detailed XML report to a file in addition to its normal textual output. To generate the XML report,
set the GTEST_OUTPUT environment variable or the --gtest_output flag to the string “xml:path_to_output_file”, which will
create the file at the given location. You can also just use the string “xml”, in which case the output can be found in the
test_detail.xml file in the current directory. If the file already exists it will pick a different name (append number) to avoid
overwriting it.
The report uses a format based on the junitreport Ant task and can be parsed by popular Continuous Integration servers
like Hudson.

